
A Visual Analytics Framework for Explaining and Diagnosing
Transfer Learning Processes

Yuxin Ma, Arlen Fan, Jingrui He, Arun Reddy Nelakurthi, Ross Maciejewski

A

B C D

(1) Accuracies
Source
Model

Target
Model

(2) Class-level Peroformance
(2.1) High accuracies on
both models

(2.2) Big difference between
the source and the target
model accuracies

(2.3) t-SNE
Projection

Result

(3.1) Rankings of
Important Neurons

(3) Network Relation View

(3.3) Weight Visualization for Layer 7
(Less weights in the target model have

correspondences in the source side)

(4) Domain
Discriminability

(4.1) Neurons

(4.2) Images

(3.2) Many Target
Weights with Source
Correspondence

(4.3) Domain-invariant Feature

C.1 C.2

Fig. 1. The visual analytics for transfer learning interface consists of four components: (A) statistical information summary, (B) the
instance view, (C) the network relation view, and (D) the feature view. For the Office-31 dataset, (1) the prediction accuracy of the target
model on the source dataset is lower than the source model; (2) for the target dataset, classes such as file cabinet and phone have a
large performance gap between the source and the target models; (3) the neuron similarity matrices and the weights are presented; (4)
some neurons have high domain discriminability, while Neuron #173 in Layer 5 is domain-invariant.

Abstract— Many statistical learning models hold an assumption that the training data and the future unlabeled data are drawn from
the same distribution. However, this assumption is difficult to fulfill in real-world scenarios and creates barriers in reusing existing
labels from similar application domains. Transfer Learning is intended to relax this assumption by modeling relationships between
domains, and is often applied in deep learning applications to reduce the demand for labeled data and training time. Despite recent
advances in exploring deep learning models with visual analytics tools, little work has explored the issue of explaining and diagnosing
the knowledge transfer process between deep learning models. In this paper, we present a visual analytics framework for the multi-level
exploration of the transfer learning processes when training deep neural networks. Our framework establishes a multi-aspect design
to explain how the learned knowledge from the existing model is transferred into the new learning task when training deep neural
networks. Based on a comprehensive requirement and task analysis, we employ descriptive visualization with performance measures
and detailed inspections of model behaviors from the statistical, instance, feature, and model structure levels. We demonstrate our
framework through two case studies on image classification by fine-tuning AlexNets to illustrate how analysts can utilize our framework.

Index Terms—Transfer learning, deep learning, visual analytics

1 INTRODUCTION

• Y. Ma, A. Fan and R. Maciejewski are with Arizona State University. E-mail:
{yuxinma,afan5,rmacieje}@asu.edu.

• J. He is with the University of Illinois at Urbana-Champaign. E-mail:
jingrui@illinois.edu.

• A. R. Nelakurthi is with Samsung Research America. E-mail:
arunreddy.nelakurthi@gmail.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.

Machine learning approaches have achieved outstanding success in
various fields including image recognition [28], natural language pro-
cessing [80], and question-answering systems [7]. However, in real-
world applications, the collected labels used to train machine learning
models may become quickly outdated, and collecting new labels can
be cost prohibitive [42, 55]. Furthermore, directly reusing expired
or non-related labeled data from other domains may inject bias into
the modeling process. To reduce the cost of labeling new instances
and minimize the threat of bias, researchers have proposed transfer

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

learning, a meta-strategy to relax the assumption of independent and
identical distribution (i.i.d) and mitigate data insufficiency [54]. From
a non-technical perspective, transfer learning is inspired by the knowl-
edge transfer phenomenon in humans [76] where, for example, an
experienced car driver can learn to operate boats with less effort by
mapping the control mechanism, or a pianist may master other musical
instruments faster than new learners. Transfer learning is seen as a
promising approach in the deep learning community, where the high
demand for labels and long training times of models can be bottlenecks
for model deployment [68]. By recycling labeled instances and pre-
trained networks from related data domains, model accuracy can be
improved and training time reduced as compared to training neural
networks with new instances from scratch [68, 79].

While there have been successful applications of transfer learning
in deep neural networks [28, 58], understanding and interpreting the
knowledge transfer processes is a critical step in the transfer learning
process. Measuring the performance of the transferred model with
conventional metrics is not enough to ensure that the knowledge transfer
will be robust. Model developers need to understand what knowledge
has been transferred from the old model and how the knowledge is
reused in a particular form in the new model to boost its performance,
which cannot be answered with simple statistical measures [1].

Given the recent success of visual analytics for explainable AI
(XAI) [9,17,21,38,43], we propose a visual analytics framework to ex-
plain and diagnose transfer learning processes in deep neural networks.
The research challenges are summarized to characterize the exploration
routines and essential knowledge users want to extract. Analytical
tasks are derived in accordance with the requirements in a hierarchical
manner and act as a guidance of the framework design. While existing
visual analytics tools focus on individual models [22, 24, 36, 73], our
approach addresses the task of revealing relationships between multiple
models and utilizes a multi-faceted visualization scheme to present the
transferred knowledge with respect to data, feature, and domain levels.
Specifically, we propose an interactive interface consisting of two
modules: descriptive visualization of statistical measures and detailed
inspection of model behaviors. The statistical information of the models
before and after transfer are revealed to provide an overall measure of
how successful the transfer is, Figure 1 (A). For detailed inspection
components in Figure 1 (B-D), the instance view depicts essential
information on data distributions and predictions in the new model, the
matrix-based network relation view is designed to reveal similarities
and differences of the critical neural network components, and the
feature view utilizes domain discriminability to support the exploration
of shared knowledge hidden in the extracted features. To demonstrate
our framework, we provide case studies and expert interviews in image
classification tasks where a fine-tuning method is adopted on AlexNets.
Our contributions include:
• A visual analytics framework that supports the interpretation and

diagnosis of the transfer learning processes in deep learning models;
• A suite of visualization designs that illustrate the transferred knowl-

edge from the data, the model, and the feature levels.

2 RELATED WORK

In this section, we review related work on model interpretation and
comparison as well as visual analytics for deep learning.
Model-Agnostic and Model-Specific Analysis. A variety of work
from the visual analytics community has focused on supporting model
transparency for XAI. Previous work can be roughly classified into
two main categories: model-agnostic design and model-specific de-
sign. Model-agnostic approaches consider the models to be black
boxes where the internal learning processes are opaque to users. Here,
the focus is on interpreting the models using the input data, output
predictions, and performance measures, as such metrics are common
across all classes of models. Manifold [82], ModelTracker [6], and
Squares [60] utilize the predictions of labels from classifiers as well
as performance measures to support model comparison, performance
debugging, feature importance analysis, and instance-level explana-
tions. FairSight [3], FairVis [11], and the What-If Tool [77] apply

fairness metrics to evaluate whether algorithmic disparities of certain
populations occur in the predictions. Prospector [27] enhances the
model interpretability by demonstrating feature importance with partial
dependence and localized inspection.

Model specific designs focus on improving model transparency by
revealing the inner workings of models in a white-box manner. For
example, tree-based models are considered to be highly-interpretable
models because of the natural presentation of decision criteria. For less-
interpretable models, such as support vector machines [44] and artificial
neural networks [69], methods have been proposed to expose the core
structures of the model (e.g., support vectors or neurons) or utilize
interpretable surrogate models [50]. Compared with the model-agnostic
approaches, the strategy of “opening the black box” [51] benefits the
advanced users by providing insights into underlying patterns hidden
inside the models. However, the strong bindings between the internal
structures of models and the specialized visualization designs limit the
universality of such model specific visual analytics systems [60].
Model Comparison. In the predictive visual analytics pipeline [41,
43], model comparison is essential for model selection, where the best
result is selected from various predictions associated with multiple
parameter settings [31, 43]. Statistical charts, including line charts
and scatterplots, have been applied to visualize model statistics and
provide an intuitive comparison of different results [18, 43]. Many
visual analysis approaches provide a detailed comparative analysis of
multiple predictions. Work by Spinner et al. [64] summarizes typical
tasks in XAI and proposes a framework for interactive machine learning.
In the model quality control stage, the model comparison component is
implemented using different “explainers” to support comparative expla-
nation. Visual analysis approaches in ensemble learning [39,67,84], Au-
toML [13, 74], and choropleth classification under uncertainty [23, 83]
consider the comparison of individual ensemble members as the core
analytical task. For topic modeling, Alexander and Gleicher [4] explore
the design space of task-oriented topic model comparison and derive
comparison tasks based on their single-model counterparts. In data
clustering, the DICON [12] system adopts a glyph-based visualization
design to interpret, evaluate, and compare high-dimensional statistical
information of clusters. Pilhöfer et al. [57] presents an algorithm to
compare clustering results from different clustering models. Along with
prediction comparisons, the INFUSE system [26] addresses the need for
comparative analysis in feature selection and provides a visual analytics
system to guide the optimization of feature sets in classification tasks.
Visual Analytics in Deep Learning. Given the current popularity
of deep learning models, numerous visual analytics frameworks have
also been proposed to improve the issues of low interpretability and
transparency unique to the deep learning process. These visual an-
alytics tools have been designed for deep learning experts and end
users [21] while tackling numerous real-world issues, such as model
vulnerability [19, 45], data security [2], trust [33], and fairness [3, 11].
Much of the previous visual analytics work for deep learning focuses
on analyzing Convolutional Neural Network (CNN) structures in image
classification [5,15,22,24,34,37,56,59,62,73,78] or Recurrent Neural
Networks (RNN) and its variants in NLP tasks [29, 49, 65, 66]. For
unsupervised Generative Adversarial Networks (GAN), AEVis [35],
GAN Lab [25], and GANViz [72] support the exploration of how
adversarial examples from the generative networks pass through the
discriminative ones and trigger erroneous behaviors in the neurons
which dramatically change the final predictions. Wang et al. [71]
propose DQNVis for the investigation of training dynamics and action
outcomes in deep reinforcement learning models.

Along with learning tasks, visualization for deep neural networks
also focuses on prediction performance, network structures, and the
behaviors of intermediate hidden layers [21, 75]. The performance
diagnosis approaches for general black-box models can be applied to
deep neural networks as well, and some work extends the black box
methods by introducing instance checking components [24]. For model-
specific inspection, network structures are illustrated using node-link
diagrams [78] where nodes represents layers, or important neurons, and
edges represent the weights or filters that connect the layers or neu-
rons [22,34,37]. Behaviors of hidden layers and neurons are sometimes

embedded into the structure diagram, the activation map [62], the repre-
sentative instances or features [22, 49], or the clusters of neurons [37].

While, the visual analytics community has developed a variety of
methods for model interpretability, performance diagnosis, and model
comparison, none of the aforementioned approaches have addressed
the explainability and diagnosis of knowledge transfer between deep
learning models. Recent works by Zeng et al. [81], Murugesan et
al. [52], and Ma et al. [46] are the closest in spirit to our work with
respect to model comparison and knowledge transfer. However, our
framework goes beyond simple comparisons between models and anal-
ysis of traditional transfer learning techniques on shallow learning
models to further reveal the relationships of inheritance and knowledge
reuse in deep neural networks.

3 BACKGROUND ON TRANSFER LEARNING

Before presenting our visual analytics framework, we first define the
basic concepts of the transfer learning processes.
Domain and Task. There are two core concepts in transfer learning:
domain, and task [54].
• Given a set of data instances X = {xi|xi ∈ X , i ∈ [1, N]} in the

feature space X , a domain D is a combination of X and the marginal
probability distribution P (X). Take for example, a collection of news
articles. We can consider the instances x to be the corresponding
word count vectors of the articles, and the feature space X the vocab-
ulary of all the articles. Due to variations of wording and expressions,
the word count distribution is often unique for a specific news source,
leading to different P (X) across publications.

• The concept of task describes the supervision information and the
model that fulfills a specific learning goal. Formally, a task T consists
of two components: the label space Y which represents all possible
labels for the instances, and a decision function y = f(x) learned
from the labeled instances {(yi,xi)|y ∈ Y,x ∈ X , i ∈ [1, N]}. In
our news article example, the goal is to perform sentiment analysis,
leading to a label space Y of two elements such that each label yi
for xi can be either Positive or Negative. The classifier f(·) is
generated by fitting the labeled instances and can be further applied
to unlabeled instances to predict their sentiment.

In the conventional machine learning setting, the assumption should be
held that unlabeled data comes from the same distribution as the training
data and share the same set of class labels. Formally, by denoting the
unlabeled instances as X ′ = {x′i|x′i ∈ X ′, i = [1,M]} and their
potential labels in the set of Y ′, we have X ′ = X , P (X ′) = P (X),
and Y ′ = Y , which leads toD = D′ and T = T ′. In the context of our
sentiment analysis example, this requirement means that the unlabeled
new articles should be collected from the same or similar websites with
nearly identical patterns of word distributions and semantics, and the
choices of class labels still remain either Positive or Negative.
Transfer Learning. In practice, the assumption of aligned domains
and tasks for training and prediction stages may not hold. In our
example, if the articles with sentiment labels are all retrieved from a
political news channel, a sentiment classifier trained on these articles
may generate biased predictions on sports news due to a potentially
divergent vocabulary used to express positive and negative ideas, i.e.,
P (Xpolitics) 6= P (Xsports). There are other types of mismatches between
the domains and tasks, such as varied numbers of unique words between
news channels (Xpolitics 6= Xsports, namely, different feature spaces) or
different concepts of classes (Ypolitics 6= Ysports).

The purpose of transfer learning algorithms is to handle the mis-
matching issue by learning a decision function f(·)′ in the new domain
D′ and task T ′ with the knowledge learned from the existing D and T ,
where D′ 6= D or T ′ 6= T . In the transfer learning terminology, D and
T are identified as the source domain Ds and the source task Ts, and
the new domain and the task as the target domain / task (Dt and Tt),
respectively. To facilitate the notations in the following sections, we
further denote XDs and XDt as the source and the target dataset.
Transfer Learning in Deep Neural Networks. Researchers and prac-
titioners have identified two major issues that impact the efficiency of
applying exising deep learning models to new problems [68], including

the need of massive labeled instances for the new task and the pro-
hibitive computational overhead. These two issues lend themselves
well to the transfer learning paradigm. For the lack of labeled instances,
the relaxation of being in the same domain enables the recycling of
similar data sources via instance re-weighting. For models, various
works [68, 79] tend to reuse learned parameters from existing models
or utilize special network layers that extract common features. In our
framework, we focus on the widely-used fine-tuning technique, which
applies the trained network layer parameters in existing models to new
ones as an initialization. For the type of models, we demonstrate our
framework in the scenario of image classification where CNN-based
neural networks are adopted.

4 DESIGN OVERVIEW

Given the key features of transfer learning in deep neural networks,
we have designed a visual analytics framework to explain and inves-
tigate knowledge transfer between neural network models. Here, we
summarize the research challenges, and a set of analytical tasks are
derived from the challenges and used to guide our framework design
and development.

4.1 Research Challenges

To identify the research challenges in visual analysis of deep transfer
learning process, we conducted a literature review on deep transfer
learning [40,54,58,68,76] and listed several requirements for explaining
the knowledge transfer processes. The list was then refined through
detailed discussions with our domain experts (who serve as co-authors).
Furthermore, we organized the challenges in a structured manner based
on the multi-level topology proposed by Brehmer et al. [10], and we
identified two key challenges when analyzing the transfer processes.
C1: Analytical Complexity. Inspired by the question of “why” a task
is performed [10], analytical complexity describes how complicated
the analysis is. We establish three levels of operations.
C1.1: Uncover the learned knowledge in the models in two domains.
To help make the transfer learning process more transparent, analysts
need to understand how the models are trained in different domains.
C1.2: Explore the similarities and differences between the source and
the target model, i.e., “searching” the desired match/mismatch patterns.
Interpreting the transfer learning processes requires analysts to not only
explore individual models and the associated data domain, but also
to perform an in-depth exploration of how similar the target model is
to the source model. For example, analysts may need to investigate
whether the patterns in the CNN’s layer weights in the source model
are still expressed in the target model, or whether a specific unlabeled
instance receives the same prediction in both models. By comparing
the similarities and differences between the source and the target model,
analysts can gain insights into the underlying transfer mechanism.
C1.3: Discover instances in the source domain that carry common
knowledge. A key issue in transfer learning is to interpret the trans-
ferred knowledge from the source domain to the target domain. In
instance-based transfer learning algorithms, source data instances car-
rying domain-invariant characteristics can be considered to be a form
of externalization of the shared knowledge that supports instance-based
interpretation. Revealing such instances can facilitate the understanding
of the transferred knowledge by providing concrete examples.
C2: Data Granularity. Another important factor is the hierarchy of
data types involved in the transfer process, namely, the “what” in the
task typology [10]. Usually, the categorization is based on data types.
In the context of interpretable machine learning [20, 64, 82, 84], the
following data types are considered:
C2.1: Statistical Descriptions and Measures, including the distribution
of data instances and measurement of model prediction performance;
C2.2: Data Instances, including characteristics of specific data in-
stances and their corresponding predictions in the models and domains;
C2.3: Model Structures and Parameters, including the prediction mech-
anisms and features extracted by the neural networks.

Aspects of
Research

Challenges

Analytical
Tasks

Visual
Analytics

Framework

Analytical Complexity
- Present the Trained Models
- Explore Correlations
- Discover Common Knowledge

Data Granularity
- Statistical Descriptions
- Data Instances
- Model Structures and Parameters

Descriptive
Visualization of

Statistical Meaures

Summarization
- Overall Accuracies
- Class Accuracies

Detailed Inspection and Comparison on the Model Level

Model Structure
- Correlation between Components
 * Layers

Feature Extraction
- Domain Discriminability
- Knowledge Sharing* Activations

Instance Level Analysis
- Class Separations
- Distribution of Source and Target Instances

- Instance View
- Network Relation View
- Feature View

Detailed
Inspection of

Model Behaviors

* Weights

Fig. 2. An overview of the research challenges, tasks, and framework.
The framework consists of two modules: descriptive visualization of
statistical measures and detailed inspection of model behaviors.

4.2 Analytical Tasks

We further distill the following tasks based on the research challenges
of analytical complexity and data granularity.
T1: Summarize the Model Performances. Summarizing data distri-
butions and performance metrics is a fundamental prerequisite to start
the analysis. Analysts may be interested in a coarse-grained comparison
between the source and the target model, such as:
• What are the differences between the overall model accuracies

evolved with the number of epochs? (C1.1, C1.2, C2.1)
• How do the models perform when making predictions for different

classes? (C1.1, C2.1)

T2: Revealing Classification Results in the Instance Level.
• How are different classes separated after passing through the trained

models (class-wise comparison)? (C1.3, C2.2)
• Inside a class, how are the source and the target instances distributed?

(C1.3, C2.2)

T3: Detailed Inspection and Comparison of Underlying Model Be-
haviors. Regarding the differences between the source and the target
models, it is essential to support the comparative analysis of hidden
neural network components, including:
• How are the two models related on the core components in the neural

networks, such as the learned weights and activations upon a specific
group of data instances? (C1.1, C1.2, C2.3)

• With respect to the extracted features in the network layers, are these
features able to distinguish the corresponding domains of the data
instances? Do the features carry domain-invariant patterns? (C1.2,
C1.3, C2.3)

5 VISUAL ANALYTICS FRAMEWORK

Based on the identified research challenges and the analytical tasks, we
propose a visual analysis framework, Figure 1, for analyzing transfer
learning processes from the source to the target domains. The analytical
tasks are mapped to two modules in the framework:
Descriptive Visualization of Statistical Measures (T1). This module
acts as an entry point for the entire analysis pipeline where descriptions
of model performances are visualized, Figure 1 (A). By examining the
prediction performances of the source and the target models on different
classes, analysts can get an overview of the models and identify salient
patterns in the measurements, such as classes with the highest or lowest
prediction accuracy. These classes can be addressed in the details-on-
demand exploration.
Detailed Inspection of Model Behaviors (T2, T3). We have designed
three views to support details-on-demand exploration:
1. The Instance View (Figure 1 (B)) explains how the target model

predicts data instances in selected classes (T2). A projection view is
employed to show the separations among classes.

2. The Network Relation View (Figure 1 (C)) utilizes a matrix-based
visualization design to reveal similarities of model components in-
cluding filters and weights (T3).

3. The Feature View (Figure 1 (D)) visualizes the domain discrim-
inability of feature extractors in the target model (T3). A feature
discriminability plot is proposed to visualize how much domain-
relevant information is carried by the filters, indicating the extent of
knowledge sharing in the filter level.

Figure 1 shows the interface where analysts can freely explore the
results and switch between views. The visual elements share the same
color encoding scheme where the red color represents the data instances
and models in the source domain and the blue color is the target domain.

5.1 Statistical Analysis of Model Performances
The statistical measures provide an overview of how the source and
the target models are trained and the predictions across all classes (T1).
Additionally, the measures act as an entry point to reveal interesting
clues and guide further detailed analysis.
Overall Prediction Accuracies and Transferability Score. We col-
lect accuracy values in each epoch from both models on three different
datasets: 1) the source training data, 2) the target training data, and
3) the validation set from the corresponding domain. Hence, each
model derives three time series along the evolvement of the training
epochs, which are then visualized as lines in a line chart. As shown
in Figure 1 (A), the horizontal axis indicates the number of epochs,
while the accuracy values, ranging from zero to one, are mapped to the
vertical axis. The cross and circle symbols on the lines represent the
values from the source model and the target model, respectively. The
line colors correspond to the dataset origin of the accuracy series. The
suffixes of the legend entries indicate the corresponding models of the
accuracy series. Along with the detailed illustration of the accuracy
values, we also provide a transferability score on the left side of the line
chart to give an overall quality measure of the transfer process. The
score is defined as the difference between the best target and source
model accuracies on the target dataset. A positive score indicates a
performance boost because of the higher accuracy for the target model,
and vice versa for negative scores.
Confusion Table. To visualize the class-level performances, we com-
pute the confusion matrix of the trained model on the target validation
set and list measures in the confusion table, Figure 1 (A), comprised of
five columns: 1) the class names; 2, 3) the accuracies of the two models
on the target dataset; 4) the differences of the two accuracies on the
same row, and; 5) the classes that the instances are misclassified into.
Analysts can sort the rows based on the values in the column.

5.2 Instance Analysis
The instance view shows the data distributions of selected classes from
the two domains and provides a detailed analysis of the relationships
between instances with different attributes (T2). Instead of analyzing
the original instances, i.e., raw pixels of the images, we focus on their
embedding vectors extracted from the neural network layers. Thus,
each instance is passed through the target model, and the activation
vectors right before the fully-connected layers is used as the embedding
vector. In our framework, we choose t-SNE [47] to visualize the
network embeddings of the corresponding instances.

In Figure 1 (B), the instance view consists of three regions: a class
selector, a projection scatterplot, and a detail view. Once the desired
classes are selected, the details of the classes will be listed, and the
projection result containing all the instances from the selected classes
will be plotted. In the scatterplot, the colors of the glyphs indicate
their class labels. To visualize the predictions made by the target
model, the glyph borders for the mispredicted instances are set to dark
gray. Similar to the encoding in the accuracy chart, we use crosses
and circles for the instances from the source and the target domain,
respectively. When hovering the mouse pointer on a glyph, the details
of the corresponding instance are listed, including the original image,
the domain of origin, the ground truth label, and the prediction made
by the target model.

(A) Neuron Extraction

(B) Weight Extraction (C) Network Comparison

Target Instances in Class c 1) Source/Target Model

X = []D , c x , D , c, 1 x , ...D , c, 2

(M D , c instances in total)

The p-th
target instance
 x D , c, p

Layer i, Neuron j
Neuron j

... ...

... ...

... ...Neuron N

Neuron 1

2) Attribution (Layer Conductance)

A (N rows × M columns)i Dt, c

...

...

x

D t,
c,

1
x

D t,
c,

p
Layer

Conductance

3) Rank Each Column

c, i, ja Neuron j

... ...

... ...

... ...Neuron N

Neuron 1 ...
...

...

...

x

D t,
c,

1

x

D t,
c,

p

i

N ×Ni

i

Neuron 1

Neuron j

Neuron Ni12

15

1

37

14

5

25

124

152

4) Aggregate the Rankings

A’ Add up the rankings
horizontally

Sum of
Rankings

Select
Top-10%

Smallest as
Important

i

i+1
1) Convolve on All Weights

x Dt, c, 1
1 j i+1

x Dt, c, p

...
...

... ...

0.2

0.1

0.4

0.0

0.9

0.7

2) Stack Convolution Results

c,p,i,i+1w

(N rows, N ×N columns)i T, c i+1

N ×Ni
x Dt, c, 1

1 j i+1

x Dt, c, p

...
...

... ...

1

0

0

0

1

1

3) Set Large Weights to 1 4) Aggregate and Select

N ×Ni... ...
1 j i+1

85 0 126

Add up the numbers
vertically

Neuron j

...

...

...Neuron N

Neuron 1 ...
...

...

...

...

...

...
i

Source Model Target Model

Neurons: Pair-wise Distances of Rows

Select Non-zero
Weights as Important

tt

t

t

t

Fig. 3. An illustration of the network abstraction and comparison procedures. (A) In each network layer, the important neurons are extracted based
on the aggregated attribution (Layer Conductance) values on all the data instances. (B) Important weights are selected using a similar strategy. (C)
Pairwise similarities between neurons in the same layers of the two models are computed.

5.3 Neural Network Component Analysis

Since the learned knowledge is carried in the neural network param-
eters and outputs, including weights and activations, revealing the
core components in the network layers can help analysts understand
the critical patterns captured by the models in each domain and how
a model predicts a specific instance (T3). Furthermore, comparing
the components between the source and the target models can assist
the analysis of the relationships between the two domains (T3). We
propose a network abstraction and comparison method as well as the
network relation view, Figure 3, to support the exploration of the neural
networks and the similarities between the two models.

5.3.1 Network Abstraction

One issue in visualizing the network layers is the excessive number
of neurons and weights inside and between layers. In the network ab-
straction stage, we focus on extracting the essential structures that best
represent the learned patterns and knowledge hidden in the networks.
This stage consists of two steps: 1) the extraction of important neurons,
and 2) the extraction of valuable weights.
Neuron Extraction (Figure 3 (A)). The purpose of extracting impor-
tant neurons is to rank the neurons in the same layer by importance.
Figure 3 A - 1) For the target dataset XDt , we denote the subset of
data instances with the same class label c as xDt,c,p, p ∈ [1,MDt,c],
where MDt,c represents the number of such instances. For the j-
th neuron in layer i with Ni neurons in total, we compute all the
attribution values on all the MDt,c data instances in class c, i.e.,
{xDt,c,p|p ∈ [1,MDt,c]}, resulting in an attribution vector ac,i,j for
neuron j in layer i with the dimension of NDt . Usually, the attribution
values are represented by using the activation values of the data in-
stances on this neuron [22, 37]. However, recent studies have identified
limitations when directly applying activation values, especially on ex-
tracting important neurons [16,30]. To improve the ranking confidence,
we use Layer Conductance [16, 63] as the attribution of neurons. Since
the Layer Conductance result for each neuron in convolutional layers is
a 2-D matrix, we use the maximum value in the matrix to simplify the
representation of attributions.
Figure 3 A - 2) Then, we vertically stack the ac,i,j for all the Ni

neurons in to a matrix Ac,i with a dimension of Ni ×MDt,c. Thus,
each column represents the Layer Conductance attribution vector for
an individual data instance from all neurons.
Figure 3 A - 3) Next, for each column, the neurons are ranked by the
Layer Conductance values in ascending order, resulting in a ranking
matrix A′c,i. A neuron with a larger attribution value on a data instance
receives a higher rank. Note that the tied values share an average
ranking number.
Figure 3 A - 4) Finally, the ranking matrix A′c,i is horizontally aggre-
gated by summing up all the ranks in the same row, denoted as r′c,i. In
this way, we use r′c,i as a representation of neuron importance in layer
i on class c. To select a set of the most effective neurons, we select the
neurons with the top-k largest aggregated ranks. In our framework, k
is set to 10% of the total number of neurons in the layer.

Weight Extraction (Figure 3 (B)). Along with extracting the important
neurons for each class, we also identify the links between consecutive
layers which are frequently active. For layer i with Ni neurons and
layer i+ 1 with Ni+1 neurons, there are Ni ×Ni+1 pair-wise weights
between the two groups of neurons. We employ a strategy similar to
the neuron selection procedure for selecting important weights:
Figure 3 B - 1) First, for each target instance xDt,c,p in the class c,
we compute the weight values by convolving the weight kernels on the
activation values from layer i, resulting in an Ni ×Ni+1-dimensional
vector, wc,p,i,i+1, that represents the activated levels on each weight.
Figure 3 B - 2) Under the vertical stacking scheme, we get a matrix
containing MDt,c rows and Ni ×Ni+1 columns. Since the number of
weights is relatively large, we apply a similar weight selection scheme
as described in Hohman et al. [22] to reduce the computational cost.
For each row, we set the cells with the top-k weight values in the row
to 1, and other cells to 0. In this way, we filter out the weights that are
not important in classifying instances in class c. The matrix is further
aggregated by adding up the replaced values vertically, bringing an
importance vector wc,i,i+1 with Ni ×Ni+1 values which record the
counts of being important for each weight.
Figure 3 B - 3) Finally, the weights with the top-k importance values
in wc,i,i+1 are used as the representative links between layer i and
i+ 1.

5.3.2 Network Comparison

By employing the neuron and weight extraction procedures to the
source and the target models respectively, two sets of important neurons
and weights can be extracted. To tackle the task of model comparison
in T3, this step focuses on how to reveal the similarities and differences
between the network components from the two models.

With respect to the neurons, we audit how similar the behaviors of
the neurons are for the neurons in the two corresponding layers, Figure 3
(C). In the neuron extraction step, we have described how to retrieve
the attributions for each neuron on all the target data instances, namely,
Ac,i = [ac,i,j], j ∈ Ni. We use ADs,c,i and ADt,c,i to represent
the matrices from the source and the target models, respectively. We
argue that two neurons from the two domains are considered similar
once they have similar distributions of attribution values across all the
target instances. Here, we use the cosine distances to measure the pair-
wise similarities of the neurons in ADs,c,i and ADt,c,i. The resulting
similarity matrix Sc,i records how close the attribution behaviors are
between the neurons from different models.

The similarities of weights are built upon the neuron similarity
results. For each selected important weight wDt,i,i+1 in the target
model that connects the neuron n1 in layer i and n2 in layer i+ 1, we
first find the corresponding most similar neurons of n1 and n2 (denoted
as n′1 and n′2) in the same layers in the source model by looking up
the matrices Sc,i and Sc,i+1. Then, we see if the weight that connects
n′1 and n′2 is in the important weight list in the source model. In this
way, we can find whether an important weight in the target model is
inherited from the source side and is valuable in making predictions.

Important
Neurons

Non-important
Neurons

Im
po

rta
nt

N
eu

ro
ns

N
on

-im
po

rta
nt

N
eu

ro
ns

Source
Model

Target
Model

(B) Neuron Similarity Matrix

(C) Weight Visualization

Edges: Number of weights connecting to the
(non)important neurons of the adjacent layers

(1) Weights (Important Neurons to Important Neurons)
Brightness: Weight value
Orange dot: Has a corresponding
 weight in the source model

Important Neurons (Layer 2)

Non-important Neurons (Layer 2)

Im
po

rt
an

t
N

eu
ro

ns
 (L

ay
er

N

on
-im

po
rt

an
t

N
eu

ro
ns (2) Weights (Non-important to Important)

Boxplot: Distributions of weight values
Pie glyph: Proportion of the weights that have
 corresponding weights in the source model

(3) Same as Region 2

(4) Non. to Non. Weights

(A) Layout

Ta
rg

et
 M

od
el

Source Model

S
ou

rc
e

M
od

el
Target Model

Layer 1

Layer 2

(Side switched)

Weights in the
Target Model

W
ei

gh
ts

 in
 th

e
S

ou
rc

e
M

od
el

Fig. 4. Visual design and layout of the neuron similarity matrices and
the weights. (A) The matrices are placed in a zig-zag manner to allow
the weight components to be placed in the adjacent corners between
the two consecutive matrices. (B) The rows and columns of the similarity
matrix are grouped into important and non-important neurons, resulting
in four regions. (C) A similar grouping scheme is applied to the weights.

5.3.3 Visualization and Interactions
The network relation view is designed to visualize the extracted neurons
and weights between the source and the target models.
Neuron Similarity Matrix. This view leverages a diagonal layout
where the similarity matrices are placed from the top left corner to
the bottom right corner along the diagonal line, Figure 4 (A). In each
matrix, the similarity values are linearly scaled to the cell brightness,
where zero is represented by the highest brightness and one the lowest.
In our initial design, all the neurons are listed in the matrix without
considering their importance. However, such a matrix may be too
large to be displayed in the canvas. We improved the scalability by
grouping the rows and columns based on their importance in the neuron
extraction step, dividing the matrix into four regions, Figure 4 (B). The
top-left region shows the important neurons from both the source and
the target models in the matrix form, while the other three regions are
summarized into histograms of similarity value distributions. On the
left and the top side of the matrices, the corresponding neuron indices
are displayed with colors indicating the domain origins.
Weight Visualization. In Figure 4 (A), the order of the domain origins
in two consecutive matrices (Layer 1 and 2) are switched alternatively,
leaving the space of weights in the source and the target model on the
corresponding adjacent corners. Following the same splitting strategy
with the matrices, the weights are also summarized into four regions,
Figure 4 (C). In Region (1), the weights joining important neurons
between both layers are rendered as an adjacency matrix. The rows
and columns of the small squares are aligned with the corresponding
important neurons in the similarity matrices. The brightnesses of the
cells are mapped to the weight values, and the inner red dot indicates
the existance of the corresponding important weight in the source
model. Region (2) and (3) summarize the weight values into boxplots
by aggregating the weights on the side of the important neurons. For
example, the left side of Region (2) is next to the non-important neurons
in Layer 1, while the bottom side connects to the important neurons in

Layer 2. Thus, the vertical boxes show the weight value distributions
connected with the same important neuron in Layer 2. The thicknesses
of the rectangles in the boxes represent the number of weights. Pie
chart glyphs are attached next to the boxes to show the proportions
of weights with correspondence in the source model. For the weights
connecting non-important neurons on both sides, we use a histogram
in Region (4) to summarize the distribution of the weight values. Note
that on the source model side (e.g., the bottom left corner in Figure 4
(A)), there are no red dots in the squares or pie chart glyphs since only
the correspondences from target network components are considered.
Alternative Design. We also considered utilizing node-link diagrams
where the neurons in different layers are encoded as columns of nodes
with weight links between consecutive columns [22, 37]. However,
isolating the source and the target models into two diagrams weak-
ens the direct comparison of the corresponding layers and weights in
the two neural networks. Furthermore, visual clutter can be easily
generated when large numbers of neurons and weights exist in the
layers, whereas the matrix layout can increase readability by providing
a non-overlapped representation of nodes and links [70].
Interactions. The network relation view supports various interactions
on the similarity matrices and the weights. Users can change the desired
class and network layers in the title bar. Clicking on the indices will
open a detail panel, Figure 1 (C.1), which shows a feature visualiza-
tion [53] of the neuron and the top-5 most similar neurons in the other
model. By clicking on a square, the details of the associated weight
are shown in a pop-up panel including the indices of the connected
neurons as well as the weight feature map, Figure 1 (C.2). The visual
elements, including cells, boxplots, and pie glyphs, also provide pop-up
details. To simplify the displayed elements, two switches are employed
to toggle the appearance of non-important regions in the similarity
matrices and the source weights.

5.4 Feature Analysis
Deep neural networks are always considered as feature extractors that
build new features from the original input space. As such, analysts
often need to inspect what features are reconstructed in the hidden
layers and how they are used in the classification process (T3). We
have designed the feature analysis module to present the feature-related
information and support the exploration of informative features.

5.4.1 Domain Discriminability
Usually, how a feature can discriminate the instances from different
domains plays an essential role in a successful transfer. The feature
extractors should be carefully investigated to see if they can recon-
struct important common patterns shared in both domains. Most of the
feature-based transfer learning techniques seek to build new feature
transformations upon the source domain to create such shared features.

To support the diagnosis of the transferred knowledge, we propose
domain discriminability to measure whether a learned feature on the
neuron is domain-invariant or domain-dependent. This measure is
inspired by the widely-used A-distance [8] which estimates the dif-
ferences of two data distributions with a linear classifier between the
two groups of data. The computation of the domain discriminability
for neurons is described in Algorithm 1. First, we compute the Layer
Conductance values for each selected neuron on the source and the
target datasets, respectively (line 3-6 and 9-12). In the matrix A, each
row represents the attribution values for an instance on the selected
neurons. Then, a domain label list l is prepared to specify the domain
origins of each row (line 7 and 13). Finally, a linear classifier C is
trained on the stacked attribution matrix and the domain label list
(line 15). Acting as a feature selection method, the coefficients from the
trained C present how important a column in A, i.e., a selected neuron,
can be in discriminating the domain origins of the data instances.

One potential limitation in computing the domain discriminability
values is that the total number of neurons in the entire target neural
network may be too large to train the domain classifier in an acceptable
time. To reduce the computational cost, only the “important neurons”
in each layer are selected as the input in Algorithm 1 since transfer
methods often focus on the neurons with higher predictive power.

Algorithm 1: Computing the domain discriminability values.
Data: P selected neurons, {n1, n2, ..., nP }; the source dataset,

XDs = {(xDs,i, yDs,i)|i ∈ [1, NDs]}; the target
dataset XDt = {(xDt,i, yDt,i)|i ∈ [1, NDt]}

Result: The domain discriminability values for the P neurons,
{u1, u2, ..., uP }

1 A← [empty matrix](NDs+NDt
)×P // Attribution values

2 l← [empty vector] // Domain labels
3 for i = 1 : NDs do
4 for j = 1 : P do
5 Ai,j ← LayerConductance(nj ,xDs,i)
6 end
7 li ← 0 // Label 0 for source instances
8 end
9 for i = 1 : NDt do

10 for j = 1 : P do
11 Ai+NDs ,j

← LayerConductance(nj ,xDt,i)

12 end
13 li+NDs

← 1 // Label 1 for target instances
14 end
15 C = LinearSVM(A, l, 10-fold cross validation)
16 u← [feature weights of C] // Use the weights from the

classifier as domain discriminability values

5.4.2 Visualization and Interactions

The design of the feature view, Figure 1 (D), consists of two compo-
nents: the feature ranking list, and the domain discriminability plot.

Feature Ranking List. The details are listed for the neurons involved
in the computation of domain discriminability, including the indices
and layers of the neurons, the feature visualization of the neuron, and
a histogram of Layer Conductance values for all the instances in the
source and the target datasets. To differentiate the instances from two
domains, the distribution of source instances are placed above the hori-
zontal axis, while the target distribution is at the bottom. The colors of
the bars map to the corresponding domains as well. Analysts can select
whether to sort the neurons based on their domain discriminability
values in ascending or descending order.

Domain Discriminability Plot. To provide a detailed view of how the
domains are discriminated by the neurons, we use a linear projection
method to show the decision boundary of the domain classifier C in
Algorithm 1. First, a linear projection matrix WP×2 is constructed as
[−→u ,−→g] ∈ RP×2, where u in the first column is the feature weights
of C, and g the first principal component on A. By projecting A
onto a 2-D scatterplot with A ·W , the decision boundary of C can be
displayed on the horizontal direction, and the underlying patterns along
the decision boundary can be revealed on the vertical axis. The domain
origins for the rows in A are mapped to the shapes and colors where red
cross represents the source instances and blue circles the target ones.
To further present the importance of each neuron, we draw the original
axes in a biplot-like manner in the scatterplot. The lengths of the axes
lines on the horizontal direction indicate their domain discriminability.
We note that this may cause visual clutter of the axes lines when P ,
the number of neurons, is large. Thus, we only activate the top five
neurons in the feature ranking list depending on the order selection,
i.e., only the top five rows in W and the corresponding columns in A
are considered. Additional neurons can be activated by clicking on the
checkboxes in the corresponding rows of the feature ranking list.

6 CASE STUDY AND EXPERT INTERVIEW

This section describes how our framework facilitates the understanding
and exploration of transfer learning processes through applications
in real-world datasets and feedback from domain experts. We imple-
mented our framework with PyTorch for the deep learning library and
React for the front-end framework. The data is transmitted in JSON
format with RESTful APIs implemented with Flask.

Source
Data

Target
Data

Source
Data

(1) “bike” (2) “file_cabinet”

(3) Weight redistribution
occurs in shallow layers

Target
Data

Fig. 5. The t-SNE projection results for (1) bike and (2) file cabinet are
presented. (3) Many of the target weights between Layer 2 and 3 have no
associated important source weights, suggesting a weight redistribution
in the target model.

6.1 Object Classification

Office-31 [61] is a widely-used real-world dataset for demonstrating
transfer learning algorithms. It contains 31 categories of images
crawled from shopping websites and photo collections. In our ex-
periment, we use the images from Amazon product pages (“amazon”,
2817 images in total) as the source domain data, and photos from web
cameras (“webcam”, 795 images in total) as the target domain. For
each dataset, we split the data into training and validation sets with
the ratio of 85% : 15%, respectively. AlexNet [28] was used as the
backbone architecture for modeling, and it consists of five convolutional
layers with the filter numbers of 96, 128, 384, 256, and 256, respectively.
After AlexNet was trained on the amazon dataset, we adapt the model
to the webcam data by using the trained parameters from the source
domain AlexNet as an initialization.
Analysis of the Model Statistics (T1). After the two models and
datasets are loaded into our system, the brief summary of the model
performances is depicted in Figure 1. We first check the accuracies on
different datasets for the models. In the accuracy chart, Figure 1 (1),
we see that the source model performs well on the source dataset with
high training and validation accuracies (≈ 0.98 and 0.8, respectively).
However, the accuracy of the source model on the target dataset is
≈ 0.4, indicating a big difference in patterns between the amazon
and the webcam dataset. By checking the accuracies of the target
model, we discover that the performance on its own domain (webcam)
is significantly higher than the source model, but it has a slightly worse
accuracy on amazon than the source model. The performance drop
may be due to the loss of some unique pattern extractors in the target
model for the source domain, which are replaced by the new knowledge
specifically for the target data.
Instance-Level Inspection (T2). Apart from the overall accuracy anal-
ysis, we want to understand the prediction performance on the class
and the instance levels. Here, we sort the third column of the class
table to find the classes with the worst prediction accuracies by the
target model, Figure 1 (2). We find that some classes receive the same
high accuracies from both models, such as bike and calculator (2.1),
while classes like file cabinet and phone have the most diverse
performances between the two models (2.2). We further examine their
data distributions by activating bike and file cabinet in the instance
view, respectively. In Figure 5 (1), we observe that in the classes
with similar performance on the two models, the images from the two
domains share similar characteristics including visual angles and the
appearance of the objects. However, the patterns significantly vary
between the two domains, Figure 5 (2).

Besides inspecting the interplay between classes, we rank the class

(1) Accuracies (2) Instances

Blurred images

Misclassified

(Similar to
MNIST images)

(4) Features(3) NeuronsSource Model

Target Model

Fig. 6. The result of the digit recognition datasets. (1) The trends of the accuracies are similar to the result in the first case study. (2) For the target
model, the misclassified instances in SVHN and MNIST datasets are presented. (3) Several neurons show changes of the learned patterns in the
target model. (4) The most domain-invariant neurons (features) indicate that the circular patterns are shared between the two domains.

table by target accuracies. Although most of the classes show nearly
perfect prediction performances, several classes still contain mis-
classified instances including file cabinet and phone. We select
file cabinet and desktop computer in the instance view to show
the erroneous predictions in file cabinet, Figure 1 (2.3). In the t-SNE
projection result, the distributions of the two classes are overlapped
without a clear boundary, indicating a high chance of mis-classification.
In-depth Exploration of the Models (T3). To reveal how the knowl-
edge is shared in the classes with the same high accuracy or the
diverse accuracy values, we further investigate the class bike and
file cabinet in the network relation view and the feature view. After
bike is selected in the network relation view (Figure 1 (3)), we check
the neuron similarity matrices from the shallow layers to the deep ones.
In the shallower layers, such as Layer 2, Figure 1 (3.1), the indices of
the important neurons from the target model are similar to the source
side, such as neuron 50, 6, and 17. Additionally, many of the source
neurons with the same indices are also the ones most similar to their
target counterparts, indicating no major changes in the functions of the
neurons in the target model. This phenomenon still exists in deeper
layers such as Layer 7, where the first five neurons from the two models
are the same. However, the distributions of important weights vary
drastically when the layer depth increases. By observing the cells with
central red dots and the pie glyphs between Layer 2 and 3, Figure 1 (3.2),
we see that most of the weights in the target model have corresponding
important weights in the source model. This suggests that most of the
patterns hidden in the network links are reused, which also matches the
findings of Yosinski et al. [79] that the shallow features are often reused
in fine-tuning. However, the weight visualization shows a considerable
change in the weights between Layer 6 and 7 where the proportions
of the red arcs in most of the pie glyphs are much lower, Figure 1
(3.3). We consider that although the neurons have similar rankings
between both models, the weights are re-distributed between deeper
layers in the target model in order to fit the new patterns in the target
dataset. By inspecting the weights between Layer 2 and 3 in the class
file cabinet, Figure 5 (3), we find that the weight redistribution even
occurs in the shallow layers. This indicates that the learned patterns
diversify earlier between the source and the target model, resulting in
the performance gap on the target dataset between the two models.

Finally, we explore the domain discriminability to find the common
or unique features in the two domains. In the ranking result for bike or-
dered by the most domain-discriminative neurons, the top three features
(Figure 1 (4.1)) are used to extract flat ellipses, which may be related to
the tires. By further checking the instances in the domain discrimination
plot, Figure 1 (4.2), we observe that most of the bike images in the
source domain (amazon, red crosses) are side-looking product profile
images, while in the target domain (webcam, blue circles) the bikes are
recorded at various camera angles, causing different shapes of tires in
the photos. This indicates that the tire shape patterns from the source
domain are not fully transferred to the target model. Meanwhile, some
features with low discriminability ranks depict patterns of handlebars
and frames (e.g., Layer 5, Neuron 173, Figure 1 (4.3)), which may be
considered transferable between domains since these bike components
exist in almost all photos in both domains.

6.2 Digit Recognition

In the second case study, we explore the knowledge transfer process
between digit recognition datasets. We apply the Google Street View
House Numbers dataset (SVHN) as the source domain, which contains
natural scene photos of printed number labels. For the target domain,
the MNIST dataset is used where the digits are in handwritten style
and stored as grayscale images. We sampled 1500 instances per class
in SVHN and 150 in MNIST, resulting in a source dataset with 15000
samples and a target dataset with 1500 samples in total. The purpose
of downsampling is to mitigate scalability issues in computation and
visualization, and these limitations are discussed in Section 7. We use
the same AlexNet architecture for both models.
Analysis of the Model Statistics (T1). After the results are loaded,
the accuracy chart and the class table are shown in Figure 6 (1). Similar
to the lines in the first case, we find that the prediction accuracies of the
two models show a diverse trend where each model performs well on
its own domain but relatively poorly on the other domain. For the target
model, this indicates that it has omitted some knowledge inherited
from the source model and created new concepts specifically for the
target dataset. In the class table, we find that some classes have a high
accuracy in both models including 1 and 0. However, there is a big
difference between the two accuracy values from the source and the
target model as well as several misclassified instances in the class 8.
Instance-Level Inspection (T2). Based on the findings in the class
table, we want to examine the class of 8 in the instance view for
more detailed explanations. In the t-SNE projection result for all the
instances in SVHN and MNIST, Figure 6 (2), we observe that most
of the mispredicted source instances (crosses with bold borders) are
heavily blurred, which can potentially be a domain discrimination factor
since the strokes in the handwritten digit images are much crisper. As
for the misclassified instances, we observe that some irregular patterns
presented in these images have prevented them from being recognized
correctly, such as extra-long strokes, the unnecessarily big opening on
the top, and the cropped bottom circles.
In-depth Exploration of the Models (T3). We perform a detailed
diagnosis of 8 in the network relation view and the feature view. After
checking the feature visualization of the target model neurons in the
similarity matrix of Layer 1, Figure 6 (3), we find that the extracted
colors are slightly different between the target neurons and their most
similar ones in the source model. Such differences become more
significant in deeper layers where the corresponding neurons with the
same indices in both models are not exclusively the most similar, such
as the neuron 245 in Layer 7 whose most similar neuron in the source
model is 54 instead of 245. Additionally, some neurons rank higher in
the target model because of their unique characteristics to the MNIST
dataset. For example, neuron 37 in the 5th place is used for extracting
long free-style curves, which is common in the free handwritten images.
However, its most similar counterpart, neuron 37 in the source model,
receives a much lower ranking (rank 16). This suggests that the target
model has adjusted the weights of several neurons to fit the new patterns
emerging in the target data. In the feature view, Figure 6 (4), it can be
observed that the neurons for extracting circular shapes are the most

domain-invariant features, indicating that in the class 8, the feature
extractors for circles in the source model are reused in the target model.

6.3 Expert Interviews

Our framework was further evaluated by two machine learning practi-
tioners, E1 and E2, whose expertise is in deep learning for computer
vision and medical image analysis. In each interview, we first intro-
duced the background, the tasks, and the interface of our framework.
The analytical workflow was then explained with the two datasets in
the case study. The experts were allowed to explore the datasets freely
during the interview process. Finally, we collected comments on the
analytical workflow and the visual interface. The two interviews lasted
approximately 1.5 and 1 hour, respectively.

The two experts agreed on the effectiveness of the workflow on
analyzing transfer learning processes. They noted that it is an interesting
aspect to investigate how the patterns learned in the source model are
reused in the target model in an interpretable way. E1 commented that
the multi-aspect analysis differs from conventional evaluation methods
in deep learning where only statistical measures and data embeddings
are considered. By examining the instances, network structures, and
features in the coordinated views, analysts can gain insights into how
the model parameters are reused in the target model and whether the
learned patterns differ or were inherited from those in the source model.
E2 pointed out that this framework can enable the diagnosis of per-class
performance analysis and discover dominant features shared between
the domains, which may further guide what types of existing labeled
data can be reused in the current classification task.

Our framework received positive feedback on the visual represen-
tation and interactions in the views. The experts observed that the
accuracy chart and the confusion table act as a proper entry point for
the experts. E2 mentioned that “Checking accuracy values on the test
datasets are common routines in our daily workflow. The per-class
entries in the confusion table give me direct feedback on which classes
receive bad performance, and I can continue investigating what is
wrong in the detailed views.” E1 addressed the usefulness of exploring
model structures in the network relation view and the interplay between
the detailed views. “The layout of neuron similarities and important
weights provides an alternative way of understanding the network layers
and the links between layers. I can easily find important neurons in a
specific layer and locate corresponding similar ones in the other model,
so I don’t need to check the activation maps of neurons back and forth
between the source and the target models. While linking the IDs of
important neurons and the neurons in the feature ranking list, I could
identify whether a layer prefers domain-invariant or -specific features.”

The experts also offered suggestions on how to improve the usability
of our framework. E2 discussed the feasibility of supporting other
network types, such as recurrent neural networks and auto-encoders. E1
suggested providing functions to support the comparison of multiple
source and target models. “We could investigate how the existing
knowledge is preserved or ignored in different source-target pairs and
various transfer learning settings simultaneously, which may help ex-
perts optimize the transfer strategies.”

7 DISCUSSION AND CONCLUSIONS

In this paper, we present a visual analytics framework for inspecting
and exploring transfer learning processes. To provide a comprehensive
analysis of knowledge transfer between deep neural networks, we have
identified a set of analytical tasks to guide our framework design. In the
visual analytics framework, the relationships between the models in two
domains are presented with a multi-aspect design including statistical
information, instance-level analysis, and comparative analysis of neural
network components. Analysts can check model performances, inspect
data distributions between classes, and diagnose knowledge transfer
between neurons and weights. We demonstrate the usability of our
visual analytics framework through case studies and expert interviews.
An implementation of our framework is released on Github1.

1https://github.com/VADERASU/visual-analytics-for-deep-transfer-learning

Scalability. We discuss the issues of scalability from three aspects:
automated algorithms, visual presentation, and task generalizability.
Automated Algorithms: Due to the massive computational cost of deep
neural networks, the running time for the extraction and comparison
procedures can be time-consuming. All instances from both domains
should be passed to the two models for retrieving the Layer Conduc-
tance values on all network layers. For the two datasets in the case
study, it took about 1.5 and 3.5 hours respectively to compute the Layer
Conductance values, the aggregations, and the importance rankings.
The cost will increase significantly in complex network architectures
such as ResNet and Inception. A feasible way to reduce the overhead
is to run the extraction algorithm on a selected subset of layers.
Visual Presentation: In our design, the visual clutter occurs in the t-SNE
projection and the domain discriminability plot when large amounts
of instances are in the selected classes. For the overplotting issue, a
future solution to further scale our design is to adopt sampling and
aggregation methods to remove unnecessary points [14, 32, 48]. In the
network relation view, the neuron similarity matrices can be very large
if there are too many important neurons. We can apply a filter to each
matrix to limit the number of visible important neurons on demand.
Task Generalizability: We use the basic fine-tuning method as a repre-
sentative of the transfer learning methods for deep neural networks to
illustrate our framework. Our framework supports various deep transfer
learning approaches once they share the same protocol with the access
of datasets as well as supporting layer attribution computation in the
models from the two domains. Partial transfers can also be supported
where only a subset of layers is shared between two models. To some
extent, our framework can be further generalized as a one-to-one model
comparison tool for general model selection.
Target Audience and Analysis Guidelines. The target audience for
our framework are the machine learning practitioners and experts in
different application domains where the transfer learning approaches
are adopted in their daily workflow. For the practitioners, our frame-
work can be used as a performance evaluation tool when target models
are trained with the help of selected source domains. The insights
gained from the visual exploration and inspection can further support
the successive model selection. Similarly, the experts may also benefit
from inspecting the knowledge transfer results when designing new
transfer algorithms. To better use our framework, we suggest starting
the analysis by observing the accuracy chart and the confusion table
to identify the desired class (which can be seen in the “Analysis of
the Model Statistics” step in both cases), followed by inspecting data
distributions from two domains in the instance view. The inspection of
neuron similarities and importance rankings should then be considered
after the class is activated in the network relation view, together with
exploring the domain discriminability and the feature rankings. As
demonstrated in “In-depth Exploration of Models” about distinguishing
between bikes with different tire shapes, Section 6.1, exploring the
results in the network relation view and the feature view can benefit
understanding the semantic differences for the same class between two
domains.
Future Work. In the future, we expect to explore different neuron
and weight extraction criteria to evaluate different neuron attribution
methods in terms of revealing model similarities. To facilitate the
analysis between multiple domains, we plan to support the analysis
of more than one source domain and introduce better measurements
on the transferability of different source domains. Another promising
extension is to enhance the usability of our framework in specific
application scenarios such as object recognition and medical imaging.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Homeland Security
under Grant Award 2017-ST-061-QA0001 and 17STQAC00001-03-03,
and the National Science Foundation Program on Fairness in AI in
collaboration with Amazon under award No. 1939725. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Department of Homeland Security.

REFERENCES

[1] Tensorboard. https://www.tensorflow.org/tensorboard. Accessed: 2020-
02-10.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang. Deep learning with differential privacy. In Proceedings
of the ACM Conference on Computer and Communications Security, pp.
308–318, 2016.

[3] Y. Ahn and Y. Lin. Fairsight: Visual analytics for fairness in decision
making. IEEE Transactions on Visualization and Computer Graphics,
26(1):1086–1095, 2020.

[4] E. Alexander and M. Gleicher. Task-driven comparison of topic models.
IEEE Transactions on Visualization and Computer Graphics, 22(1):320–
329, 2016.

[5] B. Alsallakh, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do convolutional
neural networks learn class hierarchy? IEEE Transactions on Visualization
and Computer Graphics, 24(1):152–162, 2017.

[6] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh.
ModelTracker: Redesigning performance analysis tools for machine
learning. In Proceedings of the ACM Conference on Human Factors
in Computing Systems, pp. 337–346, 2015.

[7] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick,
and D. Parikh. VQA: Visual question answering. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 2425–2433, 2015.

[8] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of rep-
resentations for domain adaptation. In Advances in Neural Information
Processing Systems, pp. 137–144, 2007.

[9] E. Bertini and D. Lalanne. Surveying the complementary role of automatic
data analysis and visualization in knowledge discovery. In Proceedings
of the ACM SIGKDD Workshop on Visual Analytics and Knowledge Dis-
covery Integrating Automated Analysis with Interactive Exploration, pp.
12–20, 2009.

[10] M. Brehmer and T. Munzner. A multi-level typology of abstract visualiza-
tion tasks. IEEE Transactions on Visualization and Computer Graphics,
19(12):2376–2385, 2013.

[11] Á. A. Cabrera, W. Epperson, F. Hohman, M. Kahng, J. Morgenstern, and
D. H. Chau. FairVis: Visual analytics for discovering intersectional bias
in machine learning. In Proceedings of the IEEE Conference on Visual
Analytics Science and Technology, 2019.

[12] N. Cao, D. Gotz, J. Sun, and H. Qu. DICON: Interactive visual analysis
of multidimensional clusters. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2581–2590, 2011.

[13] D. Cashman, A. Perer, R. Chang, and H. Strobelt. Ablate, variate, and
contemplate: Visual analytics for discovering neural architectures. IEEE
Transactions on Visualization and Computer Graphics, 26(1):863–873,
2020.

[14] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and
K. Ma. Visual abstraction and exploration of multi-class scatterplots.
IEEE Transactions on Visualization and Computer Graphics, 20(12):1683–
1692, Dec 2014.

[15] S. Chung, C. Park, S. Suh, K. Kang, J. Choo, and B. C. Kwon. ReVACNN:
Steering convolutional neural network via real-time visual analytics. In
Proceedings of KDD Workshop on Interactive Data Exploration and Ana-
lytics, 2016.

[16] K. Dhamdhere, M. Sundararajan, and Q. Yan. How important is a neuron?
arXiv preprint arXiv:1805.12233, 2018.

[17] A. Endert, W. Ribarsky, C. Turkay, B. L. W. Wong, I. Nabney, I. D. Blanco,
and F. Rossi. The state of the art in integrating machine learning into
visual analytics. Computer Graphics Forum, 36(8):458–486, 2017.

[18] M. Gleicher. Considerations for visualizing comparison. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):413–423, 2017.

[19] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. In Proceedings of the International Conference on
Learning Representations, 2015.

[20] F. Hohman, A. Head, R. Caruana, R. DeLine, and S. M. Drucker. Gamut:
A design probe to understand how data scientists understand machine
learning models. In Proceedings of the ACM Conference on Human
Factors in Computing Systems, 2019.

[21] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual Analytics in
Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE
Transactions on Visualization and Computer Graphics, 25(8):2674–2693,
2019.

[22] F. Hohman, H. Park, C. Robinson, and D. H. Chau. Summit: Scaling deep

learning interpretability by visualizing activation and attribution summa-
rizations. IEEE Transactions on Visualization and Computer Graphics,
26(1):1096–1106, 2020.

[23] Z. Huang, Y. Lu, E. Mack, W. Chen, and R. Maciejewski. Exploring the
sensitivity of choropleths under attribute uncertainty. IEEE Transactions
on Visualization and Computer Graphics, 26(8):2576–2590, 2020.

[24] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. ActiVis: Visual
exploration of industry-scale deep neural network models. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):88–97, 2018.

[25] M. Kahng, N. Thorat, D. Horng, P. Chau, F. B. Vi, and M. Wattenberg.
GAN Lab: Understanding complex deep generative models using inter-
active visual experimentation. IEEE Transactions on Visualization and
Computer Graphics, 25(1):310–320, 2019.

[26] J. Krause, A. Perer, and E. Bertini. INFUSE: Interactive feature selection
for predictive modeling of high dimensional data. IEEE Transactions on
Visualization and Computer Graphics, 20(12):1614–1623, 2014.

[27] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual
inspection of black-box machine learning models. In Proceedings of the
ACM Conference on Human Factors in Computing Systems, pp. 5686–
5697, 2016.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. In Proceedings of Advances in
Neural Information Processing Systems, pp. 1097–1105, 2012.

[29] B. C. Kwon, M. J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon, J. Sun,
and J. Choo. RetainVis: Visual analytics with interpretable and inter-
active recurrent neural networks on electronic medical records. IEEE
Transactions on Visualization and Computer Graphics, 25(1):299–309,
2019.

[30] K. Leino, S. Sen, A. Datta, M. Fredrikson, and L. Li. Influence-directed
explanations for deep convolutional networks. In Proceedings of IEEE
International Test Conference, 2018.

[31] Y. Li, T. Fujiwara, Y. K. Choi, K. K. Kim, and K.-L. Ma. A visual analytics
system for multi-model comparison on clinical data predictions. Visual
Informatics, 4(2):122–131, 2020.

[32] H. Liao, Y. Wu, L. Chen, and W. Chen. Cluster-based visual abstraction
for multivariate scatterplots. IEEE Transactions on Visualization and
Computer Graphics, 24(9):2531–2545, 2018.

[33] Z. W. Lim, M. L. Lee, W. Hsu, and T. Y. Wong. Building trust in deep
learning system towards automated disease detection. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9516–9521,
2019.

[34] D. Liu, W. Cui, K. Jin, Y. Guo, and H. Qu. DeepTracker: Visualizing the
training process of convolutional neural networks. ACM Transactions on
Intelligent Systems and Technology, 10(1):1–25, 2018.

[35] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu. Analyzing the noise robustness
of deep neural networks. In Proceedings of the IEEE Conference on Visual
Analytics Science and Technology, vol. 2, pp. 60–71, 2018.

[36] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training processes
of deep generative models. IEEE Transactions on Visualization and
Computer Graphics, 24(1):77–87, 2017.

[37] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2016.

[38] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of ma-
chine learning models: A visual analytics perspective. Visual Informatics,
1(1):48–56, 2017.

[39] S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu. Visual diagnosis of
tree boosting methods. IEEE Transactions on Visualization and Computer
Graphics, 24(1):163–173, 2017.

[40] M. Long, Y. Cao, Z. Cao, J. Wang, and M. I. Jordan. Transferable Repre-
sentation Learning with Deep Adaptation Networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41(12):3071–3085, 2018.

[41] J. Lu, W. Chen, Y. Ma, J. Ke, Z. Li, F. Zhang, and R. Maciejewski. Recent
progress and trends in predictive visual analytics. Frontiers of Computer
Science, 11(2):192–207, 2017.

[42] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under
concept drift: A review. IEEE Transactions on Knowledge and Data
Engineering, 4347(c):1–18, 2018.

[43] Y. Lu, R. Garcia, B. Hansen, M. Gleicher, and R. Maciejewski. The
state-of-the-art in predictive visual analytics. Computer Graphics Forum,
36(3):539–562, 2017.

[44] Y. Ma, W. Chen, X. Ma, J. Xu, X. Huang, R. Maciejewski, and A. K.
Tung. EasySVM: A visual analysis approach for open-box support vector

machines. Computational Visual Media, 3(2):161–175, 2017.
[45] Y. Ma, T. Xie, J. Li, and R. Maciejewski. Explaining vulnerabilities to

adversarial machine learning through visual analytics. IEEE Transactions
on Visualization and Computer Graphics, 26(1):1075–1085, 2020.

[46] Y. Ma, J. Xu, X. Wu, F. Wang, and W. Chen. A visual analytical approach
for transfer learning in classification. Information Sciences, 390:54–69,
2017.

[47] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[48] A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in
scatter plots. IEEE Transactions on Visualization and Computer Graphics,
19(9):1526–1538, 2013.

[49] Y. Ming, Z. Li, and Y. Chen. Understanding hidden memories of recur-
rent neural networks. In Proceedings of the IEEE Conference on Visual
Analytics Science and Technology, 2017.

[50] Y. Ming, H. Qu, and E. Bertini. RuleMatrix: Visualizing and Under-
standing Classifiers with Rules. IEEE Transactions on Visualization and
Computer Graphics, 25(1):342–352, 2018.

[51] T. Muhlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit. Opening
the black box: Strategies for increased user involvement in existing algo-
rithm implementations. IEEE Transactions on Visualization and Computer
Graphics, 20(12):1643–1652, 2014.

[52] S. Murugesan, S. Malik, F. Du, E. Koh, and T. M. Lai. DeepCompare:
Visual and Interactive Comparison of Deep Learning Model Performance.
IEEE Computer Graphics and Applications, 39(5):47–59, 2019.

[53] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill,
2(11):e7, 2017.

[54] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[55] S. J. Pan, V. W. Zheng, Q. Yang, and D. H. Hu. Transfer learning for
wifi-based indoor localization. In Proceedings of the Association for the
Advancement of Artificial Intelligence Workshop, vol. 6, 2008.

[56] N. Pezzotti, T. Höllt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and
A. Vilanova. DeepEyes: Progressive visual analytics for designing deep
neural networks. IEEE Transactions on Visualization and Computer
Graphics, 24(1):98–108, 2018.

[57] A. Pilh, A. Gribov, and A. Unwin. Comparing clusterings using bertin’s
idea. IEEE Transaction on Visualization and Computer Graphics,
18(12):2506–2515, 2012.

[58] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio. Transfusion: Un-
derstanding transfer learning for medical imaging. In Proceedings of
Advances in Neural Information Processing Systems, pp. 3342–3352,
2019.

[59] P. E. Rauber, S. G. Fadel, A. Falcao, A. C. Telea, A. X. Falcão, and A. C.
Telea. Visualizing the hidden activity of artificial neural networks. IEEE
Transactions on Visualization and Computer Graphics, 23(1):101–110,
2017.

[60] D. Ren, S. Amershi, B. Lee, J. Suh, J. D. Williams, D. Ren, J. Suh, and
S. Amershi. Squares: Supporting interactive performance analysis for
multiclass classifiers. IEEE Transactions on Visualization and Computer
Graphics, 23(1):61–70, 2016.

[61] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category
models to new domains. In Proceedings of the European Conference on
Computer Vision, pp. 213–226. Springer, 2010.

[62] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-
tra. Grad-CAM: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 618–626, 2017.

[63] A. Shrikumar, J. Su, and A. Kundaje. Computationally efficient measures
of internal neuron importance. arXiv preprint arXiv:1807.09946, 2018.

[64] T. Spinner, U. Schlegel, H. Schäfer, M. El-Assady, H. Schafer, and M. El-
Assady. explAIner: A visual analytics framework for interactive and
explainable machine learning. IEEE Transactions on Visualization and
Computer Graphics, 26(1):1064–1074, 2020.

[65] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. Seq2seq-Vis: A visual debugging tool for sequence-to-sequence
models. IEEE Transactions on Visualization and Computer Graphics,
25(1):353–363, 2019.

[66] H. Strobelt, S. Gehrmann, B. Huber, H. Pfister, and A. M. Rush. Visual
analysis of hidden state dynamics in recurrent neural networks. IEEE
Transactions on Visualization and Computer Graphics, 24(1):667–676,
2016.

[67] J. Talbot, B. Lee, A. Kapoor, and D. S. Tan. EnsembleMatrix: interactive

visualization to support machine learning with multiple classifiers. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems, p. 1283, 2009.

[68] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on
deep transfer learning. In Proceedings of the International Conference on
Artificial Neural Networks, pp. 270–279. Springer, 2018.

[69] F.-Y. Tzeng and K.-L. Ma. Opening the black box - Data driven visu-
alization of neural networks. In Proceedings of the IEEE Visualization
Conference, pp. 383–390, 2005.

[70] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J. D. Fekete, and D. W. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719–1749, 2011.

[71] J. Wang, L. Gou, H. W. Shen, and H. Yang. DQNViz: A visual ana-
lytics approach to understand deep Q-networks. IEEE Transactions on
Visualization and Computer Graphics, 25(1):288–298, 2019.

[72] J. Wang, L. Gou, H. Yang, and H. W. Shen. GANViz: A visual analytics
approach to understand the adversarial game. IEEE Transactions on
Visualization and Computer Graphics, 24(6):1905–1917, 2018.

[73] J. Wang, L. Gou, W. Zhang, H. Yang, and H. W. Shen. DeepVID: Deep
visual interpretation and diagnosis for image classifiers via knowledge
distillation. IEEE Transactions on Visualization and Computer Graphics,
25(6):2168–2180, 2019.

[74] Q. Wang, Y. Ming, Z. Jin, Q. Shen, D. Liu, M. J. Smith, K. Veeramacha-
neni, and H. Qu. AtmSeer: Increasing transparency and controllability in
automated machine learning. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, 2019.

[75] Q. Wang, J. Yuan, S. Chen, H. Su, H. Qu, and S. Liu. Visual genealogy of
deep neural networks. IEEE Transactions on Visualization and Computer
Graphics, 2019.

[76] K. Weiss, T. M. Khoshgoftaar, and D. Wang. A survey of transfer learning.
Journal of Big Data, 3(1), 2016.

[77] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viegas, and
J. Wilson. The What-If Tool: Interactive probing of machine learning
models. IEEE Transactions on Visualization and Computer Graphics,
26(1):56–65, 2020.

[78] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing dataflow graphs
of deep learning models in tensorflow. IEEE Transactions on Visualization
and Computer Graphics, 24(1):1–12, 2018.

[79] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are
features in deep neural networks? In Proceedings of Advances in Neural
Information Processing Systems, pp. 3320–3328, 2014.

[80] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep
learning based natural language processing. IEEE Computational Intelli-
gence Magazine, 13(3):55–75, 2018.

[81] H. Zeng, H. Haleem, X. Plantaz, N. Cao, and H. Qu. CNNComparator:
Comparative analytics of convolutional neural networks. In Proceedings
of Workshop on Visual Analytics for Deep Learning (VADL), 2017.

[82] J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert. Manifold: A model-
agnostic framework for interpretation and diagnosis of machine learning
models. IEEE Transactions on Visualization and Computer Graphics,
25(1):364–373, 2018.

[83] Y. Zhang and R. MacIejewski. Quantifying the visual impact of classifica-
tion boundaries in choropleth maps. IEEE Transactions on Visualization
and Computer Graphics, 23(1):371–380, 2017.

[84] X. Zhao, Y. Wu, D. L. Lee, and W. Cui. iForest: Interpreting random
forests via visual analytics. IEEE Transactions on Visualization and
Computer Graphics, 25(1):407–416, 2019.

	Introduction
	Related Work
	Background on Transfer Learning
	Design Overview
	Research Challenges
	Analytical Tasks

	Visual Analytics Framework
	Statistical Analysis of Model Performances
	Instance Analysis
	Neural Network Component Analysis
	Network Abstraction
	Network Comparison
	Visualization and Interactions

	Feature Analysis
	Domain Discriminability
	Visualization and Interactions

	Case Study and Expert Interview
	Object Classification
	Digit Recognition
	Expert Interviews

	Discussion and Conclusions

