

1 **Thermal Weakening, Convergent Flow, and Vertical Heat Transport in the Northeast**
2 **Greenland Ice Stream Shear Margins**

3
4 **N. Holschuh^{*1}, D. Lilien¹, K. Christianson¹**

5 ¹Department of Earth and Space Sciences, University of Washington, Johnson Hall Rm-070, Box
6 351310, 4000 15th Avenue NE, Seattle, Washington 98195-1310

7 *Corresponding author: Nicholas Holschuh (holschuh@uw.edu)

8 **Key Points:**

- 9
- 10 Thermal weakening is present in the Northeast Greenland Ice Stream (NEGIS) shear
margins, despite low strain rates.
 - 11 Vertical advection of heat dominates the shear margin temperature structure here,
12 validated by radar reflectivity and isochron geometry.
 - 13 Radar data can be used to constrain ice temperature and subsurface velocity to evaluate
14 ice-sheet model spin-up and inversions.
- 15

16 Abstract

17 Ice streams are bounded by abrupt transitions in speed called shear margins. Some shear margins
18 are fixed by subglacial topography, but others are thought to be self-organizing, evolving by
19 thermal feedbacks to ice viscosity and basal drag which govern the stress balance of ice sheets.
20 Resistive stresses (and properties governing shear-margin formation) manifest non-uniquely at
21 the surface, motivating the use of subsurface observations to constrain modeled ice streams. In
22 this study, we use radar data to evaluate three 3D thermomechanical models of the Northeast
23 Greenland Ice Stream (NEGIS), focusing on the model reproductions of ice temperature (the
24 primary control on viscosity) and subsurface velocity. Data/model agreement indicates elevated
25 temperatures in the NEGIS margins, with depth-averaged temperatures between 2°C and 5°C
26 warmer in the southeast margin, driven by vertical heat transport rather than shear heating. This
27 work highlights complexity in ice velocity across stagnant/streaming transitions.
28

29 Plain Language Summary

30 Ice-sheet models used to project future sea-level rise are calibrated using modern observations of
31 ice flow at the ice-sheet surface. However, the subsurface ice and rock properties that ultimately
32 control the patterns of ice flow in Greenland cannot be uniquely determined using observations
33 of the surface alone. In this study, we use the structural and electromagnetic characteristics of the
34 Greenland Ice Sheet (determined from ice-penetrating radar data) to evaluate the subsurface
35 performance of three different ice-flow models of the Northeast Greenland Ice Stream. We show
36 that fast flow in Northeast Greenland is, in part, controlled by softer, warmer ice, and that
37 correctly modeling heat transport at the boundaries of ice streams is critical for realistic
38 projections of their future behavior. Ultimately, we provide insight into a sensitive region of
39 Greenland together with a new approach to model evaluation, with the goal of reducing the range
40 of plausible models projecting the future of the Greenland and Antarctic Ice Sheets.

41 1 Introduction

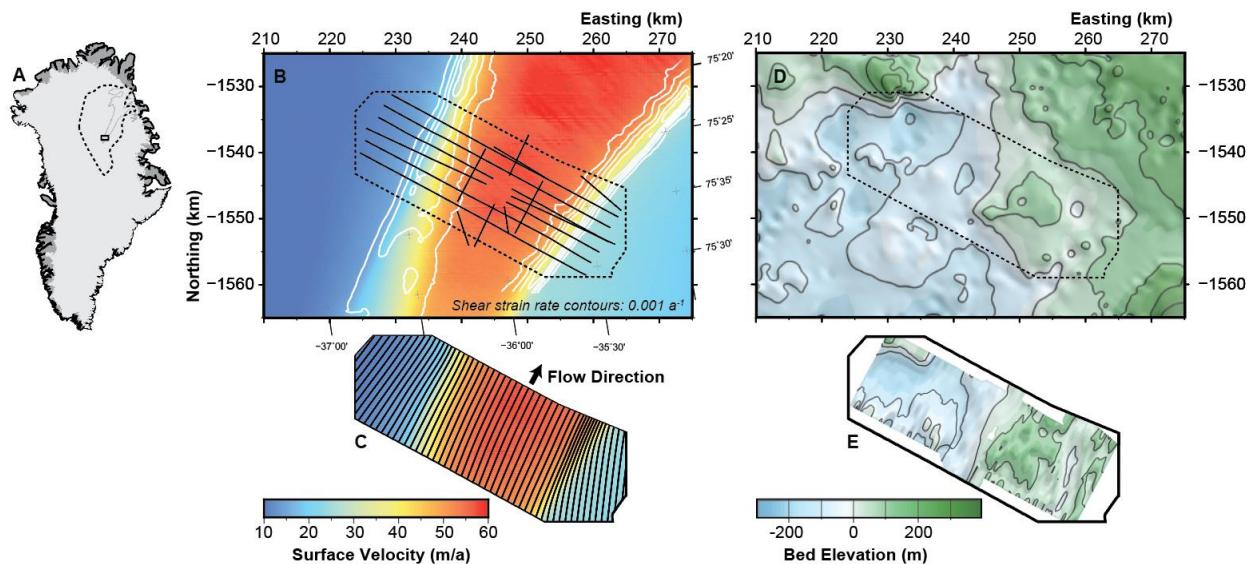
42 Predicting the future of Earth's ice sheets requires models that can first reproduce modern ice-
43 sheet behavior. To do this, models rely on observations of ice-sheet surface velocity to infer the
44 ice viscosity and substrate properties, which control the spatial pattern of ice flow (Joughin et al.,
45 2004; MacAyeal, 1992; Morlighem et al., 2010). However, surface observations provide
46 insufficient information to uniquely infer both ice viscosity and basal shear stress without
47 additional constraints (Arthern & Gudmundsson, 2010). Models with equally good fits to surface
48 observations can have different internal stress configurations, and therefore produce different
49 projections of the ice-sheet response to climate forcing (Goelzer et al., 2018). Thus, there is need
50 for new observational methods capable of inferring ice temperature, a critical influence on ice
51 viscosity, and a necessary measurement for separating the englacial and basal stresses of ice
52 streams.

53 1.1 Inferring Temperature and Velocity from Radar

54 Radar reflectivity and englacial layering have been the primary observations used to understand
55 subsurface properties across shear margins. Reflectivity analysis has been focused on the bed,
56 interpreting contrasts in reflection strength as wet to dry transitions across shear margins in
57 Antarctica (Bentley et al., 1998; J. A. MacGregor et al., 2013; Raymond et al., 2006) and

58 Greenland (Christianson et al., 2014; Vallelonga et al., 2014). Disruptions in internal layering
59 have been used to infer past margin position (Catania et al., 2006; Keisling et al., 2014). But, as
60 new methods emerge in radioglaciology, radar data have the potential to provide more
61 quantitative insight into temperature and heat transport, thought to govern shear margin behavior.

62 Radio waves are sensitive to elevated ice temperature, as the electrical conductivity of ice
63 increases exponentially to the melting point (MacGregor et al., 2007). Power is lost to
64 conduction as radio waves propagate through the ice, resulting in lower amplitude signals in
65 warm or impurity rich areas. Thus, radio echo sounding data contains information about ice
66 temperature and chemistry (Bogorodsky et al., 1985; Dowdeswell & Evans, 2004) as well as the
67 electrical properties of subsurface reflectors (with variations typically attributed to subglacial
68 water content or interface roughness). Substantial work has been done to disentangle attenuation
69 signals from reflectivity without using an ice-sheet model (K Matsuoka et al., 2012; Schroeder et
70 al., 2016), but available algorithms cannot provide robust attenuation estimates in the presence of
71 temperature and reflector heterogeneity over small spatial scales. Thus, radioglaciologists have
72 used ice sheet models to directly estimate attenuation effects (Matsuoka et al., 2012) and remove
73 attenuation signals from radar data for more robust reflector interpretation (Chu et al., 2018).


74 In this study, we take a different approach. We use the spatial correlation between measured
75 reflection strength and modeled temperature to validate the subsurface performance of ice sheet
76 models. This is possible because radar data contain independent information about both the
77 thermal characteristics of ice (through measured reflection power) and the velocity structure
78 (through englacial layer shapes, e.g. Hindmarsh et al., 2006; Holschuh et al., 2017; Leysinger
79 Vieli et al., 2007). Discrepancies between modeled and inferred temperature are driven primarily
80 by errors in the transport and production of heat in the subsurface, both a product of subsurface
81 ice velocity. Thus, radar data have the potential to both identify errors in modeled temperature
82 and isolate the processes responsible for the mismatch. We test this here using data from the
83 shear margins of the Northeast Greenland Ice Stream (NEGIS), where temperature heterogeneity
84 may be a controlling factor in shear localization.

85 1.2 Shear-margin mechanics in ice-flow models

86 Much of our understanding of thermally controlled ice-stream shear margins comes from a mix
87 of 1D analysis (Meyer & Minchew, 2018; Perol & Rice, 2015) and 2D, flow-orthogonal
88 thermomechanical modeling. Diagnostic modeling efforts first highlighted the role of frictional
89 heat production in margin weakening (Jacobson & Raymond, 1998), predicting enhanced shear
90 localization relative to isothermal ice when thermal softening is included in model physics.
91 Model sophistication has increased dramatically since then, with modern models capable of
92 simulating margin evolution, including the dynamic effects of melt-water production and
93 subglacial hydrology (Elsworth & Suckale, 2016; Meyer et al., 2018; Perol et al., 2015; Suckale
94 et al., 2014). However, to maintain numerical efficiency at very high resolution, 2D models use
95 simplified ice dynamics, assuming the along-stream velocity evolves according to a reduced
96 form of the momentum equations (excluding longitudinal stresses). Boundary-layer treatments of
97 shear margins address this by solving the 3D Stokes equations, reproducing the heat production
98 and advective cooling underpinning margin migration (Haseloff et al., 2015; Schoof, 2012);
99 however, these models use a fixed value of ice viscosity, and rely on an idealized geometry
100 (assuming no vertical velocities in basal ice resting on a flat bed) to simplify the calculation.

101 Comparing results of simplified models to realistic ice-stream systems requires evaluating the
 102 impact of their simplifying assumptions. This is especially important for margins with ice that
 103 flows across the stagnant/streaming boundary, as previous studies show that reproducing the
 104 depth-velocity structure across abrupt boundary-condition transitions requires the inclusion of
 105 longitudinal stresses (Hindmarsh et al., 2006). In this study, we use 3D, full-Stokes diagnostic
 106 modeling (Gagliardini et al., 2013) to simulate the complex heat generation and transport across
 107 a realistic ice-stream margin.

108 We focus on the incipient shear margins of NEGIS (Fig. 1), where shear localization manifests
 109 amid diffuse flow acceleration. As with other shear margins, the position of the incipient margin
 110 may be imposed by the underlying geology (Anandakrishnan et al., 1998; J. A. MacGregor et al.,
 111 2013). But it is also possible that these margins are self-organizational, forming by a thermal
 112 perturbation reinforced by temperature feedbacks within the ice (Jacobson & Raymond, 1998;
 113 Suckale et al., 2014), fabric development (Minchew et al., 2018), and/or subglacial hydrologic
 114 organization (Elsworth & Suckale, 2016; Kyrke-Smith et al., 2015; Perol et al., 2015; Perol &
 115 Rice, 2015). By diagnosing the thermal structure in the incipient margin, we can evaluate
 116 whether geologic controls are required to explain the velocity pattern, or if the margin is
 117 collocated with a thermal anomaly that will influence its future evolution.

118

119 **Figure. 1** – Regional context for the Northeast Greenland Ice Stream (A), presenting both the ice
 120 surface velocity (B,C – [I. Joughin et al., 2016]) and bed topography (D – [Bamber et al., 2013],
 121 E – inverse distance weighted interpolation of radar data presented in this study). The full
 122 catchment and high-resolution model domain are provided as dotted lines in (A) and (B,D),
 123 respectively, with radar profile locations plotted as black lines in (B). Ice-flow streamlines are
 124 provided in (C), highlighting cross-marginal flow in the SE margin of NEGIS. (Map projection -
 125 EPSG:3413)

126

127 **2 Methods**128 **2.1 Modeling the Northeast Greenland Ice Stream**

129 We use a 3D, full-Stokes, thermomechanical model, implemented in Elmer/Ice (Gagliardini et
130 al., 2013; Zwinger et al., 2007) to reproduce the dynamics of the NEGIS margins. This is done in
131 two stages. The first stage, a full-catchment model (9 vertical layers, 500m-5000m mesh refined
132 around the area of interest), was used to generate temperature and velocity boundary conditions
133 for the second stage, a higher-resolution (~100m mesh) model, designed to span the 2012 radar
134 survey across the incipient NEGIS margins. The model experiment set-up, boundary conditions,
135 and implementation are described in the Supplementary Material.

136 In modeling this system, we found that the observed surface velocity, accumulation rate, and ice
137 thickness are difficult to rectify with one another assuming steady-state mass balance. This
138 mismatch likely arises from a combination of data limitations (e.g., spatially incomplete ice
139 thickness measurements or poorly reconstructed accumulation rates) and missing physics in the
140 model (e.g., ice fabric evolution), and is a common challenge in ice-sheet modeling. Models
141 typically address this mismatch in one of three ways: (1) the ice surface is allowed to relax in
142 accordance with ice velocities (as in Larour et al. (2014) and Brondex et al. (2019)), resulting in
143 a model with matching surface velocities but erroneous ice thickness, (2) the surface velocities
144 are scaled to bring the system into balance given the measured geometry and accumulation rate,
145 resulting in a disagreement between observed and modeled horizontal flow speeds (as in
146 Zwinger et al. (2007)), or (3) the ice thickness and horizontal velocities are imposed, and the
147 vertical velocities are assumed to provide balance, allowing disagreement with accumulation
148 rates at the surface (as in Pattyn (2010)).

149 Without an a priori justification for one method over the others, we produced three realizations
150 of our model domain following published procedures. This resulted in two equilibrium
151 reproductions (following methods 1 and 2) and one disequilibrium reproduction of NEGIS
152 (following method 3). We differentiate these models in text and figures according to their
153 agreement with ice thickness (H), horizontal velocities at the surface (u,v, for polar-stereographic
154 coordinate axes x and y), and vertical velocities at the surface (w, with positive values upward).
155 Ultimately, our goal is to use radar data to evaluate the performance of these three models and
156 use observations together with the best-fit model to better understand the dynamics of the NEGIS
157 shear margins.

158 **2.2 Radar Processing and Interpretation**

159 The radar data used in this study were collected in summer 2012 and were first published as part
160 of Christianson et al. (2014), who detail the initial processing (including geolocation, bandpass
161 filtering, correction for antenna spacing, travel time correction for firn density, interpolation to
162 standard trace spacing, along-track migration, and geometric spreading correction to return
163 amplitude). For this study, the effects of geometric spreading and refractive focusing through the
164 firn column were removed following the methods of Holschuh et al. (2016), and the remaining
165 variations in the bed reflection power are attributed to spatial variability in ice conductivity or
166 substrate permittivity. Physical interpretation of measured reflection power requires
167 disambiguating the effects of these two properties.

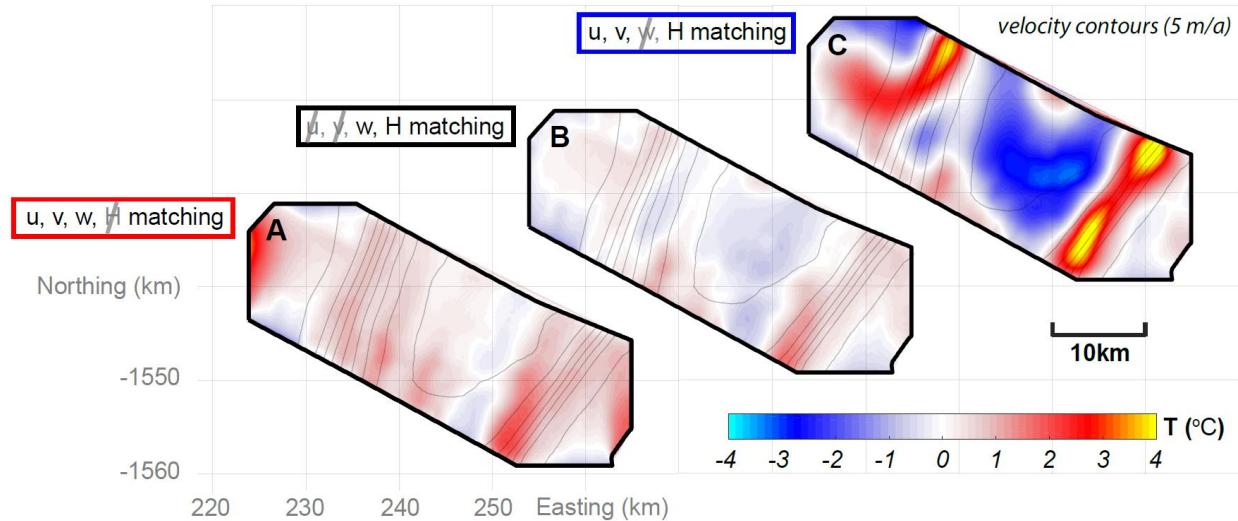
168 2.3 Conductivity Modeling

169 Converting modeled ice temperature to radar-wave attenuation requires conductivity modeling.
170 Conductivity in ice is treated as a thermally activated process, with models requiring impurity
171 concentrations, activation energies, and temperatures (MacGregor et al., 2007). Using average
172 impurity concentrations during the Holocene and Glacial period as observed in the GRIP ice core
173 (which has the most complete, local, soluble impurity record) (De Angelis et al., 1997), and the
174 reflector known to separate these two periods in the radar data, we define a depth-impurity
175 profile for each radar trace. This assumes constant impurity concentration within a given layer
176 package, requiring that layer thickness differences primarily reflect differential divergence and
177 not a spatially variable snow accumulation rate upstream (which could drive impurity dilution).
178 Using the modeled temperature profiles, we calculate the associated conductivity and depth-
179 averaged attenuation rates using parameters found in the literature (Gudmandsen, 1971;
180 MacGregor et al., 2015; MacGregor et al., 2007; Wolff et al., 1997), and present a model/data
181 inter-comparison for the best-fit model (see Supplementary Fig. 2,3 for model selection process).

182 2.3 Model/Data Correlation

183 To evaluate consistency between model temperature and radar reflectivity, we compute local
184 linear fits between modeled and observed reflection strength. Regression statistics (specifically
185 R^2 values) for local fits indicate the spatial agreement between the modeled temperature field and
186 the pattern of observed reflection strength. Fit coefficients for the local linear regressions
187 indicate the agreement in magnitude of the temperature anomalies – a fit coefficient of 1
188 indicates the modeled and observed power losses match perfectly, while coefficients between 0
189 and 1 (i.e., observed power losses divided by modeled power losses < 1) indicate modeled
190 conductivity (and therefore modeled temperature) is likely too high. Overall NEGIS model
191 performance is presented as an addition R^2 statistic, computed using the aggregated residual sum
192 of squares from the local fits.

193 **3 Results**


194 3.1 Depth-averaged temperature fields

195 The depth averaged temperature fields for our three model realizations are presented in Figure 2.
196 Figure 2.A presents the results for a model of NEGIS with a relaxed surface, in which ice
197 thickness is 30m thicker than observed in the shear margins. Figure 2.B presents a model with
198 horizontal flow speeds reduced to bring the system into mass balance, with streaming flow
199 speeds 10-15 m/a slower than observed. Figure 2.C presents the model that matches the observed
200 geometry and horizontal flow speeds, but has a mean error of ~ 2 m/a for vertical velocities at the
201 surface.

202 Each of our three model realizations produced a different depth-averaged temperature field, with
203 the most dramatic differences between our equilibrium and disequilibrium cases (Fig. 2A,B vs.
204 2C). The model with a relaxed surface resulted in the highest average temperature over the full
205 domain (Fig. 2A). This model showed slightly elevated temperatures in the SE margin ($\sim 2\text{--}3^\circ\text{C}$),
206 with no clear temperature anomaly in the NW margin. The steady state model with lower
207 streaming flow speeds (Fig. 2B) has a clear thermal signature in both margins ($\sim 2^\circ\text{C}$), but

208 generally colder ice within the ice stream. In contrast, the disequilibrium model has much
 209 stronger thermal anomalies in the margins than the steady-state runs (SE, $\sim 5\text{--}6^\circ\text{C}$ and NW, $\sim 4\text{--}$
 210 5°C). While the equilibrium models predict stronger thermal anomalies on the upstream end of
 211 the domain, the disequilibrium model has no along-flow trend.

212

213

214 **Figure 2.** – Depth-averaged temperature anomalies (relative to -14°C) for models using three
 215 different boundary forcings: (A) steady-state, relaxed surface conditions, (B) steady-state, forced
 216 geometry but reduced velocity conditions, and (C) surface elevation and horizontal velocity
 217 matching, but surface-flux imbalance conditions. Surface velocity contours (5 m/a) are presented
 218 to highlight the position of the ice-stream shear margins.

219 3.2 Radar Isochrons, Subsurface Velocity, and Heat Advection

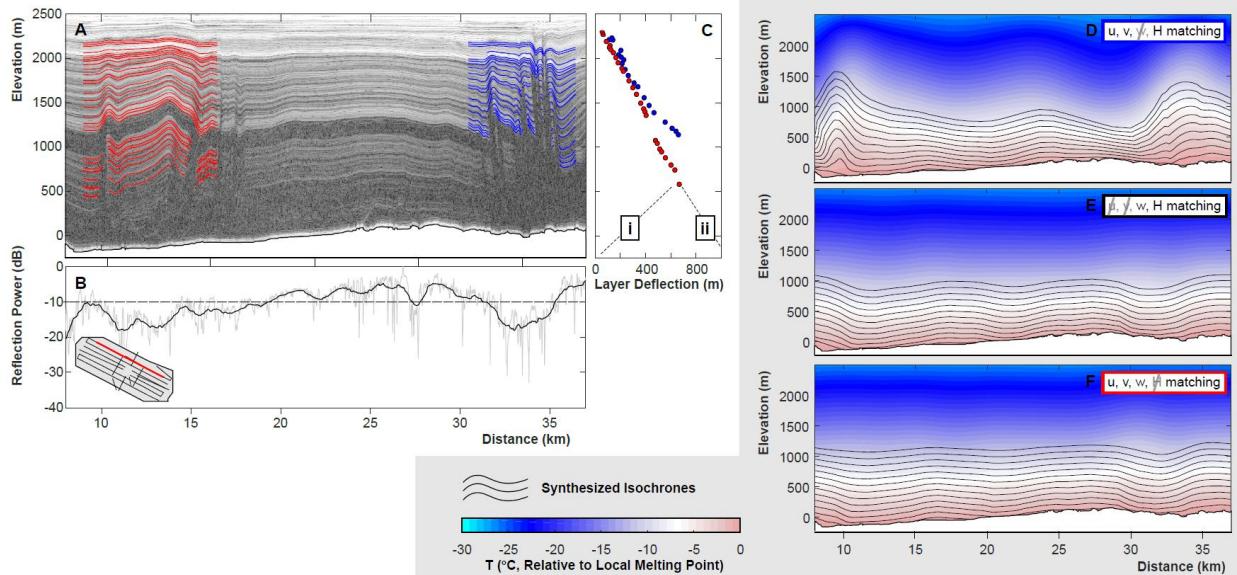
220 Variability in shear strain rates between models is small ($\sim 0.001 \text{ a}^{-1}$), and thus differences in
 221 heat production by viscous dissipation are negligible. Differences in depth-averaged temperature
 222 are largely the result of heat transport through the domain. Radar imaged isochrons provide
 223 context for heat transport, as their relative heights in the ice column reflect differential transport
 224 through time. There is always ambiguity when interpreting englacial structures – assuming
 225 steady-state, structures form in place, but with boundary condition changes through time, it is
 226 possible to form a fold elsewhere and advect to its observed location in the modern ice sheet.
 227 Because the observed folds are collocated with the modern shear margins along the full trunk of
 228 NEGIS, we assume they formed in place.

229 There are several characteristics of the imaged isochrons and surface velocity field that can
 230 inform our understanding of the system:

- 231 1. Distinct fold structures were imaged in the shear margins in all flow-orthogonal lines
 232 (Fig. 3A). Isochrons are at their shallowest (highest) point in the ice column within the
 233 shear margins.
- 234 2. Layer deflections are largest for the deepest imaged layers, decreasing in amplitude

235 toward the surface.

236 3. Ice passes through the SE margin (from where isochrons are deep, to where they are
237 shallow, back to deep) within our model domain, while ice flow is sub-parallel to the NW
238 margin fold (see Fig. 1C, Supplementary Fig. 4).


239 These conditions constrain fold generation mechanism in several ways. Ice passing through the
240 SE shear margin must be driven upward within our model domain by substantial vertical
241 velocities at depth. These velocities could be imparted by direct forcing at the bed in the form of
242 basal freeze-on (Fig 3C.ii), or could be the result of convergence and layer thickening in the
243 deepest parts of the ice, increasing velocities and layer deflections up column to the point where
244 layers are imaged (Fig 3C.i). Ice in the NW is also experiencing differential vertical transport in
245 and outside the margin, but because ice does not pass through the margin here, particles within a
246 given layer do not have a shared transport history and the fold structure cannot be definitively
247 attributed to processes within our model domain. The NW folds could have formed upstream, or
248 by local cross-flow convergence. Decreasing fold amplitudes higher in the ice column indicate
249 divergence and layer thinning, reducing the magnitude of vertical velocities imposed by the deep
250 ice. As ice passes into streaming flow from the shear margins and layers drop, deep layers must
251 thin (or there must be compensating basal melt at depth within streaming flow), driving negative
252 vertical velocities.

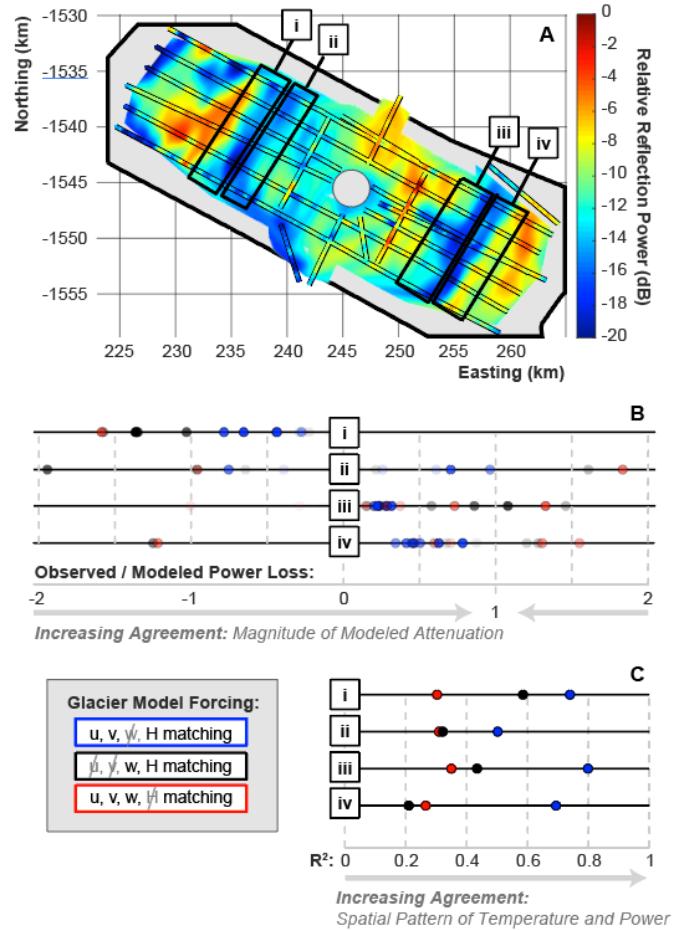
253 Using the 3D velocity field for each of our three models, we synthesize layers assuming they
254 enter the domain at constant depth. The resulting synthetic isochrons highlight perturbations to
255 layer depth that occur within the model domain, where local structures such as the SE shear-
256 margin folds must have formed. We produce these for all three model realizations, extract the
257 layer geometries at the radar observation sites, and plot the results against the modeled depth-
258 temperature profiles (Fig. 3D-F).

259 Vertical advection of ice dominates the modeled thermal structure in all three cases, with high
260 temperatures shallower in the ice column where upwarping layers are predicted. The steady-state
261 models resulted in flat or slightly downwarped layers in the margins, different from both the
262 disequilibrium model and the observations, which have fold amplitudes of ~500 m in the central
263 portion of the ice column. These form in the model by deep along- and across-flow convergence
264 without requiring basal freeze-on, thought to be limited at NEGIS (Dow et al., 2018).

265 There is unresolved disagreement between the modeled and observed isochrons in the upper
266 portion of the ice column, where fold amplitudes are damped in the data. This could be explained
267 by compensating divergence in the upper half of the ice column not captured in our model (but
268 seen in models of flow over bed friction anomalies in Holschuh et al., (2017) and Whillans and
269 Johnsen (1983)).

270

271


272 **Figure 3.** – Characteristic radargram (A) collected at the downstream end of the model domain,
 273 with the associated bed reflection strength corrected for spherical spreading and refractive
 274 focusing through the firn (B). Layers imaged in the shear margins show increasing deflection
 275 with depth (C), down to where they can no longer be imaged. Near the bed, layers must either be
 276 bed conformal, with increasing upward deflection due to layer thickening by flow convergence
 277 (i), or non-conformal with vertical deflections equal to the thickness of basal freeze-on at the bed
 278 (ii). For the same transect, synthetic isochrons and modeled temperature are presented (D-F).

279

280

281 3.3 Radar Reflection Strength and Modeled Temperature

282 Within the shear margins, weaker bed returns are collocated with upwarped englacial layers (Fig
 283 3.B, Fig 4.A). In general, reflection power / temperature agreement is better for the SE margin
 284 across all models, and better for the disequilibrium model than the equilibrium models. Local fits
 285 between expected and observed power losses (Fig 4.B) show the equilibrium models
 286 systematically underestimating power losses in the margins (fit coefficients > 1), with little
 287 ability to explain trends in reflection power ($R^2 < 0.5$). The disequilibrium model typically
 288 overestimates the magnitude of the temperature anomaly (fit coefficients between 0 and 1), but
 289 has substantial ability to explain the spatial pattern of power losses. This is highlighted in the
 290 overall model fits (Fig 4.C) with better performance by the disequilibrium model across all
 291 regions. Surprisingly, the western edge of the NW margin shows a negative correlation between
 292 expected and observed power loss for all models, indicating that either (a) the temperature
 293 models have warm ice where it should be cold, or (b, more likely) that the modeled spatial
 294 pattern of warm ice, which matches the spatial pattern of bright reflection, is an indicator of basal
 295 water outside the NW margin.

296

297 **Figure 4.** – Plot of the bed reflection power (A). The correlation between modeled and observed
 298 bed power (colored by model boundary forcing) is computed for each radar line as they cross in-
 299 to (i, iv) and out-of (ii, iii) the shear margins. The coefficient relating modeled and observed
 300 power loss for each local fit is presented in (B) (with opacity representing the R^2 significance of
 301 each local regression). The overall R^2 for subdomains i-iv, indicative of the total agreement
 302 between model and observation, is presented in (C), highlighting the superior performance of our
 303 disequilibrium model across all four regions of interest.

304

305 4. Discussion

306 4.1 Evidence for elevated temperature at NEGIS

307 NEGIS is defined by 400 km long shear margins, with no indication of topographic control for at
 308 least 200 km in its upstream reaches (Fig. 1D,E). Shear localization (as opposed to diffuse
 309 acceleration as seen in most ice-stream catchments) implies that there is an abrupt change in
 310 strength across the stagnant-streaming transition, but it is otherwise unknown if this is a change
 311 in rock properties, effective stress at the bed, ice viscosity, or a combination of all three. The
 312 spatial pattern of bed reflection power matches the disequilibrium modeled temperature field
 313 well in the SE margin, suggesting significant vertical advection (and the warm ice) is present at

314 NEGIS and weakens the margins.

315 4.2 The role of advection in the thermal balance of shear margins

316 Heat retention in shear margins is ultimately an advection-diffusion problem, illustrated
 317 conceptually by the following equation:

$$\rho c_p u \frac{\partial T}{\partial x} + \rho c_p v \frac{\partial T}{\partial y} + \rho c_p w \frac{\partial T}{\partial z} = K \frac{\partial^2 T}{\partial z^2} + \sigma_{ij} \epsilon_{ij} \quad (1)$$

318 Comparing the product of modeled temperature gradients $(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z})$ and their corresponding
 319 velocities (u, v, w , respectively) with the total rate of strain heating (defined as the product of the
 320 Cauchy stress tensor σ_{ij} and strain rate tensor ϵ_{ij}), it is possible to determine the dominant
 321 processes acting to modify temperature within our model domain. We do this using published
 322 values for the presented physical constants (density - ρ : 917 kg m⁻³, specific heat capacity - c_p :
 323 2050 J kg⁻¹ K⁻¹), and thermal conductivity - K : 2.1 W m⁻¹ K⁻¹). Given maximum shear strain
 324 rates in our domain of 0.005 a⁻¹, and modeled vertical and horizontal temperature gradients of
 325 ~0.01 K/m and ~0.001 K/m respectively, the advective terms of the thermal balance have
 326 comparable influence to shear heating when the vertical velocity is ~0.02 m/a or cross-marginal
 327 velocities exceed ~0.2 m/a.

328 Cross-marginal velocities rise well above this threshold at NEGIS, with values of ~4 m/a for the
 329 western margin and ~10 m/a in the eastern margin (see Supplementary Fig. 5). Thus, we would
 330 expect advective cooling to dominate over shear heating. In addition, simple treatments of
 331 vertical velocity (assuming it is negative and less than or equal to the accumulation rate of ~0.1
 332 m/a at our site) imply accumulation driven cooling would overcome any strain warming.

333 However, subglacial topography and flow convergence drive vertical velocities deep in the ice
 334 column across all 3 models, resulting in values of w well above the significance threshold.
 335 Maximum vertical velocities in our equilibrium runs fall between 0.25 and 0.5 m/a, and exceeds
 336 1 m/a in our disequilibrium run, expected at NEGIS given substantial layer slopes in the shear
 337 margins (Holschuh et al., 2017). With high vertical temperature gradients, even small differences
 338 in vertical velocity become important. Ultimately, velocities deep in the ice column dominate the
 339 thermal structure and attenuation signal at NEGIS (as variations in the thickness of high
 340 temperature ice have a disproportionate effect on depth averaged conductivity). Isochron
 341 geometries (which follow isotherms in our model results – Fig. 3.D-F) may provide a direct
 342 observational method for estimating relative temperature across slow flowing regions, as relative
 343 layer depths reflect differences in net-vertical advection.

344 5 Conclusions

345 We present here the first radar-validated, 3D thermomechanical model of an ice-stream shear
 346 margin and show that fast flow at NEGIS is facilitated, in part by thermally weakened ice.
 347 Models that fail to capture the deep vertical velocity structure will underestimate thermal
 348 weakening in the ice, compensate by underestimating the strength of the ice bed, and ultimately

349 fail to reproduce the system dynamics.

350 Structural and intensity information from radar data act as independent checks on modeled ice
351 velocity and temperature, and highlight a previously undescribed role for vertical advection in
352 shear margins, which dominates here over heat production and shear-margin cooling effects from
353 cross-marginal flow. We show that the velocity structure, temperature field, and resulting
354 strength of the ice for this ice-stream system differ significantly from idealized characteristics
355 inferred from surface observations alone. Flow convergence is likely to drive thermal margin
356 development at other incipient shear margins, as vertical advection creates the initial thermal
357 weakness that is reinforced by subsequent shear localization.

358 **Acknowledgments, Samples, and Data**

359 N. Holschuh developed the study and performed the radar analysis and radar-model
360 intercomparison. D. Lilien implemented the model. Christianson collected and processed the
361 radar data and contributed to the interpretation. All authors participated in writing. Radar data
362 and model output are accessible through the University of Washington's ResearchWorks
363 Archive (doi available after acceptance). NASA grant no. NNX16AM01G and NSF grant no.
364 1643353 supported N. Holschuh and K. Christianson. NASA grant no. NNX15AN53H
365 supported D. Lilien.

366 **References**

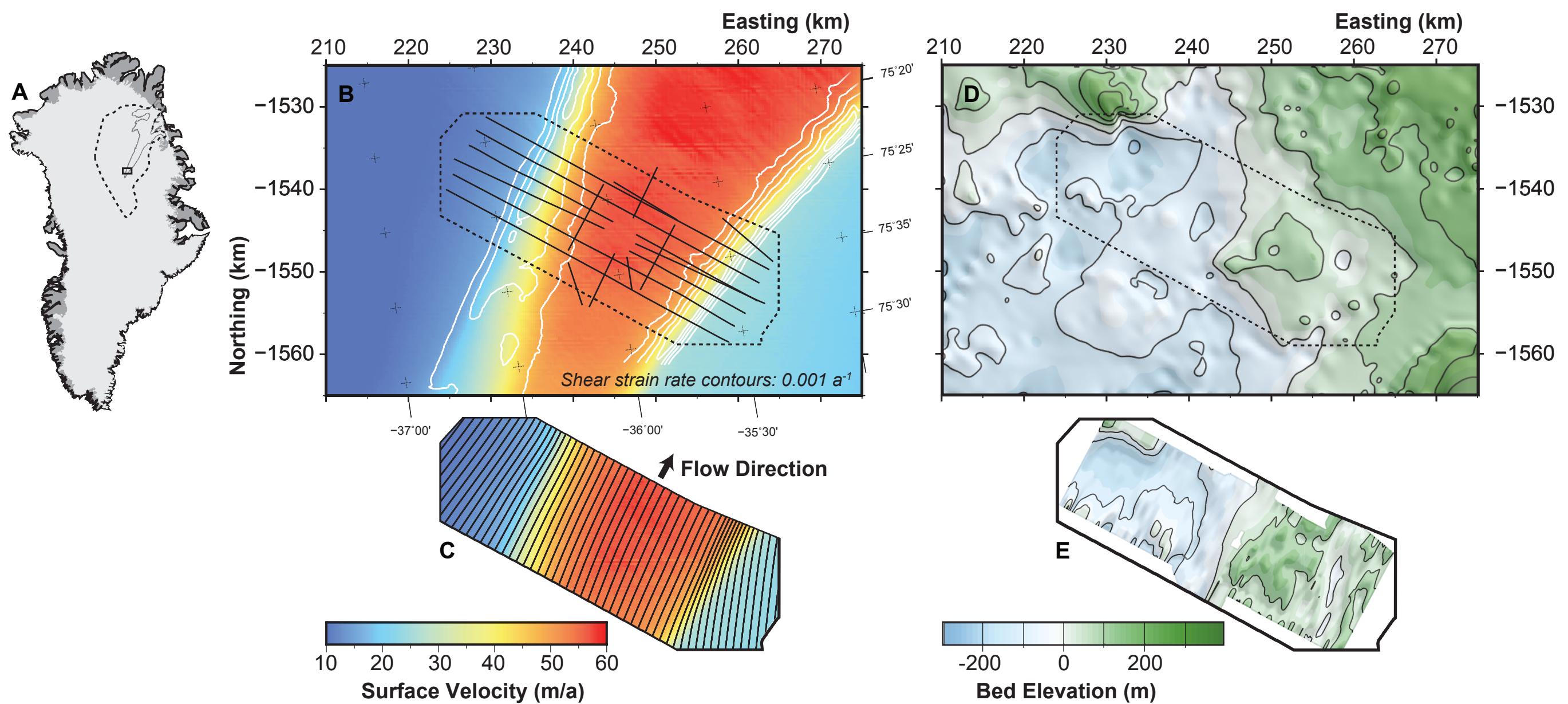
- 367 Anandakrishnan, S., Blankenship, D. D., Alley, R. B., & Stoffa, P. L. (1998). Influence of
368 subglacial geology on the position of a West Antarctic ice stream from seismic
369 observations. *Nature*, 394(6688), 62–65. <https://doi.org/10.1038/27889>
- 370 De Angelis, M., Steffensen, J. P., Legrand, M., Clausen, H., & Hammer, C. (1997). Primary
371 aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle:
372 Comparison with east Antarctic records. *Journal of Geophysical Research: Oceans*,
373 102(C12), 26681–26898. <https://doi.org/10.1029/97JC01298>
- 374 Arthern, R. J., & Gudmundsson, G. H. (2010). Initialization of ice-sheet forecasts viewed as an
375 inverse Robin problem. *Journal of Glaciology*, 56(197), 527–533.
376 <https://doi.org/10.3189/002214310792447699>
- 377 Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat,
378 I., et al. (2013). A new bed elevation dataset for Greenland. *The Cryosphere*, 7(2), 499–510.
379 <https://doi.org/10.5194/tc-7-499-2013>
- 380 Bentley, C. R., Lord, N., & Liu, C. (1998). Radar reflections reveal a wet bed beneath stagnant
381 Ice Stream C and a frozen bed beneath ridge BC, West Antarctica. *Journal of Glaciology*,
382 44(146), 149–156. <https://doi.org/10.1073/pnas.1100349108>
- 383 Bogorodsky, V., Bentley, C., & Gudmandsen, P. (1985). *Radioglaciology* (1st ed.). Dordrecht,
384 Holland: D. Reidel Publishing Co.
- 385 Brondex, J., Gillet-Chaulet, F., & Gagliardini, O. (2019). Sensitivity of centennial mass loss
386 projections of the Amundsen basin to the friction law. *The Cryosphere*, 13(1), 177–195.
387 <https://doi.org/10.5194/tc-13-177-2019>
- 388 Catania, G. A., Scambos, T. A., Conway, H., & Raymond, C. F. (2006). Sequential stagnation of
389 Kamb Ice Stream, West Antarctica. *Geophysical Research Letters*, 33(14), 2–5.
390 <https://doi.org/10.1029/2006GL026430>
- 391 Christianson, K., Peters, L. E., Alley, R. B., Anandakrishnan, S., Jacobel, R. W., Riverman, K.
392 L., et al. (2014). Dilatant till facilitates ice-stream flow in northeast Greenland. *Earth and*
393 *Planetary Science Letters*, 401, 57–69. <https://doi.org/10.1016/j.epsl.2014.05.060>
- 394 Chu, W., Schroeder, D. M., Seroussi, H. S., Creyts, T. T., & Bell, R. E. (2018). Complex basal
395 thermal transition near the onset of Petermann Glacier, Greenland. *Journal of Geophysical*
396 *Research: Earth Surface*, 1–11. <https://doi.org/10.1029/2017JF004561>
- 397 Dow, C. F., Karlsson, N. B., & Werder, M. A. (2018). Limited impact of subglacial supercooling
398 freeze-on for Greenland Ice Sheet stratigraphy. *Geophysical Research Letters*.
399 <https://doi.org/10.1002/2017GL076251>
- 400 Dowdeswell, J. A., & Evans, S. (2004). Investigations of the form and flow of ice sheets and
401 glaciers using radio-echo sounding. *Reports on Progress in Physics*, 67(10), 1821–1861.

- 402 <https://doi.org/10.1088/0034-4885/67/10/R03>
- 403 Elsworth, C. W., & Suckale, J. (2016). Subglacial drainage may induce rapid ice flow
404 rearrangement in West Antarctica. *Geophysical Research Letters*, 43, 11697–11707.
405 <https://doi.org/10.1002/2016GL070430>
- 406 Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., De Fleurian, B., et al.
407 (2013). Capabilities and performance of Elmer/Ice, a new-generation ice sheet model.
408 *Geoscientific Model Development*, 6(4), 1299–1318. <https://doi.org/10.5194/gmd-6-1299-2013>
- 410 Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., et al.
411 (2018). Design and results of the ice sheet model initialisation experiments initMIP-
412 Greenland: an ISMIP6 intercomparison. *The Cryosphere*, 12, 1433–1460.
- 413 Gudmandsen, P. (1971). Electromagnetic probing of ice. In J. Wait (Ed.), *Electromagnetic
414 Probing in Geophysics* (pp. 321–348). Boulder, CO: Golem Press.
- 415 Haseloff, M., Schoof, C., & Gagliardini, O. (2015). A boundary layer model for ice stream
416 margins. *Journal of Fluid Mechanics*, 781, 353–387. <https://doi.org/10.1017/jfm.2015.503>
- 417 Hindmarsh, R. C. A., Leysinger Vieli, G. J. M. C., Raymond, M. J., & Gudmundsson, G. H.
418 (2006). Draping or overriding: The effect of horizontal stress gradients on internal layer
419 architecture in ice sheets. *Journal of Geophysical Research: Earth Surface*, 111(2).
420 <https://doi.org/10.1029/2005JF000309>
- 421 Holschuh, N., Christianson, K., Anandakrishnan, S., Alley, R. B., & Jacobel, R. W. (2016).
422 Constraining attenuation uncertainty in common midpoint radar surveys of ice sheets.
423 *Journal of Geophysical Research: Earth Surface*, 121(10), 1876–1890.
424 <https://doi.org/10.1002/2016JF003942>
- 425 Holschuh, N., Parizek, B. R., Alley, R. B., & Anandakrishnan, S. (2017). Decoding ice sheet
426 behavior using englacial layer slopes. *Geophysical Research Letters*, 44(11), 5561–5570.
427 <https://doi.org/10.1002/2017GL073417>
- 428 Jacobson, H. P., & Raymond, C. E. (1998). Thermal effects on the location of ice stream
429 margins. *Journal of Geophysical Research*, 103(B6), 12,111-12,22.
- 430 Joughin, I., Smith, B., Howat, I., & Scambos, T. (n.d.). MEaSUREs Greenland Ice Sheet
431 Velocity Map from InSAR Data, Version 2. Boulder, Colorado USA: NASA National Snow
432 and Ice Data Center Distributed Active Archive Center.
433 <https://doi.org/http://dx.doi.org/10.5067/OC7B04ZM9G6Q>
- 434 Joughin, I., MacAyeal, D. R., & Tulaczyk, S. (2004). Basal shear stress of the Ross ice streams
435 from control method inversions. *Journal of Geophysical Research B: Solid Earth*, 109(9),
436 1–20. <https://doi.org/10.1029/2003JB002960>
- 437 Keisling, B. A., Christianson, K., Alley, R. B., Peters, L. E., Christian, J. E. M., Anandakrishnan,

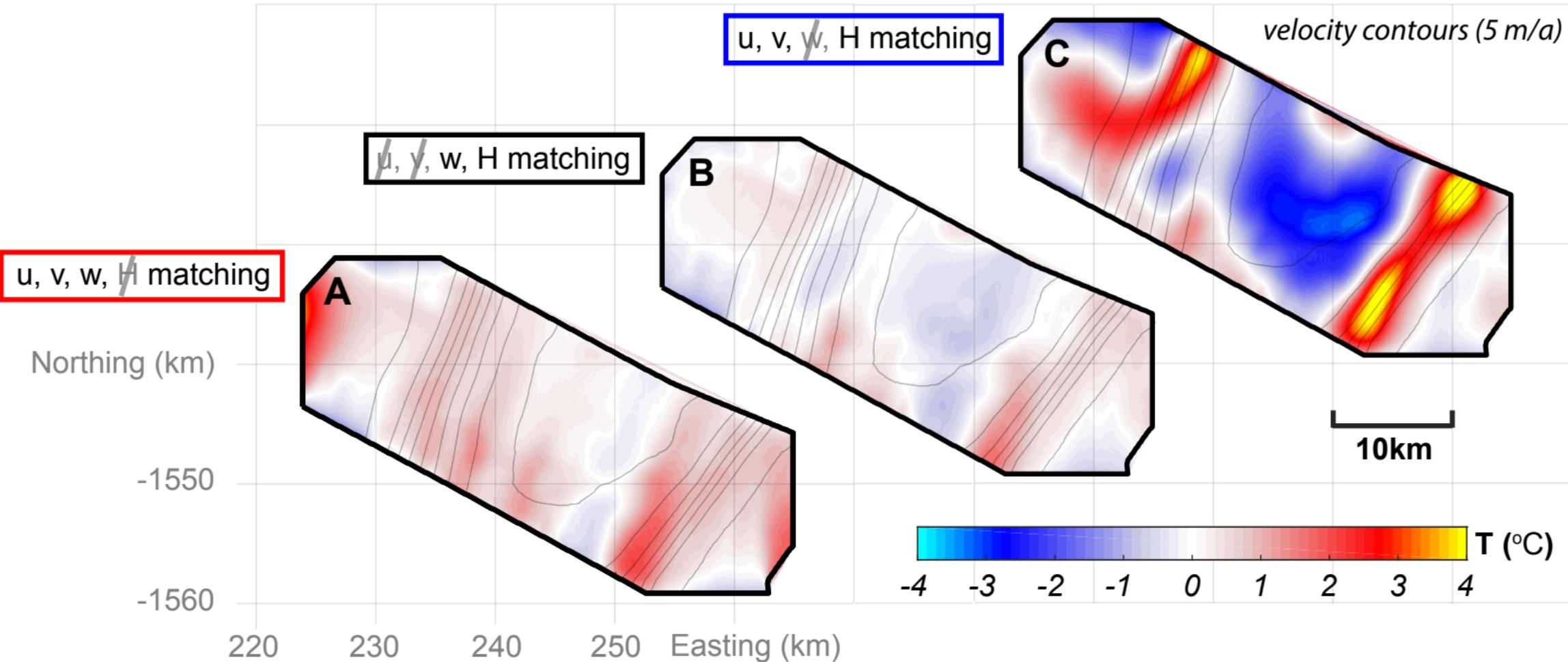
- 438 S., et al. (2014). Basal conditions and ice dynamics inferred from radar-derived internal
439 stratigraphy of the northeast Greenland ice stream. *Annals of Glaciology*, 55(67), 127–137.
440 <https://doi.org/10.3189/2014AoG67A090>
- 441 Kyrke-Smith, T. M., Katz, R. F., & Fowler, A. C. (2015). Subglacial hydrology as a control on
442 emergence, scale, and spacing of ice streams. *Journal of Geophysical Research: Earth
443 Surface*, 120, 1501–1514.
- 444 Larour, E., Utke, J., Csatho, B., Schenk, A., Seroussi, H., Morlighem, M., et al. (2014). Inferred
445 basal friction and surface mass balance of North-East Greenland Ice Stream using data
446 assimilation of ICESat-1 surface altimetry and ISSM. *The Cryosphere*, 8(1), 2331–2373.
447 <https://doi.org/10.5194/tcd-8-2331-2014>
- 448 Leysinger Vieli, G. J.-M. C., Hindmarsh, R. C. a, & Siegert, M. J. (2007). Three-dimensional
449 flow influences on radar layer stratigraphy. *Annals of Glaciology*, 22–28.
- 450 MacAyeal, D. R. (1992). The basal stress distribution of Ice Stream E, Antarctica, inferred by
451 control methods. *Journal of Geophysical Research*, 97(B1), 595.
452 <https://doi.org/10.1029/91JB02454>
- 453 MacGregor, J., Li, J., Paden, J. D., Catania, G. A., Clow, G. D., Fahnestock, M. A., et al. (2015).
454 Radar attenuation and temperature within the Greenland Ice Sheet. *Journal of Geophysical
455 Research: Earth Surface*, (120), 983–1008. <https://doi.org/10.1002/2014JF003418>. Received
- 456 MacGregor, J. A., Winebrenner, D. P., Conway, H. B., Matsuoka, K., Mayewski, P. A., & Clow,
457 G. D. (2007). Modeling englacial radar attenuation at Siple Dome, West Antarctica, using
458 ice chemistry and temperature data. *Journal of Geophysical Research*, 112(F3), 1–14.
459 <https://doi.org/10.1029/2006JF000717>
- 460 MacGregor, J. A., Catania, G. A., Conway, H., Schroeder, D. M., Joughin, I., Young, D. A., et
461 al. (2013). Weak bed control of the eastern shear margin of Thwaites Glacier, West
462 Antarctica. *Journal of Glaciology*, 59(217), 900–912.
463 <https://doi.org/10.3189/2013JoG13J050>
- 464 Matsuoka, K., MacGregor, J. A., & Pattyn, F. (2012). Predicting radar attenuation within the
465 Antarctic ice sheet. *Earth and Planetary Science Letters*, 359–360, 173–183.
466 <https://doi.org/10.1016/j.epsl.2012.10.018>
- 467 Matsuoka, K., Pattyn, F., Callens, D., & Conway, H. (2012). Radar characterization of the basal
468 interface across the grounding zone of an ice-rise promontory in East Antarctica. *Annals of
469 Glaciology*, 53(60), 29–34. <https://doi.org/10.3189/2012AoG60A106>
- 470 Meyer, C. R., & Minchew, B. M. (2018). Temperate ice in the shear margins of the Antarctic Ice
471 Sheet: Controlling processes and preliminary locations. *Earth and Planetary Science
472 Letters*, 498, 17–26. <https://doi.org/10.1016/j.epsl.2018.06.028>
- 473 Meyer, C. R., Yehya, A., Minchew, B., & Rice, J. R. (2018). A Model for the Downstream
474 Evolution of Temperate Ice and Subglacial Hydrology Along Ice Stream Shear Margins.

- 475 *Journal of Geophysical Research: Earth Surface*, 123(8), 1682–1698.
476 <https://doi.org/10.1029/2018JF004669>
- 477 Minchew, B. M., Meyer, C. R., Robel, A. A., Gudmundsson, G. H., & Simons, M. (2018).
478 Processes controlling the downstream evolution of ice rheology in glacier shear margins:
479 case study on Rutford Ice Stream, West Antarctica. *Journal of Glaciology*, 1–12.
480 <https://doi.org/10.1017/jog.2018.47>
- 481 Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., & Aubry, D. (2010). Spatial
482 patterns of basal drag inferred using control methods from a full-Stokes and simpler models
483 for Pine Island Glacier, West Antarctica. *Geophysical Research Letters*, 37(14), 1–6.
484 <https://doi.org/10.1029/2010GL043853>
- 485 Pattyn, F. (2010). Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream
486 model. *Earth and Planetary Science Letters*, 295(3–4), 451–461.
487 <https://doi.org/10.1016/j.epsl.2010.04.025>
- 488 Perol, T., & Rice, J. R. (2015). Shear heating and weakening of the margins of West Antarctic
489 ice streams. *Geophysical Research Letters*, 42(9), 3406–3413.
490 <https://doi.org/10.1002/2015GL063638>
- 491 Perol, T., Rice, J. R., Platt, J. D., & Suckale, J. (2015). Subglacial hydrology and ice stream
492 margin locations. *Journal of Geophysical Research F: Earth Surface*, 120(7), 1352–1368.
493 <https://doi.org/10.1002/2015JF003542>
- 494 Raymond, C. F., Catania, G. A., Nereson, N., & Van Der Veen, C. J. (2006). Bed radar
495 reflectivity across the north margin of Whillans Ice Stream, West Antarctica, and
496 implication for margin processes. *Journal of Glaciology*, 52(176), 3–10.
497 <https://doi.org/10.3189/172756506781828890>
- 498 Schoof, C. (2012). Thermally driven migration of ice-stream shear margins. *Journal of Fluid
499 Mechanics*, 712, 552–578. <https://doi.org/10.1017/jfm.2012.438>
- 500 Schroeder, D. M., Seroussi, H., Chu, W., & Young, D. A. (2016). Adaptively constraining radar
501 attenuation and temperature across the Thwaites Glacier catchment using bed echoes.
502 *Journal of Glaciology*, 62(236), 1075–1082. <https://doi.org/10.1017/jog.2016.100>
- 503 Suckale, J., Platt, J. D., Perol, T., & Rice, J. R. (2014). Deformation-induced melting in the
504 margins of the West-Antarctic ice streams. *Journal of Geophysical Research: Earth
505 Surface*, 119, 1004–1025. <https://doi.org/10.1002/2013JF003008>
- 506 Vallelonga, P., Christianson, K., Alley, R. B., Anandakrishnan, S., Christian, J. E. M., Dahl-
507 Jensen, D., et al. (2014). Initial results from geophysical surveys and shallow coring of the
508 Northeast Greenland Ice Stream (NEGIS). *Cryosphere*, 8(4), 1275–1287.
509 <https://doi.org/10.5194/tc-8-1275-2014>
- 510 Whillans, I. M., & Johnsen, S. J. (1983). Longitudinal variations in glacial flow: theory and test
511 using data from the Byrd Station strain network, Antarctica. *Journal of Glaciology*, 29(101),

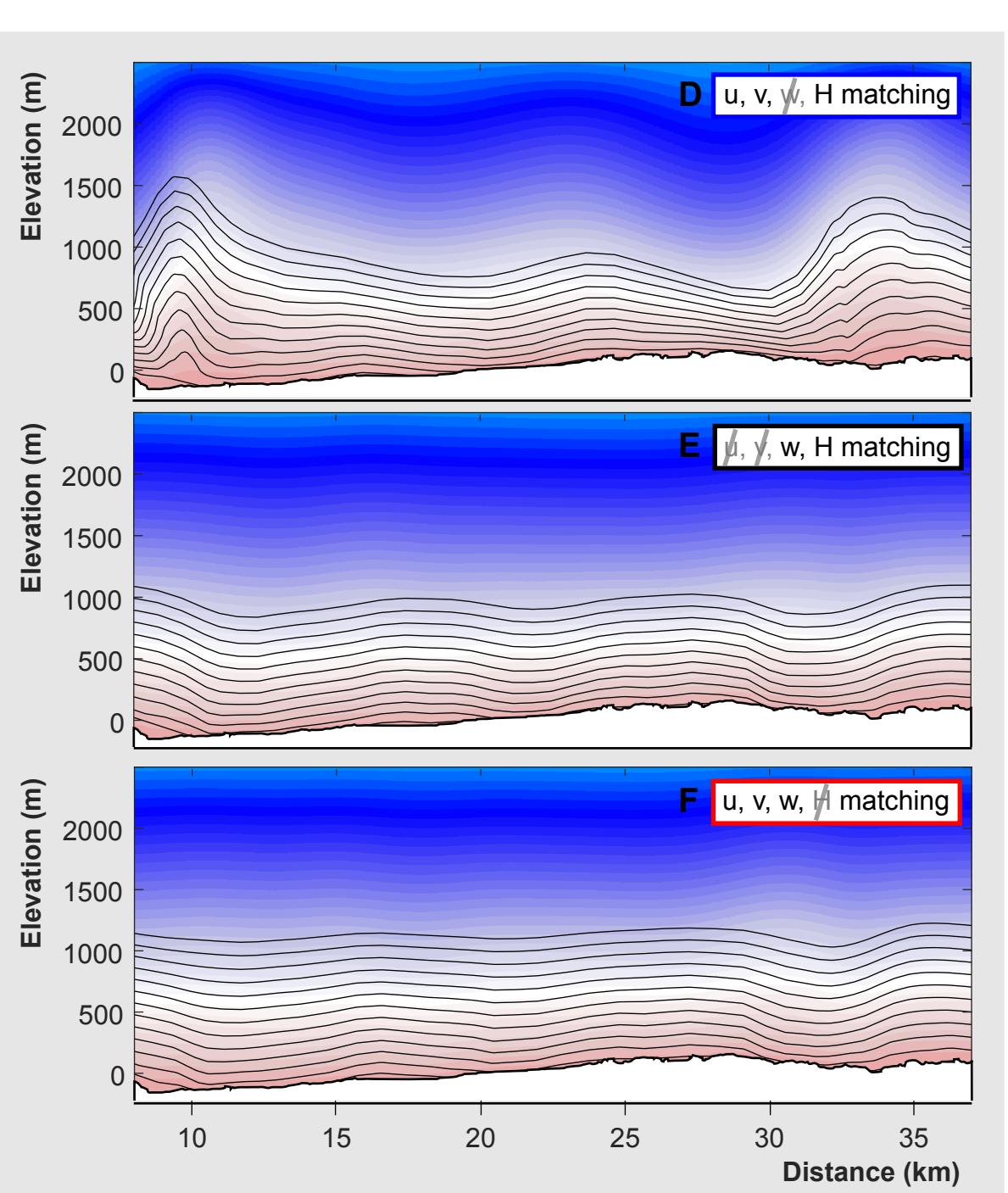
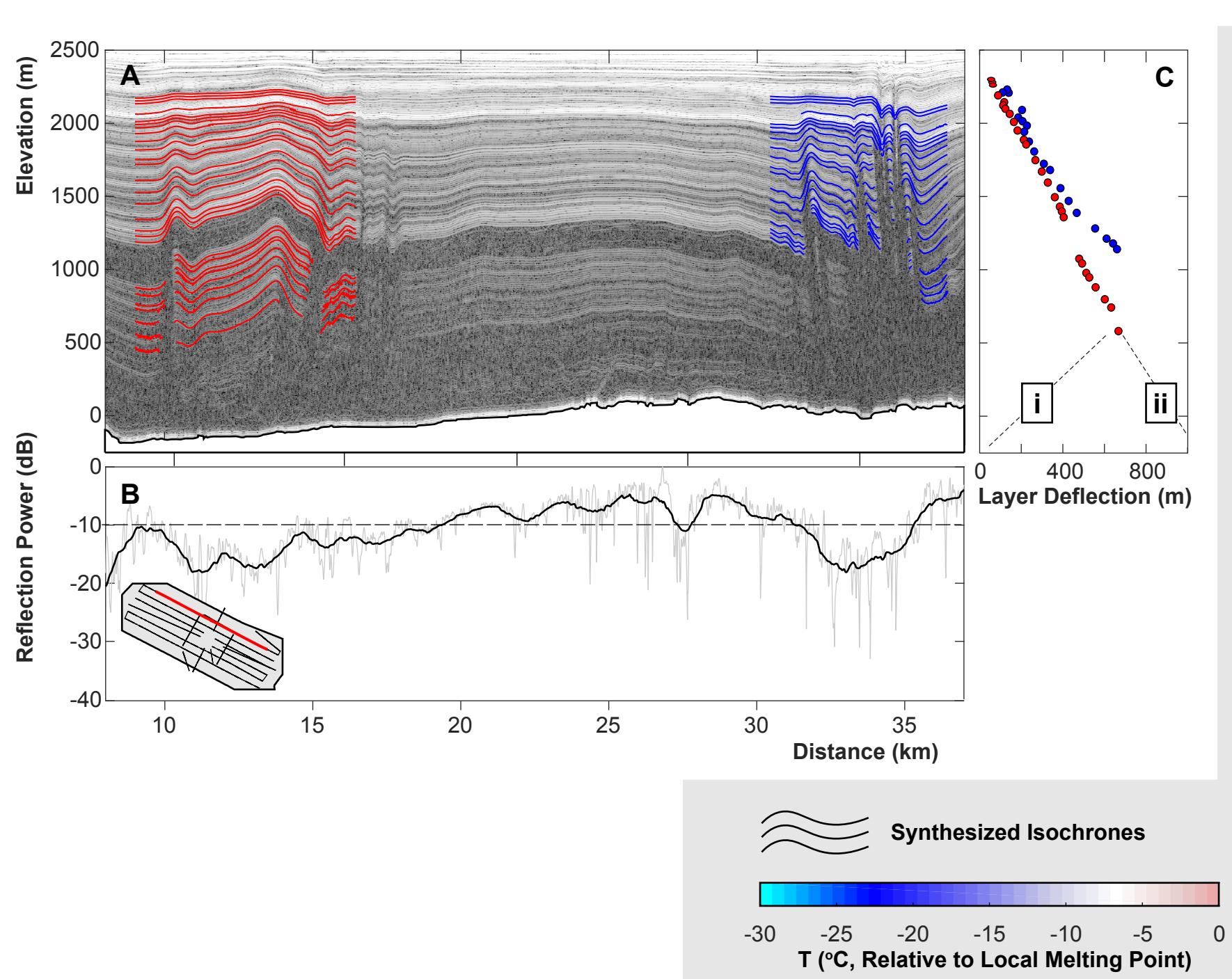
512 78–97.


513 Wolff, E. W., Miners, W. D., Moore, J. C., & Paren, J. G. (1997). Factors Controlling the
514 Electrical Conductivity of Ice from the Polar RegionsA Summary. *The Journal of Physical*
515 *Chemistry B*, 101(32), 6090–6094. <https://doi.org/10.1021/jp9631543>

516 Zwinger, T., Greve, R., Gagliardini, O., Shiraiwa, T., & Lly, M. (2007). A full Stokes-flow
517 thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier,
518 Kamchatka. *Annals of Glaciology*, 45, 29–37. <https://doi.org/10.3189/172756407782282543>


519

520



Figure 1.

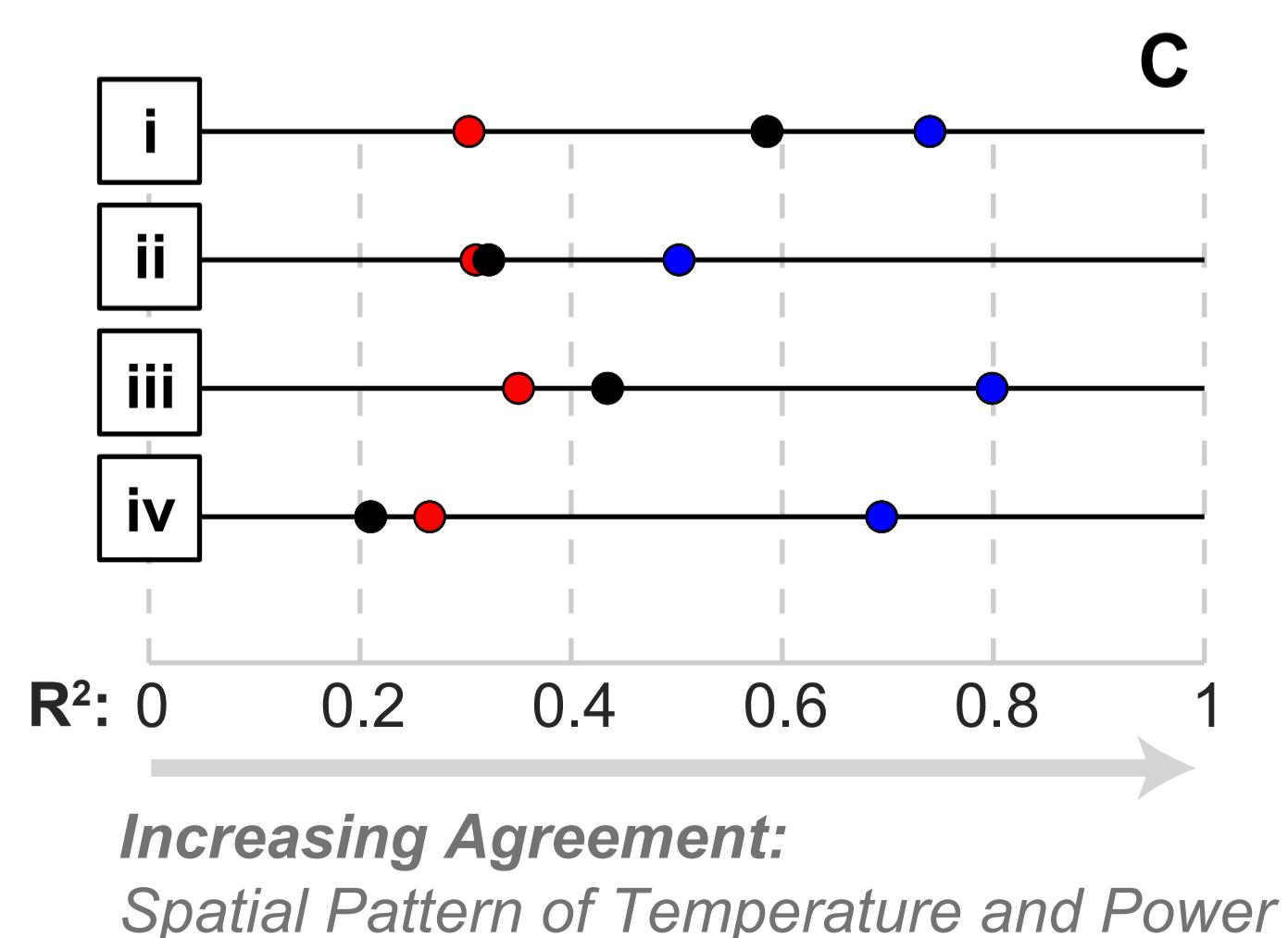
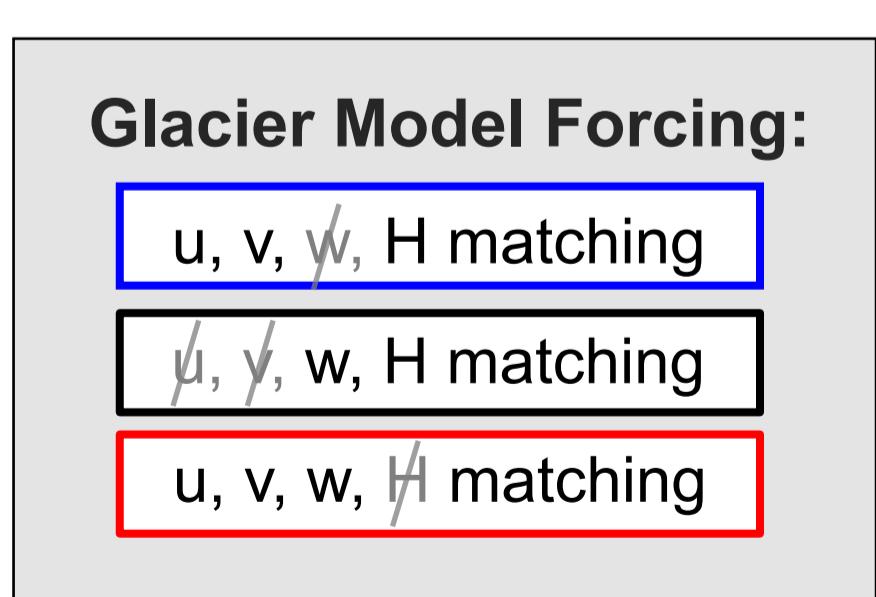
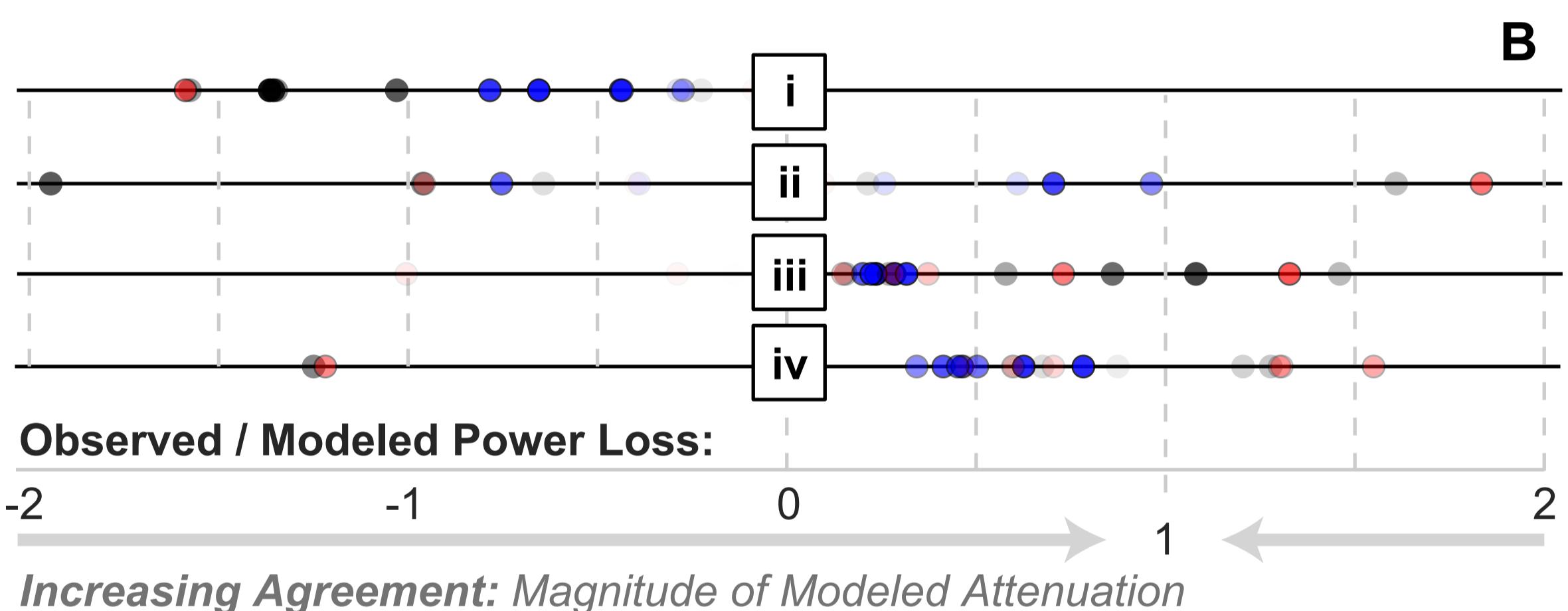
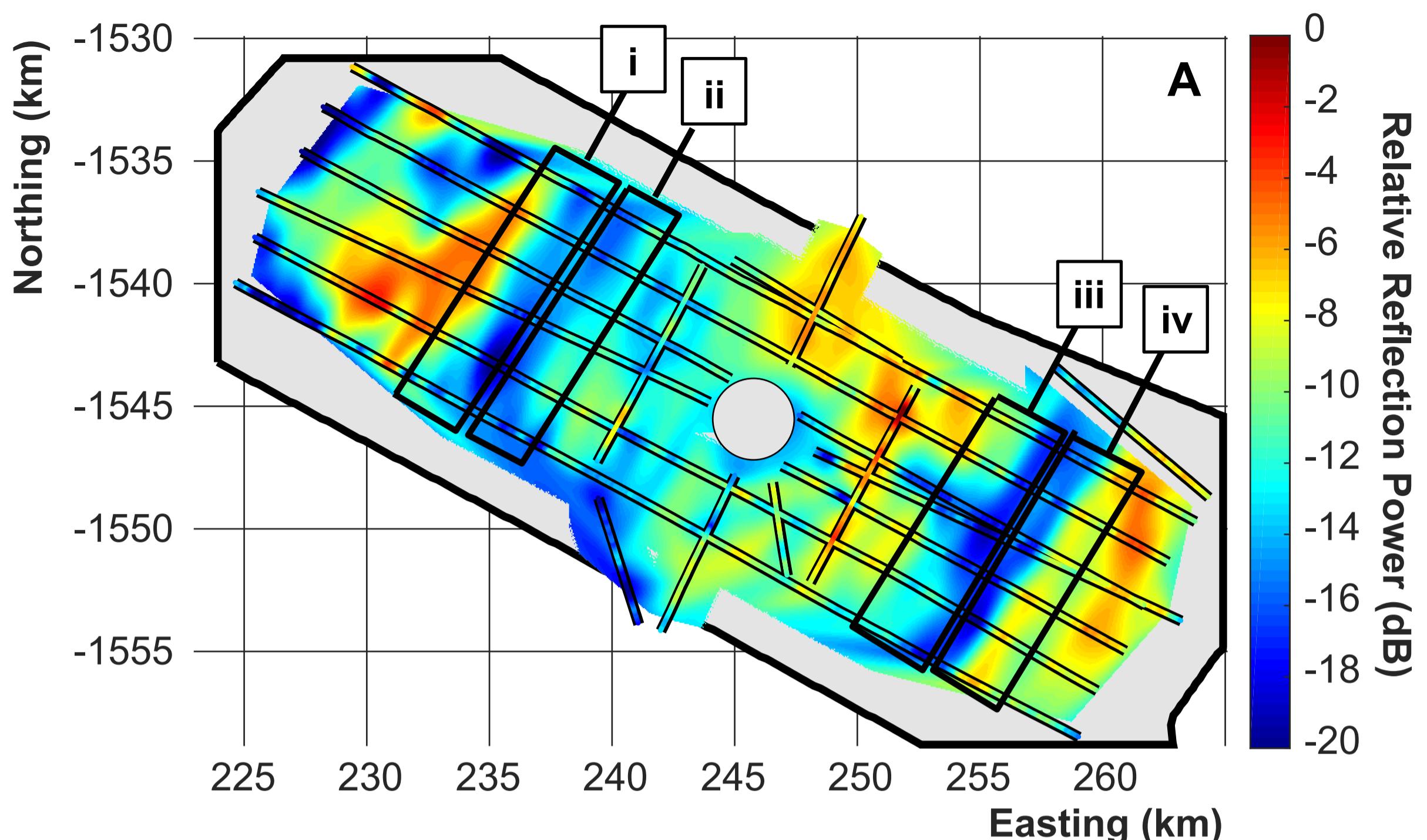




Figure 2.

Figure 3.

Figure 4.

