submit/2786072 [cs.HC] 1 Aug 2019

arxXiv

FlowSense: A Natural Language Interface for Visual Data
Exploration within a Dataflow System

Bowen Yu and Claudio T. Silva Fellow, IEEE

West Village.
. @ Load segment monthly speed @ Set blue/red color
+
= M Link by
e ™ segmentid —=- L @ Merge
2 cogmentmo v e U *
| Link by [|
R . p— . »
& sign.installati.. /‘d /[N Sepmente o
J a—" @ Link roads with a samesegmentid-from West Village/Alphabet City
» T _:_,,_,,-J-”"
/ |
¥ speed_fimit “ v
s color] |) . .
C— jl [= @ Show speed over time grouped by segment id
2 (4
= | [,
& | 1™
. ! \ |
§ sian contains yes | b — \ / l il
.\"-——) o g, o .\- = o o =
@ Show only segments) . _\'_ . » - 5
with a[§ig of yes b DR o
it 2
Show the data Z 3 3
in a (D

= © Mapbox | © OpenStrsatMian | Improvs this map

Fig. 1. Using FlowSense for a comparative study on the street speed changes between two slow zones: West Village (blue) and
Alphabet City (red). The analysts start by drawing locations of speed limit signs, which appear as dots with speed limits encoded by
color. Selected speed limit signs are interactively linked with the line chart that shows the changes of average vehicle speed over
time on corresponding streets and areas. All diagram elements are created via FlowSense. The NL queries shown are executed in
the numbered order. FlowSense processes the rich dataflow context and allows the user to reference dataflow elements at different
specificity levels, e.g. with node types, node labels, or implicitly.

Abstract— Dataflow visualization systems enable flexible visual data exploration by allowing the user to construct a dataflow diagram
that composes query and visualization modules to specify system functionality. However learning dataflow diagram usage presents
overhead that often discourages the user. In this work we design FlowSense, a natural language interface for dataflow visualization
systems that utilizes state-of-the-art natural language processing techniques to assist dataflow diagram construction. FlowSense
employs a semantic parser with special utterance tagging and utterance placeholders to generalize to different datasets and dataflow
diagrams. It explicitly presents recognized dataset and diagram utterances to the user for dataflow context awareness. With FlowSense
the user can expand and adjust dataflow diagrams more conveniently via plain English. We apply FlowSense to the VisFlow subset-flow
visualization system to enhance its usability. We evaluate FlowSense by one case study with domain experts on a real-world data

analysis problem, and a formal user study.

Index Terms—Natural language interface, dataflow visualization system, visual data exploration.

<+

1 INTRODUCTION

Natural language interfaces (NLI) for data visualizations seek better
usability of visualization solutions by introducing natural language
(NL) query support. Compared with visualization systems that only
support traditional mouse/keyboard interactions, systems with NLI
require less prior knowledge on their functionality and usage details
to work with. Latest research has progressed in visualization-oriented
NLIs [25,29,44]. Most of these interfaces present a single visualization
answer that can be interacted with (possibly with a few auxiliary views
and widgets). The user does not have the opportunity to specify the
relationships between multiple visualizations. However, practical data
analysis tools often have multi-view linked visualizations, for which
the design of an NLI becomes more challenging.

¢ Bowen Yu is with New York University. E-mail: bowen.yu@nyu.edu.
e Cldudio T. Silva is with New York University. E-mail: csilva@nyu.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints @ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Dataflow visualization systems (DFVS) have been proposed to
achieve larger analytical flexibility [15,39,51]. These general-purpose
visualization toolkits allow the user to draw a dataflow diagram that
composes system modules to process and visualize data. It has been
shown that DFVS can help build data analysis environments with multi-
view linked visualizations that adapt to different domains [30]. Despite
the flexibility, a DFVS often has higher learning overhead, due to its
dataflow complexity, than a bespoke visualization application in which
system components have pre-defined connections. The user must be
proficient with the underlying DFVS modules to effectively use it.

In this work we propose FlowSense, a novel NLI that seeks to benefit
both from the usability of NL and the analytical flexibility of DFVS.
FlowSense uses semantic parsing to support NL queries that manipulate
multi-view visualizations produced by a dataflow diagram. The NL ca-
pability may help reduce the overhead of learning dataflow and simplify
the interactions of dataflow diagram construction. The FlowSense input
box utilizes special utterances tagged by the underlying parsing algo-
rithm to provide the user with real-time feedback of what the system
sees and understands. To demonstrate the application of FlowSense,
we build it on top of the recent dataflow system VisFlow proposed by
Yu et al. [57]. We choose VisFlow because it focuses on creating linked

visualizations that have good interactivity and support brushing and
linking, which are two essential aspects of visual data exploration. With
the integration of FlowSense, dataflow diagram editing becomes more
intuitive in VisFlow, and consequently the user can use the DFVS more
efficiently. The contributions of this work are summarized as follows:

1) We propose FlowSense, a novel NLI for visual data exploration
within a DFVS. FlowSense uses NL to reduce the dataflow learning
overhead, while taking advantage of the flexibility of a DFVS.
2) We exemplify a generalizable approach of applying state-of-the-art
semantic parsing techniques to create a grammar that is tailored for a
DFVS. In particular, FlowSense employs special utterance tagging and
utterance placeholders to be aware of the dataflow context, and make
its grammar independent of datasets and tasks. The identified special
utterances are presented interactively as the user types the query. Such
design echoes the underlying parsing state to the user. It not only helps
the user understand the query semantics behind the scene, but also is
useful for identifying errors and resolving ambiguity.
3) We demonstrate that FlowSense is able to support NL queries for
the majority of diagram editing operations in VisFlow. We showcase
the application of FlowSense by a case study with domain experts on
studying the traffic speed reduction based on NYC taxi trip data. We
further conduct a formal user study to evaluate the proposed NLI. We
measure the task completion time, collect user feedback, and analyze
the query logs to identify the strengths and weaknesses of FlowSense.
Details on the FlowSense grammar and its implementation can be
found in the appendix and the FlowSense GitHub repository!.

2 RELATED WORK
2.1 Dataflow Visualization System (DFVS)

Dataflow systems enable the user to configure system functionality
by drawing a dataflow diagram that defines how the system modules
interact with each other. While dataflow systems are effective in fields
other than data visualization such as computational workflow design [2,
4, 53], we focus on dataflow systems for visualization purposes in
this section. Previous DFVS have demonstrated the effectiveness of
using dataflow to render scientific data [28,39,51] and manage volume
rendering pipelines [15,37]. Dataflow systems that pass only data
subsets (versus program method arguments) yield simpler dataflow
diagrams and lower learning overhead [42, 43]. ExPlates [30] and
VisFlow [57] present embedded visualizations in their dataflow, and
focus on interactive information visualization. Most dataflow systems
support diagram editing in a drag-and-drop manner. However, it is
observed that even with drag-and-drop interfaces, users may often have
difficulty in translating their intention to system operations [27]. In
this work we design FlowSense to further simplify dataflow diagram
construction, so that the user can intuitively use dataflow and make
the most of a DFVS’s analytical capability. In particular, we build
FlowSense for VisFlow, as its subset flow model supports many of
the low level visual data analysis tasks [12,45], such as characterizing
distribution, finding extremum, etc.

2.2 NLI for Data Visualization

Extensive research has been devoted to NLIs for decades. These inter-
faces address NL queries that otherwise have to be translated to formal
query languages, e.g. SQL. A few examples are the interfaces for
querying XML [33], entity-relational database [13,55], and sequence
translator to SQL [58]. NLIs for data visualizations answer the queries
by presenting visual data representations. Compared with other inter-
faces that simply return a numerical answer or a set of database entries,
visualization NLIs present results that are more human-readable. Cox
et al. [19] design the Sisl service within the InfoStill data analysis
framework. The service asks a series of NL questions to complete an
unambiguous query. The Articulate system [49] uses a Graph Reasoner
to select proper visualizations to answer a query. DataTone [25] ad-
dresses query ambiguity by showing ambiguity widgets along with the
main visualization so that the user is able to switch to desired alternative

Thttps://github.com/yubowenok/flowsense

views. Eviza [44] and Evizeon [29] further improve the user experience
by allowing for conversation-like follow-up questions. Fast et al. [22]
propose a conversational user interface called Iris that may perform
analytical tasks and plot data upon requests in dialogues. Kumar et
al. [31] also propose a dialogue system for visualization. Orko [47] is
an NLI designed for visual exploration of network data. Dhamdhere et
al. [21] design Analyza that provides database-based NL query and vi-
sualizations. Srinivasan et al. [48] provide a summary and comparison
of the majority of these NLIs. Several commercial tools integrate NLIs.
IBM Watson Analytics [3] and Microsoft Power BI [5] provide a list
of relevant data and visualizations to an NL question, from which the
user may choose to continue an analysis. Wolfram Alpha [10] supports
knowledge-based Q&A and is able to plot the results. ThoughtSpot [8]
enables interactive search from a relational database, and provides mul-
tiple types of visualizations for the database. The design of NLIs for
data visualization has two challenges: First, modern natural language
processing (NLP) techniques cannot yet understand well arbitrary NL
input due to the complex nature of NL. User queries are apt to be
free-form and ambiguous; Second, choosing a proper visualization to
answer an analytical question is non-trivial as there can be multiple
possible visual representations [35].

2.3 Comparison with Other NLIs

FlowSense makes a distinction from the other interfaces as it is to our
best knowledge the first NLI to address a dataflow context. We set the
scope of FlowSense to focus on assisting dataflow diagram construction,
rather than to directly answer free-form analytical questions or seek a
best visualization for a given query. We believe such an approach is
beneficial in several aspects:

Capability: The analytical capability of FlowSense is rooted in the de-
sign of the DFVS. The outcome of FlowSense is a complete, interactive,
and iterative visual data exploration process supported by the DFVS,
rather than a single visualization that only answers one particular query
as in other interfaces. Dataflow also naturally preserves analysis prove-
nance [24], allowing the user to frequently revisit and reassess the
current workflow. The diagram created by FlowSense explicitly keeps
the user’s preference and intention from previous queries, which must
otherwise be maintained by a model behind the scene [25,44].
Usability: FlowSense integrates real-time presentation of tagged spe-
cial utterances in the interface that reflect the state of the underlying
semantic parser, and help the user understand the context of the dataset
and dataflow loaded in the system. This is a novel design that facilitates
the user’s understanding of the behavior of the NLI, as in most other
NLIs the parsing feedback is only given after the query is submitted.
The auto-completion suggestions also present special utterance tags so
that the user may better understand the expected query components.
Consequently, FlowSense may reduce the number of interactions re-
quired to construct a dataflow diagram. Our case study and user study
(Sect. 5) show that FlowSense improves the DFVS usability. Its con-
venience is desirable by both novice and experienced VisFlow users.
Besides, the DFVS is able to recover from errors more easily as the user
always has full control over the system. However in other interfaces
the user has to mostly rely on the behavior of the NLI and can hardly
make corrections in case of misinterpretation.

Feasibility: The scope of assisting dataflow diagram construction is
well defined and practicable. Even state-of-the-art NLP techniques
have limited success in understanding an arbitrary query. Because each
query is expected to update dataflow diagram and the user decides
what the system should do and what visual representation to apply,
FlowSense can produce more expected results and give better user
experience under a well-defined scope. The mixed-initiative design
mitigates the ambiguity problem. The DFVS users in our case study
and user study are all able to understand the scope of FlowSense and
use FlowSense effectively.

2.4 Semantic Parsing

FlowSense uses semantic parsing to process NL input and map user
queries to VisFlow functions (Sect. 3.1). It depends on a pre-defined
grammar that captures NL input patterns. A semantic parser recursively

Function Sample Queries

Description

Sample Sub-Diagram

Show a scatterplot of mpg

Present the data in a visual-

id name | mpg
a amc 15

A Visualizing L b | buick | 14
and horsepower ization | chevrolet| 18
Data Source
B Visual Encode mpg by red green Map data attributes to visual Lb'd»
Encoding color scale channels
Visual Editor Visualization
Filtering and Find all cars with mpg be- ') M’
L tween 15 and 20; Filter data items and locate —
¢ Finding List five cars with maximum extremums and outliers Adbute Piter
Extremum mpg DI G maxmpg 9>
D Subset Merge the cars with those Refine and identify interest- E@E
Manipulation from the scatterplot ing subsets Union Intersection

View the characteristics of
one subset among its super-
set or another subset

Highlight the selected cars in

E Highlighting a parallel coordinates plot

Visual Editor

Visualization
for Selection

Highlighted
Visualization

Extract primary keys from b
one table and find their corre-
spondence from another (het-
erogeneous) table

Link the cars with a same

F Linking name from the sales table

id name sale
a amc 3

buick 2
Data Source 2

name | mpg
amc 15 -
buick | 14 Linker

chevrolet| 18

Data Source 1

{a, b}

=

N | x

Table 1. Six major categories of VisFlow functions. These sub-diagrams are frequently used to compose more sophisticated diagrams that address
analytical tasks. FlowSense aims at mapping NL input to one of these functions. The illustration only shows one possible sub-diagram from each
category and does not exhaustively list all the possible sub-diagram variations of the function options. In practice the user can specify the function
options via NL, e.g. visualization type, filter type, etc. Combinations of functions may apply.

expands the variables in the grammar to match the input query and
can interpret the input based on the rules applied and the order of
their application [16]. At a high level, the mapping performed by
FlowSense can also be considered a classification task and addressed
by classification algorithms [11]. However we prefer semantic parsing
because most classification approaches are supervised algorithms that
require a large corpus of labeled examples. Such training data are not
available for DFVS. Besides, compared with deep learning methods [20,
26], semantic parsing does not require heavy computational resources.

The FlowSense semantic parser is implemented within the Stanford
SEMPRE framework [40] and CoreNLP toolkit [36]. The CoreNLP
toolkit integrates a comprehensive set of NLP tools including the Part-
of-Speech (POS) tagger, Name-Entity-Recognizer (NER), etc. A POS
tagger identifies roles of words in a sentence, e.g. verb, preposition,
adverb. The SEMPRE framework employs a modular design in which
different types of parsers and logical forms can be easily plugged-
in. The framework can quickly be adapted for domain-specific parser
design [52]. We apply SEMPRE together with CoreNLP to the DFVS
domain. In particular, the FlowSense parser utilizes the POS tags
produced by CoreNLP for processing special utterances and grammar
matching. The FlowSense grammar expects words with certain POS
tags to appear in query parts.

3 SEMANTIC PARSER

In this section, we define the building blocks of the semantic parser:
the VisFlow functions that can be specified by NL, the definition of
the parsing grammar, and the general query pattern the parsing algo-
rithm expects. For concept illustration we use the Auto MPG dataset?

Zhttp://archive.ics.uci.edu/ml/datasets/Auto+MPG

throughout the paper, which has information about cars in 9 columns,
including mpg, horsepower, origin, etc.

3.1 VisFlow Functions

To create an NLI for VisFlow, we first studied a sample diagram set
that includes 60 dataflow diagrams created by 16 VisFlow users from
their recorded VisFlow sessions. These diagrams cover a wide range of
VisFlow usage scenarios and deal with various types of datasets. We
identify a set of frequently appearing sub-diagrams and categorize them
into six major categories as listed in Table 1. The construction of these
sub-diagrams are defined as the VisFlow functions. By implementing
the VisFlow functions, FlowSense essentially supports the building
blocks of visual data exploration in VisFlow so that analyses rendered
by VisFlow native interactions can be carried out with FlowSense.
These functions also reflect the fundamental analytical activity defined
in information visualization task taxonomies [12,45]. Table 1 explains
the usage of each VisFlow function and shows several sample queries.

In addition to the six major categories, FlowSense also supports
many utility functions such as adding/removing dataflow nodes/edges,
undo/redo, loading datasets, etc. Though these functions also enhance
the usability of the system, we omit them here as they are indirectly
related to visual data analysis.

3.2 Dataflow Context and Special Utterances

It is important to make the semantic parser aware of the dataflow con-
text, such as the dataset loaded and the nodes in the dataflow diagram.
The FlowSense grammar consists of a special group of tokens called
the special utterances. Special utterances are words that refer to en-
tities in the dataset or the dataflow diagram. They are the arguments
and operands of VisFlow functions. FlowSense recognizes node types,

Visualize
Function Type
| | -

Special Utterances column column column

Grammar

<Columns>

~/

<SelectionPort>

\/

WithColumns>

mpg, horsepower, and origin of the selected cars from MyChart in a parallel coordinates plot
 nonoons ~—~ ~PortSpechaaton "IN TargetNode

—~—

| | ‘ node label

,,,
<Preposition> <Selection> <Preposition> <Node> <Preposition> <NodeType>

~/

<SourceNode>

<SourceWithPort> <TargetNodeWithNodeType>

R

<Visualization>

fa, ¢}

id| name mpg | horsepower| origin
a amc 15 190 American {a,b,c}
b| buick 17 110 American
c| toyota 20 122 Japanese
Data Source

mpg horsepower origin

MyChart

Parallel Coordinates

Fig. 2. An example FlowSense query and its execution over the Auto MPG dataset. The derivation of the query is shown as a parse tree in the
middle. The sub-diagram expanded by the query is illustrated at the bottom. The five major components of a query pattern are underscored. Each
component and its relevant parts in the parse tree and the dataflow diagram are highlighted by a unique color. The result of executing this query is to
create a parallel coordinates plot of columns mpg, horsepower, and origin, with its input coming from the selection port of the node labelled MyChart.

table column names, diagram node labels, and dataset names as special
utterances. For the query shown in Fig. 2, FlowSense tags “mpg”,
“horsepower”, and “origin” as columns, “MyChart” as a node label, and
“parallel coordinates” as a node type.

The special utterances identified by FlowSense are shown in colored
tags in the FlowSense input box (Fig. 3). Each different color represents
a one special utterance type: green for data column, light green for
node label, purple for node type, and light blue for dataset name. The
colors are applied consistently throughout the user interface. In the rare
case that the same word can be a special utterance of different types, or
not a special utterance (type ‘“none”), the user is able to disambiguate
using a dropdown (Fig. 3(b)).

3.3 Grammar

FlowSense applies a semantic parser to map an NL query to one of the
VisFlow functions based on an elaborate grammar designed for these
functions. The grammar is context-free [46] and formally defined as a
4-tuple G = (V,X,R,S). V is a finite set of variables. X is a finite set of
terminals. A terminal represents an English word or phrase. R is the
rule set that defines how a single variable matches an ordered list of
terminals and variables (possibly itself in a recursive rule). Below is an
example rule:

(Visualization) — (ShowVerb) (Columns) in (VisualizationType)

In this rule, (Visualization) is a high-level variable that matches a query
that requests a visualization. (ShowVerb) matches a verb that has a
meaning similar to “show”. (Columns) matches one or more columns
from the data. (VisualizationType) stands for a phrase that describes a
visualization metaphor such as scatterplot or parallel coordinates. The
token “in” is a terminal symbol that comes from the NL input directly.
The example rule above is simplified for the convenience of explanation.
In practice, a rule often matches against generic variables rather than a
specific word. S is the start variable that expands to other variables to
match the whole query.

The grammar of the FlowSense semantic parser attempts to derive
an input query by recursively searching for all possible matches (up to
a preset limit) of the grammar rules. This procedure is called deriva-
tion [16]. FlowSense uses the semantic parsing implementation from
SEMPRE. It also uses the Stanford CoreNLP [36] toolkit that is built
into SEMPRE for special utterance tagging. The variables and rules
(i.e. SEMPRE formulas) are defined in SEMPRE grammar files.

3.3.1

The FlowSense grammar consists of static grammar rules and the spe-
cial utterance placeholders. The special utterance placeholders are
at runtime dynamically replaced by their corresponding dataflow ele-
ments. Therefore, the FlowSense semantic parsing is independent of
the dataset, the dataflow diagram, and the analytical tasks. The rules are
generalizable across domains: No new rules need to be created when
the system switches to new datasets or tasks.

For example, FlowSense uses the generic variable {column) in its
grammar as a special utterance placeholder. At runtime, a real col-
umn name (e.g. “mpg”) is automatically extracted from the dataset.
FlowSense identifies column names on the fly as the user types the
query. “mpg” would show up as a tagged column, and then matched
with (column) by the parser. A reverse mapping is performed from
the placeholder to the particular column after query parsing so that the
system may operate on that column.

Using special utterances in the grammar has several benefits. First,
special utterances enable VisFlow functions to operate on elements that
are important for dataflow diagram editing and visual data exploration.
Second, it makes the grammar set small as rules may be written with
generic variables rather than specific dataset or diagram content. Last
but not least, the real-time tagging of special utterances provides im-
portant feedback to the user about what operations are available in the
system and how the NLI interprets the query.

Special Utterance Placeholders

3.3.2 Derivation Ambiguity

It is possible to have ambiguity when multiple possible query deriva-
tions exist, which can be defined as syntactic ambiguity [25]. For
example, FlowSense uses wildcard variables to match general table
row references. Over the Auto MPG dataset, the token “cars” from
“Show a plot of cars” describes the user’s understanding of data entities
but should be only treated as table rows from the NLI perspective.
Meanwhile, the token “horsepower” from “Show a plot of horsepower”
is a special utterance and should be treated as a column to visualize.
Therefore a wildcard rule that matches “cars” as table rows may also
match “horsepower”, resulting in the second query getting improperly
executed. We could handle this case by creating a wildcard variable
that rejects a special utterance token. Nevertheless, such design could
lead to a larger number of variables and rules in the grammar, which are
harder to maintain and develop. Therefore we choose to resolve certain
syntactic ambiguity in the parsing phase with supervised learning on
a weight vector w € R¥ that gives the probability of derivations based

on input utterances. Stochastic gradient descent (SGD) is employed
to optimize the multiclass hinge loss objective [50], as introduced by
Liang et al [34] in the SEMPRE framework. The objective is given by:

min Z max {w - feature(x,y’) + penalty(y,y')} — w - feature(x,y)
w Y
(x.,y) 7

In the above, x is the input query, y is the preferred derivation, and
y’ is the chosen derivation by the parser. The pair (x,y) is chosen over
all training data. The feature of a derivation, feature(x,y), maps the
pair (x,y) to a d-dimensional space and is determined by the applied
rules in the derivation. penalty(y,y') is 0 if y =’ and 1 otherwise.
The objective function has a penalty for possible choices of incorrect
predictions that are within a margin of one from the correct predictions.
The parser fits the training examples by giving intended derivations
higher probability so that they are preferred in case of ambiguity. In
particular, the rule that expands to a column special utterance will be
preferred over a rule that expands to a wildcard. Note that we only
apply this training to facilitate the simplicity of the FlowSense grammar
and reduce the number of required rules. The training cannot address
the ambiguity in natural language itself at large. We were able to use a
small training set of fewer than twenty examples to guide the preferred
derivation in case of syntactic ambiguity for a rule set of around 500
rules. This is feasible because the FlowSense rules are independent
of data and dataflow diagrams. The training set only needs to guide
the semantic parser to focus on certain important grammatical features,
such as emphasizing special utterances or word proximity.

3.4 Query Pattern

The main goal of FlowSense is to support progressive construction of
dataflow diagrams. We studied the creation process of the VisFlow
diagrams in our sample diagram set and empirically identified a com-
mon pattern with five key query components that all VisFlow functions
may contain: function type, function options, source node(s), target
node(s), and port specification. This pattern is illustrated in Fig. 2
with a sample query “Visualize mpg, horsepower, and origin of the
selected cars from MyChart in a parallel coordinates plot”. In this
query, the verb “visualize” implies applying a visualization function.
The three columns “mpg, horsepower, and origin” indicate the options
(i.e. what to visualize) for the visualization function. The phrase “from
MyChart” tells the system the location of the data to be plotted and
provides source node information. The phrase “in a parallel coordinates
plot” indicates a new visualization node with the given visualization
type is to be created as the target node. As VisFlow explicitly exports
interactive data selection from visualization nodes, the phrase “selected
cars” is a port specification that further describes that the user wants to
visualize the selection from MyChart and the new visualization node
should be connected to the selection output port of MyChart.

The grammar of FlowSense includes a variable hierarchy that
matches the five key components of an NL query. Fig. 2 illustrates
the parse tree that derives the sample query. The variables involved in
the derivation are shown in the parse tree, in which rule expansions
are bottom-up. A variable may carry information for multiple query
components. We design a broad set of variables and rules that are able
to not only accept queries with a particular component order, but also
their different arrangements. For instance, “Show mpg and horsepower
in a scatterplot” is equivalent to “Show a scatterplot of mpg and horse-
power”. They both can be accepted by FlowSense. FlowSense is also
able to derive multiple functions from one single query and execute
their combination, e.g. “Show the cars with mpg greater than 15 in a
scatterplot” infers both visualization and filtering functions.

A query may not necessarily contain all the five components ex-
plicitly. For example, the user may simply say “Show mpg and horse-
power” without mentioning any source node or target visualization
type. FlowSense may automatically locate source and target nodes
in its query pattern completion phase (Sect. 4.3). An NL query may
also contain implicit information, e.g. “Find cars with maximum mpg”
intends to perform data filtering to search for cars with the largest mpg

show 7|8

show the data

show the data in a FEReaTar show(HE P
show the data from node-4
/(none)

show the data from node-3 in a gl

B8 /colurmn car.csv
show the data with a8 of [string] b

mpg fnode labe (b)
show the data with a Rame of [string] from node-2
show the data with a JBIE of (string] from node-3 in a [EEYEIER | Flowsense]

show mpg in a scatter ? ¢
show the data with a mpg between [number] and [number] SEREIEN /node type

(a) (c)

Fig. 3. The FlowSense input box and its query and token auto-completion.
Special utterances are identified by unique colors: table columns (green),
node types (purple), node labels (light green). (a) Suggested queries
from query auto-completion; (b) Dropdown for handling tagging ambiguity:
“mpg” are both column name and node label; (c) Special utterance token
completion: “scatterplot” is presented after the letter “R” is entered.

show distribution of modelyear

value. The use of a filter is identified by function classification in the
query execution phase (Sect. 4.2).

3.5 Auto-Completion

The usability of an NLI is closely related to its discoverability. It is
desirable that when the query is partially completed, the system is
able to provide hints or suggestions to the user about valid queries that
include the partial input. This has been a requested feature in prior NLI
user studies [25]. We therefore develop an auto-completion algorithm
in FlowSense to enhance its usability and discoverability. When the
user types a partial query and pauses, the system triggers query auto-
completion automatically. The auto-completion may also be invoked
manually with a button press. Fig. 3(a) shows the auto-completion
suggestions in the FlowSense input box.

Auto-completion has been implemented in other visualization NLI,
such as Eviza [44]. Eviza applies a template-based auto-completion,
in which the system attempts to align user input to available templates.
Here we take a similar approach by creating a set of query templates
with around one hundred queries. Upon an auto-completion request,
the algorithm searches through all possible textual matches between
the user’s partial query and a prefix of some template. All matched
queries are then sent to the FlowSense parser for evaluation. If a query
is accepted, it becomes an auto-completion candidate. Some of the
queries contain value placeholders and the user is expected to fill in
those values ([string], [number] in Fig. 3(a)).

We also design a token auto-completion algorithm that matches the
partially typed word against all available special utterances. This helps
speed up query typing with respect to the dataflow context. The user
may use the tab and arrow keys to select token completion candidates
as in a programming IDE. For example, when the user types “scatter”
it can be completed to the available visualization type ‘“scatterplot
(Fig. 3(c)). Token auto-completion reduces the typing workload and
helps remind the user of the DFVS capability and the current dataflow
diagram elements.

”

4 QUERY EXECUTION

FlowSense is built as an extension to VisFlow. The user may activate
the NLI at any time while working with the DFVS. The user may
either type the query in the input box or use the speech mode that
is implemented with HTMLS web speech API. In this section we
introduce the query execution workflow as depicted by Fig. 4.

4.1 Special Utterance and POS Tagging

Special utterances have remarkable roles in executing a VisFlow func-
tion. Their tagging is performed on the fly when the user types the
query. For typo and naming tolerance, FlowSense employs approximate
matching and checks each k-gram in the query (where k may range
from 1 to the maximum special utterance word length) against all spe-
cial utterances using case-insensitive Levenshtein distance [32,38]. We
divide the distance over the string length and use the ratio to mitigate
the fact that longer strings are more prone to typos. We find a k value
of 2 or 3 and a ratio threshold of 0.2 work well in practice.

Function
Classification

Dataflow Special Utterance P : Query Pattern
H H »| Parser Execution N
[Diagram and POS Tagging] [Completion
Success
Unexpected Input
Failed Dataflow Diagram
Incorrect/Missing Information Update

Fig. 4. Steps of FlowSense query execution. In case the grammar rejects
the input, or there is no valid way to complete query components, a
failure is returned to the user.

NL Input

In addition to recognizing special utterances, FlowSense also per-
forms POS tagging on the query with CoreNLP. Each token receives
a POS tag as shown in Fig. 2. POS tags are used to generalize the
FlowSense grammar. For example, many prepositions can be used
interchangeably, e.g. “selection of the plot” is equivalent to “selection
from the plot”. Instead of having one rule for every preposition, the
grammar uses a generic variable that matches any preposition. POS
tagging helps analyze the basic semantic structure of a query.

4.2 Function Classification

FlowSense uses keyword classification to identify the semantic mean-
ing of words in the NL query and uses this information to decide a
proper VisFlow function to execute. For instance, the verb “show” is a
synonym of “visualize”, “draw”, etc. These words indicate the intention
to create a visualization. Meanwhile, “find” may implicitly specify a
data filtering requirement and is similar to “filter”. We compute the
‘Wu-Palmer similarity scores [54] between words and use the measured
scores to classify words in the NL query that have close meaning to a
set of pre-determined VisFlow function indicators. The implementation
of the similarity scores is based on WordNet [23] and NLTK [6].

4.3 Query Pattern Completion

After the parser identifies the existing key components of a query,
FlowSense attempts to fill in the blanks where information is missing
using default values or the diagram editing focus.

4.31

Query components may be completed using default values. Function
options may have defaults. For instance, FlowSense automatically
chooses two numerical columns to visualize in a scatterplot triggered
by a simple query “Show a scatterplot”. Note that within a DFVS
decisions like this can easily be changed by the user. So FlowSense
does not necessarily need to make a best guess. Similar decisions
include completing port specification. By default FlowSense applies
the newly created filter to all the data a visualization node receives,
rather than the data subset interactively selected in the visualization.
Sometimes the default values could even be empty. A query like “Filter
by mpg” results in FlowSense creating a range filter on the mpg column
with no filtering range given (i.e. a no-op filter placeholder). The user
can then follow up and fill in the filtering range via the DFVS interface.

Finding Default Values

4.3.2 Finding Diagram Editing Focus

Whenever the user expands the dataflow diagram there always exists
an editing focus, though sometimes the focus is implicit. For example,
when the query contains a phrase like “from MyChart”, the focus (i.e.
the source node of the query) is explicitly given. However, users tend
to neglect the source or target nodes in their queries, especially when
there is a sequence of commands that together complete a task. When
a query does not have explicit focus, FlowSense derives the user’s
implicit focus based on user interaction heuristics. We compute a focus
score for every node X by:

1
1 +e—(disfunceTuMouse(X)/Vfﬁ))

score(X) = activeness(X,t)+ o1 —

The activeness of X is re-iterated upon every user click in the system:
activeness(X,t) = activeness(X,t — 1) /2 + click(X 1),

where click(X,t) = 1 if the ¢-th click is on X and 0 otherwise. This
definition measures how actively a user focuses on a node by how

many times she recently clicks on it, as well as how close it is to the
mouse cursor. The activeness derived from user clicks decreases expo-
nentially over time, while the closeness to mouse dominates under a
small distance with a shifted sigmoid function®. We find the parameters
o =2,8=5,y=500 achieve good result. FlowSense chooses the
node with the highest focus score to be the diagram editing focus. If
multiple source nodes are required (e.g. in a merge query), FlowSense
looks at the nodes in the order of their decreasing focus scores.

The focus may also be required by node type references. For in-
stance, the user may input “show the data from the scatterplot”, in
which case “scatterplot” is a reference by node type that describes a
scatterplot node existing in the dataflow diagram. In case of a tie during
the node type search, e.g. there are multiple scatterplots in the diagram,
the nodes with higher focus scores are chosen.

4.3.3 Query Completion Ambiguity

There may be multiple syntactically correct ways to execute a same
query. Consider the query “Show the cars with mpg greater than 15” ap-
plied on a visualization node. From the grammar perspective the parsed
outcome has no ambiguity: Apply an attribute filter and visualize the
result. However, there are two ways of execution: One is to create a
filter and then visualize the filtered cars in a new visualization; Alterna-
tively we may apply the filter on the input of the current visualization so
that the existing visualization shows only the filtered cars. Both can be
desired under some circumstances. FlowSense has the default behavior
that prefers filtering the input when the source node is a visualization,
which we find empirically more intuitive. Such ambiguity can often be
resolved with a slightly refined query, e.g. “Show the cars with mpg
greater than 15 from the plot”, which would explicitly indicate that the
filter should be created from the output of the existing visualization.

4.4 Diagram Update

Once a query is successfully completed, FlowSense performs the Vis-
Flow function(s) with the given function options. This typically results
in the creation of one or more nodes, e.g. the visualization function
creates one plot while the highlighting function creates three nodes
(Table 1). FlowSense may also update existing nodes without creat-
ing any new nodes, e.g. when the user only changes rendering colors.
Additionally, a query may operate on multiple existing nodes at once,
e.g. linking and merging two tables create edges between two nodes.
Operating on multiple nodes together helps simplify dataflow inter-
action, as these operations previously require multiple drag-and-drop
interactions.

After new nodes and edges are created, the diagram may become
more cluttered. FlowSense locally adjusts the diagram layout after
each diagram update. We use a modified force-directed layout from
the D3 library [1] that works on the vicinity of the current diagram
editing focus. We extend the force to take rectangular node sizes into
account so that larger nodes such as embedded visualizations have
stronger repulsive force for avoiding node overlap. User-adjusted node
positions are remembered by the system, and the layout algorithm
avoids moving nodes that have been positioned by the user. Currently
FlowSense does not look for an optimal dataflow layout. We leave
layout improvement [14] for future work.

4.5 Error Recovery

There are several types of potential errors in executing a query:

(1) The query cannot be accepted by the grammar. For example, out-
of-context input (“What time is it now”) and unsupported functionality
(“Split the data into two halves”) would receive grammar rejection;
(2) The query is grammatically correct but invalid based on the dataflow
context, possibly due to incorrect references of dataset and diagram
elements. For example, the user may attempt to show data from a
non-existing node, e.g. asking to “Highlight the selected cars from the
scatterplot” when there is no scatterplot in the dataflow. Such errors
are captured at the diagram update step.

3See the appendix for more explanation on the characteristics of the diagram
editing focus heuristics.

120

@ Encode speed limit by color "*°

80
speed...

P color

(-
@ Open speed with limits ®

20

E speed with li... P—m e 60

0
14 16 18 20 22
@ Show speed distribution

A .III'.-I._

20
speed H 25
H 30
M35
M50 22

paads

T T T T 1
2008 2010 2012 2014 2016 2018

@ Draw speed over time grouped by speed limit

Fig. 5. Using FlowSense to study the aggregated monthly average vehicle speed on NYC streets with different speed limits. The queries are applied
in the numbered order. The result shows a histogram for speed distribution and a line chart for speed changes over time. Both charts use color
encoding based on the speed limit of the roads. The smaller histogram snapshot shows the speed histogram without color encoding before step 3.

(3) The query is executed fully but does not meet the user’s expectation.
For example, “Show the data” by default creates a scatterplot but the
user instead wants a heatmap, or “Merge these two nodes” merges an
unexpected pair of nodes when “these” appears to be a vague reference
(the system chooses two nodes with the highest focus scores).

Upon the first two types of errors the system displays a message and
asks for a query correction. For the last type of error it is up to the user
to adjust the dataflow diagram. Since the user is simultaneously using
the underlying VisFlow DFVS while using FlowSense, she always
has the flexibility to undo the FlowSense action or to make partial
adjustments when the NLI does not yield exactly the desired outcome.

5 EVALUATION

To evaluate the effectiveness of FlowSense, we describe one case study
and conduct a formal user study.

5.1

We invite several users to try out the FlowSense prototype in different
data analysis domains and analyze their usage of our NLI. In this paper
we introduce one case study in which we work with two domain experts
in person to address a practical research task using a comprehensive
set of NL queries. The analysts are researching the city regulation
issued on November 7, 2014 that reduces the default speed limit on
all New York City streets from 30 MPH to 25 MPH. The data contain
the estimated average hourly speed [41] for each road segment in
Manhattan from January 2009 to June 2016. The speed estimation was
performed over the TLC yellow taxi records [9] that only have pickup
and dropoff information. The analysts are familiar with the data, and
the visualizations to be created are similar to the visualizations they
previously generated for the project using Tableau [7]. However they
have no prior experience with either VisFlow or FlowSense. We met the
analysts in person and first introduced VisFlow and FlowSense in a 30-
minute session. Then we guided the analysts through how FlowSense
can be used to create visualizations to study the speed reduction. We
observed in this study that almost all the analysts’ visualization requests
(excluding those that exceed the scope of the VisFlow subset flow) can
be effectively supported by FlowSense. Here we summarize the NL
queries that are applied for the speed reduction study.

Initially, the analysts would like to look at the speed reduction
impact at a larger scale. They first load a pre-computed speed table
(Fig. 5(1)) with the FlowSense data loading utility function (the analysts
know the dataset name). The table contains the monthly average speed
aggregated by the speed limits of the streets. The analysts ask the
system to present a histogram of speed by “Show speed distribution”
(Fig. 5(2)). The first histogram has no color encoding but the analysts
are able to immediately add a color scale by “Encode speed limit by
color”. FlowSense inserts a color mapping node with red-green scale at
the input of the histogram (Fig. 5(3)). The histogram shows the street
groups with higher speed limit in green, and lower speed limit in red.
To view the speed changes over time, the analysts use the query “Draw
speed over time grouped by speed limit” (Fig. 5(4)). The query result
is a line chart showing average speed changes for different speed limit
groups. The analysts observe that overall there is a speed reduction for
each speed limit group that started around middle 2013.

Speed Reduction Study

Seeing the overall trend, the analysts move on to a comparative
analysis between individual streets from two slow zones. They load
and visualize a speed sign installation table in a map (Fig. 1(1)) by
“Show the data in a map”. This dataset has for each road segment in
Manbhattan its speed limit, geographical location, and whether the street
has speed signs installed (signs are shown as dots in the map). As
the slow zones mostly have speed signs installed, the analysts narrow
down the data in the map by placing a filter on the “sign” column
(Fig. 1(2)). The filtered map reveals two slow zone neighborhoods with
densely located signs: Alphabet City and West Village. The analysts
apply one map visualization for each zone for a comparison between
the two zones. They label the two maps by the slow zone names and
select a few streets from each zone (marked in the maps of Fig. 1).
To study the speed changes of these selected streets, another table
(named “segment monthly speed”, also known to the analysts) that
includes monthly average speed for each road segment is added to the
diagram (Fig. 1(3)). The analysts then use the link queries to create a
sequence of nodes that extract segment IDs from the selected streets
and find their monthly average speed from the segment monthly speed
table (Fig. 1(4)). Blue and red colors are assigned to the streets in
West Village and Alphabet City respectively to visually differentiate
them (Fig. 1(5)). The two groups of streets are then merged by a
subset manipulation function (Fig. 1(6)). Note that the query “Merge”
only has a single word. It works because the query completion of
FlowSense automatically locates the recently focused color editors as
the source nodes for this query. Finally, the two groups are rendered
together in a speed series visualization (Fig. 1(7)), which compares the
speed changes between the two groups of streets. As the visualizations
produced by FlowSense are linked, the analysts can easily change the
street selection in the maps to compare different groups of streets.

This case study demonstrates that FlowSense can be applied to a
practical, comprehensive analytical task. The generated visualizations
may guide the analysts towards further data analysis. The analysts
participating in this study think FlowSense is helpful, especially since it
exemplifies how to build VisFlow diagrams and facilitates their learning
of the DFVS.

5.2 User Study

We conduct a formal user study to evaluate the effective of FlowSense
together with the VisFlow framework. Through the user study we vali-
date whether a user is able to smoothly apply FlowSense for dataflow
diagram construction, and how well FlowSense responses meet the
user’s expectation. We design an experiment that introduces FlowSense
and VisFlow to the participant and assigns analytical tasks to be solved
within the system.

5.2.1

The user study is carried out in a fully automated manner using an
online system with step-by-step instructions. The participants join the
study using a web browser on their own machines. Participants may
ask the experiment assistant for help and clarification via web chat or
phone call during the experiment session.

We recruited 17 participants (11 male, 6 female, all with an age
between 20 and 30) who work or study in the field of computer science.

Experiment Overview

12 participants have a data visualization background. 9 are graduate stu-
dents, and the other 8 are professionals (software engineer, researcher,
faculty). 3 participants have prior experience with VisFlow. No par-
ticipants have prior knowledge about FlowSense. The participants are
chosen to have a variety of specialities so as to represent potential
DFVS users. The participant group includes visualization designers,
data scientists, and software engineers who share data analysis interest
but have different skill sets. The study is structured into two phases:
Tutorial Phase. The participant completes a tutorial of the VisFlow
dataflow framework, and then a tutorial of the FlowSense NLI. After
each tutorial, the participant is asked to complete the tutorial diagram
to demonstrate familiarity with the introduced tool. Each tutorial is
expected to take 10 to 20 minutes. After the tutorials there is an on-
demand practice session with a flexible duration.
Task Phase. The participant explores an SDE Test dataset and con-
structs dataflow diagrams using FlowSense and VisFlow to answer ques-
tions about the data. The participant is encouraged to use FlowSense
as much as possible. The usage of the NLI is not enforced because the
goal of the NLI design is to improve the user experience of the DFVS,
rather than to completely replace the traditional DFVS interactions
(which is likely infeasible). The entire task phase is expected to take
30 to 60 minutes.

At the end of the study, the participant takes a survey to give com-
ments and quantitative feedback about FlowSense and VisFlow.

5.2.2 Dataset and Tasks

The SDE Test dataset includes the test results of software development
engineer (SDE) candidates stored in two tables. The first table describes
the test results for each candidate. A test consists of answering several
multi-choice questions selected by the system from a large question
pool. Each question has a unique ID, a pre-determined difficulty, its
supported programming language(s), and possibly a time limit. For
each question, the candidate receives a result (correct, wrong, skipped,
unanswered)4. The dataset also has a “TimeTaken” column that stores
how much time a candidate took to answer a question. The second
table includes background information about each candidate, such as
the candidate’s highest degree level, field of study, and institution. We
give three analytical tasks about this dataset. The tasks are designed to
reflect common tasks performed in visual data exploration:
(T1) Overview Task. The participant is asked to visualize the overview
distribution of the question answering results, and figure out the total
number of questions that were skipped, and the percentage of a question
being answered correctly.
(T2) Outlier Task. The participant is first asked to find a candidate
with an outlier background information value (who incorrectly entered
the current year “2018” in place of his own information). Then the
participant is asked to investigate a data recording discrepancy regard-
ing the “TimeTaken” column: Some of the “TimeTaken” values are
erroneously large numbers when a question is unanswered.
(T3) Comprehensive Task. The participant is asked to identify one
question that Masters candidates answer significantly better than Bache-
lors candidates. This task requires comprehensive usage of the dataflow
features: attribute filtering, brushing, and heterogeneous table linking.
All the three tasks have definitive correct answers to ensure that par-
ticipants explore the data and draw conclusions reasonably. Each user
study session is logged with anonymous full diagram editing history.
We analyze the study results based on task answers and completion
time, comments and quantitative feedback, and NL query logs.

5.2.3 Task Completion Quality

Fig. 6(a) shows the verdict distribution of the participants’ answers. It
can be seen that the majority of the participants were able to come up
with the correct answers to the tasks. Fig. 6(b) shows the completion
time distribution for each step of the user study. It can be observed that
the time taken for the tutorials and tasks are mostly as expected. Yet the
time required for a task increases when the task involves heterogeneous
tables and interactive data filtering to find solutions (T3). After reading

4See the appendix for additional remarks and results of the user study.

Verdict 15
I:‘ Correct E
|2 incorrect 3
. Unanswered 5

0

o

Task1
Count

Task1 Task2 Task2
Percentage TimeTaken User

(a)

Task3
Question

VisFlow
Tutorial

FlowSense EI:
Tutorial
0 20 40 60
Time (minutes)
(b)

Fig. 6. (a) Verdict distribution of participant answers to each of the user
study tasks. (b) Box plot of completion time for each user study step®.

the user comments in the feedback, we believe this may be due to the
fact that many participants are first-time VisFlow users and need to
digest the concept of the VisFlow subset flow model. In particular,
linking heterogeneous tables can be challenging to understand at first.
However, most users were able to get the idea and formulate a solution.
This is reflected by one of the feedback comments: “The linker func-
tions are confusing at first. But after experimenting with the tool for a
while and getting to know how they work, things become easier.” We
believe such a learning curve is natural for DFVS.

5.2.4 Quantitative Feedback

We ask for feedback on six aspects regarding FlowSense (and also
VisFlow?) in our survey. Each aspect is presented with a statement
with a 1-5 Likert scale for the participant to express agreement (5) or
disagreement (1). Table 2 lists the feedback for the FlowSense NLI. The
quantitative feedback shows that most users were able to understand
the scope of FlowSense, and apply it for dataflow diagram construction.
The users were also asked to compare the NLI-assisted dataflow usage
against their earlier experience in the tutorial phase with the standalone
VisFlow framework. Twelve users agree (with a feedback score of at
least 4) that FlowSense simplifies the diagram construction, and ten
users agree that FlowSense speeds up the data exploration.

The feedback also reveals space for improving the NLI. In particular,
it is unclear to most users how to update a rejected query to make
it accepted. It may be helpful to design an algorithm that provides
suggested corrections or changes to a failed query. However, this is
technically challenging as changing minimally a query to fit it into the
parse tree is algorithmically non-trivial. We would like to leave query
correction suggestions for future work.

5.2.5 Query Log Analysis

To closely study where FlowSense does not accept a query, we conduct
a manual walk-through of the rejected queries and categorize each
rejected query by its reason of rejection. Overall, we analyzed 649
queries, out of which 421 were accepted by FlowSense. Excluding the
34 invalid and mistyped queries, the raw acceptance rate was 68.455%.
We found some of the rejection issues straightforward to resolve: the
requested functionality was not implemented, bugs in the query execu-
tion code, etc. We were able to fix those issues in a short iteration of
the NLI implementation, resolving 34 “not implemented” queries and
18 software bugs. The improved acceptance rate would be 76.911%.
In general, it requires systematic engineering efforts to thoroughly in-
crease query coverage for the “not implemented” category, which is
beyond the scope of this paper. The remaining non-resolved failures
are summarized in Fig. 7 with their counts’.

Some of those failures are more challenging to resolve. Specifically,
FlowSense does not make logical inferences and deals only with the raw
values in the data. If the user rephrases the query by natural language
variation or implication (26 occurrences in Fig. 7), the query would
be difficult to parse. The query “Show only segments with signs” is

3See the appendix for the detailed definition and examples for each category.

Aspect Feedback Score
. B
I'understand what queries FlowSense may accept and || 3 9 -
execute. ; \ 4
The responses of FlowSense meet my expectations. P ” . 8
2
FlowSense simplifies dataflow diagram construction. s BIE - 1
FlowSense speeds up my data exploration. + B -
FlowSense helps me learn VisFlow features that I was | WSy -
not aware of. ; \
When my query got rejected, I can figure out how to |75 5 B I

update it to let it be accepted.

Table 2. FlowSense Survey Result. The feedback column shows the
score distribution for each assessed aspect of the NLI. The numbers on
the colored bars show the counts of the scores received. Darker green
represents higher score.

more natural than that in Fig. 1(2). Yet FlowSense does not infer that a
segment with a “sign” value of “yes” implies that it is a segment “with
sign”. In T3 the dataset has “HighestLevelOfEducation” as column
name, but if the user mentions “degree”, FlowSense does not know that
it is equivalent. There needs to be additional knowledge base added
to the system so that the NLI can detect concept equivalence, which is
generally difficult to achieve. In a “composite” query, the user intends
to perform several VisFlow functions in one query (e.g. creating nodes,
applying filter, and assigning color together). It is difficult to write
concise grammar rules to accept composite queries. In practice, by
informing the users of these limitations, in most cases the issues can be
circumvented via rephrasing the queries, e.g. composite queries can be
split into smaller steps that are easier to parse and execute.

When an operation requested is not supported by the DFVS, a “not
supported” failure arises, e.g. VisFlow without its data mutation exten-
sion® cannot aggregate and mutate data. When the special utterance
tagging over-aggressively tags a non-special word, its placeholder fails
to resolve, leading to a “tagging error”. The user may use the token
dropdown in the FlowSense input box to correct tagging mistakes.

Not Implemented 50
Invalid/Mistyped 34 Resolving Difficulty
Rephrased low
Not Supported 25 medium
Tagging Error 23 M high
Composite
0 10 20 30 40 50

Count

Fig. 7. Number of failed queries categorized by the reasons of the failures.
The colors of the bars indicate the relative difficulty of resolving a failure.

6 DISCUSSION AND LIMITATIONS
6.1 Scalability and Generalizability

Technically there are many ways to create a set of rules that implement
the same dataflow function. Following the active development and
enhancement of the system functionality, from time to time grammar
rules can be combined and rewritten to make the grammar more concise.
We keep iterating and refining the FlowSense grammar to expand its
functionality. FlowSense currently includes about 200 variables and a
rule set of around 500 rules in its grammar. Our grammar development
practice employs continuous integration and maintains a test set (of 131
test queries by the time of this writeup) to ensure that all categories of
VisFlow functions may execute properly during iterations and exten-
sions of the grammar. Approximately 10 to 20 rules need to be added
to support a new dataflow function category.

Though the grammar rules of FlowSense are coupled with the un-
derlying VisFlow functionality, its approach of utilizing special ut-
terance placeholders is generalizable to other dataflow systems that
employ similar modular component design. Once the data- and diagram-
independent dataflow elements are identified, these elements can be

Ohttps://visflow.org/extension. The extension is not supported by the NLI.

represented by special utterances in the grammar and dataflow imple-
mentation can subsequently be extended to process them. For example,
we may extend the grammar to support more data processing power
obtainable from a computational dataflow system like KNIME [4].

6.2 User Behavior and Engagement

The effectiveness of a grammar-based semantic parser couples with
the grammar design. One negligence in the grammar may result in
unexpected rejections of seemingly acceptable queries. Despite careful
grammar design, the user is likely to come up with questions that exceed
the scope of the grammar. However, we find that users are willing and
able to refine rejected queries with a small number of trial-and-error
attempts. Besides users may become more proficient with the NLI
after reading query examples so as to understand the NLI capability.
Yet showing too many examples may limit the user’s thoughts and
forfeit the benefit of using an NLI. We would like to further study user
behavior regarding NLI usage in DFVS in the future to better identify
when and where query examples need to be provided.

We also observe that users tend to perform composite queries and ask
for batch operations using the NLI. With traditional mouse/keyboard
interaction, the results of such queries have to be achieved by a sequence
of interactions. FlowSense increases the data exploration efficiency
by naturally enabling batch operations. In fact, we notice some users
were able to repeat successful short queries that achieved the most
batched result. The convenience of using NL to carry out multiple
operations may improve the user’s engagement [18], provide interaction
“shortcuts”, and make dataflow features more accessible by simplifying
the creation of rather complicated sub-diagrams, e.g. “highlighting”.

6.3 Technique and Scope

We prefer semantic parsing to deep learning mainly because the latter
has a bottleneck of requiring a large volume of training examples.
Though there are benchmark datasets for general NLP, there has not
yet been a training set catered for visualization-oriented NLI or DFVS.
In the future with more users working with the NLI, we may collect
more user queries that constitute a rich training set in order to support
methods like neural networks for text classification [56].

Currently FlowSense only works with dataflow diagram editing. But
it may be desirable for the NLI to answer analytical questions like
“Does the vehicle speed decrease over years in NYC?” by creating a
visualization like Fig. 5(4). To that end we need further research on
the dataflow functions and their application to answering analytical
questions. One possible direction is to study how DFVS diagrams can
be constructed for knowledge-based Q&A [17].

7 CONCLUSIONS

In this work we design FlowSense, a novel NLI for visual data explo-
ration within a DFVS. We build FlowSense for the VisFlow framework
and show that it improves the DFVS usability and simplifies diagram
construction. FlowSense applies semantic parsing to map NL input
to VisFlow functions. Its emphasis on special utterances and usage of
special utterance placeholders make the semantic parsing independent
of datasets and diagrams, but at the same time aware of the dataflow
context. The real-time feedback of tagged special utterances, as well
as query and token auto-completion features, largely helps the user
understand the underlying parsing state. Our case study and user study
results demonstrate the effectiveness of the proposed NLI, and help
identify future research directions for its improvement.

ACKNOWLEDGMENTS

We would like to thank BlindData.com for providing the user study
dataset. This work was supported in part by: the Moore-Sloan Data
Science Environment at NYU; NASA; NSF awards CNS-1229185,
CCF-1533564, CNS-1544753, CNS-1730396, CNS-1828576. B. Yu
and C. T. Silva are partially supported by the DARPA MEMEX and
D3M programs. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

REFERENCES

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

D3: Data-Driven Documents. https://d3js.org

IBM SPSS Modeler. https://www.ibm.com/products/
spss-modeler/

IBM Watson Analytics. https://www.ibm.com/watson-analytics
KNIME data analysis platform. http://www.knime.org/

Microsoft Power BI. https://powerbi.microsoft.com/

NLTK. http://www.nltk.org/

Tableau Software. http://www.tableausoftware.com/
Thoughtspot. http://www.thoughtspot.com/

TLC trip records. http://www.nyc.gov/html/tlc/html/about/
trip_record_data.shtml

Wolfram Alpha. http://www.wolframalpha.com/

M. Allahyari, S. A. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B.
Gutierrez, and K. Kochut. A brief survey of text mining: Classification,
clustering and extraction techniques. In Proc. KDD Bigdas, 2017.

R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic
activity in information visualization. In IEEE Symposium on Information
Visualization (InfoVis’05), pages 111-117, 2005.

1. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language
interfaces to databases — an introduction. Natural Language Engineering,
1(1):29-81, 1995.

C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data flow
diagrams. IEEE Trans. Software Engineering, 12(4):538-546, 1986.

L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. Crossno, C. T.
Silva, and J. Freire. VisTrails: Enabling interactive multiple-view vi-
sualizations. In Proc. IEEE Visualization Conference, pages 135-142,
2005.

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on Freebase
from question-answer pairs. In Proc. Empirical Methods in Natural
Language Processing (EMNLP’13), pages 1533—1544, 2013.

P. Clark, J. Thompson, and B. Porter. A knowledge-based approach
to question-answering. In Proc. AAAI Fall Symposium on Question-
Answering Systems, pages 43-51, 1999.

P. R. Cohen. The role of natural language in a multimodal interface.
In Proc. 5th Annual ACM Symposium on User Interface Software and
Technology (UIST’92), pages 143-149, 1992.

K. Cox, R. E. Grinter, S. L. Hibino, Lalita, J. Jagadeesan, and D. Mantilla.
A multi-modal natural language interface to an information visualisation
environment. International Journal of Speech Technology, 4:297-314,
2001.

L. Deng. A tutorial survey of architectures, algorithms, and applications
for deep learning. APSIPA Trans. Signal and Information Processing, 3,
2014.

K. Dhamdhere, K. McCurley, M. Sundararajan, Q. Yan, and R. Nahmias.
Analyza: Exploring data with conversation. In Proc. 22nd International
Conference on Intelligent User Interfaces, pages 493-504, 2017.

E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein. Iris:
A conversational agent for complex tasks. In Proc. CHI Conference on
Human Factors in Computing Systems (CHI’18), 2018.

C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.
J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and
H. T. Vo. Managing rapidly-evolving scientific workflows. In Proc. Prove-
nance and Annotation of Data: International Provenance and Annotation
Workshop, pages 10-18, 2006.

T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. DataTone:
managing ambiguity in natural language interfaces for data visualiza-
tion. In Proc. 28th Annual Symposium on User Interface Software and
Technology (UIST’15), pages 489-500, 2015.

1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT press,
2016.

L. Grammel, M. Tory, and M. A. Storey. How information visualization
novices construct visualizations. IEEE Trans. Visualization and Computer
Graphics, 16(6):943-952, 2010.

P. E. Haeberli. ConMan: A visual programming language for interactive
graphics. ACM SigGraph Computer Graphics, 22(4):103-111, 1988.

E. Hoque, V. Setlur, M. Tory, and I. Dykeman. Applying pragmatics
principles for interaction with visual analytics. IEEE Trans. Visualization
and Computer Graphics, 24(1):309-318, 2018.

W. Javed and N. Elmqvist. ExPlates: Spatializing interactive analysis to
scaffold visual exploration. Computer Graphics Forum, 32(2):441-450,
2013.

(31]

[32]

[33]

(34]

(35]

(36]

(37]

[38]

(39]

[40]

(41]

[42]

[43]

[44]

(45]

[46]

(47]

[48]

[49]

[50]

(51]

(52]

(53]

A. Kumar, J. Aurisano, B. D. Eugenio, A. Johnson, A. Gonzalez, and
J. Leigh. Towards a dialogue system that supports rich visualizations
of data. In Proc. 17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 2016.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady, 10:707, 1966.

Y. Li, H. Yang, and H. V. Jagadish. NaLIX: A generic natural language
search environment for XML data. ACM Trans. Database Systems, 32(4),
2007.

P. Liang and C. Potts. Bringing machine learning and compositional
semantics together. Annual Review of Linguistics, 1:355-376, 2014.

J. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic pre-
sentation for visual analysis. IEEE Trans. Visualization and Computer
Graphics, 13(6):1137-1144, 2007.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, P. Inc, S. J. Bethard, and
D. Mcclosky. The Stanford CoreNLP natural language processing toolkit.
In Proc. 52nd Annual Meeting of the Association for Computational Lin-
guistics (ACL’14): System Demonstrations, pages 55-60, 2014.

J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. Hinrichs. Voreen:
A rapid-prototyping environment for ray-casting-based volume visualiza-
tions. IEEE Computer Graphics and Applications, 29(6):6—13, 2009.

G. Navarro. A guided tour to approximate string matching. ACM Comput-
ing Surveys, 33(1):31-88, 2001.

S. G. Parker and C. R. Johnson. SCIRun: A scientific programming
environment for computational steering. In Proc. ACM/IEEE Conference
on Supercomputing, 1995.

P. Pasupat and P. Liang. Compositional semantic parsing on semi-
structured tables. In Proc. Annual Meeting of the Association for Compu-
tational Linguistics (ACL’15), 2015.

J. Poco, H. Doraiswamy, H. T. Vo, J. L. D. Comba, J. Freire, and C. T.
Silva. Exploring traffic dynamics in urban environments using vector-
valued functions. Computer Graphics Forum, 34(3):161-170, 2015.

J. C. Roberts. Waltz - an exploratory visualization tool for volume data,
using multiform abstract displays. In Proc. SPIE Visual Data Exploration
and Analysis V, volume 3298, pages 112-122, 1998.

J. C. Roberts. On encouraging coupled views for visualization exploration.
In Proc. SPIE Visual Data Exploration and Analysis VI, volume 3643,
pages 14-24, 1999.

V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang. Eviza:
A natural language interface for visual analysis. In Proc. 29th Annual
Symposium on User Interface Software and Technology (UIST’16), pages
365-377, 2016.

B. Shneiderman. The eyes have it: A task by data type taxonomy for in-
formation visualizations. In Proc. IEEE Symposium on Visual Languages,
pages 336-343, 1996.

M. Sipser. Introduction to the Theory of Computation. Cengage Learning,
3rd edition, 2012.

A. Srinivasan and J. Stasko. Orko: Facilitating multimodal interaction for
visual exploration and analysis of networks. IEEE Trans. Visualization
and Computer Graphics, 24(1):511-521, 2018.

A. Srinivasan and J. T. Stasko. Natural language interfaces for data
analysis with visualization: Considering what has and could be asked.
In Eurographics Conference on Visualization (EuroVis’17 short paper),
2017.

Y. Sun, J. Leigh, A. Johnson, and S. Lee. Articulate: A semi-automated
model for translating natural language queries into meaningful visualiza-
tions. In Proc. 10th International Conference on Smart Graphics, pages
184-195, 2010.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. MIT
Press, 2003.

C. Upson, J. Faulhaber, T.A., D. Kamins, D. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The application visualization
system: a computational environment for scientific visualization. /EEE
Computer Graphics and Applications, 9(4):30-42, 1989.

Y. Wang, J. Berant, and P. Liang. Building a semantic parser overnight. In
Proc. Annual Meeting of the Association for Computational Linguistics
(ACL’15),2015.

K. Wolstencroft, R. Haines, D. Fellows, A. R. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat,
K. Belhajjame, F. Bacall, A. Hardisty, A. N. de la Hidalga, M. P. B. Vargas,
S. Sufi, and C. A. Goble. The Taverna workflow suite: designing and
executing workflows of web services on the desktop, web or in the cloud.
Nucleic Acids Research, 41(W1):557-561, 2013.

[54]

[55]

[56]

[57]

[58]

Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proc. 32nd
Annual Meeting on Association for Computational Linguistics (ACL’94),
pages 133-138, 1994.

P. Yin, Z. Lu, H. Li, and B. Kao. Neural Enquirer: Learning to query
tables with natural language. In Proc. International Joint Conference on
Artificial Intelligence (IJCAI’'16), 2016.

T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep
learning based natural language processing. IEEE Computational Intelli-
gence Magazine, 13(3):55-75, 2018.

B. Yu and C. T. Silva. VisFlow — Web-based visualization framework
for tabular data with a subset flow model. /IEEE Trans. Visualization and
Computer Graphics, 23(1):251-260, 2017.

V. Zhong, C. Xiong, and R. Socher. Seq2SQL: Generating structured
queries from natural language using reinforcement learning. CoRR,
abs/1709.00103, 2017.

arXiv:submit/2786072 [cs.HC] 1 Aug 2019

FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System
(Appendix)

A FlowSense Grammar Design

We provide an open source repository that contains the details of the FlowSense implementation:
https://github.com/yubowenok/flowsense. This repository contains the grammar
rules, backend API (implemented in TypeScript and Python), and integration tests. The structure
of this repository and its installation and setup guide can be found within its README file.

In particular, the grammar rules are located in the ».grammar files. The entry point is
main.grammar. The grammar rules are written in the SEMPRE grammar format. More de-
tails can be found at the SEMPRE GitHub repository.

B Characteristics of the Diagram Editing Focus Heuristics

Intuitively, the focus score keeps track of the diagram element that is last interacted with. It has
two components: the activeness resulted from mouse clicks, and the distance-to-mouse bonus.
The activeness score exponentially decreases when there is no interaction on the node, while the
distance-to-mouse bonus prioritizes the elements around the last interaction.

When the mouse hits a node x, node x receives a high activeness score of one from the Click(X,
t) part, which almost certainly ensures that the focus score of x is higher than any other node y that
is not interacted with. Though y (when it is in the proximity of x) may receive a distance-to-mouse
bonus that remedies for its exponential loss on the activeness score, note that x receives a distance-
to-mouse bonus too, and the bonus can only be higher than the bonus received by y because z is
clicked on. Therefore, the outcome is that x becomes the first prioritized node, and y becomes the
second prioritized. In other words, if a VisFlow function requires two operand nodes, then z is
chosen first, and then y is chosen.

If the user clicks on the background, all nodes have exponentially decreasing activeness score,
and their distance-to-mouse bonus will likely dominate the focus score. Consequently, the nodes
that are closer to the last click become the chosen query targets. As there can be multiple nodes
around the background click, occasionally a node not actually focused by the user may happen to
be close to an unintentional background click (e.g. accidentally performed during canvas panning).
The next NL query may then be incorrectly performed on this node. This error can be fixed by
clicking on a specific node to focus on it and redoing the NL query.

C Additional User Study Remarks

* Inthe SDE test, answering a question wrong results in negative score penalty. Therefore skipping
a question can be worthy. Skipping requires an explicit button click. The “unanswered” result is
given when the user has no action within the allocated time limit of a question.

* In Fig. 6(b), four outliers due to interruptions on the participant’s end are not shown: 2550
minutes on Task1, and 109, 119, 212 minutes on Task3 were measured as the task completion
time, which include the interruptions.

FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System
(Appendix)

Aspect Feedback

I understand the majority of VisFlow features. -- Score

. : . K
I understand the subset flow in VisFlow. 1-_ K
I can follow the VisFlow dataflow diagram and understand their ‘ I
VisFlow is relatively simple to learn and use. 5 --
VisFlow is an effective system for visual data exploration.) --
I would like to use VisFlow for my future data exploration tasks. 75 --

Table 1: VisFlow Survey Result. The feedback column shows the score distribution for each as-
sessed aspect of VisFlow. The numbers on the colored bars show the counts of the scores received.
Darker green represents higher score. Overall the users were able to understand well the DFVS
functionality and use it effectively for visual data exploration.

- N W

D VisFlow Survey Results

The VisFlow user study is part of the FlowSense user study. Before FlowSense was introduced to
the users, a tutorial on the details of the VisFlow dataflow framework was given. The participant
group of the VisFlow user study is thus exactly same as the group described in the paper: In total,
17 users (11 male, 6 female, all with an age between 20 and 30) who work or study in the field of
computer science participated in this study. 12 participants have a data visualization background.
9 are graduate students, and the other 8 are professionals (software engineer, researcher, faculty).
3 participants have prior experience with VisFlow. The participant group is chosen to represent
potential DFVS users who share data analysis interest but have The participants are chosen to have
a variety of specialities so as to represent potential DFVS users. The participant group includes
visualization designers, data scientists, and software engineers who share data analysis interest but
have different skill sets.

The users were given a form to assess the effectiveness of VisFlow qualitatively using a Likert
scale of 1 to 5 (5 is “strongly agree” and 1 is “strongly disagree”). Table 1 shows the quantitative
survey feedback for the VisFlow DFVS. It can be observed that the users were able to understand
the subset flow model of VisFlow. The majority of the users agree (with a score of at least 4)
that VisFlow presents an effective approach to visual data exploration, and can successfully utilize
VisFlow features for their data exploration.

FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System
(Appendix)

E Query Analysis — Failure Category Description

This following list provides the descriptions for each query failure category we identified in the
user study results:

e Not Implemented. FlowSense grammar may technically support parsing this query. Yet we
have not implemented the corresponding grammar and its web client handler (query execu-
tion code for diagram update). Example queries include “change x column to mpg”. The
current system implementation does not support node option changes triggered by the NLI
(except for visual editors). Queries of this category can be accepted by extending the gram-
mar and adding more rules.

e Invalid/Mistyped. The query is an invalid sentence and cannot be understood by a human;
Or the query has mistyped words and fails to describe the intended data entity or dataflow
element.

e Rephrased. The user rephrases the query using grammatical structures not expected by the
grammar, or the user uses words that do not appear in the dataset table to describe a ta-
ble entity or value. For example, in Task 3 if the user mentions “degree”, FlowSense does
not know that “degree” is equivalent to the “HighestLevelOfEducation” column in the data.
Though one can easily inform a system of such equivalence case-by-case or find synonyms
from WordNet, it is non-trivial to generally detect such equivalence. Consider the equiva-
lence between “Show only segments with signs” and “Show only segments with a sign of yes”:
“yes” is not an immediate synonym of “with” and their common implication of “existence”
is subtle. There needs to be additional knowledge base added to the system to support the
detection of concept equivalence.

e Not Supported. The functionality indicated by the query is not supported by the VisFlow
dataflow framework. This is not an issue of the NLI but a limitation of the underlying DFVS.
A query like “How many questions were skipped” asks directly an analytical question about
the dataset and exceeds the scope of VisFlow. It cannot be accepted by simply extending the
grammar because there needs to be a reasonable way to construct dataflow sub-diagrams to
answer the analytical questions, which can be complex and challenging to identify.

e Tagging Error. A special utterance should have (have not) been tagged, but it was not (was)
tagged. For example, the query “Select iris with id between 3 and 5” has the word “iris” that
is both a word to describe the data entity and a dataset name. When FlowSense automatically
tags “iris” as a dataset name special utterance, the parser may fail to accept the query. In this
case the user may manually override the tagging to avoid the error resulted from parsing
ambiguity. In future work we may also explore techniques that can be integrated into the
parser to structurally reduce such errors.

e Composite. The user inputs a query that attempts to execute multiple VisFlow functions
that exceed the limit expected by the grammar or the web client handler. An example is

FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System
(Appendix)

“Highlight bachelors in red and masters in green in node-15". This is achievable using
attribute filters to find candidates with Bachelors and Masters degrees, followed by visual
editors to give them colors, and finally a set operator to merge the two groups. In this
case multiple VisFlow functions have to be performed altogether. The parser and execution
handler did not expect queries of this composite level. The grammatical structure between
these multiple functions poses parsing difficulty. It is recommended that composite queries
are refactored into multiple smaller steps so as not to overload the NLI with complicated
grammatical structure that exceeds its parsing capability.

e Bug. The system should have the capability of handling that query. But due to an implemen-
tation bug that was unidentified at the time of the user study, the query parsing or execution
went wrong and did not arrive at the expected outcome.

