
OpenSpace: A System for Astrographics

Alexander Bock, Emil Axelsson, Jonathas Costa, Gene Payne, Micah Acinapura,
Vivian Trakinski, Carter Emmart, Cláudio Silva, Charles Hansen, Anders Ynnerman

Fig. 1. Using OpenSpace to depict astronomical phenomenæ at different spatial scales. Visualization of the Apollo service module in
front of Earth (left), volumetric rendering of a solar wind density simulation in the heliosphere (center), exploring galaxy clusters using
data from the Sloan Digital Sky Survey including the missing data due to the shadow of the Milky Way (right).

Abstract—Human knowledge about the cosmos is rapidly increasing as instruments and simulations are generating new data
supporting the formation of theory and understanding of the vastness and complexity of the universe. OpenSpace is a software system
that takes on the mission of providing an integrated view of all these sources of data and supports interactive exploration of the known
universe from the millimeter scale showing instruments on spacecrafts to billions of light years when visualizing the early universe. The
ambition is to support research in astronomy and space exploration, science communication at museums and in planetariums as well
as bringing exploratory astrographics to the class room. There is a multitude of challenges that need to be met in reaching this goal
such as the data variety, multiple spatio-temporal scales, collaboration capabilities, etc. Furthermore, the system has to be flexible
and modular to enable rapid prototyping and inclusion of new research results or space mission data and thereby shorten the time
from discovery to dissemination. To support the different use cases the system has to be hardware agnostic and support a range of
platforms and interaction paradigms. In this paper we describe how OpenSpace meets these challenges in an open source effort that
is paving the path for the next generation of interactive astrographics.

Index Terms—Astrographics, astronomy, astrophysics, system.

1 INTRODUCTION

The night sky has long piqued the imagination of humans and inspired
our collective quest for knowledge. From ancient mariners to Galileo
to modern day astronomers and astrophysicists, increases in knowledge
have led to greater awareness and newly formed questions about the
universe around us and our place in it. Visualization has played an
enabling role in the development of our perception of the universe by
providing tools for understanding and communication of these findings
to our peers. This forms the foundation for the field of Astrographics
which encompasses the use of visualization for exploration as well as
explanation in the space and astronomical domain.

Despite many efforts to develop software for astrographics, the field
is now facing serious challenges in terms of size and complexity of data

• Alexander Bock and Anders Ynnerman are with Linköping University and
the University of Utah. E-mail:
{alexander.bock | anders.ynnerman}@liu.se.

• Emil Axelsson is with Linköping University. E-mail: emil.axelsson@liu.se.
• Jonathas Costa and Cláudio Silva are with New York University. E-mail:

{jccosta | csilva}@nyu.edu.
• Gene Payne and Charles Hansen are with the University of Utah. E-mail:

gpayne@sci.utah.edu and hansen@cs.utah.edu
• Micah Acinapura, Vivian Trakinski, and Carter Emmart are with the

American Museum of Natural History. E-mail:
{macinapura | vivian | carter}@amnh.org.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

from observations and simulations, and standard visualization tools
are not providing the required capabilities. Additionally, the state-of-
the-art in visualization is progressing very rapidly and it is a challenge
for these tools to capitalize on the development of visualization using
new methodology and hardware solutions. We are also seeing a rapid
confluence of visualization methods traditionally used in exploratory
visualization and those used to explain scientific findings [33], which
opens up new possibilities in science communication as well as enrich-
ing the scientific exploration of data.

In this paper we describe the open source effort, OpenSpace, with the
mission to support the use of astrographics in science communication,
space exploration, and astronomical research. One of its foundational
requirements is the need for multi-platform support and provisioning
of tailored tools for usage scenarios ranging from individual desktop
systems to planetariums, as well as presentations and collaborative and
distributed visualization across multiple sites world-wide.

The underlying idea behind OpenSpace is to develop and maintain
a versatile system that lends itself to rapid development cycles for
implementation of new functionality and features, thus shortening the
time between scientific discovery and dissemination. While at the same
time be robust enough for deployment in research and public use in
museums, science centers, planetariums, and class rooms.

Previous efforts have resulted in extensions to a different planetarium
software, Uniview [24], but due to the closed nature of proprietary soft-
ware these extensions were not incorporated into the released version.
This leads to the loss of rapid prototyping efforts, which an open source
platform helps to mitigate. The open source approach also enables a
curated community effort managed by a core team of developers.

Fig. 2. An interactive visualization session with astrophysics domain
experts presenting the 1.3 billion stars of the Gaia DR2 data set during
the 2018 NYC Gaia Sprint at the Hayden planetarium in New York.

1.1 Astrographics use cases
In this section we provide three use cases representing different con-
texts in which OpenSpace serves as an enabling software system in the
field of Astrographics. The cases have been used throughout the devel-
opment cycles of OpenSpace to define challenges and test solutions in
an iterative participatory design process involving the core developer
team, student projects, and domain experts in the astronomical sciences
as well as in science communication and education.

1.1.1 Astrographics as a tool in astronomy research
Data generated through observation and simulation is rapidly growing
in size and complexity. A recent example is the use of OpenSpace
to visualize data from the Gaia instrument [10] containing more than
1 billion stars in the Milky way, each with complex attribute data,
(Figure 2). Another example is simulation data ranging from MHD
simulations of space weather in the heliosphere [8] (Figure 1(b) and
Figure 3) to simulations of galaxy formation at cosmological spatial
and temporal scales [9]. The ambition to support interactive analysis of
this data in a consistent representation of the whole universe, providing
accurate context for the data, poses challenges in terms of handling of
spatio-temporal data in complex scenes using mixed mode rendering of
geometry, volumes, and point-based data. Additionally, tailored tools
for interaction and navigation must also be available to support the
workflow of the domain expert.

1.1.2 Astrographics in planetariums, exhibits, and classrooms
One of the core uses of OpenSpace is to support novel visualizations
in planetariums and pave the way for new science communication
paradigms in these immersive environments. A typical use case is a
facilitated exploration of a curated set of astronomical objects and phe-
nomenæ (Figure 1(b) and Figure 2). This puts demands on rendering
quality and speed, as well as use of intuitive visual metaphors to rep-
resent these complex and abstract concepts. User-friendly navigation
tools that allow for smooth transitions in space and time and selection
of objects are needed to support a planetarium presentation. Addition-
ally, the same content can also engage the public in museum settings
using display-walls built from multiple monitors and multi-user/multi-
touch table interfaces [6]. Here the self explanatory, non-linear, and
interactive story telling embedded in the installations becomes a cen-
tral component in providing a rewarding visitor experience. It is also
recognized that space exploration and astronomy are an integral part
of school curricula and have served not only as a topic in itself, but
also as a carrier of interest for mathematics and physics. The use of
OpenSpace, data availability, and technical maturity provides new ped-
agogical opportunities for students to interactively explore these topics.
The use of advanced software solutions in a class room setting do, how-
ever, require significant adaptation and integration of learning goals
and interaction design principles tailored for educational situations.

Fig. 3. Using OpenSpace as a tool for astronomy research, here in the
use case of visualizing a time-varying coronal mass ejection simulation,
combining a volumetric rendering and fieldlines.

1.1.3 Mission visualization for communication and planning

Visualization is not only used for data visualization in astrographics, but
also to visualize the space missions that capture this data. OpenSpace
offers the possibility to provide the concurrency and details of space-
craft operations and instrumentation to the audience, as well as to tell
stories of current and past space exploration to the general public. For
example a recreation of the Apollo missions based on recently captured
lunar surface data and historical data records of the missions make it
possible to recreate the historical landings on the moon (Figure 1(a)).
The same methodology can also serve the purpose of contextualizing
spacecraft planning for teams of researchers and developers or indeed
enable in-situ visualization of data from instruments on spacecraft (Fig-
ure 4) creating new opportunities in comprehensive and universal views
of observed and simulated data. The use of space mission data calls for
support of high precision location of spacecrafts and celestial bodies in
space and time and interfaces to a range of data sources provided by
space agencies and research institutes.

2 RELATED WORK

There are several planetarium vendors that supply software packages
for the visualization of the solar system and the universe. One of
these is a product from Sciss; Uniview [24]. Uniview provides an
interface to multiple data sources, such as the American Museum of
Natural History’s Digital Universe catalog. While Uniview grew from
a research project, it has since been spun off into a company where

Fig. 4. The New Horizons spacecraft fly-by of Pluto in 2015 at around
20000 km (a) and its fly-by of MU69 (Ultima Thule) at about 6500 km in
2019. Pluto is about 2400 km in diameter, Ultima Thule is 31 km.

OpenSpace ApplicationsModulesOpenSpace-Core External Applications

Main OpenSpace Application

Simple Graphics
Cluster Toolkit

Other OpenSpace Applications

Third-party integrations

Network API

4.2.5

4.2.3
4.1.4

FITS File Reader

Gaia

...

4.1.1

4.3

Navigation

4.4
Property System

4.1.2

Asset System4.1.3

Session Provenance

4.2.3

AstroCasting

4.2.2 Scripting

4.2.1

Scene Graph User Interface

Fig. 5. The system architecture is divided into four layers. Arrows denote dependencies and rounded rectangles indicate sections in which the
respective subsystems are described in detail. OpenSpace consists of a core component, multiple, each optional, modules which are combined to
build an executable application.

source code access was subsequently curtailed, leading to a closed
software package without the ability for users to add completely new
functionality. Since one of the goals of OpenSpace is to enable an
extension of the capabilities of the system, a closed software package
does not meet this goal. Another planetarium vendor supplied package
from Evens and Sutherland is Digistar [15]. Like Uniview, it is a
closed software package without the ability for user extension. Skyskan
delivers and supports the planetarium software package DigitalSky
2 [29] that runs on Skyskan’s Definiti theater systems. It, too, is a closed
system where extensions are built and incorporated by the vendor,
though limited capabilities for user-generated scripting is possible.

WorldWide Telescope [30] was designed to be a rich virtual observa-
tory for the visualization and sharing of data from major observatories,
telescopes, and astronomy institutions. World Wide Telescope was
developed by Microsoft Research and is now an open source project
managed by the American Astronomical Society. It provides capability
for visualizing the solar system, stars, guided tours of the universe, but
focussed on presenting the data from Earth’s viewpoint.

Celestia [12] is an interactive visualization system showing the solar
system and objects in the universe. It provides virtual texturing for
high-resolution imagery of planetary surfaces and accurate positioning
of celestial bodies. Celestia is an open source system released under
GPL and was started in 2001. Pre-compiled programs exist for Linux,
MacOS, and Windows and are released in irregular cycles (average
time between releases 16.5 months since May 2002). The last release
occurred in 2011, but development activity recently restarted.

Stellarium [31] is an open source software in which the user can
view the sky in 3D from the surface of any planet and the software
provides a star catalog, deep space objects, time control, and the ability
to add artificial satellites. Like Gaia Sky and World Wide Telescope, it
is primarily a system for astronomy and allows users to add content.

NASA Eyes [22] is a suite of applications developed by the Visual-
ization Technology Applications and Development Team at NASA’s
Jet Propulsion Laboratory and California Institute of Technology. The
various applications, which are based on WebGL, provide tools for
exploring Earth, the Solar System, Exoplanets, and others. While pro-
viding rich content from NASA missions, unlike OpenSpace the Eyes
executables are non-extensible applications.

Gaia Sky [28] is an open source system designed to visualize and
analyze the stars in the Milky Way gathered from the ESA Gaia mis-
sion. Currently, it can visualize 1.3 billion stars through the use of a
novel, magnitude-space LOD octree data structure. Gaia Sky provides
capabilities for visualizing the universe but lacks some of the features
of OpenSpace such as globe browsing [4], the ability to read and use
NASA SPICE kernels for space missions other than Gaia, and the
ability to incorporate other data sources, such as volumetric data sets.

Another software that originated as a scientific collaboration is the
CROSSDRIVE project, which focuses on the exploration of surface
features on Mars [18]. The software provides GIS tools to visualize
elevation data, ability to define landing ellipses, and inspect volumetric
data sets. Additionally, it has the ability to place surface rover models
into the virtual terrain. The project is aimed at creating a distributed
virtual environment for these rovers using telepresence technology that
supports a collaborative decision-making process for scientists and

engineers [17, 27]. It produced results for three use cases, namely data
analysis for Martian atmospheres, characterization of rover landing
sites, and rover target selection during its real-time operations. CROSS-
DRIVE provides high-resolution surface terrain rendering similar to
OpenSpace’s globe browsing, but uses the HEALPix map projection
format instead [19]. However, it lacks many of the other features of
OpenSpace, such as rendering capabilities for the greater universe,
and support for other planetary bodies in the solar system. Unlike
OpenSpace, CROSSDRIVE is not open source.

3 CHALLENGES

There are several aspects and challenges that need to be addressed when
designing and implementing a system for astrographics. Here, we give
a summary of the key challenges addressed in the development of the
OpenSpace system.
Spatial and Temporal Scales Spatial scales range from millimeters
on models of spacecrafts to billions of light years reaching out to the
end of the universe. As the scales exceed the normal floating point
representation, special care needs to be taken to avoid imprecision in
rendering and navigation. The time scales of interest are also ranging
from seconds in the changes of the solar wind to billions of years in
the cosmological perspective. This calls for navigation and interaction
aides to identify points of interest for both space and time and enable
multiple representations of the same object/phenomenon.
Variety of data sources The ability to dynamically load and access
different types of data from varying sources is critical to depict past,
current, and anticipated events in astrographics rendering. Data may
range from raw observation data, such as imagery from satellites or
space probes of planetary surfaces and star fields, to derived informa-
tion originating from observations, such as positions and trajectories
of celestial bodies including planets, stars, galaxies, and exoplanets.
Moreover, the ability to incorporate simulation data is key for astro-
graphics, for example simulations of solar wind or the simulation of
galaxy formation. Trajectory and event data from space missions are
necessary for mission planning and presentation.
Collaborative Experiences The ability to share sessions between
planetariums allows events, such New Horizons Pluto fly-by (Figure 4),
to be shared between planetarium presenters, mission scientists, and the
public. At times, it is important for scientists to remotely work together
whether they are in different laboratories or in the same building, and
an astrographics systems needs to account for this requirement.
Flexibility and Robustness Given the wide scope of applications
and data sources, a system for astrographics must be easily and dy-
namically configurable and extensible. This requires effective data
management, and support for incorporation of new rendering modules
and means of interaction. As OpenSpace is deployed in production
at public venues, the demands on reliability and robustness are at the
same level as any commercially available software product.

4 THE OPENSPACE SYSTEM

To deal with the myriad of challenges that arise in astrographics, we
designed the OpenSpace architecture to be flexible and extensible at
multiple levels (Section 4.1). Developers are able to write new Modules
(Section 4.1.1) that can implement entirely new features, interaction

methods, or rendering techniques. Builders are able to use the Asset
system (Section 4.1.3) to combine existing modules created by Devel-
opers to create new scenes and visualize new data sets using existing
methods. OpenSpace addresses the challenge of supporting a variety of
display devices from desktop displays to power walls to planetarium
domes (Section 4.1.4). Lastly, Users can utilize existing scenes created
by Builders to explore data and use the scripting (Section 4.2.2) and the
user interfaces (Section 4.2.5) to manipulate available scenes and either
explore the available data self-driven or use it as a presentation tool.

To enable collaborations, OpenSpace provides the ability of Astro-
casting to link together shared sessions for collaborative experiences
(Section 4.3). OpenSpace provides for session provenance and easy
playback through the recording of scripting, control data, assets, and
camera paths (Section 4.4).

4.1 Architecture

There are four layers to the architecture of OpenSpace which were
influenced by addressing the challenge of flexibility, see Figure 5.
OpenSpace-Core The OpenSpace-Core software package contains
components to manage the rendering, to define multiple orthogonal
APIs to support extensibility, and determines the overall application
flow. Included in this is support for command line parsing, OpenGL ren-
dering, texture loading, font rendering, defining abstract base classes for
the module interface, networking APIs, as well as, support for scripting
components (Section 4.2.2), windowing configuration for display (Sec-
tion 4.1.4), and infrastructure to load scenes at runtime (Section 4.1.3).
Additionally, the core provides the scene graph handling (Section 4.1.2),
handles user interaction (Section 4.2), and controls the flow of the ren-
dering component. The OpenSpace-Core is written in C++ and is a
monolithic subcomponent of the OpenSpace system.
Modules Modules in OpenSpace are self-contained packages that
provide specialized instances of C++ classes used for rendering and data
management, provide scripts to influence the rendering of objects that
are defined in a module, and respond to user input. The objects defined
in a module are used to initialize scene graph nodes when loading a
scene. Modules are described in greater detail in Section 4.1.1.
OpenSpace applications The main OpenSpace application uses the
OpenSpace-Core, the enabled modules, and the selected windowing
framework and creates the actual executable file that is used by builders
and users. Moreover, other utility applications use the same libraries
to facilitate collaborative experiences (Section 4.3) and to provide
command line tools for developers.
External applications Through the definition of a network API, it
is possible for external applications to communicate and control an
OpenSpace session. For example, the OpenSpace user interface based
on the Chromium Embedded Framework is using this API to communi-
cate with the main application (Section 4.2.5). The network API allows
customized third-party user interfaces to interact with OpenSpace.

Assets

Display system
configuration

Configuration

External
resources

��������������������������������

OpenSpace
Application

XML

LUA

LUA

Fig. 6. Loading of display configuration and the asset graph involves a
scripting language (Lua), which enables a simple, yet powerful, runtime
configuration of the scene graph.

OpenSpace is combining these four building blocks into a modular
architecture with customization that manifests on three levels. First,
the software system has modularity at compilation time, where entirely
new modules can be added by developers and are enabled and disabled
independently. The selection of enabled modules results in an applica-
tion that has a particular set of functionality, for instance determining
whether there is support for volume rendering or not. The selection
of enabled modules results in a single compiled program. Figure 6
shows an overview of the remaining two customization methods avail-
able at the start of an OpenSpace session. The scene composition is
defined through an asset graph specified by Asset files that determine
the content of the underlying scene graph at runtime and determine
which of the defined renderable objects is used in a particular instance
of OpenSpace. Assets contain descriptions of scene graph nodes and
also define scripts to be executed at initialization time to define key
bindings, which data to load, determine visual properties, and other
runtime attributes (Section 4.1.3). The display system configuration
specifies the number of image generators in a rendering cluster, the
number of windows per device, and the type of rendering for each
window. This flexibility enables the same application to drive a single
window on a desktop computer to a multi-pipeline rendering cluster
displaying in a planetarium without the need for specialization.

The main scripting language in OpenSpace is Lua, which is a simple,
yet powerful language [21] that is often used as a drop-in scripting
language for games [20]. We chose Lua as the scripting language,
as opposed to Python, since it only possesses a reduced number of
data structures and a simple syntax, which makes it possible for non-
programmers to edit scripts that perform efficiently at the same time.
OpenSpace provides a large number of Lua functions in a helper library
that makes common operations easy for non-programmers.

4.1.1 Modules

Additional functionality is added to OpenSpace through the use of an ex-
tensible module system. The usage of distinct, self-contained modules
enables a separation of concerns that increases the resilience when dis-
tributing modules between developers and to the public. It also allows
developers to extend the functionality of OpenSpace while requiring
only minimal knowledge of the rest of the system, thus decreasing the
effort required to incorporate new functionality. The trade-off is that
modules can only perform the set of OpenSpace actions that are defined
through the API in the OpenSpace-Core.

Modules provide this customization by adding additional function-
ality through an API defined by the OpenSpace-Core. Modules can
only have a compile-time dependency on the OpenSpace-Core and
other explicitly named modules. In addition, modules are allowed
to have dependencies on third-party libraries, as those dependencies
would only impact the module itself and other modules that depend on
it. One such third-party library is GDAL, the Geospatial Data Abstrac-
tion Library [32], that is part of the pipeline used to render planetary
surfaces and the globe browsing component [4]. Apart from the explicit
dependency between modules, all modules have to be optional and a
requirement of OpenSpace is the ability to successfully compile with-
out any modules enabled even though the resulting application would
not be able to perform any visualization tasks.

Modules can combine the definition of new transformation classes,
renderable classes, third-party dependencies, and utilization of mul-
tiple callbacks throughout the frame rendering exposed by the
OpenSpace-Core to perform a large number of possible actions. Mod-
ules can provide new Lua functions (Section 4.2.2) that are available for
users of OpenSpace. Once registered, these Lua functions are available
to be called either though the built-in command line console or through
integrated or external graphical user interfaces.

An example is the Gaia module that contains a Renderable sub-
class that renders an octree-based subdivision of a large star catalog,
such as the Gaia dataset, contains Lua scripts to preprocess the data,
and helper classes that are not used by OpenSpace-Core, but simplify
the code and can be used by future dependent modules. Another exam-
ple is the Webbrowser module that includes the Chromium Embedded
Framework used to render OpenSpace’s user interface (Section 4.2.5).

4.1.2 Scene Graph
While the specification of the scene graph follows commonly used
patterns, OpenSpace utilizes the approach presented by Axelsson et
al. to handle the large scale differences that occur in the universe by
changing the traversal scheme of the scene graph nodes during the
rendering step [3]. This method is centered around a dynamic traversal
strategy that treats the currently selected focus node (Section 4.2.4)
as the origin of the transformation traversal. This method achieves
high numerical precision for objects that are close to the focus node
regardless of their location relative to the global scene graph origin.

OpenSpace maintains a single scene graph that represents the par-
ent/child relationship of all loaded objects. As with a traditional
scene graph, each node has a transformation component that consists
of Translation, Rotation, and Scaling subcomponents, each of
which are optional. In addition, each scene graph node has an optional
Renderable subcomponent that implements an interface for render-
ing to screen. Each of the Translation, Rotation, Scaling, and
Renderable subcomponents is part of the developer API and is spec-
ified in concrete modules using a factory pattern. Scene graph nodes
that have a Renderable subcomponent are called Render Nodes. If
they do not possess the subcomponent they are Internal Nodes that
can be used to group transformations for child objects, for example
satellites orbiting a co-rotating Earth. In either case, scene graph nodes
are used to organize the spatial and logical relationships of all elements
in the scene. This also means that if a scene graph node is disabled, all
of its children will not be updated or rendered either and thus will only
impact the system’s performance minimally.

All scene graph nodes have a unique identifier that is used to identify
an individual scene graph node as well as its subcomponents. This
identifier is used as part of a URI system to change the rendering
parameters of scene graph nodes (Section 4.2.1) as well as to specify
the parent/child relationship used to construct the scene graph in the
first place. In addition, scene graph nodes can also be tagged with any
number of user-defined descriptors to group these in a user interface or
provide access to a group of scene graph nodes in scripts, for example
setting the scaling factor for all terrestrial planets.

Figure 7 shows an example of the specification for a single scene
graph node using the Lua scripting language. When loading a scene, the
Lua specification of all scene graph nodes will be used to create their
C++ class representation based on the provided names using a factory
pattern. In this example, the SpiceRotation is provided by a different
module (Space) from the RenderableGlobe (GlobeBrowsing) and do
not have any dependency on each other. The SpiceRotation is an
example of the transformation classes that are based on the NASA
SPICE library [2], which is used in the majority of celestial objects
and spacecraft in OpenSpace. Another example of a transformation
is the TLETranslation which utilizes two-line elements, a common
representation of the six Keplerian elements used to describe a closed
orbit; a representation that is computationally more efficient than using
SPICE and thus used for satellites and space debris.

4.1.3 Asset System
While the Module system described above provides code customization,
it is desirable to provide a flexible means of setting up scenes and
settings for non-programmers. This functionality enables user to create
content based on new data sets using existing rendering techniques.

To enable integration of heterogeneous data into the system and to
provide a flexible means for setting up scenes and settings, OpenSpace
provides a subsystem for declaring modular components of data and
configuration. Such components are called Assets and are manifested
as Lua scripts that provide methods for its initialization and deinitial-
ization. Assets may declare dependencies towards other assets and thus
create a directed acyclic graph that starts with an implicitly generated
root asset. Assets can request both local and external resources, which
are fetched from the internet. One type of external resource uses a cus-
tom server that uses version numbering so that the data sets only need
to be downloaded once and are then cached locally. This mechanism
enables support for delivering updates to users easily by increasing the
locally requested version number and enables forcing a download of

local jupiter = {
 Identifier = "Jupiter",
 Parent = "JupiterBarycenter",
 Transform = {
 Rotation = {
 Type = "SpiceRotation",
 SourceFrame = "IAU_JUPITER",
 DestinationFrame = "GALACTIC"
 }
 },
 Renderable = {
 Type = "RenderableGlobe",
 Radii = { 71492000, 71492000, 66854000 },
 SegmentsPerPatch = 64,
 Layers = {
 ColorLayers = {
 {
 Enabled = true,
 Identifier = "Texture",
 FilePath = textures .. "/jupiter.jpg"
 }
 }
 }
 },
 Tag = { "planet_solarSystem", "planet_giants" },
 GUI = { Path = "/Solar System/Planets/Jupiter" }

}
openspace.addSceneGraphNode(jupiter);

Fig. 7. Specification of a scene graph node. A unique identifier for each
scene graph node is used to explicitly specify the parentage of each
node. The flexibility of Lua enables both the explicit definition of scene
graph nodes as shown here, but also to create these programmatically.

the latest data upon start-up regardless of version numbering. This is
useful when loading data from services that are continuously updated
such as the most current satellite data from CelesTrak [23].

In OpenSpace, a scene is created by initializing the complete acyclic
graph of a root level asset and its dependencies recursively. The system
guarantees that all dependencies are initialized in topological order
and that any resources residing on external servers are downloaded
before initialization can begin. As an example, two independent assets
consisting of a planet and a spacecraft may both reference a third asset
that is responsible for downloading a common set of SPICE kernels.
Whenever a new revision of the SPICE kernels is made available, the
common reference can be changed, which propagates to the other assets.
This increases the reusability of components.

Assets have access to Lua functions defined by the
OpenSpace-Core and the modules. For example, assets may use the
Lua functions addSceneGraphNode and globebrowsing.addLayer
to create new scene graph nodes or add new virtual textures to a
planetary surface respectively, use bindKey to create a new keyboard
shortcut that is available during a session, or setPropertyValue to
influence the rendering parameters of the system (Section 4.2.1).

4.1.4 Simple Graphics Cluster Toolkit

A major design goal of OpenSpace is to support seamless execution of
the same application on a variety of different display devices. This can
be achieved through the introduction of an abstract windowing layer
that hides the concrete rendering setup, for example whether the scene
is rendered stereoscopically, from the rendering engine. In OpenSpace,
this is achieved through an API defined by OpenSpace-Core that
is implemented by a concrete windowing framework. The default
windowing framework included with OpenSpace is the Simple Graphics
Cluster Toolkit (SGCT) developed at Linköping University [11]. It is
a layer on top of the widely used GLFW library used to create and
manage windows and rendering contexts. SGCT also provides the

Fig. 8. A selection of display devices that are supported by OpenSpace use of the Simple Graphics Cluster Toolkit. Regular laptop and desktop
systems with arbitrary number of displays (a), large-scale touch tables (b), and planetarium environments (c). In all three cases, the same executable
is used with different configuration files to generate the images.

ability to synchronize data in a clustered environment using a network
interface. Additionally, it provides support for performing the necessary
computations to generate stereoscopic viewpoints, tiled display walls,
as well as many other output rendering formats. SGCT also provides
the ability to warp the output, thus enabling the support for non-planar
projection methods, such as fisheye projections or spherical mirror
projections. These projections are implemented by performing multiple
render passes to create the required parts of a cube bounding box. These
images are then reprojected as a post-processing step to create the
desired output format, which can be a 180 degree fisheye projection, an
equirectangular projection or any other custom format. This approach
provides great flexibility as new output methods can be added easily.

In the case of SGCT’s use for multi-pipeline display systems, each
image generator is running the same OpenSpace application, but is ren-
dering a different viewpoint as defined in the windowing configuration.
A master node is used to process user input and modify the underlying
state, which is then replicated to all connected image generators.

This solution makes OpenSpace flexible and solves the challenge of
providing a visualization tool for many different presentation venues.
This approach follows the “Compile once, run anywhere” paradigm as
the system should not be aware of the display type that is used.

SGCT also provides built-in support for frame locking, which is
a essential technique when using a mosaic projector tiling, in which
different computers are responsible to render different elements of the
mosaic. These setups are very common in power walls or planetarium
environments. In those cases, if the timings of the projectors’ frame
output are not synchronized, tearing can occur on the border between
two displays. For professional graphics hardware, hardware synchro-
nization is available which forces the buffer swap to happen at the
same time on the graphics driver level. For non-professional hardware,
SGCT provides the ability to emulate this using light-weight network
packages that are able to perform the same task.

It is possible to use other windowing frameworks. As an example,
OpenSpace has been used with the MinVR windowing framework that
has a stronger support for virtual reality hardware than SGCT [25, 26].

4.2 Interaction

A robust and flexible interaction scheme provided by a diverse set of
input devices is vital to an effective astrographics tool. OpenSpace also
supports a variety of interaction devices, among which are keyboard and
mouse, joysticks, and gamepads. Additionally, the OpenSpace-Core
defines a flexible API that can be used to add new interaction devices.

The main interaction facility is provided by the execution of Lua
scripts. This defines a single common interface that makes it easy
to serialize the user’s interaction and thus enable reproducibility and
replicability of the input (Section 4.3 and Section 4.4). However, as
there is overhead when dealing with executing textual representations of
scripts, the camera and global time in OpenSpace are typically handled
without the use of the scripting system since these rendering parameters
are expected to change potentially every frame.

4.2.1 Property System
User-changeable settings in OpenSpace are wrapped in a concept called
a Property. Among the elements added in properties are an identifier
that is unique to the owner of the property, a user-facing name and
description, and a visibility setting that determines whether a property
is user-facing, developer-facing, or an advanced feature.

Properties are implemented as an extension of class member
variables and is thus strongly typed. Examples of properties
include IntProperty, Vec4Property, TriggerProperty, and
StringProperty. A property includes metadata that is used to auto-
matically generate information for the user interfaces and the ability to
access the properties from scripts (Section 4.2.2).

If the property represents a numeric value, there are options for an
admissible minimum and maximum value and step value. This meta-
data is used by the graphical user interface to display the correct type
of a component and provide the user with a reasonable interface. Addi-
tionally, properties can have views that ought to change the behavior of
user interfaces when displaying the properties in a user interface. For
example, the Vec4Property has a view option Color that is set by
the developer for Vec4Propertys that semantically represent a color
and the user interface can use that information to display a color picker
instead of individual numeric values. However, the user interface is
free to ignore this metadata depending on the use case, for example a
developer interface might want to disable all checks about minimum
and maximum values.
Propertys are owned by PropertyOwners, which, in turn, can be

owned by other PropertyOwners. This organization leads to a tree
structure, providing a unique identifier for each Property, that can
be used by scripts to get and set property values. Scene graph nodes
and its subcomponents described in Section 4.1.2 are all subclasses of
PropertyOwner, thus contributing to this unique identifier.

In addition to using the property types provided by the
OpenSpace-Core, modules can create their own property types
that are accessible for classes within that module and its de-
pendent modules. For example, the volume module defines a
TransferFunctionProperty that encapsulates a transfer function
used by a volume renderer.

4.2.2 Scripting
Scripting is a fundamental aspect of OpenSpace’s interaction design.
Apart from being the only way to modify Property’s from a user
interface, scripting also provides access methods to change the scene
graph structure, load and unload assets at runtime, defining keyboard
shortcuts, change rendering parameters, providing input mapping for
interaction devices, provide a programmatic interface to the camera
and the time, and much more. One benefit is the achievement of a
greater level of flexibility that a full programming language provides;
by treating configuration as code, rather than data, it empowers a knowl-
edgeable user to customize an OpenSpace session to a much greater
extent. A drawback of this system compared to a more declarative
approach is that it impossible to validate configurations before exe-
cuting them as a script can contain arbitrary code that is executed by

OpenSpace at start-up time. Additionally, writing a declarative-style
text file for the configuration would be more intuitive for builders that
do not have experience using a programming language.

Modules can create their own script functions either in C++ or as a
Lua library that are placed in their own namespace. For the end user,
the only visible distinction between scripts defined in the core and
module-defined scripts is this namespacing.

Properties are set through the setPropertyValue Lua function,
which requires the property’s unique identifier as a parameter. Addi-
tionally, the function has support for regular expressions that can match
parts of the property’s unique identifier (URI). This can be used to
edit a large number of property values simultaneously. For example,
the script openspace.setPropertyValue(’Scene.*.Renderable.Enabled’,

false) would disable all objects in the scene graph simultaneously.

4.2.3 Network API

Interoperability with other software systems is important for many
astrographics use cases, including integration with other visualization
tools and custom user interfaces for installations in exhibitions.

Based on the desire to support a diverse set of tools and languages,
OpenSpace provides a network interface, that can be configured to
accept connections from other applications using both TCP sockets and
WebSockets. The protocol is based on JSON and the notion of Topics,
which are independent communication channels, allowing multiple
concurrent and asynchronous requests to the OpenSpace main appli-
cation. For example, subscribing to a property value can be achieved
by initializing a Topic of the type Subscription and specifying the
property’s unique identifier. Whenever the Property value updates,
the client receives a message within that Topic, specifying the new
value of the Property. Using a Topic of the type LuaScript, it is
possible execute and acquire the return values of custom lua scripts.
OpenSpace modules may add additional Topic types to provide addi-
tional sub-protocols for interacting with module specific functionality.

4.2.4 Navigation

The default interaction mode in OpenSpace is based on the concept
of an orbital navigation mode. In this mode, the user designates an
arbitrary scene graph node as the Focus Node, which results in all inter-
actions being performed relative to that node. The possible interactions
include a circular (orbital) movement around the object, translation
along the line connecting the camera and the center of the focus node,
a roll rotation around the same connecting axis, and an additional local
camera rotation that enables panning movements. The camera model
also supports optional friction modes for each of these interaction com-
ponents that slow down the camera over a period of a few seconds if no
continuous interaction is performed.

Scene Graph Property System

Scripting

Renderable

Translation

������������������� ��������
�����
��������
���
�	��������� ��
�������������
�

������������
�������
��
�������������������������
�

Rotation

Scaling

RenderableSphere
 : Renderable : PropertyOwner

Vec3Property
...

Color
OpacityFloatProperty

Identifier: ExampleSphere

Navigation

Rendering

N
etw

ork A
PI

U
ser Interface and External A

pplications

Fig. 9. The scene graph is populated by instantiating classes provided in
Modules. Scene graph objects expose properties, that are changeable
through scripting, which in turn is exposed via a Network API. Navigation
is controlled directly through input devices or using the Network API.

As the camera position is defined relative to the focus node, it will
follow its movements. Otherwise, it would be cumbersome when
focusing on a fast moving object, such as Earth in its orbit around the
Sun. In addition to the relative position of the camera, OpenSpace also
supports an automated co-rotation with the selected focus node if the
camera is closer to the node than a user-defined distance threshold. If
the distance is below the threshold, the object’s rotation will also be
applied to the camera, otherwise it will rotate underneath the camera.
This enables the user to place the camera on the surface of a planetary
body and see the movements of other objects when playing back time.

All interaction components are automatically scaled exponentially by
the distance from the camera to the focus node. The exponential scaling
addresses the challenge of large scales that are present in astrographics.
For example, when navigating the surface of a planetary body, the user
expects the camera to move in the velocity ranges of meters per second,
whereas when navigating the Sloan Digital Sky Survey of galaxies, we
need to be able to move in the velocity ranges of million light-years
per second. The exponential factor and a multiplicative factor, can be
changed by the user to customize the desired input sensitivity.

Modules can define their own interaction methods, such as func-
tionality that specializes the interaction for multi-touch-capable input
devices [6] or devices using accelerometers, such as phones or tablets.

Temporal Navigation Every object in OpenSpace is using a single
unified time provided by the OpenSpace-Core to synchronize data
sets in order to help with contextualization. The Delta Time determines
the speed at which time advances in the simulation in the units of
simulation time
wall clock time . The user can interactively change the delta time to inspect
events that occur at different timescales, for example seconds in the
case of rover motions on Mars, or tens of thousands of years in the case
of stellar movement.

The time in OpenSpace is represented as the number of seconds
past the 2000-01-01 epoch and is stored as a double precision floating
point number. Although this poses limitations on the achievable possi-
ble precision (double machine ε is about 2 ·10−16), this still provides
nanosecond accuracy for contemporary data sets. The range of repre-
sentable numbers in double precision format is ≈ 10300 years, which is
sufficient for astrographics data.

4.2.5 User Interface

The OpenSpace system provides a built-in graphical user interface
(GUI) constructed with the Chromium Embedded Framework (CEF),
which is a library used to render webpages [16]. The user interface
webpage uses the Facebook React and Redux libraries [13, 14] for
a dynamic and responsive GUI. It is served by a local stand-alone
webserver and rendered in OpenSpace in a separate module using CEF.
The user interface communicates with the running OpenSpace instance
on the local machine using a WebSocket connection (Section 4.2.3).

Typically, the GUI is rendered on top of the visual output of the
OpenSpace scene on the user’s desktop. However, it is also possible to
decouple the GUI from the OpenSpace instance by using an external
browser instead. This is useful if the main rendering window is shown
in a planetarium dome and the user interface would clutter the view.
Furthermore, it enables access to the GUI from any device with a web
browser, such as a tablet or smart phone.

This system is designed such that the rendered web page is deter-
mined by the scene that is loaded. This enables the use of specialized
user interfaces for scenes and also enables the rapid prototyping of user
interfaces without the need to recompile the OpenSpace application.

The development of OpenSpace started with a native, intermediate-
mode graphical user interface using the ImGUI C++ library. OpenSpace
migrated to the Chromium Embedded Framework and React/Redux
to increase the flexibility that comes with an easily editable user in-
terface that does not require a recompilation and thus enables a faster
iteration time. This enables a more rapid prototyping of new interface
components. The separation of the underlying rendering component of
OpenSpace from the generation of the user interface also reduces the
required knowledge about the rendering that an interface designer has
to possess in order to create new interface components.

4.3 Collaborative Experiences / AstroCasting
One of the major potential benefits of astrographics in general and
for OpenSpace in particular is the increase in potential collaborations
across geographically distributed locations. There are two kinds of
collaborations to be considered.

First, a domain expert speaker wishing to give a public presentation
about their topic of interest using their own data. Instead of presenting
to a single venue at a time, and thus limiting the number of people that
can participate and learn from the presentation, it would be beneficial
to include a greater number of other venues in this presentation. This
includes streaming the audio and video feed of the presenter, as well as
synchronizing the rendering that each venue is experiencing.

The second type of collaborative experiences involve groups of
scientists that desire to share discovery sessions that include new data
sets or new findings. This technique has the potential to increase the
efficiency of these sessions as it allows for an immediate dissemination
of the data sets. For this to be effective, it is essential to be able to pass
session control between the different partners.

The synchronization of the rendering in OpenSpace is achieved by
streaming the state changes to the camera and time, as well as all
executed Lua scripts. This approach is superior to streaming video in
two ways: 1) the required bandwidth to stream rendered video is much
greater than streaming the state of an application like OpenSpace and 2)
it is possible to hand-off control of the session to a client site increasing
the collaborative aspect of the event.

A stand-alone server application called Wormhole is serving as the
central hub to which individual OpenSpace instances connect. This can
be password protected or open to the world. In the presentation case
described above, the connecting partners might be planetariums or other
public venues, but this also allows users on their own home computer to
connect and join the collaborative session remotely. Each joint session
has one host at a time and an arbitrary number of peers. All camera
movements, time changes, and all Lua scripts that are executed by the
host are sent to the Wormhole server and then automatically distributed
to the connected peers that will update their own local OpenSpace
instance according to their local display setup. This makes it possible
to control various display devices such as spherical display devices in
planetariums, power walls, warped projections, and home computers at
the same time offering tremendous flexibility. If the creator of the joint
sessions has enabled shared control, it is possible for a peer, knowing
the correct password, to seemlessly assume control over the session
becoming the host and continue the exploration.

4.4 Session Provenance
We desire the ability to record and replay sessions to foster reproducibil-
ity, distribute sessions between planetariums, and address the challenge
of collaboration between domain scientists using OpenSpace. While
some of these use cases could be solved by recording regular videos
of an OpenSpace session, there are other cases when a more elaborate
solution is required. For example, it is desirable to be able to replay a
session with a different set of configurations or on a different projection
system. Furthermore, it is useful to be able to stop the playback, interact
with the system, and resume the playback.

To address these scenarios, OpenSpace contains a subsystem that
manages full session provenance. When enabled, the system records
the camera position and orientation as well as the current time and delta
time each frame. In addition, each executed Lua script is recorded. As
described above, Lua scripts are the only way for the user to change
the state of the OpenSpace system and, thus, it is guaranteed that this
mechanism captures all possible changes during an OpenSpace session
which can then be saved to a local file. When the provenance file is later
played back, the session will be repeated automatically with exactly
the same behavior as during the initial recording.

Capturing the state of the system has benefits over similar ap-
proaches. Capturing individual frames and storing the session as a
video would not have the ability to stop the playback and interact with
the system a posteriori; capturing the raw mouse and keyboard input
would make it cumbersome to redistribute the resulting files to a differ-
ent display setup, as the input might depend on the type of display and

Fig. 10. Visualization of the excursions of the Apollo 17 astronauts using
the Lunar Roving Vehicle in the context of satellite imagery of the landing
site from Lunar Reconnaissance Orbiter.

its resolution or the available input modalities and manually executed
Lua scripts would be missed. Instead, by capturing the entire prove-
nance, it becomes possible to distribute session files among researchers
wishing to collaborate asynchronously or playback planetarium pre-
sentations as semi-interactive shows. Additionally, it is also possible
to save a distributed collaborative session as described in the previous
section to a provenance file that can be stored for prosperity.

4.5 Performance
The performance measurements that are reported have been conducted
on a 2.9 GHz Intel i9 CPU with an nVidia Geforce 2080 graphics card
rendering a 3840×2160 resolution output image and the framerates
are averaged over several hundred frames. All rendering parameters,
including those which impact performance, are the same used for
creating their respective images.

• Apollo capsule (Figure 1, left): 46 fps.
• Sloan Digital Sky Survey (Figure 1, right): 67 fps.
• Coronal Mass Ejection (Figure 3): 55 fps.
• New Horizons (Figure 4): 81 fps.
• Apollo 17 Landing site (Figure 10): 47 fps.

5 DISCUSSION AND UTILIZATION

This section discusses how OpenSpace is utilized in the context of the
use cases for astrographics described in Section 1.1 and how its design
contributes to these usage scenarios.
Tool in astronomy research OpenSpace is being used by the Commu-
nity Coordinated Modeling Center at NASA Goddard to visualize and
analyze space weather simulations [8]. Figure 3 shows the Bastille day
coronal mass ejection visualized using time-varying fieldlines depicting
the induced magnetic field and a time-varying volumetric rendering of
the plasma density. Additionally, OpenSpace has been used to render
the Gaia data set [10] to a meeting of leading Gaia researchers and was
used in a large collaborative session investigating this data (Figure 2).
Key OpenSpace components supporting these use cases are:

• The Asset system described in Section 4.1.3 that enables the
customization at start-up of an OpenSpace session needed to
support dynamic data.

• The use of a JSON-based interface for the networking API cre-
ates the possibility to use other programming languages, mostly
Python and IDL in the case of heliophysics experts, to connect to
OpenSpace and provide information over the socket interface.

• The definition of a fixed data format for stellar measurements,
in this case the SPECK format, made it possible for a selected
number of researchers to provide their own custom data sets on
short notice and include these in the collaborative session.

Tool for interactive planetarium shows OpenSpace has frequently
been used for a number of years in an increasing number of plane-
tariums around the world. Among many other topics, this includes
presentations of the large scale structure of the Milky Way and universe
using the Digital Universe data catalog [1]. Some of components of
OpenSpace enabling this are:

• The Simple Graphics Cluster Toolkit which supports a number of
different display systems. The ease of creating SGCT configura-
tion files enabled the installation of OpenSpace on currently 20
informal science institutions around the world. The definition of a
common interchange format in SGCT also fostered collaborations
with all major planetarium hardware vendors.

• The flexibility of the Asset system and the ability to dynamically
load new content which has enabled many of the partners to create
assets without the help of the core development team. Figure 10
shows one result of this flexibility as a visualization of the landing
site of Apollo 17.

• The flexible user interface (Section 4.2.5) which makes it possi-
ble to expose the software to a greater number of facilitators at
planetariums as well as novice users in the general public.

Tool for mission planning and communication OpenSpace was used
in several linked planetariums to show the New Horizons fly-by in
real-time [5, 7] which was accompanied by descriptions from scientists
on the mission team as the fly-by was occurring. The same techniques
also enabled the visualization of the Rosetta [5] and OSIRIS-REx [6]
missions. The enabling OpenSpace features include:

• AstroCasting (Section 4.3), which has enabled a number of suc-
cessful public presentations that included multiple planetariums,
as well as live streams to video streaming services.

• Local recording using the session provenance (Section 4.4) and
the play back at a later time which creates the ability to include
geographically distributed locations in different time zones.

Over the last four years, OpenSpace has been used in a large number
of public presentations, which included local activities, presentations
using the Astrocasting system, as well as productions for video stream-
ing services. Through all these modalities, the system has reached over
500 000 members of the public, showing the impact that open source
software can have on exposing these audiences to scientific data. Addi-
tionally, there has been an informal session with the Mars 2020 Science
Definition Team inspecting CRISM data for the potential landing sites
of the Mars 2020 rover. This collaboration was only possible due to the
reliance on well-known third-party libraries which acted as a common
interface to the mission science team.

6 FUTURE WORK

As with any other long-term developed software system, the develop-
ment will never reach the point where no more future work is left to
be done and OpenSpace is no exception to this. However, from our ex-
perience of conducting public presentations in astrographics scenarios,
we were able to distill potential additions to a number of features that
would have the greatest impact on similar software systems.
Offline rendering. While OpenSpace is designed first and foremost
for real-time usage, there are many situations where the creation of
a high-resolution video is desirable. For example, when the required
resolutions are not achievable yet in real-time or for producing movies
to be shown in a planetarium without the hardware to operate an inter-
active software. To be able to support this, we are planning to extend
the session provenance and rendering components of OpenSpace to be
able to export individual frames at high-resolution when playing back
a session recording. This technique also requires the extension of the
rendering API for custom renderable objects to be able to wait until all
available data has been downloaded before creating an image. With
this method, the domain expert can record an OpenSpace session at

low resolution at interactive frame rates on their own laptop and use
the session provenance file to render the same sequence at a higher
resolution a posteriori.
Dynamic Modules. Currently, all modules for a specific
OpenSpace application have to be selected at compile time. This poses
a limitation on Developers as they need to compile the entirety of all
modules, OpenSpace-Core, and the application every time they want
to add a new module. To be able to engage a greater number of devel-
opers and reduce the time required to add a new module, it would be
beneficial to be able to refactor this using a plug-in architecture instead,
where modules can be loaded and unloaded at runtime. This entails
that developers can create new modules without requiring the source
code other than their own module, which would, in turn, improve the
efficiency of developing new modules.
OpenSpace Content Builder. To mitigate the complexity of using
the Lua scripting language to specify assets, we are planning to create a
graphical software tool that helps Builders to create new assets quickly.
By analyzing which modules are currently available for an OpenSpace
instance, it is possible to automatically create lists of available classes
and provide a graph-based user interface to the user to drag and drop
new asset trees and then export these as Lua-formatted assets. In
addition to being able to quickly generate new assets, exporting them
as Lua also enables the builder to further customize the assets after they
have been created to retain the full ability to customize assets.
Content database. Utilizing the capabilities of a content builder
tool, we expect builders all around the world to quickly create a large
number of potentially useful assets that they would want to share with
other users of OpenSpace. Similar sharing services exist for other
software systems, such as Celestia, but using the ability to modify the
scene graph at runtime enables OpenSpace to expand on these databases
by being able to automatically download an asset and directly integrate
it, so that the time between selection of an asset and inclusion in a
public presentation would be minimal, furthering the ultimate goal of
reducing the time between discovery and presentation.
Other domains. While OpenSpace was developed for astrograph-
ics, the OpenSpace system is flexible. It would be interesting to in-
vestigate how this could be applied to other domains with similar
visualization challenges, such as molecular biology.

7 CONCLUSIONS

In this paper we have presented the OpenSpace system, an open source
initiative in the area of interactive astrographics. The ambitious goal for
OpenSpace is to serve as a platform for three different but connected
areas: 1) Science communication 2) Research in astronomy and space
science 3) Research in visualization. The underpinning idea is the con-
fluence of exploratory and explanatory visualization and in particular
the use of research data in science communication. We have described
typical use cases of the system, each showing how OpenSpace meets
the challenging mission of providing interactive visualization in a range
of contexts, including planetarium shows, interactive installations at
museums and science centers as well as supporting scientific discovery
workflows. Over the years a participatory design process has been used
in science to solution cycles to meet the challenges posed by interactive
astrographics. The system architecture is modular and configurable,
allowing developers, scientists, and science communicators to tailor
OpenSpace to their needs, import their own data sets and share inter-
active sessions. The resulting OpenSpace system is a vehicle for the
introduction of the next generation of interactive and data driven use of
visualization in astronomy and space exploration.

ACKNOWLEDGMENTS

This work was supported by NASA Cooperative Agreement Notice
under grant NNX16AB93A, the Knut & Alice Wallenberg Foun-
dation through the WISDOME project, VR grant number 2015-
05462, the Swedish e-Science Research Center, the Moore-Sloan
Data Science Environment at NYU, NSF awards: CNS-1229185,
CCF-1533564, CNS-1544753, CNS-1626098, CNS-1730396, CNS-
1828576. The presented software system source code is available at
https://github.com/OpenSpace/OpenSpace.

REFERENCES

[1] B. Abbott. The digital universe guide for partiview, 2006.
[2] C. H. Acton Jr. Ancillary Data Services of NASA’s Navigation and

Ancillary Information Facility. Planetary and Space Science, 44(1):65–70,
1996. doi: 10.1016/0032-0633(95)00107-7

[3] E. Axelsson, J. Costa, C. T. Silva, C. Emmart, A. Bock, and A. Ynnerman.
Dynamic Scene Graph: Enabling Scaling, Positioning, and Navigation in
the Universe. Computer Graphics Forum, 36(3):459–468, 2017. doi: 10.
1111/cgf.13202

[4] K. Bladin, E. Axelsson, E. Broberg, C. Emmart, P. Ljung, A. Bock, and
A. Ynnerman. Globe Browsing: Contextualized Spatio-Temporal Plan-
etary Surface Visualization. IEEE Transactions on Visualization and
Computer Graphics, 24(1):802–811, 2017. doi: 10.1109/TVCG.2017.
2743958

[5] A. Bock, C. Emmart, M. Kuznetsova, and A. Ynnerman. OpenSpace:
Changing the Narrative of Public Disseminations in Astronomical Visu-
alization from What to How. IEEE Computer Graphics and Applica-
tions, Special Issue – Applied Vis, 38(3), 2018. doi: 10.1109/MCG.2018.
032421653

[6] A. Bock, C. Hansen, and A. Ynnerman. OpenSpace: Bringing NASA Mis-
sions to the Public. IEEE Computer Graphics and Applications, 38(5):112–
118, Sep./Oct. 2018. doi: 10.1109/MCG.2018.053491735

[7] A. Bock, M. Marcinkowski, J. Kilby, C. Emmart, and A. Ynnerman.
OpenSpace: Public Dissemination of Space Mission Profiles. In Pro-
ceedings of the Scientific Visualization Conference (Poster), pp. 141–142.
IEEE, 2015. doi: 10.1109/SciVis.2015.7429503

[8] A. Bock, A. Pembroke, M. L. Mays, L. Rastaetter, A. Ynnerman, and
T. Ropinski. Visual Verification of Space Weather Ensemble Simulations.
In Proceedings of the Scientific Visualization Conference. IEEE, 2015. doi:
10.1109/SciVis.2015.7429487

[9] M. Boylan-Kolchin, V. Springel, S. D. White, A. Jenkins, and G. Lemson.
Resolving cosmic structure formation with the Millennium-II Simulation.
Monthly Notices of the Royal Astronomical Society, 398(3):1150–1164,
2009. doi: 10.1111/j.1365-2966.2009.15191.x

[10] A. Brown, A. Vallenari, T. Prusti, J. De Bruijne, C. Babusiaux, C. Bailer-
Jones, M. Biermann, D. W. Evans, L. Eyer, F. Jansen, et al. Gaia data
release 2-summary of the contents and survey properties. Astronomy &
Astrophysics, 616:A1, 2018. doi: 10.1051/0004-6361/201833051

[11] C-Research. Simple Graphics Cluster Toolkit: http://sgct.itn.liu.se/, 2018.
[12] Celestia. Celestia - real-time 3D visualization of space:

https://celestia.space/, 2001-2018).
[13] R. Community. React: https://reactjs.org/, 2019.
[14] R. Community. Redux: https://redux.js.org/, 2019.
[15] Evans and Sutherland. Digistar Planetarium Software:

https://www.es.com/Digistar/, 2018).

[16] C. E. Framework. Chromium Embedded Framework:
https://github.com/chromiumembedded/cef, 2019.

[17] A. S. Garcı́a, D. J. Roberts, T. Fernando, C. Bar, R. Wolff, J. Dodiya,
W. Engelke, and A. Gerndt. A collaborative workspace architecture
for strengthening collaboration among space scientists. In 2015 IEEE
Aerospace Conference, pp. 1–12. IEEE, 2015.

[18] A. Gerndt. Collaborative Rover Operations and Planetary Science Analysis
System based on Distributed Remote and Interactive Virtual Environments.
Final Publishable Summary Report, European Union Framework Pro-
gramme 7.

[19] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Rei-
necke, and M. Bartelmann. Healpix: a framework for high-resolution
discretization and fast analysis of data distributed on the sphere. The
Astrophysical Journal, 622(2):759, 2005.

[20] T. Gutschmidt. Game Programming with Python, Lua, and Ruby. Premier
Press, 2004.

[21] R. Ierusalimschy, L. H. De Figueiredo, and W. C. Filho. Lua — An exten-
sible extension language. Software: Practice and Experience, 26(6):635–
652, 1996.

[22] JPL. Nasa eyes: https://eyes.jpl.nasa.gov, 2019.
[23] T. Kelso. Celestrak: https://celestrak.com/, 2019.
[24] S. Klashed, P. Hemingsson, C. Emmart, M. Cooper, and A. Ynnerman.

Uniview - Visualizing the Universe. In Eurographics - Areas Papers.
Eurographics Association, 2010. doi: 10.2312/ega.20101005

[25] MinVR. MinVR: https://github.com/MinVR/MinVR, 2018.
[26] J. Novotny, M. Turner, S. Gatesy, F. Drury, P. Falkingham, and D. Laid-

law. Developing virtual reality visualizations for unsteady flow analysis
of dinosaur track formation using scientic sketching. Transactions on
Visualization and Computer Graphics, pp. 2145–2154, 2019.

[27] D. J. Roberts, A. S. Garcia, J. Dodiya, R. Wolff, A. J. Fairchild, and
T. Fernando. Collaborative telepresence workspaces for space operation
and science. In Virtual Reality, pp. 275–276. IEEE, 2015.

[28] A. Sagristà, S. Jordan, T. Müller, and F. Sadlo. Gaia Sky: Navigating
the Gaia Catalog. IEEE Transactions on Visualization and Computer
Graphics, 25(1):1070–1079, 2019. doi: 10.1109/TVCG.2018.2864508

[29] Skyskan. DigitalSky 2 Software for Definiti Theaters:
https://www.skyskan.com/products/ds, 2018).

[30] A. A. Society. World Wide Telescope:
http://www.worldwidetelescope.org/home, 2018.

[31] Stellarium. Stellarium Astronomy Software: https://stellarium.org/, 2018.
[32] F. Warmerdam. The Geospatial Data Abstraction Library. In Open Source

Approaches in Spatial Data Handling, pp. 87–104. Springer, 2008.
[33] A. Ynnerman, J. Löwgren, and L. Tibell. Exploranation: A new science

communication paradigm. IEEE Computer Graphics and Applications,
38(3):13–20, 2018. doi: 10.1109/MCG.2018.032421649

	Introduction
	Astrographics use cases
	Astrographics as a tool in astronomy research
	Astrographics in planetariums, exhibits, and classrooms
	Mission visualization for communication and planning

	Related Work
	Challenges
	The OpenSpace System
	Architecture
	Modules
	Scene Graph
	Asset System
	Simple Graphics Cluster Toolkit

	Interaction
	Property System
	Scripting
	Network API
	Navigation
	User Interface

	Collaborative Experiences / AstroCasting
	Session Provenance
	Performance

	Discussion and Utilization
	Future work
	Conclusions

