Panel: Extending and Evaluating the Use-Modify-Create Progression

for Engaging Youth in Computational Thinking

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

Extending and Evaluating the Use-Modify-Create Progression
for Engaging Youth in Computational Thinking

Fred Martin (moderator)
UMass Lowell
Lowell, MA, USA
fred_martin@uml.edu

Sue Sentance
Raspberry Pi Foundation
Cambridge, UK
sue@raspberrypi.org

ABSTRACT

The Use-Modify-Create progression (UMC) was conceptualized in
2011 after comparing the productive integration of computational
thinking across National Science Foundation-funded Innovative
Technology Experiences for Students and Teachers (ITEST) pro-
grams. Since that time, UMC has been widely promoted as a means
to scaffold student learning of computational thinking (CT) while
enabling personalization and allowing for creative adaptations of
pre-existing computational artifacts. In addition to UMC’s contin-
ued application, it has recently been utilized to scaffold student
learning in topics as diverse as machine learning, e-textiles, and
computer programming. UMC has also been applied to instruc-
tional goals other than “supporting students in becoming creators
of computational artifacts” This panel will re-examine the UMC
progression and refine our understanding of when its use is suitable,
and when not, and share findings on evaluations and extensions to
UMC that are productive in new and different contexts.

CCS CONCEPTS

« Social and professional topics — Computational thinking;
K-12 education.

KEYWORDS
Use-Modify-Create, Computational Thinking, Lesson Design

ACM Reference Format:

Fred Martin (moderator), Irene Lee, Nicholas Lytle, Sue Sentance, and Natalie
Lao. 2020. Extending and Evaluating the Use-Modify-Create Progression
for Engaging Youth in Computational Thinking. In The 51st ACM Technical
Symposium on Computer Science Education (SIGCSE "20), March 11-14, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3328778.3366971

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6793-6/20/03.

https://doi.org/10.1145/3328778.3366971

Irene Lee
MIT STEP Lab
Cambridge, MA, USA
ialee@mit.edu

807

Nicholas Lytle
NC State University
Raleigh, NC, USA
nalytle@ncsu.edu

Natalie Lao
MIT CSAIL
Cambridge, MA, USA
natalie@mit.edu

1 SUMMARY

The Use-Modify-Create progression (UMC) has been widely pro-
moted as a means to scaffold student engagement in computational
thinking (CT). UMC is based on elements from Experiential Learn-
ing Theory [2], wherein knowledge is created through the trans-
formation of experience, and Social Constructivism [11], which
posits that through discussion and collaboration, students construct
their own knowledge from experiences that have personal meaning
to them. UMC has been used to engage learners in progressively
deeper CT experiences within rich computational environments. In
the “Use” stage, learners are consumers of someone else’s creation.
Over time, in the “Modify” phase, learners alter the computational
artifacts with increasing levels of sophistication. As learners gain
skills and confidence, they are encouraged to develop ideas for new
computational artifacts of their own design that address issues of
their own choosing. Within this “Create” stage, all three key aspects
of CT—abstraction, automation and analysis—come into play [5].

Initially, UMC was seen to support students’ development of CT
within three contexts: computer modeling and simulation, robotics,
and data science. The progression also supported students’ agency
and independence as learners. Recently, UMC has expanded to new
contexts: computer programming, machine learning, and compu-
tational sciences. Here, UMC has been extended to accommodate
varied disciplinary practices and instructional goals.

This panel brings together researchers who focus on research
and development of approaches to teaching computational think-
ing to secondary and university students. The panelists will share
evidence of UMC’s pedagogical effectiveness and present the most
promising extensions to UMC that have arisen as a result of adapt-
ing the progression to new disciplinary contexts. The panel will
engage in discussion of the affordances of and barriers to using the
pedagogy, and key insights to successful student engagement and
teacher preparation for implementing the UMC progression.

2 PANEL STRUCTURE

The panel will open with a brief overview by the moderator describ-
ing the session (5 minutes). Panelists Lee, Lytle, Sentance, and Lao
will each be given 12 minutes to present their respective extensions
to and evaluations of the UMC progression. The moderator will
facilitate audience discussion that probes tensions and challenges
encountered by teachers and students when applying UMC.


https://doi.org/10.1145/3328778.3366971
https://doi.org/10.1145/3328778.3366971
https://doi.org/10.1145/3328778.3366971

Panel: Extending and Evaluating the Use-Modify-Create Progression

for Engaging Youth in Computational Thinking

3 FRED MARTIN

I am an associate dean and professor of computer science at Univer-
sity of Massachusetts Lowell. As a researcher in K-12 CS education,
I was one of the creators of the UMC progression. As the panel
moderator, I will introduce the panel and the UMC progression
recounting some of the discussions that led to its development [5].

4 IRENE LEE

As a researcher at MIT’s Scheller Teacher Education Program, I

study teachers’ and students’ development as computational thinkers
and the integration of CT into science classrooms. I was a co-creator

of the UMC progression [5]. Initially, the goal of UMC was to trans-
form learners from users to creators of computational artifacts.
More recently, our goal shifted toward science learning through

computer modeling experiences. This shift called for an increased

emphasis on decoding in pairs to uncover the mechanisms embed-
ded in computer models, and the evaluation of those mechanisms.
To the UMC progression, we add an explicit step, “Decode” or analy-
sis of implementations of scientific process, to increase the potential

for gains in scientific understanding through modeling.

5 NICHOLAS LYTLE

I am a PhD candidate at NC State University. I have adapted UMC
to ease novice K-12 teachers and students into coding within block-
based environments. In a comparison study [7], middle-grade sci-
ence students participated in a multi-day activity where they cre-
ated a Food-Web simulation with multiple actors (Plants, Bunnies,
Foxes). One condition programmed all the actor code each day,
while the UMC group instead used pre-built Plant code, modified
Bunny code, and created Fox code. The results showed UMC stu-
dents reported no spike in difficulty over the three days compared
to a significant difficulty spike in the control group. Teachers pre-
ferred working in these UMC-inspired lessons citing it was better
scaffolded for students and provided engaging differentiated tasks.
We have extended our approach by adding a “Choose” portion [8],
letting students extend their simulation by adding an actor of their
choice.

6 SUE SENTANCE

I developed PRIMM while a senior lecturer in computer science
education at King’s College London. PRIMM (Predict, Run, Investi-
gate, Modify and Make) is an approach to structuring programming
lessons that counters the problem of novices writing programs be-
fore they are able to read them, and focuses on students being able
to discuss how and why programs work before they edit and write
their own programs. In a PRIMM lesson, students look at a short
program in pairs then predict the program’s output. They then run
the program and discuss how similar their predictions were to the
output. Next they investigate the way the program works using a
variety of code comprehension questions and activities. Armed with
an understanding of the program, students modify the program to
increase its functionality, gradually taking ownership. Finally, they
make their own new programs, developing design and planning
skills. As well as UMC [5], PRIMM draws on research around trac-
ing and reading code before writing [6], the Abstraction Transition

808

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

Taxonomy [1] and the Block Model [9]. I will share findings from a
recent mixed-methods study of the effectiveness of PRIMM [10].

7 NATALIE LAO

T am an EECS doctoral student at MIT. I led the design of and co-
instructed MIT’s 6.5198: Deep Learning Practicum, a semester-long
undergraduate course created at MIT in Fall 2018 that applies UMC
to teach actionable machine learning (ML) to novices in computer
science (CS) and ML [3]. The course helped a broad range of students
gain the ability to ideate and implement independent ML projects.
First, students used ready-made ML models within fast-response
and user-friendly interfaces to develop high-level intuitions about
training, testing, and the importance of data. Then, students manip-
ulated models directly to understand how different architectures,
hyperparameters, and datasets impact results for different problems.
Finally, students scoped a problem suitable for ML and created their
own capstone ML application. To the UMC progression we added
a “Choose” that engaged students in selecting suitable machine
learning models and algorithms for their application. We saw that
the progression helped students deepen their understanding of ML
concepts and master practical skills that empowered them to create
meaningful capstone projects [4].

REFERENCES

[1] Quintin Cutts, Sarah Esper, Marlena Fecho, Stephen R. Foster, and Beth Simon.
2012. The Abstraction Transition Taxonomy:Developing Desired Learning Out-
comes through the Lens of Situated Cognition. In Proceedings of the Ninth Annual
International Conference on International Computing Education Research (ICER
’12). ACM Press, New York, NY, 63-70. https://doi.org/10.1145/2361276.2361290
David Kolb. 1984. Experiential learning: Experience as the source of learning and
development. Prentice-Hall, Englewood Cliffs, NJ.

Natalie Lao, Irene Lee, and Hal Abelson. 2019. A Deep Learning Practicum:
Concepts and Practices for Teaching Actionable Machine Learning at the Tertiary
Education Level. In JATED2019 Proceedings (12th International Conference of
Education, Research and Innovation). IATED.

Natalie Lao and MIT 6.5198 students. 2018. MIT 6.5198 students’ final presen-
tations. Retrieved August 27, 2019 from http://people.csail. mit.edu/hal/deep-
learning- practicum-fall-2018/

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational Thinking for Youth in
Practice. ACM Inroads 2, 1 (2011), 32-37.

Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, and Robert McCartney et al. 2004. A multi-national study
of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin 4.
119-150 pages.

Nicholas Lytle, Veronica Catete, Danielle Boulden, Yihuan Dong, Jennifer Houch-
ins, Alexandra Milliken, Amy Isvik, Dolly Bounajim, Eric Wiebe, and Tiffany
Barnes. 2019. Use, Modify, Create: Comparing Computational Thinking Lesson
Progressions for STEM Classes. In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education (ITICSE '19). ACM Press,
New York, NY, 395-401. https://doi.org/110.1145/3304221.3319786

Nicholas Lytle, Veronica Catete, Amy Isvik, Danielle Boulden, Yihuan Dong,
Eric Wiebe, and Tiffany Barnes. 2019. From ’Use’ to ’Choose’: Scaffolding
CT Curricula and Exploring Student Choices While Programming (Practical
Report). In Proceedings of the 14th Workshop in Primary and Secondary Com-
puting Education (WiPSCE’19). ACM, New York, NY, USA, Article 18, 6 pages.
https://doi.org/10.1145/3361721.3362110

Carsten Schulte. 2008. Block model: An educational model of program compre-
hension as a tool for a scholarly approach to teaching. In Proceedings of the Fourth
International Workshop on Computing Education Research (ICER "08). ACM Press,
New York, NY, 149-160.

Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teaching computer program-
ming with PRIMM: a sociocultural perspective. Computer Science Education 29,
2-3(2019), 136-176.

Lev Vygotsky. 1978. Mind in society: The development of higher psychological
processes. Harvard University Press, Cambridge, MA.

[2

&

—_
)

(10]

[11


https://doi.org/10.1145/2361276.2361290
http://people.csail.mit.edu/hal/deep-learning-practicum-fall-2018/
http://people.csail.mit.edu/hal/deep-learning-practicum-fall-2018/
https://doi.org/110.1145/3304221.3319786
https://doi.org/10.1145/3361721.3362110

	Abstract
	1 Summary
	2 Panel structure
	3 Fred Martin
	4 Irene Lee
	5 Nicholas Lytle
	6 Sue Sentance
	7 Natalie Lao
	References



