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ABSTRACT

The Use-Modify-Create progression (UMC) was conceptualized in
2011 after comparing the productive integration of computational
thinking across National Science Foundation-funded Innovative
Technology Experiences for Students and Teachers (ITEST) pro-
grams. Since that time, UMC has been widely promoted as a means
to scaffold student learning of computational thinking (CT) while
enabling personalization and allowing for creative adaptations of
pre-existing computational artifacts. In addition to UMC’s contin-
ued application, it has recently been utilized to scaffold student
learning in topics as diverse as machine learning, e-textiles, and
computer programming. UMC has also been applied to instruc-
tional goals other than “supporting students in becoming creators
of computational artifacts” This panel will re-examine the UMC
progression and refine our understanding of when its use is suitable,
and when not, and share findings on evaluations and extensions to
UMC that are productive in new and different contexts.
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1 SUMMARY

The Use-Modify-Create progression (UMC) has been widely pro-
moted as a means to scaffold student engagement in computational
thinking (CT). UMC is based on elements from Experiential Learn-
ing Theory [2], wherein knowledge is created through the trans-
formation of experience, and Social Constructivism [11], which
posits that through discussion and collaboration, students construct
their own knowledge from experiences that have personal meaning
to them. UMC has been used to engage learners in progressively
deeper CT experiences within rich computational environments. In
the “Use” stage, learners are consumers of someone else’s creation.
Over time, in the “Modify” phase, learners alter the computational
artifacts with increasing levels of sophistication. As learners gain
skills and confidence, they are encouraged to develop ideas for new
computational artifacts of their own design that address issues of
their own choosing. Within this “Create” stage, all three key aspects
of CT—abstraction, automation and analysis—come into play [5].

Initially, UMC was seen to support students’ development of CT
within three contexts: computer modeling and simulation, robotics,
and data science. The progression also supported students’ agency
and independence as learners. Recently, UMC has expanded to new
contexts: computer programming, machine learning, and compu-
tational sciences. Here, UMC has been extended to accommodate
varied disciplinary practices and instructional goals.

This panel brings together researchers who focus on research
and development of approaches to teaching computational think-
ing to secondary and university students. The panelists will share
evidence of UMC’s pedagogical effectiveness and present the most
promising extensions to UMC that have arisen as a result of adapt-
ing the progression to new disciplinary contexts. The panel will
engage in discussion of the affordances of and barriers to using the
pedagogy, and key insights to successful student engagement and
teacher preparation for implementing the UMC progression.

2 PANEL STRUCTURE

The panel will open with a brief overview by the moderator describ-
ing the session (5 minutes). Panelists Lee, Lytle, Sentance, and Lao
will each be given 12 minutes to present their respective extensions
to and evaluations of the UMC progression. The moderator will
facilitate audience discussion that probes tensions and challenges
encountered by teachers and students when applying UMC.
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3 FRED MARTIN

I am an associate dean and professor of computer science at Univer-
sity of Massachusetts Lowell. As a researcher in K-12 CS education,
I was one of the creators of the UMC progression. As the panel
moderator, I will introduce the panel and the UMC progression
recounting some of the discussions that led to its development [5].

4 IRENE LEE

As a researcher at MIT’s Scheller Teacher Education Program, I

study teachers’ and students’ development as computational thinkers
and the integration of CT into science classrooms. I was a co-creator

of the UMC progression [5]. Initially, the goal of UMC was to trans-
form learners from users to creators of computational artifacts.
More recently, our goal shifted toward science learning through

computer modeling experiences. This shift called for an increased

emphasis on decoding in pairs to uncover the mechanisms embed-
ded in computer models, and the evaluation of those mechanisms.
To the UMC progression, we add an explicit step, “Decode” or analy-
sis of implementations of scientific process, to increase the potential

for gains in scientific understanding through modeling.

5 NICHOLAS LYTLE

I am a PhD candidate at NC State University. I have adapted UMC
to ease novice K-12 teachers and students into coding within block-
based environments. In a comparison study [7], middle-grade sci-
ence students participated in a multi-day activity where they cre-
ated a Food-Web simulation with multiple actors (Plants, Bunnies,
Foxes). One condition programmed all the actor code each day,
while the UMC group instead used pre-built Plant code, modified
Bunny code, and created Fox code. The results showed UMC stu-
dents reported no spike in difficulty over the three days compared
to a significant difficulty spike in the control group. Teachers pre-
ferred working in these UMC-inspired lessons citing it was better
scaffolded for students and provided engaging differentiated tasks.
We have extended our approach by adding a “Choose” portion [8],
letting students extend their simulation by adding an actor of their
choice.

6 SUE SENTANCE

I developed PRIMM while a senior lecturer in computer science
education at King’s College London. PRIMM (Predict, Run, Investi-
gate, Modify and Make) is an approach to structuring programming
lessons that counters the problem of novices writing programs be-
fore they are able to read them, and focuses on students being able
to discuss how and why programs work before they edit and write
their own programs. In a PRIMM lesson, students look at a short
program in pairs then predict the program’s output. They then run
the program and discuss how similar their predictions were to the
output. Next they investigate the way the program works using a
variety of code comprehension questions and activities. Armed with
an understanding of the program, students modify the program to
increase its functionality, gradually taking ownership. Finally, they
make their own new programs, developing design and planning
skills. As well as UMC [5], PRIMM draws on research around trac-
ing and reading code before writing [6], the Abstraction Transition
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Taxonomy [1] and the Block Model [9]. I will share findings from a
recent mixed-methods study of the effectiveness of PRIMM [10].

7 NATALIE LAO

T am an EECS doctoral student at MIT. I led the design of and co-
instructed MIT’s 6.5198: Deep Learning Practicum, a semester-long
undergraduate course created at MIT in Fall 2018 that applies UMC
to teach actionable machine learning (ML) to novices in computer
science (CS) and ML [3]. The course helped a broad range of students
gain the ability to ideate and implement independent ML projects.
First, students used ready-made ML models within fast-response
and user-friendly interfaces to develop high-level intuitions about
training, testing, and the importance of data. Then, students manip-
ulated models directly to understand how different architectures,
hyperparameters, and datasets impact results for different problems.
Finally, students scoped a problem suitable for ML and created their
own capstone ML application. To the UMC progression we added
a “Choose” that engaged students in selecting suitable machine
learning models and algorithms for their application. We saw that
the progression helped students deepen their understanding of ML
concepts and master practical skills that empowered them to create
meaningful capstone projects [4].
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