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ABSTRACT

Network embedding has demonstrated effective empirical perfor-
mance for various network mining tasks such as node classification,
link prediction, clustering, and anomaly detection. However, most
of these algorithms focus on the single-view network scenario. From
areal-world perspective, one individual node can have different con-
nectivity patterns in different networks. For example, one user can
have different relationships on Twitter, Facebook, and LinkedIn due
to varying user behaviors on different platforms. In this case, jointly
considering the structural information from multiple platforms (i.e.,
multiple views) can potentially lead to more comprehensive node
representations, and eliminate noises and bias from a single view.
In this paper, we propose a view-adversarial framework to gener-
ate comprehensive and robust multi-view network representations
named VANE, which is based on two adversarial games. The first
adversarial game enhances the comprehensiveness of the node
representation by discriminating the view information which is
obtained from the subgraph induced by neighbors of that node.
The second adversarial game improves the robustness of the node
representation with the challenging of fake node representations
from the generative adversarial net. We conduct extensive experi-
ments on downstream tasks with real-world multi-view networks,
which shows that our proposed VANE framework significantly
outperforms other baseline methods.
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Figure 1: An illustrative multi-view network example of 3
views with 6 papers. In the citation view, an edge connects
two papers if one paper cites the other. In the author view, an
edge exists if two papers share at least one common author.
In the keyword view, an edge exists if two papers share at
least one common keyword.

1 INTRODUCTION

Network embedding algorithms provide network representations
for many graph mining tasks such as node classification, link predic-
tion, clustering, and anomaly detection. Classical network embed-
ding algorithms such as DeepWalk [7], LINE [10] and node2vec [5]
capture topology information like local neighborhood connectivity
pattern, structural role, and other high-order proximities to repre-
sent each node. Moreover, in order to obtain robust representations,
many network embedding algorithms have been proposed by lever-
aging the principle of the generative adversarial net (GAN) [3],
such as ANE [2] and GraphGAN [12]. To this end, the generative
model tries to fit the underlying connectivity distribution of the
network and then produces fake samples (i.e., fake nodes, fake re-
lations or fake representations) to fool the discriminative model,
while the discriminative model tries to distinguish the generated
fake samples from the ground truth samples.

Traditional network embedding algorithms like [5, 7, 10] and
state-of-the-art GAN-based network embedding algorithms like [2,
12] only focus on the single network scheme. In the multi-view
scenario (e.g., Figure 1), the same set of nodes can have different
connectivity patterns in different views. Take the scientific papers
for example, in the view of citations, two papers are connected with
an edge if there is a reference record. However, in the common-
author view, these two papers are not connected if they do not
share at least one common author. Also, in the time-evolving graph,
each graph snapshot can be regarded as a view. Jointly embedding
the structural information from multiple views can lead to a com-
prehensive node representation and remove noise and bias from
a single view [8, 14]. Recently, with the advances of graph neural
networks, many multi-view network embedding frameworks [1, 9]
have been proposed to obtain the attributed node representation.
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Most, if not all, existing multi-view network embedding algo-
rithms follow the nature of the view-collaboration mechanism [8] to
integrate specific node representations from each specific view, in
order to generate the comprehensive node representations. In this
paper, we propose a view-adversarial framework for multi-view net-
work embedding named VANE, which consists of two adversarial
games. The first adversarial game ensures the comprehensiveness of
node representations: the feature extractor aims to extract compre-
hensive node representations containing view-invariant structural
information to fool the view discriminator, while the view discrim-
inator aims to distinguish which node representation comes from
which view by discriminating view-dependent structural informa-
tion. The second adversarial game ensures the robustness of node
representations: the generator tries to fit the distribution of the ex-
tracted node representations to generate fake node representations,
and the node representation discriminator tries to discriminate fake
representations from real representations; in the meanwhile, the
feature extractor tries to provide robust node representations which
are hard to fit.

2 PROBLEM DEFINITION

A view is defined as a single type of edge. A multi-view network
with k views is defined as G = (V, &y, ...,E), where V is the
set of nodes, and &; is the set of edges in the i-th view. Thus, we
formally define the Multi-View Network Embedding as follows.

PrROBLEM. Multi-View Network Embedding

Input: the multi-view network G = (V, &1, ..., E).
Output: the robust node representations {Xy}yey € RY withd <
|V|, which are consistent across k different views.

3 PROPOSED MODEL

In this section, we introduce the proposed VANE model from the
overview to the details of two adversarial games.

3.1 Overview of the Framework - VANE

The proposed VANE framework is shown in Figure 2. It consists of
two adversarial games. To obtain comprehensive node representa-
tions, the first adversarial game involves the feature extractor F and
the view discriminator Dg. The feature extractor F tries to extract
the view-invariant node representation across different views, while
the view discriminator Dg tries to discriminate the view-dependent
structural information (i.e., subgraph representation) from node
representations. To obtain robust node representations, the sec-
ond adversarial game involves the node embedding model Fy;, the
node representation generator G, and the node representation dis-
criminator Dy. Challenged by fake node representations from the
generator G, the node embedding model Fyy tries to provide robust
node representations for the node representation discriminator Dy;.

3.2 The First Adversarial Game

The first adversarial game consists of the feature extractor F and
the view discriminator Dg. In the feature extractor F, the node
embedding model Fy is instantiated by the regular embedding
layer which is a fully-connected layer for one-hot node vectors.
The subgraph embedding model Fs is instantiated by an LSTM [6]
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Figure 2: The framework of VANE.

layer to aggregate a sequence of node representation vectors into
a subgraph representation vector. The view discriminator Dg is a
multi-class classifier and instantiated by a multilayer perceptron
to take the subgraph representation vector as the feature and the
index of view where the subgraph comes from as the label.

We first preprocess all input views into node sequences by ran-
dom walks where the node sequence S is denoted as S = {v3,03, ..., }.
Then we input node sequences into the feature extractor F indi-
vidually. Constructed by Fj and Fs, the feature extractor F is a
shared neural network by all node sequences. In Fy, the one-hot
vector of each node v; in the sequence S is represented by the
node embedding vector x,. After that, the subgraph embedding
model Fs aggregates the sequence of node embedding vectors into a
subgraph embedding vector denoted as F(S). During the first adver-
sarial game, F tries to extract indistinguishable (i.e., view-invariant)
subgraph embedding vectors to fool the view discriminator Dg,
while Ds tends to distinguish the view-specific information from
the subgraph representations to discriminate the source view.

Suppose we have k views in the given multi-view network.
For the i-th view discrimination (1 < i < k), the distribution
of subgraph representation F(S) from the i-th view denotes as
F(S) ~ pi(F(S)), the distribution of node sequence F(S) from views
other than the i-th view defines as p; (F(S)) = ﬁ Yimzi Pm(F(S)),
and Dg(F(S)) represents the probability that F(S) came from the
i-th view rather than other views. Thus, the objective Js for the i-th
view subgraph representation and discrimination states as follows.

mI;n nll)ixjs (Ds, F)
=minmaxEp(s)~p, (F(s)) [log(Ds(F($)))] (1)
S

+EFr(s)~p;(F(5)) [log(1 — Ds(F(5)))]
where the feature extractor F and the view discriminator Dg aim
to play the first adversarial game converging to the equilibrium
as stated in [13], p1(F(S)) = p2(F(S)) = --- = pr(F(S)), which
suggests that the probability distribution of the subgraph represen-
tation F(S) from each view equals to each other.

To further improve the ability of our model to capture the local
topology information of the node sequence from each specific view,
we add the cosine similarity based locality constraints on the node
embedding model Fy with minimizing the following objective Jic.

min Jrc(FN (vi), FN (07)) = minEy, 5, es[1—cos(Fn (v:), FN (v)))]
FN FN

()

where node v; and vj come from the same node sequence S.



3.3 The Second Adversarial Game

To enhance the robustness of extracted node representations from
the first adversarial game, the second adversarial minimax game
involves three players: the node representation generator G, the
node embedding model Fp;, and the node representation discrimi-
nator Dy . The generator G and node representation discriminator
Dy are instantiated by multilayer perceptron classifiers.

During the second game, the generator G generates fake node
representations to fit the distribution of node representations pro-
duced by Fp, and Fy tries to provide robust node representations
that are hard to fit to help the discriminator Dy tell the fake node
embedding vectors. The objective function Jy of the second adver-
sarial game is described as follows.

min max max Jy (DN, G, Fn
G Dy Fyn ( )

=min max max Ep, (o) ~pyara (Fy (0)) [108(DN (FN ()] (3)
G Dy Fy

+EByp, (z [l0g(1 - DN (G(2)))]
where Fn(v) is the real node representation, and G(z) is the gener-
ated fake node representation from the noise vector z.

3.4 Optimization

We summarize the training procedure of the VANE framework ! in
Alg. 1, where two adversarial games are executed alternatively.

In Alg. 1, we first randomly initialize the parameter 6 of each
component of the VANE framework. In Step 3 and Step 4, we pre-
pare the node sequence along with the ground truth view label
and generate the fake node representation. Steps 5-7 execute the
first adversarial game for comprehensive node representations by
updating the feature extractor F and the view discriminator Dg.
Steps 8-10 execute the second adversarial game for robust node
representations, where the generator G and the discriminator Dy
compete with each other to force the node representation model Fy
to provide robust (i.e. hard to fit) node representations. In practice,
the training procedure for each data sample (S, y) is independent
with each other, thus we utilize the mini-batch gradient descent to
optimize the VANE framework in parallel.

4 EXPERIMENTS
4.1 Datasets

Aminer: Aminer [11]? is an academic literature dataset, which
contains 27,734 papers as nodes. We observe two types of views:
(1) Citation view, where an edge represents for a reference record
between two papers; (2) Common-author view, where an edge
represents that two papers share at least one common author. For
the mentioned two views, we have 111,819 and 525,623 edges.
Twitter-Rugby: Twitter-Rugby [4]* is a collection of 850 rugby-
related Twitter users. We observe three views: (1) Follow view,
where an edge stands for a user following another user; (2) Mention
view, where an edge stands for a user mentioning another user in
his/her Tweet; (3) Retweet view, where an edge stands for a user
retweeting another user’s Tweet. For the above three views, we
have 22,861, 21,660, and 9,627 edges, respectively.

!https://github.com/DongqiFu/VANE
https://www.aminer.cn/citation
3http://mlg.ucd.ie/aggregation

Algorithm 1 Stochastic Training Procedure for VANE
Input:
multi-view network G = (V,&4,...,E), r node sequences
sampled from each view, max iteration T, noise vector z.
Output:
embedding vector x, for each node v € V.
1: for t in T iterations do
2. for node sequence S in k X r shuffled sequence samples do

3 Form data samples (S, y), y is the true label indicating the
source view where S comes from.

4 Use generator G to generate a fake node embedding vector
G(z) from the noise vector z.

5 Update the node embedding model Fyy by descending its
gradient w.r.t. Eq. (2) with S.

6: Update the feature extractor F by descending its gradient
w.rt. Eq. (1) with S and y by fixing 0p,.

7 Update the view discriminator Dg by ascending its gradi-
ent w.r.t. Eq. (1) with S and y by fixing 0.

8 Update the feature extractor Fjy by ascending its gradient
w.r.t. Eq. (3) by fixing 6p,,.

9: Update the generator G by descending its gradient w.r.t.
Eq. (3) with G(z) by fixing 6p,,.

10: Update the node representation discriminator Dy by as-

cending its gradient w.r.t. Eq. (3) with G(z) and x, (ie.,
Fn(S)) by fixing 0F and 6.

11:  end for

12: end for

4.2 Baseline Methods

We extract node sequences by the random walk [7] and the biased
random walk [5], such that two versions of VANE are named as
VANE-RW and VANE-BRW. We compare VANE with single-view
methods like DeepWalk [7], node2vec [5] and GraphGAN [12], and
multi-view methods like MNE [14] and MVE [8]. For single-view
algorithms, we combine all individual views into a combined view,
where the edge exists if it exists in any specific view. Moreover,
MNE is designed to generate node embeddings for each view.

4.3 Effectiveness Comparison

Node Classification. In the Aminer, we adopt venues as node
labels and node embeddings as node features. We shuffle the dataset
and sample 90% as the training set for a k-NN classifier and test on
the rest 10%. We train 10 times and report the mean and standard
deviation of accuracy in Table 1. Since MNE cannot get embedding
results on an Intel i7 CPU, 64GB RAM machine within 96 hours, we
don’t report it. In the Twitter-Rugby, we adopt node embeddings
as node features and user geo-locations as node labels. We use the
same classifier setting in the Aminer and report results in Table 2.
Link Prediction. For each dataset, we remove 10% of the shared
common links (i.e., the edge exists in every view) and learn node
embeddings on the truncated graph. We denote removed links as
the positive samples, and the links never appeared as negative sam-
ples. We sample the same number of negative samples and positive
samples and use the cosine similarity to measure the proximity
between two nodes. In the Aminer, there are many missing links
between research communities. To generate quality negative sam-
ples, we conduct link prediction tasks only on Bioinformatics venue



papers. In the Twitter-Rugby, since all users share the characteristic
of rugby enthusiast, we use the whole dataset. The link prediction
performances on two datasets are shown in Table 1 and Table 2.

. Accuracy (%

Methods View Node Classification ‘yiir)lk Prediction
Citation 78.03+£0.72 95.99
DeepWalk | Common-Author 72.72+0.77 96.29
Combined 74.94+0.54 97.28
Citation 78.05+0.57 97.73
node2vec | Common-Author 73.69+0.68 95.58
Combined 74.88+0.91 97.85
Citation 74.29+1.20 88.93
GraphGAN | Common-Author 72.07+1.11 89.57
Combined 71.69+£1.06 90.21
Citation N/A 54.25
MNE Common-Author N/A 52.32
MVE All 80.16+0.42 72.82
VANE-RW All 78.84+0.63 97.62
VANE-BRW All 80.79+0.80 98.53

Table 1: Performance on the Aminer Dataset

. Accuracy (%)

Methods View Node Classification | Link Prediction
Follow 70.95+2.56 50.30
Mention 69.64+5.46 50.27
DeepWalk I —p tweet 73.78+5.18 52.24
Combined 66.47+2.85 50.03
Follow 79.52+4.42 65.45
nodeavec Mention 79.64+3.47 62.94
Retweet 81.83+4.31 52.18
Combined 80.59+2.75 60.61
Follow 76.15+1.92 53.97
Mention 71.95+2.74 51.88
GraphGAN | et 39.20+2.42 50.21
Combined 72.44+1.69 55.41
Follow 85.66+2.87 56.37
MNE Mention 84.70+3.45 74.66
Retweet 85.06+3.42 76.15
MVE All 83.76+4.90 68.85
VANE-RW All 82.89+2.38 69.40
VANE-BRW All 90.60+2.57 85.36

Table 2: Performance on Twitter-Rugby Dataset

Our VANE model outperforms baselines on both tasks. An intu-
itive explanation is that: comparing with single-view algorithms [5,
7, 12], representations of the VANE framework are more compre-
hensive across views to support the view adversarial game; and
comparing with the multiplex algorithms [8, 14], representations of
the VANE framework are more robust by involving the generator.
To further verify our guess, we design the following ablation study.

4.4 Ablation Study

In Table 3, we observe that our VANE framework cannot exploit
the topology information effectively without the guide of locality
constraints in each specific view, and the generator indeed improves
performance by improving the robustness of node presentations.

4.5 Stability Analysis

We show the evolution of the loss during training with iteration
(i.e. a mini-batch updating) in Figure 3, where we get the loss of
each part with other parts fixed. We observe the loss of each part
of the model keeps stable during the training process.

Model Locality Node Representation ‘ Accuracy (%) ‘
Constraints Generator ‘ Node Classification ‘ Link Prediction ‘
No No 19.28+4.03 50.03
No Yes 17.59+3.33 60.49
VANE-BRW Yes No 84.7024.60 81.29
Yes Yes 90.60+2.57 85.36

Table 3: Ablation Study of VANE-BRW on the Twitter-Rugby
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Figure 3: Loss of Different Parts of VANE during Training,.
5 CONCLUSION

We propose a view-adversarial multi-view network embedding
framework (VANE) for comprehensive and robust node representa-
tions across different views via two adversarial games. Extensive
experiments show the effectiveness of the our VANE framework.
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