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ABSTRACT

Algorithmic bias and fairness in the context of graph mining have
largely remained nascent. The sparse literature on fair graphmining
has almost exclusively focused on group-based fairness notation.
However, the notion of individual fairness, which promises the
fairness notion at a much finer granularity, has not been well stud-
ied. This paper presents the first principled study of Individual
Fairness on gRaph Mining (InFoRM). First, we present a generic
definition of individual fairness for graph mining which naturally
leads to a quantitative measure of the potential bias in graph mining
results. Second, we propose threemutually complementary algorith-
mic frameworks to mitigate the proposed individual bias measure,
namely debiasing the input graph, debiasing the mining model and
debiasing the mining results. Each algorithmic framework is formu-
lated from the optimization perspective, using effective and efficient
solvers, which are applicable to multiple graph mining tasks. Third,
accommodating individual fairness is likely to change the original
graph mining results without the fairness consideration. We con-
duct a thorough analysis to develop an upper bound to characterize
the cost (i.e., the difference between the graph mining results with
and without the fairness consideration). We perform extensive ex-
perimental evaluations on real-world datasets to demonstrate the
efficacy and generality of the proposed methods.
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1 INTRODUCTION

In an increasingly connected world, graph mining is playing a more
and more important role in many application domains, such as
information retrieval [29], community detection [1], recommender
systems [36] and security [37]. Decades of research in graph mining
have produced a wealth of powerful computational models and
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algorithms. Despite the remarkable progress, several fundamental
questions in relation to algorithmic fairness have remained largely
unanswered, e.g., are the graph mining results fair? If not, how to

best mitigate the bias? How would fairness impact the graph mining

performance (e.g. ranking precision, classification accuracy)?

The notion of algorithmic fairness has attracted much attention.
To date, researchers have developed a large collection of fair ma-
chine learning measures and algorithms, typically for spatial or
text data, including statistical measures (e.g., disparate impact [6],
statistical parity, equal odds [9]) and causal reasoning-based mea-
sures (e.g., counterfactual fairness [30]). Unlike these settings, a
major challenge of fair graph mining lies in the non-IID nature
of graph data. Since the data samples (i.e., nodes) in a graph are
inter-connected, the fundamental IID assumption behind classical
fair machine learning methods might be violated. To address this
issue, several methods have emerged in recent years, which aim
to generalize the traditional fairness notation and bias mitigation
algorithms to graph data. For example, fair spectral clustering [15]
has been studied to ensure that each cluster contains approximately
the same number of elements from each demographic group [4].
Fairness in graph embedding by fulfilling statistical parity has also
been explored [3, 24]. Furthermore, there has been research work
on fairness in recommendations to enforce statistical parity [11] or
other parity-based fairness that measures the differences between
model behaviors for advantaged users and disadvantaged users [31].
It is worth pointing out that the vast majority of the existing work
on fair graph mining [3, 4, 11, 15, 24, 31] has almost exclusively
been focusing on group-based fairness.

However, individual fairness [5] has not been well studied in
the context of graph mining. The notation of individual fairness
is rooted in the Merriam-Webster’s dictionary definition of fair-
ness1. In the context of algorithmic fairness, this often translates
into a generic design principle that any two individuals who are

similar should receive similar algorithmic outcomes. Compared with
the group-based notation, the individual-based approach offers a
fairness measure at a much finer granularity (i.e., at the node level).
A thorough study of individual fairness in the context of graph
mining will complement and expand the current landscape of fair
graph mining, which has mostly focused on group-based fairness.
Broadly speaking [26], since bias and discrimination could hap-
pen in different forms due to the various settings of tasks with
machine automation, there have been debates on which fairness
notion should be applied in a given context. The fine granularity of
individual fairness might provide a natural remedy for such debates.

This paper presents the first principled study of Individual Fairness
on gRaph Mining, which is referred to as the InFoRM problem. We
focus on three fundamental questions:

1In Merriam-Webster, it is defined as ‘lack of favoritism from one side or another’.
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Q1. (InFoRM Measures) For the traditional machine learning set-
ting, a major concern of individual fairness lies in its re-
quirement of an appropriate similarity measure, which of-
ten requires solving a non-trivial problem that may need
expert knowledge to address legal, ethical or social con-
cerns [5]. Given the rich similarity measures for the graph
data [10, 16, 27], we seek to answer the following: Given a

graph mining model and an arbitrary similarity measure, how

can we tell if the mining results are fair? If the results are not

fair, how can we quantitatively measure the overall bias?

Q2. (InFoRM Algorithms) Generally speaking, a graph mining
method consists of three components, including the input
graph, the mining model and the mining results. Each of
these three components could introduce and/or amplify the
aforementioned bias. How can we develop generic, effective

and efficient algorithms to mitigate such bias by adjusting

the input graph, or the mining model, or the mining results,

respectively?

Q3. (InFoRM Cost) By mitigating the bias, it is likely to alter the
original graph mining results without the fairness consider-
ation, and thus might degrade the mining performance (e.g.,
ranking, clustering, embedding, etc.). How can we quantita-

tively characterize such cost, i.e., to what extent the debiased

graph mining results will deviate from the ones without the

fairness constraint?

For Q1, we present a generic definition of individual fairness
on graph mining based on the Lipschitz property. The proposed
fairness measure naturally enables us to quantify the overall bias
of graph mining results by the trace of a quadratic form of the min-
ing results. For Q2, building upon the individual fairness measure
from Q1, we propose three mutually complementary algorithmic
frameworks to mitigate the proposed bias measure: debiasing the
input graph, debiasing the mining model, and debiasing the mining
results. For each algorithmic framework, we formulate the frame-
work as an optimization problem, develop effective and efficient
solvers, and demonstrate that the framework is applicable to mul-
tiple graph mining tasks. In order to debias the input graph, we
formulate it as a bi-level optimization problem, where the extra
level of optimization can be effectively solved by its KKT condi-
tions [12]. To debias the mining model, we show that the extra
time cost incurred due to the fairness consideration is only linear
w.r.t. the number of similarity links. To debias the mining results,
we develop a closed-form solution that is applicable to any graph
mining task whose results are in the form of a matrix. For Q3, we
develop an upper bound on the difference between debiased mining
results and the original mining results. Our analysis reveals that the
cost of ensuring individual fairness is closely-related to the input
graph structure (e.g., the rank, the spectral norm, etc.).

To our best knowledge, we are the first to study individual fair-
ness on graph mining. In addition to the problem definition, the
main contributions of this paper can be summarized as follows.
• Measure. We provide a novel definition of individual fair-
ness on graph mining, which is capable of (1) identifying if
the mining results are fair w.r.t. any given graph similarity
measure, and (2) measuring the individual bias as the trace
of a quadratic form in the mining results.

• Algorithms. We propose generic, effective and efficient al-
gorithms to mitigate individual bias through the input graph
graph, the mining model and mining results.
• Analysis.We provide analysis to (1) understand the quality,
complexities and applicability of the proposed debiasing
algorithms, and (2) reveal the key factors that impact the
cost for accommodating individual fairness on graph mining.
• Evaluations.We perform extensive empirical evaluations
on real-world datasets, which demonstrate that our proposed
methods are effective and efficient in reducing bias while
preserving the performance of vanilla graph mining models.

2 PROBLEM DEFINITION

In this section, we present the key symbols used throughout the
paper (Table 1). Then, we review the general procedure of several
classic graph mining algorithms from the optimization viewpoint.
Finally, we formally define three problems of individual fairness
for graph mining.

Table 1: Table of symbols.

Symbols Definitions and Descriptions

A a matrix
A′ transpose of matrix A
A−1 inverse of matrix A
A+ pseudo-inverse of matrix A
LA Laplacian matrix of A
u a vector
𝑙 (·) the loss function for a mining task
S node-node similarity matrix
Y graph mining results
Ȳ vanilla graph mining results
Y∗ debiased graph mining results
𝜃 a set of parameters

𝑛,𝑚1 number of nodes and edges
𝑚2 number of similarity links
𝑟 dimension of mining results Y[𝑖, :] for node 𝑖
𝑐 damping factor for PageRank
𝑘 number of clusters
𝑑 dimension of node embedding

We use bold upper-case letters for matrices (e.g. A), bold lower-
case letters for vectors (e.g. u) and lower-case letters for scalars (e.g.
𝑐). Regarding matrix indexing conventions, we use rules similar to
Numpy. We use A[𝑖, 𝑗] to represent the entry of matrix A at the 𝑖th

row and the 𝑗 th column, A[𝑖, :] to represent the 𝑖th row of matrix A
andA[:, 𝑗] to represent the 𝑗 th column of matrixA. We use prime to
represent the transpose of a matrix (i.e.A′ is the transpose of matrix
A) and the superscript plus sign to represent the pseudo-inverse of
matrix (i.e. A+ is the pseudo-inverse of matrix A).
A –GraphMining: An Optimization Pointview. Given a graph
with adjacency matrix A, a graph mining algorithm learns the
mining results by optimizing a loss function 𝑙 (A,Y, 𝜃 ), where Y =

argminY 𝑙 (A,Y, 𝜃 ) is themodel output (i.e., themining results) and𝜃
is the set of all parameters that corresponds to a specific mining task.
We use three classic graph mining algorithms, including ranking,
clustering and embedding, summarized in Table 2.

The first classic algorithm we apply is PageRank [21]. PageRank
is a widely used random walk-based ranking algorithm. It outputs
the ranking vector r by minimizing a smoothing term (r′(I − A)r)
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Table 2: Examples of graph mining algorithms.

Mining Tasks Loss Function 𝑙 Mining Results Y Parameters 𝜃

Ranking (PageRank [21]) min
r

𝑐r′(I − A)r + (1 − 𝑐)∥r − e∥22 PageRank vector r damping factor 𝑐
teleportation vector e

Clustering (spectral clustering [20]) min
U

Tr(U′LU) s.t. U′U = I matrix U number of clusters 𝑘

Graph Embedding (LINE (1st) [25]) max
X

∑𝑛
𝑖=1

∑𝑛
𝑗=1 A[𝑖, 𝑗] (log𝑔(X[ 𝑗, :]X[𝑖, :] ′) embedding matrix X embedding dimension 𝑑

+𝑏E𝑗 ′∼𝑃𝑛 [log𝑔(−X[ 𝑗 ′, :]X[𝑖, :] ′)]) number of negative samples 𝑏

and a query-specific term (∥r − e∥22), with 𝑐 being a regularization
parameter to balance the two terms 2. The second algorithm is
spectral clustering [20], which finds the soft cluster membership
matrix U of nodes in a graph by analyzing the spectrum of its graph
Laplacian. It has been shown that spectral clustering is equivalent
to finding the eigenvectors that are associated with the 𝑘 smallest
eigenvalues. The final algorithm we use is LINE [25]. Given a graph
with 𝑛 nodes, LINE learns the 𝑛 × 𝑑 embedding matrix U, where
each node is mapped into a 𝑑-dimensional vector that embeds its
structural property.
B – Individual Fairness for Graph Mining. We aim to answer
three questions regarding the individual fairness for graph mining
(InFoRM). Based on that, we formally define these three problems,
and then present our solutions in the subsequent sections.

For Q1 (InFoRM Measures), given a graph mining model and
an arbitrary similarity measure, we want to (1) determine if the
mining results are fair, and if not, (2) quantitatively measure the
overall bias. Formally, we define the problem of InFoRM Measures
as follows.

Problem 1. InFoRM Measures.

Input: (1) a non-negative symmetric node-node similarity matrix S,
(2) a graph mining algorithm Y = argminY 𝑙 (A,Y, 𝜃 ) from Table 2,
and (3) a fairness tolerance parameter 𝜖 ;
Output: (1) a binary decision regarding whether or not the mining
results are fair, and (2) a bias measure Bias(Y, S) which measures
the overall individual bias of the mining results Y with respect to
the similarity matrix S.

For Q2 (InFoRM Algorithms), we aim to develop generic, effective
and efficient algorithms to mitigate the bias of the mining results
Bias(Y, S), by adjusting either the input graph, or theminingmodel,
or the mining results. Formally, we define the problem of InFoRM
Algorithms as follows.

Problem 2. InFoRM Algorithms.

Input: (1) a non-negative symmetric node-node similarity matrix S,
(2) a graph mining algorithm Y = argminY 𝑙 (A,Y, 𝜃 ) from Table 2,
and (3) a bias measure Bias(Y, S) from Problem 1;
Output: a revised model output Y∗ which minimizes (1) the loss
function 𝑙 (A,Y, 𝜃 ) and (2) the individual bias Bias(Y, S).

For Q3 (InFoRM Cost), we want to quantitatively characterize to
what extent the revised graph mining results (Y∗) from Problem 2
will deviate from the graph mining results (Ȳ) without the fairness
constraint. For clarity, we refer to (1) the original results (Ȳ) without
the fairness constraint as vanilla mining results, and (2) the revised
results (Y∗) as debiased mining results. Formally, we seek to develop
an upper bound of such cost, which is defined as follows

20 < 𝑐 < 1 is often called the damping factor in PageRank and its variants.

Problem 3. InFoRM Cost.

Input: (1) the vanilla mining results Ȳ without consideration of
individual fairness, i.e., Ȳ = argminY 𝑙 (A,Y, 𝜃 ) from Table 2, and
(2) the debiased mining results Y∗ from Problem 2;
Output: an upper bound of ∥Y∗ − Ȳ∥𝐹 .

3 PROBLEM 1: INFORMMEASURES

In this section, we address Problem 1, and aim to measure the
individual fairness and bias for graph mining. That is, given the
graph mining results Y and a node similarity measure S, we want
to determine if the mining results are fair, and if not, we want to
quantitatively measure the overall bias.

We follow the generic design principle underlying individual
fairness that any two individuals who are similar should receive

similar algorithmic outcome [5]. In our setting, this implies that if
two nodes (𝑖 and 𝑗 ) are similar (i.e., S[𝑖, 𝑗] is high), their mining
results (Y[𝑖, :] and Y[ 𝑗, :]) should be similar as well. We start with
the following criteria: the mining results Y are fair w.r.t. to the node
similarity measure S if the following condition holds.

∥Y[𝑖, :] − Y[ 𝑗, :] ∥2𝐹 ≤
𝜖

S[𝑖, 𝑗] ∀𝑖, 𝑗 = 1, ..., 𝑛 (1)

where 𝜖 > 0 is a constant for tolerance.
According to Eq (1), the difference between the mining results

of a pair of nodes 𝑖 and 𝑗 is upper bounded by a scalar 𝜖
S[𝑖, 𝑗 ] . The

upper bound itself is dependent on the similarity between them
S[𝑖, 𝑗]. That is, the more similar the node 𝑖 and the node 𝑗 , the
smaller the upper-bound, and therefore the smaller the difference
between Y[𝑖, :] and Y[ 𝑗, :] is likely to be (i.e., the more similar the
mining results between them). An illustrative example is shown
in Figure 1 in Appendix. Therefore, Eq (1) naturally reflects the
aforementioned design principle of individual fairness.

The criteria in Eq (1) requires the inequality constraint to be held
for every pair of nodes 𝑖 and 𝑗 as long as their similarity S[𝑖, 𝑗] is
non-zero3. Such a constraint might be too restrictive to be fulfilled.
Therefore, we further seek for a relaxed criteria to tell if the mining
results are fair. Based on Eq. (1), we have

𝑛∑
𝑖=1

𝑛∑
𝑗=1
∥Y[𝑖, :] − Y[ 𝑗, :] ∥2𝐹 S[𝑖, 𝑗] = 2Tr(Y′LSY) ≤ 𝑚𝜖 = 𝛿 (2)

where LS is the Laplacian matrix of similarity S,𝑚 is the number
of non-zero elements in S, and Tr(Y′LSY) measures the difference
of the mining results between all pairs of nodes. Based on Eq. (2),
we formally propose the following to (1) determine if the mining
results are fair and (2) measure the overall bias.

3If S[𝑖, 𝑗 ] = 0, the right hand side of Eq. (1) will be infinity, which simply means that
it becomes a dummy constraint for nodes 𝑖 and 𝑗 .
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Definition 1. (Individual Fairness and Bias). Given a graph min-

ing results Y of size 𝑛 × 𝑟 , an 𝑛 × 𝑛 non-negative, a symmetric node

similarity matrix S and a constant 𝛿 for fairness tolerance, Y is indi-

vidually fair w.r.t. the similarity measure S if it satisfies

Tr(Y′LSY) ≤ 𝛿/2

where LS is the Laplacian matrix of similarity matrix S. Bias(Y, S) =
Tr(Y′LSY) is the overall bias regarding the individual fairness.

For traditional fair machine learning on spatial data or text data,
the notation of individual fairness often has a root in the Lipschitz
constant [5]. Here, we show that Eq. (1) can be interpreted from
the perspective of the Lipschitz constant.

Definition 2. ((𝐷1, 𝐷2)-Lipschitz property) [5]. Given a function
𝑓 , denote 𝑓 (𝑥) as the outcome of instance 𝑥 . We say function 𝑓 satisfies

(𝐷1, 𝐷2)-Lipschitz property if

𝐷1 (𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐿𝐷2 (𝑥,𝑦) ∀ (𝑥,𝑦),

where 𝐿 is the Lipschitz constant, 𝐷1 () and 𝐷2 () are two functions
used to measure the dissimilarty of outcomes and instances, respec-

tively.

Let 𝑓 (𝑖) = Y[𝑖, :], 𝑓 ( 𝑗) = Y[ 𝑗, :] and define 𝐷1 (𝑓 (𝑖), 𝑓 ( 𝑗)) =
∥ 𝑓 (𝑖) − 𝑓 ( 𝑗)∥2 and 𝐷2 (𝑖, 𝑗) = 1

S(𝑖, 𝑗) . It can be shown that the pro-
posed individual fairness definition in Eq. (1) naturally satisfies
(𝐷1, 𝐷2)-Lipschitz property with 𝜖 being the Lipschitz constant.
4 PROBLEM 2: INFORM ALGORITHMS

Generally speaking, a graph mining method consists of three major
components, including (1) the input graph, (2) the mining model
and (3) the mining results. Each of these three components can
introduce and/or amplify the proposed bias measure. In this section,
we present three complementary solutions to mitigate such bias
(i.e., Bias(Y, S)) from the perspective of each component, namely
(1) debiasing the input graph, (2) debiasing the mining model and
(3) debiasing the mining results. For each of them, we formulate
the bias mitigation problem (i.e., Problem 2) as an optimization
problem, propose an effective and efficient algorithm to solve the
optimization problem, and instantiate it with the three graphmining
tasks in Table 2. Finally, we compare the three proposed solutions.
4.1 Debiasing the Input Graph

Given a graph with adjacency matrix A, if the graph itself is con-
taminated with bias, it is likely that the bias will be transmitted
to, or even amplified in, the mining results Y if such a graph A is
used to train a graph mining model 𝑙 (A,Y, 𝜃 ). The intuition and
rationality of debiasing the input graph is as follows. If we have the
access to modify the graph and have knowledge about the mining
model itself, we aim to learn a new topology of the graph Ã so
that the bias of mining results based on the modified graph Ã is
minimized. We also want to make sure that the modified graph Ã
preserves as much information of A as possible. Mathematically,
we formulate debiasing the input graph method as the following
optimization problem.

min
Ã

∥Ã − A∥2𝐹 + 𝛼Tr(Y
′LSY) s.t. Y = argmin

Y
𝑙 (Ã,Y, 𝜃 ) (3)

where 𝛼 > 0 is the regularization parameter and LS is the Laplacian
matrix of the similarity matrix S.

Eq. (3) is hard to solve due to its bi-level optimization nature.
A generic strategy to solve such a bi-level optimization problem
is proposed by Mei et al. [19], which reduces the bi-level opti-
mization problem by replacing the lower-level optimization prob-
lem with its KKT conditions. By applying this generic strategy
to our setting, where the low-level optimization problem is Y∗ =
argminY 𝑙 (Ã,Y, 𝜃 ), we have

min
Ã

∥Ã − A∥2𝐹 + 𝛼Tr(Y
′LSY) s.t. 𝜕Y𝑙 (Ã,Y, 𝜃 ) = 0 (4)

We propose Algorithm 1 to solve Eq. (4). At each iteration of Al-
gorithm 1, we first find the mining results Ỹ based on the current
modified graph Ã (Step 3), and then we use the current mining
results Ỹ to further modify graph Ã (Steps 4-6). Once we obtain the
modified graph Ã, we use it to generate the debiased mining results
Y∗ (Step 7). In order to update Ã, we apply the gradient descent
method to the objective function 𝐽 = ∥Ã − A∥2

𝐹
+ 𝛼Tr(Ỹ′LSỸ). To

this end, we compute the partial derivative of 𝐽 w.r.t. Ã as

𝜕𝐽

𝜕Ã
= 2(Ã − A) + 𝛼 𝜕Tr(Ỹ

′LSỸ)
𝜕Ã

= 2(Ã − A) + 𝛼
[
Tr

(
𝜕Tr(Ỹ′LSỸ)

𝜕Ỹ′
𝜕Ỹ

𝜕Ã[𝑖, 𝑗]

)]
= 2(Ã − A) + 𝛼

[
Tr

(
2Ỹ′LS

𝜕Ỹ
𝜕Ã[𝑖, 𝑗]

)] (5)

where
[
Tr

(
2Ỹ′LS 𝜕Ỹ

𝜕Ã[𝑖, 𝑗 ]

)]
is a matrix with its element at 𝑖th row

and 𝑗 th column as Tr
(
2Ỹ′LS 𝜕Ỹ′

𝜕Ã[𝑖, 𝑗 ]

)
for any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤

𝑗 . The corresponding gradient can be computed as 𝑑 𝐽

𝑑Ã
=

𝜕𝐽

𝜕Ã
+(

𝜕𝐽

𝜕Ã

) ′
− diag

(
𝜕𝐽

𝜕Ã

)
if Ã is an undirected graph; otherwise, we have

its gradient as 𝑑 𝐽
𝑑Ã

=
𝜕𝐽

𝜕Ã
.

Algorithm 1: Debiasing the Input Graph
Input :Adjacency matrix A, similarity matrix S, a mining

algorithm 𝑙 (A,Y, 𝜃 ), regularization parameter 𝛼 ,
learning rate 𝜂;

Output :modified topology Ã and debiasd mining results Y∗.
1 initialize Ã = A;
2 while not converge do

3 find Ỹ = argminY 𝑙 (Ã,Y, 𝜃 );
4 calculate partial derivative 𝜕𝐽

𝜕Ã
by Eq. (5);

5 calculate derivative 𝑑 𝐽

𝑑Ã
based on partial derivative 𝜕𝐽

𝜕Ã
;

6 update Ã = Ã − 𝜂 𝑑 𝐽
𝑑Ã

;

7 return Ã and Y∗ = argminY 𝑙 (Ã,Y, 𝜃 );

A key step in Eq. (5) is to calculate H =

[
Tr

(
2Ỹ′LS 𝜕Ỹ

𝜕Ã[𝑖, 𝑗 ]

)]
.

Therefore, Algorithm 1 can be applied to a variety of graph mining
tasks as long as 𝜕Ỹ

𝜕Ã[𝑖, 𝑗 ] exists. We summarize how to calculate H
in Table 3 for three graph mining tasks. Due to the space limitation,
we only presentation details for LINE. Detailed derivations of H for
PageRank and spectral clustering can be found in Appendix.
Algorithm 1 Instantiation with LINE. Denote the 𝑛 × 𝑑 embed-
ding matrix learned by LINE (1st) as X. We apply the chain rule
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Table 3: Algorithm 1 instantiations.

Mining Tasks Mining Results Y Partial Derivatives H Remarks

PageRank Y = r = (1 − 𝑐)Qe H = 2𝑐Q′LSrr′ Q = (I − 𝑐Ã)−1

Spectral clustering Y = U = eigenvectors with H = 2
∑𝑘
𝑖=1

(
diag

(
M′
𝑖
LSu𝑖u′𝑖

)
1𝑛×𝑛

𝜆𝑖 = 𝑖
th eigenvalue of LÃ

smallest eigenvalues −M′
𝑖
LSu𝑖u′𝑖

) u𝑖 = eigenvector of LÃ corresponds to 𝜆𝑖
M𝑖 = (𝜆𝑖 I − LÃ)

+

LINE (1st) YY′ = Z (see Eq. (6)) H = 2𝑓 (Ã + Ã′) ◦ LS
𝑓 () calculates Hadamard inverse

−2diag(BLS)1𝑛×𝑛
◦ calculates Hadamard product

B refers to Eq. (9)

and rewrite Eq. (5) as
𝜕𝐽

𝜕Ã
= 2(Ã − A) + 2𝛼 𝜕Tr(X

′LSX)
𝜕Ã

= 2(Ã − A) + 2𝛼 𝜕Tr(LSXX
′)

𝜕Ã

= 2(Ã − A) + 2𝛼
[
Tr

(
L′S

𝜕XX′

𝜕Ã[𝑖, 𝑗]

)]
Let Z = XX′. We use the following method4 to compute 𝜕Z

𝜕Ã[𝑖, 𝑗 ] .
First, we have

Z[𝑠, 𝑡] = log

(
𝑇 (Ã[𝑠, 𝑡] + Ã[𝑡, 𝑠])
𝑑𝑠𝑑

3/4
𝑡 + 𝑑3/4𝑠 𝑑𝑡

)
− log𝑏 (6)

where 𝑑𝑖 is the out degree of node 𝑖 , 𝑇 =
∑𝑛
𝑖=1 𝑑

3/4
𝑖

. Then we have
the partial derivative
𝜕Z[𝑠, 𝑡]
𝜕Ã[𝑖, 𝑗]

=
3

4𝑇𝑑1/4
𝑖

+ 1
Ã[𝑠, 𝑡] + Ã[𝑡, 𝑠]

(1[𝑖 = 𝑠, 𝑗 = 𝑡] + 1[𝑖 = 𝑡, 𝑗 = 𝑠])

−
4𝑑1/4𝑠 + 3𝑑1/4𝑡

4(𝑑𝑠𝑑1/4𝑡 + 𝑑5/4𝑠 )
1[𝑖 = 𝑠] −

3𝑑1/4𝑠 + 4𝑑1/4𝑡

4(𝑑1/4𝑠 𝑑𝑡 + 𝑑5/4𝑡 )
1[𝑖 = 𝑡]

(7)
where 1 is the indicator function.

With Eq. (7), we get the following matrix form of derivatives[
Tr

(
L′S

𝜕Z
𝜕Ã[𝑖, 𝑗]

)]
= 2𝑓 (Ã + Ã′) ◦ LS − 2diag(BLS)1𝑛×𝑛 (8)

where 𝑓 (Ã) calculates the Hadamard inverse matrix Ã, ◦ is the
Hadamard product operator and B has the following form

B =
3
4
𝑓

(
d5/4 (d−1/4)′ + d11×𝑛

)
+ 𝑓

(
d3/4 (d1/4)′ + d11×𝑛

)
(9)

with d𝑥 being a column vector of d𝑥 [𝑖] = 𝑑𝑥
𝑖
.

Lemma 1. (Time and space complexities of Algorithm 1 for LINE)

It takes 𝑂 (min{𝑚1,𝑚2} +𝑚2) time and 𝑂 (min{𝑚1,𝑚2} + 𝑛) space
to calculate the partial derivatives H where 𝑛 is the number of nodes

and𝑚1 and𝑚2 are the number of edges in A and S, respectively.

Proof. See Appendix. □

4.2 Debiasing the Mining Model

The intuition and rationality of debiasing the mining model is
as follows. If we directly incorporate the proposed bias measure
(Bias(Y, S)) as a regularization term in the loss function of the given
mining model (i.e., those listed in Table 2), the generated mining
results are likely to have a small bias. Mathematically, we formulate
it as

Y∗ = argmin
Y

𝐽 = 𝑙 (A,Y, 𝜃 ) + 𝛼Tr(Y′LSY) (10)

where 𝛼 > 0 is the parameter for regularization.
4This method was first developed in [23] in order to establish the relationship between
LINE (2nd) and matrix factorization.

To solve Eq. (10), we apply (stochastic) gradient descent/ascent-
based methods. Since Y is, in general, not symmetric, its derivative
is 𝑑 𝐽
𝑑Y =

𝜕𝐽
𝜕Y . We have

𝑑 𝐽

𝑑Y
=
𝜕𝐽

𝜕Y
=
𝜕𝑙 (A,Y, 𝜃 )

𝜕Y
+ 𝛼 𝜕Tr(Y

′LSY)
𝜕Y

=
𝜕𝑙 (A,Y, 𝜃 )

𝜕Y
+ 𝛼 (LS + L′S)Y =

𝜕𝑙 (A,Y, 𝜃 )
𝜕Y

+ 2𝛼LSY
(11)

The last equality holds because S is a symmetric matrix and so
is its Laplacian matrix LS. We can see that, compared with the
original graph mining model without the fairness consideration,
the extra time to calculate LSY is just linear w.r.t. the number of
similarity links in S. Based on that, we propose a generic algorithmic
framework (i.e. Algorithm 2) to debias the mining model. The key
of Algorithm 2 is to solve Eq. (10) (Step 2). This can be done either
by (stochastic) gradient descent/ascent method based on Eq. (11), or
by a specific algorithm designed for the given graph mining model.
For the latter, we give three examples for the mining models in
Table 2.
Algorithm 2: Debiasing the Mining Model
Input :Adjacency matrix A, similarity matrix S, a mining

model 𝑙 (A,Y, 𝜃 ), regularization parameter 𝛼 ,
learning rate 𝜂;

Output :Debiased mining results Y∗.
1 solve Eq. (10);
2 return Y∗;

Algorithm2 InstantiationwithPageRank. Instantiating Eq. (10)
with PageRank, we have that r∗ = argmin

r
𝐽 = 𝑐r′(I − A)r + (1 −

𝑐)∥r − e∥2
𝐹
+ 𝛼r′LSr. We can show that 𝐽 is a quadratic convex

function w.r.t r as long as the regularization parameter 𝛼 is positive.
Therefore, its optima has a zero derivative 𝜕𝐽

𝜕r = 0. Then we have

𝜕𝐽

𝜕r
= 2r − 2𝑐Ar + 2𝛼LSr − 2(1 − 𝑐)e = 0

⇒ r∗ = 𝑐 (A − 𝛼
𝑐
LS)r∗ + (1 − 𝑐)e

(12)

which is equivalent to PageRank on a new transitionmatrixA− 𝛼𝑐 LS.
Furthermore, if the similarity matrix S is symmetrically normalized
(i.e., LS = I − S), we have r∗ = ( 𝑐

1+𝛼A +
𝛼
1+𝛼 S)r

∗ + 1−𝑐
1+𝛼 e.

Algorithm 2 Instantiation with Spectral Clustering. Instanti-
ating Eq. (10) with spectral clustering, we have thatU∗ = argmin

U
𝐽 =

Tr(U′LAU) + 𝛼Tr(U′LSU) = Tr(U′LA+𝛼SU) , which is very similar
to the loss function of the original spectral clustering without the
fairness consideration in Table 2, and both loss functions require
U to be orthonormal. The only difference is that the debiased U∗
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is equivalent to eigenvectors of LA+𝛼S with the 𝑘 smallest eigen-
values instead of the original LA. In other words, debiased spectral
clustering U∗ is essentially spectral clustering on a modified graph
with an adjacency matrix A + 𝛼S.
Algorithm2 Instantiationwith LINE. Instantiating Eq. (10) with
LINE (1st), we have

X∗ = argmax
X

𝑛∑
𝑖=1

𝑛∑
𝑗=1

A[𝑖, 𝑗] (log𝑔(X[ 𝑗, :]X[𝑖, :] ′)

+ 𝑏E𝑗 ′∼𝑃𝑛 [log𝑔(−X[ 𝑗
′, :]X[𝑖, :] ′)]) − 𝛼Tr(X′LSX)

(13)

where 𝑔(𝑥) = 1/(1 + 𝑒−𝑥 ) is the sigmoid function.
Due to the unique edge sampling strategy of LINE, we factorize

the bias term (i.e., Tr(X′LSX)) and consider it edge-wise. Specifi-
cally, for an edge (𝑖, 𝑗), LINE (1st) aims to maximize the following
objective function

log𝑔(x𝑗x′𝑖 ) + 𝑏E𝑗 ′∼𝑃𝑛 [log𝑔(−x𝑗 ′x
′
𝑖 )] − 𝛼 ∥x𝑖 − x𝑗 ∥

2
2S[𝑖, 𝑗] (14)

where x𝑖 and x𝑗 are the node embeddings for node 𝑖 and 𝑗 (i.e. 𝑖th

row and 𝑗 th row in X), respectively. It is worth pointing out that
adding such a bias constraint does not increase the time complexity.
To see this, we can show that the optimization for one edge in the
original LINE takes 𝑂 (𝑑𝑏) time, where 𝑏 is the number of negative
samples and 𝑑 is the embedding dimension. By adding the bias
constraint ∥x𝑖 − x𝑗 ∥22S[𝑖, 𝑗], it would introduce an additional 𝑂 (𝑑)
time per edge, which does not change the overall time complexity
in big-O notation.
4.3 Debiasing the Mining Results.

If we do not have access to either the input graph or the graph
mining model, we could mitigate the individual bias via a post-
processing strategy on the mining results. We formulate this miti-
gation strategy as a regularized optimization problem below.

Y∗ = argmin
Y

𝐽 = ∥Y − Ȳ∥2𝐹 + 𝛼Tr(Y
′LSY) (15)

where Ȳ is the vanilla mining results, i,e., the original model output
without the consideration of individual fairness.

We can prove that 𝐽 is a convex function since ∥Y − Ȳ∥2
𝐹
and

Tr(Y′LSY) are both convex and 𝛼 is a positive regularization hyper-
parameter. Thus, the optimal solution for Eq. (15) can be obtained
by taking the derivative of 𝐽 w.r.t. Y and setting it to zero.

𝜕𝐽

𝜕Y
=
𝜕∥Y − Ȳ∥2

𝐹

𝜕Y
+ 𝛼 𝜕Tr(Y

′LSY)
𝜕Y

= 0

⇒ 2Y − 2Ȳ + 2𝛼LSY = 0⇒ (I + 𝛼LS)Y∗ = Ȳ
(16)

Eq. (16) indicates that debiasing the mining results is essentially
solving a linear system w.r.t. the debiased mining results. Many
linear system solvers can be utilized, e.g., Krylov subspace method,
conjugate gradient method, etc. The proposed algorithm for debi-
asing mining results is summarized in Algorithm 3.
4.4 Analysis and Discussions

The three proposed algorithmic frameworks are mutually comple-
mentary with each other. For example, to debias the input graph
(Algorithm 1), we modify the input graph and mining results in
an iterative way. The potential benefit is that it eliminates or miti-
gates the bias from the ‘origin’ (i.e., the input graph), and thus the
modified/debiased graph might also help mitigate the bias for other

Algorithm 3: Debiasing the Mining Results
Input :Vanilla graph mining results Ȳ, similarity matrix S,

regularization parameter 𝛼 ;
Output :Debiased mining results Y∗.

1 calculate I + 𝛼LS;
2 solve (I + 𝛼LS)Y∗ = Ȳ;
3 return Y∗;

related graph mining models. In order to debias the mining model
(Algorithm 2), we need the knowledge of the details of the mining
model itself whereas the input graph remains unchanged. On the
contrary, neither the knowledge of the input graph nor the mining
model is required for debiasing the mining results (Algorithm 3).

Regarding the applicability of the proposed frameworks, we can
always debias the input graph as long as the gradient 𝑑Y

𝑑A[𝑖, 𝑗 ] in
Eq. (5) exists. For debiasing the mining model method, it is applica-
ble as long as a (stochastic) gradient descent solution for the vanilla
graph mining algorithm (i.e., the one without the consideration of
individual fairness) exists. This is because adding the additional
bias term in Eq. (10) would only incur a linear term in computing
the gradient. Besides, the convexity of the vanilla graph mining
algorithm will not be affected since the bias term itself is convex.
For debiasing the mining results method, it can be applied to any

graph mining model whose mining results Y are in a matrix form,
thanks to its model-agnostic closed-form solution.

The three proposed algorithmic frameworks differ in computa-
tional efficiency. First, the debiasing the input graph method is the
most time and space-consuming since H is usually non-trivial to
compute and could be a full matrix with𝑂 (𝑛2) space cost. However,
for some special mining models, including all three models in Ta-
ble 2, we can handle this issue by exploring the low-rank structure
of H. For example, in PageRank and spectral clustering, Q′LSr and
M′
𝑖
LSu𝑖 are both column vectors of length 𝑛 where Q′LSr can be

computed by power iterations and M𝑖 can be efficiently calculated
by singular value decomposition (SVD). In LINE, diag(BLS)1𝑛×𝑛
is equivalent to vectorize the diagonal of BLS as a column vector
and multiply with 11×𝑛 . As Lemma 1 says, Algorithm 1 for LINE
has a linear complexity. Second, for debiasing the mining model
method, the additional time incurred in the gradient computation is
linear w.r.t. the number of non-zero elements in S (𝑚2, the number
of links in the similarity matrix S), according to Eq. (11). Finally, for
debiasing the mining results method, it always has a linear time
complexity w.r.t.𝑚2 (the number of links in the similarity matrix
S), since we only need to solve a linear system in Eq. (16).

5 PROBLEM 3: INFORM COST

In this section, we address Problem 3 (i.e., InFoRM cost), aiming
to characterize how the debiased graph mining results Y∗ would
deviate from the vanilla ones Ȳ without the fairness consideration.
Among the three algorithms proposed in Section 4, debiasing the
mining results method (Algorithm 3), being agnostic to both the
input graph and the mining model, has the widest applicability.
Therefore, we will mainly focus on characterizing the InFoRM
cost of this method. The InFoRM cost of the other two proposed
methods (i.e., debiasing the input graph and debiasing the min-
ing model) is dependent on the specific graph and/or the specific
mining model. In Appendix, we provide a case study that analyzes
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the InFoRM cost for PageRank with the debiasing mining model
method (Algorithm 2).

For debiasing the mining results method, the solution of Eq. (16)
is always optimal since Eq. (15) is a convex optimization problem.
Based on this solution, we characterize the cost of debiasing the
mining results in Lemma 2.

Lemma 2. Given a graph of 𝑛 nodes with the adjacency matrix

A and a node-node similarity matrix S. Let Ȳ be the vanilla mining

results without considering the fairness and Y∗ = (I+𝛼LS)−1Ȳ be the

solution of Eq. (15) (i.e. the debiased mining results). If ∥S −A∥𝐹 = 𝛿 ,

we have that

∥Y∗ − Ȳ∥𝐹 ≤ 2𝛼
√
𝑛(𝛿 +

√
𝑟 (A)𝜎max (A))∥Ȳ∥𝐹

where 𝑟 (A) is the rank of A and 𝜎max (A) is the largest singular value
of A.

Proof. Since Y∗ = (I+𝛼LS)−1Ȳ, by re-arranging terms, we have

∥Y∗ − Ȳ∥𝐹 = 𝛼 ∥LSY∗∥𝐹 ≤ 𝛼 ∥LS∥𝐹 ∥(I + 𝛼LS)−1∥𝐹 ∥Ȳ∥𝐹 (17)

The last inequality above holds due to the triangle inequality. Since
∥Y∥𝐹 is a constant, our goal is to find upper bounds of ∥LS∥𝐹 and
∥(I + 𝛼LS)−1∥𝐹 respectively.

First, we derive an upper bound of ∥(I+𝛼LS)−1∥𝐹 . For anymatrix

W, we have ∥W∥𝐹 =

√∑𝑟 (W)
𝑖=1 𝜎2

𝑖
(W) ≤

√
𝑟 (W)𝜎max (W), where

𝜎max (W) is the largest singular value (i.e. the spectral norm) of
matrix W and 𝑟 (W) is the rank of matrix W [7]. Applying it to
∥(I + 𝛼LS)−1∥𝐹 , we have the following inequality

∥(I + 𝛼LS)−1∥𝐹 ≤
√
𝑛𝜎max ((I + 𝛼LS)−1) =

√
𝑛

𝜎min (I + 𝛼LS)
=
√
𝑛

(18)
The above inequality holds due to the facts that (1) (I + 𝛼LS)−1 is
full-rank 𝑛 × 𝑛 matrices; and (2) graph laplacian LS is a symmetric
singular matrix with smallest singular value being 0, which implies
that 𝜎min (I + 𝛼LS) = 1.

Next, we derive an upper bound of ∥LS∥𝐹 . Denote 𝑑𝑖 = LS (𝑖, 𝑖).
We have

∥LS∥2𝐹 =
∑
𝑖

(𝑑2𝑖 +
∑
𝑗 :𝑗≠𝑖

S(𝑖, 𝑗)2) =
∑
𝑖

[(
∑
𝑗 :𝑗≠𝑖

S(𝑖, 𝑗))2 +
∑
𝑗 :𝑗≠𝑖

S(𝑖, 𝑗)2]

≤
∑
𝑖

(2
∑
𝑗 :𝑗≠𝑖

S(𝑖, 𝑗)2 +
∑
𝑘 :𝑘≠𝑖

S(𝑖, 𝑘)2 +
∑
𝑙 :𝑙≠𝑖

S(𝑖, 𝑙)2) ≤ 4∥S∥2𝐹

Taking square root on both sides and applying triangle inequality,
we have the upper bound of ∥LS∥𝐹 as follows.

∥LS∥𝐹 ≤ 2∥S∥𝐹 ≤ 2(𝛿 + ∥A∥𝐹 ) ≤ 2(𝛿 +
√
𝑟 (A)𝜎max (A)) (19)

We complete the proof by combining Eqs. (17), (18) and (19). □

From Lemma 2, we can see that the cost of debiasing the mining
results depends on a number of factors, including the size of input
graph (i.e., the number of nodes 𝑛), the difference 𝛿 between S and
A, the rank of the adjacency matrix 𝑟 (A) and the largest singular
value of the adjacency matrix 𝜎max (A). 𝑟 (A) of many real graphs
could be small since they often have an (approximate) low-rank
structure. Furthermore, if A is a symmetrically normalized matrix
(i.e., A← D−1/2AD−1/2, where D is the degree matrix), its largest
singular value is upper bounded by 1. These facts help make the
overall upper bound in Lemma 2 to be relatively small.

6 EXPERIMENTAL EVALUATION

In this section, we perform experimental evaluations on our pro-
posed methods. The experiments are designed to answer the fol-
lowing questions:
RQ1. How does the individual fairness constraint impact the graph

mining performance?
RQ2. How effective are the proposed debiasing methods?
RQ3. How efficient are the proposed debiasing methods?

6.1 Experimental Settings

We utilize a diverse set of real-world datasets to test our algorithms,
all of which are publicly available. Table 4 summarizes the statistics
of these datasets. We provide details on experimental settings in
Appendix, including dataset description, metrics, baselines, ma-
chine configuration and parameter settings. The source code will
be released upon publication of the paper.

Table 4: Statistics of datasets.

Domain Dataset Nodes Edges

Collaboration AstroPh 18,772 198,110
CondMat 23,133 93,497

Social Facebook 22,470 171,002
Twitch 7,126 35,324

Biology PPI 3,890 76,584

6.2 Main Results

The evaluation of PageRank is shown in Table 5. From the table, we
can see that all three proposed methods can effectively reduce the
bias with small changes (i.e., Diff and KL columns in Table 5) to the
vanilla mining results while being able to preserve the performance
(i.e., Prec@50 and NDCG@50) of the vanilla algorithm without
fairness consideration. Comparing among these three methods,
the debiasing the input graph method takes the longest runtime.
However, it is not as effective as the other two methods in terms
of reducing the bias5. Thus, for spectral clustering and LINE, we
mainly evaluate the efficacy on debiasing the mining model and
debiasing the mining results. We also provide additional experimen-
tal results on debiasing the input graph for spectral clustering and
LINE in the Appendix. Evaluation results for spectral clustering and
LINE are shown in Tables 7 and 6, respectively. From these tables,
we can see that our proposed methods can effectively reduce bias
and preserve the performance of the vanilla graphmining algorithm
(i.e., Orig. ROC vs. Fair ROC, Orig. F1 vs. Fair F1 for LINE, and NMI
for spectral clustering). Interestingly, as shown in Table 6, adding
the fairness constraint on LINE sometimes actually improves the
link prediction performance (e.g., on Facebook, Twitch and PPI
datasets).
7 RELATEDWORK

A – Fairness in graph mining has begun to attract more and
more research attention in recent years. However, this research
has almost exclusively focused on group-based fairness notation.
For recommendation, Kamishima et al. [11] were among the first
to propose regularization-based collaborative filtering approaches
to minimize the average ratings between the protected group and
the unprotected group. These methods aim to ensure the statistical
independence of predicted ratings from a protected attribute. In
5Algorithm 1 for PageRank still enjoys a linear complexity in big-O notation by
exploring the low-rank structure of H matrix. See details in Appendix.
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Table 5: Effectiveness results for PageRank. Lower is better in gray columns. Higher is better in the others.

Debiasing the Input Graph

Datasets

Jaccard Index Cosine Similarity

Diff KL Prec@50 NDCG@50 Reduce Time Diff KL Prec@50 NDCG@50 Reduce Time

AstroPh 0.059 4.61 × 10−4 0.840 0.887 16.3% 3632 0.117 1.99 × 10−3 0.680 0.738 31.9% 3844
CondMat 0.008 1.06 × 10−5 0.980 0.986 2.16% 1817 0.031 1.57 × 10−4 0.940 0.957 9.37% 1922
Facebook 0.031 1.83 × 10−4 0.920 0.943 7.01% 3442 0.072 9.38 × 10−4 0.760 0.827 16.6% 3623
Twitch 0.109 5.37 × 10−4 1.000 1.000 24.7% 564.9 0.299 5.41 × 10−3 0.860 0.899 62.9% 649.3
PPI 0.185 1.90 × 10−3 0.920 0.944 43.4% 584.4 0.328 8.07 × 10−3 0.780 0.838 68.7% 636.8

Debiasing the Mining Model

Datasets

Jaccard Index Cosine Similarity

Diff KL Prec@50 NDCG@50 Reduce Time Diff KL Prec@50 NDCG@50 Reduce Time

AstroPh 0.133 3.28 × 10−3 0.820 0.871 51.0% 23.08 0.143 4.16 × 10−3 0.880 0.912 50.4% 26.92
CondMat 0.117 2.43 × 10−3 0.880 0.915 51.6% 12.02 0.149 4.01 × 10−3 0.860 0.901 54.6% 12.83
Facebook 0.149 3.33 × 10−3 0.840 0.884 47.7% 32.41 0.179 4.65 × 10−3 0.840 0.883 53.3% 33.31
Twitch 0.182 4.97 × 10−3 0.940 0.958 62.0% 16.18 0.315 1.05 × 10−2 0.940 0.957 73.9% 12.73
PPI 0.211 4.78 × 10−3 0.920 0.942 50.8% 10.76 0.280 9.56 × 10−3 0.900 0.928 67.5% 10.50

Debiasing the Mining Results

Datasets

Jaccard Index Cosine Similarity

Diff KL Prec@50 NDCG@50 Reduce Time Diff KL Prec@50 NDCG@50 Reduce Time

AstroPh 0.055 1.40 × 10−3 0.960 0.971 37.4% 0.038 0.094 4.46 × 10−3 0.960 0.972 49.2% 0.054
CondMat 0.040 8.26 × 10−4 0.940 0.959 34.4% 0.021 0.082 3.01 × 10−3 0.780 0.839 48.9% 0.025
Facebook 0.047 1.12 × 10−3 0.900 0.930 32.6% 0.048 0.086 3.87 × 10−3 0.960 0.972 44.6% 0.062
Twitch 0.035 9.75 × 10−4 0.980 0.986 33.9% 0.033 0.101 5.84 × 10−3 0.940 0.958 44.6% 0.024
PPI 0.045 1.22 × 10−3 0.940 0.958 27.0% 0.020 0.112 6.97 × 10−3 0.940 0.958 45.0% 0.019

Table 6: Effectiveness results for LINE. Lower is better in gray columns. Higher is better in the others.

Debiasing the Mining Model

Datasets

Jaccard Index Cosine Similarity

Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduce Time Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduce Time

AstroPh 0.462 0.973 0.970 0.924 0.914 51.6% 934.7 0.913 0.973 0.966 0.924 0.906 49.5% 923.0
CondMat 0.302 0.963 0.962 0.922 0.920 44.1% 1130 0.439 0.963 0.961 0.922 0.918 41.6% 1133
Facebook 0.323 0.946 0.954 0.888 0.902 49.6% 1099 0.442 0.946 0.957 0.888 0.906 56.0% 1100
Twitch 0.099 0.687 0.690 0.625 0.625 0.64% 333.8 0.152 0.687 0.694 0.625 0.628 0.83% 340.3
PPI 0.238 0.682 0.715 0.618 0.642 5.85% 180.3 0.418 0.682 0.740 0.618 0.669 7.71% 181.6

Debiasing the Mining Results

Datasets

Jaccard Index Cosine Similarity

Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduce Time Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduce Time

AstroPh 0.365 0.973 0.962 0.924 0.898 83.3% 3.284 0.539 0.973 0.963 0.924 0.902 91.1% 6.461
CondMat 0.215 0.963 0.961 0.922 0.918 71.8% 1.464 0.322 0.963 0.960 0.922 0.915 78.4% 2.213
Facebook 0.304 0.946 0.950 0.888 0.890 88.5% 4.122 0.416 0.946 0.953 0.888 0.891 92.4% 7.394
Twitch 0.457 0.687 0.681 0.625 0.629 95.2% 2.320 0.603 0.687 0.658 0.625 0.616 97.6% 4.343
PPI 0.508 0.682 0.713 0.618 0.642 90.1% 1.031 0.722 0.682 0.634 0.618 0.589 97.0% 2.245

Table 7: Effectiveness results for spectral clustering. Lower

is better in gray columns. Higher is better in the others.

Debiasing the Mining Model

Datasets

Jaccard Index Cosine Similarity

Diff NMI Reduce RT Diff NMI Reduce RT

AstroPh 0.885 0.948 10.2% 333.9 1.085 0.868 23.6% 323.4
CondMat 1.108 0.856 26.4% 383.7 1.186 0.742 35.9% 360.7
Facebook 0.972 0.816 31.9% 549.3 0.897 0.810 37.9% 545.0
Twitch 1.147 0.838 88.3% 26.50 1.145 0.875 87.4% 26.62
PPI 0.994 0.658 67.0% 6.047 0.897 0.667 75.2% 6.244

Debiasing the Mining Results

Datasets

Jaccard Index Cosine Similarity

Diff NMI Reduce Time Diff NMI Reduce Time

AstroPh 0.071 1.000 24.3% 10.22 0.123 0.984 39.5% 16.46
CondMat 0.071 1.000 34.5% 2.076 0.108 0.985 46.2% 3.196
Facebook 0.056 0.994 24.8% 8.425 0.102 0.994 35.9% 12.81
Twitch 0.150 1.000 90.9% 4.820 0.204 1.000 91.7% 6.513
PPI 0.242 0.811 77.5% 2.896 0.343 0.731 87.4% 4.288

addition, Yao et al. [31] proposed four new metrics to measure the

difference in estimation error between predicted ratings and aver-
age ground-truth ratings across protected and unprotected groups
in order to mitigate population imbalance and observation bias is-
sues. For fair spectral clustering, several recent methods have been
proposed. Kleindessner et al. [15] extended the notion of fairness
that was originally proposed by Chierichetti et al.[4]. This exten-
sion requires that each cluster has a balanced number of elements
from different demographic groups, which in turn is rooted in the
classic notation of disparate impact [6]. For fairness-aware graph
embedding, a generic idea behind the existing work is to ensure
the learned node embedding to be independent or uncorrelated
with the sensitive attributes. Bose et al. in [3] developed a composi-
tional adversarial framework to ensure statistical parity such that
the learned embedding is not biased w.r.t. different combinations
of sensitive attributes. Rahman et al. in [24] proposed a fairness
definition named equality of representation that builds upon statis-
tical parity and extended node2vec [8] with such notion of fairness.
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Different from [3, 24], Palowitch et al. [22] proposed a general
GNN-based training paradigm that ensures the orthogonality of
metadata (e.g. sensitive information) and the node embedding in
order to resolve the metadata leakage issue, where the correlation
between metadata and embedding cannot be explicitly modeled
and removed by the mining algorithm itself.

B – Individual fairness in machine learning has been stud-
ied extensively in non-graph data, such as recidivism data [17],
healthcare data [34] and text review data [2]. Compared with group-
based fairness, which ensures statistical fairness across the entire
population, individual fairness considers the individual merits and
mandates fairness at the individual-level. Dwork et al. [5] first pro-
posed the seminal work of individual fairness. Since then, individual
fairness has been applied to several different task settings. For ex-
ample, Zemel et al. [34] learned fair embedding with Euclidean
distance as the distance metric. Kim et al. [14] assumed group-
based fairness to be an average of individual fairness and learn fair
classifier by using oracle to estimate the individual distance. Yona et
al. [33] proposed a PAC-based relaxation of individual fairness and
show that their proposed fairness can generalize from the training
data to underlying population. Lahoti et al. [17] operationalized in-
dividual fairness by learning fair representation from the Euclidean
space together with pairwise side-information, which assumes that
the fair representation is a linear transformation of the original
features via trace optimization. It is worth pointing out that trace
optimization has been widely used in various data mining tasks,
e.g., semi-supervised clustering [28], collaborative filtering with
side-information [32], robust PCA [35], etc.

8 CONCLUSION

In this paper, we conduct a principled study of individual fairness on
graph mining. We first present quantitative measures for the indi-
vidual fairness and bias on graph mining. Based on that, we propose
three mutually complementary algorithmic frameworks (i.e., debias-
ing the input graph, debiasing mining model and debiasing mining
results) from the optimization perspective, and instantiate each
of them with various graph mining tasks (i.e. PageRank, spectral
clustering and LINE). Furthermore, we provide theoretical analysis
to characterize the cost of individual fairness. Extensive empirical
evaluations on a diverse set of real-world datasets demonstrate that
our proposed algorithms are effective in reducing individual bias
while largely maintaining the performance of various graph mining
tasks.
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Figure 1: An illustrative example of individual fairness for

graphmining. S is a node-node similaritymatrix. Individual

fairness requires that the difference between the mining re-

sults be small for a pair of similar nodes 𝑖 and 𝑗 .

A – Details of Experimental Setup

Datasets. All datasets are undirected uni-partite graphs. We ex-
tract the largest connected components in these datasets for ex-
periments in spectral clustering. The largest one in Table 4 is used
to test efficiency of the proposed methods. These datasets are col-
lected from various application-domains, including collaboration
networks (Collaboration), social networks (Social), physical in-
frastructure networks (Infra) and biology network (Biology). We
provide the detailed descriptions of these datasets as follows.
• Collaboration Networks. In this type of networks, nodes
usually represent researchers. Two researchers are connected
if they have collaborated together.We use three collaboration
networks in the field of Physics from arXiv preprint archive6:
Astro Physics (AstroPh) and Condense Matter Physics (Cond-
Mat) [18].
• Social Networks. Here, nodes are users and edges indicate
mutual social relationships. Among them, Facebook [18] is
the page-page network of official Facebook pages, which is
collected through Facebook Graph API in November, 2017.
Twitch [18] is the user-user social network of gamers that
streams in English on the popular game streaming website
Twitch7.
• Biology Network. This domain includes the well-known
PPI [18] network. It is a subgraph of the protein-protein
interaction network for Homo Sapiens.

Baseline Methods. We compare the performance of debiased
graph mining results with the original graph mining results without
consideration of individual fairness.
Similarity Matrix. For each dataset, we construct its node-node
similarity S matrix by two different similarity measures: Jaccard
index and cosine similarity. For PageRank and LINE, we filter out
similarity links smaller than a pre-defined threshold. The threshold
is defined as

threshold = mean(S) + 0.75std(S)
where mean(S) and std(S) calculates the mean and standard devia-
tion of all non-zero elements in S.
Metrics. To answer RQ1, we use two types of measures. First, we
measure the difference between original/vanilla mining results Ȳ
6https://arxiv.org/
7https://www.twitch.tv/

and debiased mining results Y∗ as Diff = ∥Y∗ − Ȳ∥𝐹 /∥Ȳ∥𝐹 . For
PageRank, we also measure KL divergence between Ȳ and Y∗ (i.e.,
KL( Y∗

∥Y∗ ∥1 | |
Ȳ
∥Ȳ∥1
) = ∑

𝑖
Y∗ [𝑖 ]
∥Y∗ ∥1 log

Y∗ [𝑖 ]/∥Y∗ ∥1
Ȳ[𝑖 ]/∥Ȳ∥1

). We normalize Ȳ and
Y∗ since the norm may not equal to 1. Second, we also use a set
of mining task specific performance metrics. In detail, for PageR-
ank, we use precision (Prec) and normalized discounted cumulative
gain (NDCG). We label the top-𝐾 entities in original PageRank
as relevant (rel = 1) and others as irrelevant (rel = 0). Then, we
calculate precision at 𝐾 (Prec@𝐾 =

# of relevant items

𝐾
) and NDCG

at 𝐾 (NDCG@𝐾 =
∑𝐾
𝑖=1

rel

log(1+𝑖) ). For spectral clustering, we use
normalized mutual information (NMI) to measure the agreement
between two cluster assignments before and after debiasing, which
is defined as NMI(C, C0) = 2MI(C,C0)

𝐻 (C)+𝐻 (C0) , where C0 and C are the
cluster assignments of original and debiased spectral clustering,
MI(C, C0) is the mutual information between C and C0, and 𝐻 (C)
is the entropy of assignment C. For LINE, we perform link predic-
tion using debiased mining results and original mining results and
compare their F1 score and ROC-AUC score.

To answer RQ2, we measure to what extent the individual bias
is reduced as Reduce = 1 − Tr( (Y∗)′LSY∗)

Tr(Ȳ′LSȲ)
.

Finally, to answer RQ3, we measure the runtime of each pro-
posed method (Time) in seconds.
Parameter Settings. To debias the input graph, for PageRank, we
set 𝛼 = 1 × 106 for PPI dataset, 𝛼 = 5 × 106 for other datasets
and 𝜂 = 5 × 10−4 for all datasets; for spectral clustering, we set
𝛼 = 3 × 105, 𝜂 = 0.02 for Twitch dataset and 𝛼 = 1 × 107, 𝜂 = 0.05
for PPI dataset; for LINE, we set 𝛼 = 0.25, 𝜂 = 0.5 for Twitch dataset
and 𝛼 = 10, 𝜂 = 0.025 for PPI dataset. To debias the mining model
and the mining results, we set 𝛼 = 0.5 for all mining tasks.

Besides, for PageRank, we set its damping factor 𝑐 = 0.85 and
symmetrically normalize the adjacency matrix A and similarity
matrix S to ensure convergence of power iterations; for spectral
clustering, we set the number of clusters as 10; for LINE, we ran-
domly select 85% of all edges as training set, 5% as validation set
and 10% as test set. During model training, we sample 3200 × 𝑛
edges for each dataset, where 𝑛 is the number of nodes, and use the
same learning rate as in [25].
Machine Configuration. All experiments are performed on a
Windows PC with i7-9800X CPU and 64GB RAM. All datasets are
publicly available. All codes are programmed in Python 3.7. The
source code will be released upon publication of the paper.

B – Additional Experimental Results

Additional experimental results on debiasing the input graph for
spectral clustering and LINE are shown in Tables 9 and 8, respec-
tively. From the table, we can see that our proposed debiasing the
input graph method can effectively reduce the bias while preserving
the performance of vanilla algorithm, which is consistent with our
evaluation results shown in Section 6.2.

C – Debiasing the Input Graph

Algorithm 1 Instantiation with PageRank. Given a symmetric
normalized graph A, by Table 2, PageRank on graph essentially
calculates the fixed-point solution: r = (1 − 𝑐) (I − 𝑐A)−1e, where 𝑐
is the damping factor and e is the teleportation vector. With that in
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Table 8: Effectiveness results for LINE. Lower is better in gray columns. Higher is better in the others.

Datasets

Jaccard Index Cosine Similarity

Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduce Time Diff Orig. ROC Fair ROC Orig. F1 Fair F1 Reduce Time

Twitch 1.079 0.687 0.691 0.625 0.622 1.92% 1878 1.267 0.687 0.662 0.625 0.606 12.1% 1999
PPI 0.674 0.682 0.678 0.618 0.620 2.06% 1656 0.699 0.682 0.686 0.618 0.621 1.22% 1779

Table 9: Effectiveness results for spectral clustering. Lower

is better in gray columns. Higher is better in the others.

Datasets

Jaccard Index Cosine Similarity

Diff NMI Reduce Time Diff NMI Reduce Time

Twitch 0.031 1.000 5.44% 1698 0.107 1.000 24.5% 1714
PPI 1.035 0.914 19.5% 829.3 0.933 0.849 24.1% 985.1

mind, we can rewrite Eq. (5) as
𝜕𝐽

𝜕Ã
= 2(Ã − A) + 2𝛼

[
r′LS

𝜕r
𝜕Ã[𝑖, 𝑗]

]
(20)

where r = (1 − 𝑐) (I − 𝑐Ã)−1e. Based on [13], we have 𝜕r
𝜕Ã[𝑖, 𝑗 ] =

𝑐r[ 𝑗] (I − 𝑐Ã)−1 [:, 𝑖]. Then, define Q = (I − 𝑐Ã)−1, we can further
simplify Eq. (20) and get

𝜕𝐽

𝜕Ã
= 2(Ã − A) + 2𝑐𝛼Q′LSrr′ (21)

Then, we can easily learn its debiased topology by applying Algo-
rithm 1 with Eq. (21).
Algorithm 1 Instantiation with Spectral Clustering. For spec-
tral clustering, as shown in Table 2, given an undirected graph with
adjacency matrixA, it finds the soft cluster membership matrixU as
the eigenvectors of LA associated with the smallest 𝑘 eigenvalues.
With that in mind, we first rewrite Eq. (5) as

𝜕𝐽

𝜕Ã
= 2(Ã − A) + 2𝛼 𝜕Tr(U

′LSU)
𝜕Ã

(22)

However, directly calculating 𝜕Tr(U′LSU)
𝜕Ã

is hard, we resort to

chain rule. First, to calculate 𝜕Tr(U′LSU)
𝜕LÃ

, we denote u𝑖 as the 𝑖th

column of U and write

𝜕Tr(U′LSU)
𝜕LÃ

= 2
[
Tr((LSU)′

𝜕U
𝜕LÃ [𝑖, 𝑗]

)
]
= 2

𝑘∑
𝑖=1

[
u′𝑖LS

𝜕u𝑖
𝜕LÃ [𝑖, 𝑗]

]
(23)

DenoteM𝑖 = (𝜆𝑖 I − LÃ)
+ where 𝜆𝑖 is the 𝑖th eigenvalue. Written in

a matrix form, by the derivative of eigenvectors, we have[
u′𝑖LS

𝜕u𝑖
𝜕LÃ [𝑖, 𝑗]

]
=

[
u′𝑖LSM[:, 𝑖]u𝑖 [ 𝑗]

]
= M′𝑖LSu𝑖u

′
𝑖 (24)

Then, based on [12], we get
𝜕Tr(U′LSU)

𝜕Ã
= diag

(
𝜕Tr(U′LSU)

𝜕LÃ

)
1𝑛×𝑛 −

𝜕Tr(U′LSU)
𝜕LÃ

= 2
𝑘∑
𝑖=1

(
diag

(
M′𝑖LSu𝑖u

′
𝑖

)
1𝑛×𝑛 −M′𝑖LSu𝑖u

′
𝑖

) (25)

where 1𝑛×𝑛 is an 𝑛 × 𝑛 matrix filled with 1. To learn the debiased
topology, we can apply Algorithm 1 by combining Eq. (22) and (25).

D – Proof of Lemma 1

Proof. It takes 𝑂 (min{𝑚1,𝑚2}) time to calculate 𝑓 (A + A′) ◦
LS and 𝑂 (𝑚2) time to calculate diag(BLS). Thus the overall time
complexity is 𝑂 (min{𝑚1,𝑚2} +𝑚2). For space complexity, it takes

𝑂 (min{𝑚1,𝑚2}) space to save 𝑓 (A + A′) ◦ LS in sparse format
and 𝑂 (𝑛) space to save diag(BLS). Therefore, the overall space
complexity is 𝑂 (min{𝑚1,𝑚2} + 𝑛). □

E – Cost of Debiasing the Mining Model: A Case

Study on PageRank

Given a graph with adjacency matrix A, similarity matrix S and
regularization parameter 𝛼 , the cost of debiasing the mining model
method on PageRank is summarized in Lemma 3.

Lemma 3. Given a graph with the symmetric normalized adjacency

matrixA and node-node similarity matrix S, let r̄ be the PageRank vec-
tor without considering the fairness and r∗ be the debiased PageRank
vector as in Eq. (12). If teleportation vector ∥e∥1 = 1 and similarity

matrix ∥S − A∥𝐹 = 𝛿 , it satisfies

∥r∗ − r̄∥𝐹 ≤
2𝛼𝑛
1 − 𝑐 (𝛿 +

√
𝑟 (A)𝜎max (A))

where 𝑐 is the damping factor and 𝛼 is the regularization parameter

for individual fairness.

Proof. Recall that debiasing the mining model on PageRank is
equivalent to solving the linear system r = 𝑐 (A − 𝛼

𝑐 LS)r + (1 − 𝑐)e.
After rearranging terms, we can get its closed-form solution as
r∗ = (1−𝑐) (I−𝑐A+𝛼LS)−1e. If we do not consider individual fairness
constraint, we can easily set LS = 0 and get r̄ = (1 − 𝑐) (I − 𝑐A)−1e.
Then we have the cost of individual fairness in PageRank as

∥r∗ − r̄∥𝐹 = (1 − 𝑐)∥((I − 𝑐A + 𝛼LS)−1 − (I − 𝑐A)−1)e∥𝐹
≤ (1 − 𝑐)∥((I − 𝑐A + 𝛼LS)−1 − (I − 𝑐A)−1)∥𝐹 ∥e∥𝐹
≤ (1 − 𝑐)∥((I − 𝑐A + 𝛼LS)−1 − (I − 𝑐A)−1)∥𝐹
= (1 − 𝑐)∥(I − 𝑐A + 𝛼LS)−1 · 𝛼LS · (I − 𝑐A)−1∥𝐹
≤ 𝛼 (1 − 𝑐)∥(I − 𝑐A + 𝛼LS)−1∥𝐹 · ∥LS∥𝐹 · ∥ (I − 𝑐A)−1∥𝐹

(26)
Since A is symmetric normalized matrix, its Laplacian matrix is
I−A, which reveals that I− 𝑐A = (1− 𝑐)I + L𝑐A and I− 𝑐A +𝛼LS =
(1−𝑐)I+L𝑐A+𝛼S. DefineC = (1−𝑐)I+L𝑐A andD = (1−𝑐)I+L𝑐A+𝛼S.
Based on Eq. (18), we have the following two inequalities holds

∥(D)−1∥𝐹 ≤
√
𝑛𝜎max (((1 − 𝑐)I + L𝑐A+𝛼S)−1)

=

√
𝑛

𝜎min ((1 − 𝑐)I + L𝑐A+𝛼S)
=

√
𝑛

1 − 𝑐
(27)

∥(C)−1∥𝐹 ≤
√
𝑛𝜎max (((1 − 𝑐)I + L𝑐A)−1) =

√
𝑛

1 − 𝑐 (28)

Combine Eq. (27), (28) with Eq. (26), we have ∥r∗− r̄∥𝐹 ≤ 𝛼𝑛
1−𝑐 ∥LS∥𝐹 .

As shown in Eq. (19), we have ∥LS∥𝐹 ≤ 2(𝛿+
√
𝑟 (A)𝜎max (A)). Thus,

we have ∥r∗ − r̄∥𝐹 ≤ 2𝛼𝑛
1−𝑐 (𝛿 +

√
𝑟 (A)𝜎max (A)). □

Similar in Section 5, the cost of debiasing the mining model with
PageRank depends on the number of nodes 𝑛, rank of adjacency
matrix 𝑟 (A) and the largest singular value 𝜎max (A).
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