
NetTrans: Neural Cross-Network Transformation

Si Zhang
∗
, Hanghang Tong

∗
, Yinglong Xia

†
, Liang Xiong

†
, and Jiejun Xu

‡

∗
University of Illinois at Urbana-Champaign, {sizhang2, htong}@illinois.edu;

†
Facebook, {yxia, lxiong}@fb.com;

‡
HRL Laboratories, jxu@hrl.com

ABSTRACT
Finding node associations across different networks is the corner-

stone behind a wealth of high-impact data mining applications.

Traditional approaches are often, explicitly or implicitly, built upon

the linearity and/or consistency assumptions. On the other hand,

the recent network embedding based methods promise a natural

way to handle the non-linearity, yet they could suffer from the dis-

parate node embedding space of different networks. In this paper,

we address these limitations and tackle cross-network node associa-

tions from a new angle, i.e., cross-network transformation. We ask a

generic question:Given two different networks, how can we transform

one network to another?We propose an end-to-endmodel that learns

a composition of nonlinear operations so that one network can be

transformed to another in a hierarchical manner. The proposed

model bears three distinctive advantages. First (composite transfor-

mation), it goes beyond the linearity/consistency assumptions and

performs the cross-network transformation through a composition

of nonlinear computations. Second (representation power), it can

learn the transformation of both network structures and node at-

tributes at different resolutions while identifying the cross-network

node associations. Third (generality), it can be applied to various

tasks, including network alignment, recommendation, cross-layer

dependency inference. Extensive experiments on different tasks

validate and verify the effectiveness of the proposed model.

KEYWORDS
Network transformation; node associations; network representa-

tion learning; network alignment; social recommendation

ACM Reference Format:
Si Zhang

∗
, Hanghang Tong

∗
, Yinglong Xia

†
, Liang Xiong

†
, and Jiejun Xu

‡
.

2020. NetTrans: Neural Cross-Network Transformation. In Proceedings of

the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3394486.3403141

1 INTRODUCTION
In the era of big data, networks are often multi-sourced. Finding

the node associations across different networks is a key stepping

stone to explore deep insights from such multi-sourced networks.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403141

If nodes in different networks represent the same type of entities,

finding the cross-network node associations is essentially the (soft)

network alignment problem [38]. For example, aligning suspects

across different transaction networks helps integrate the transaction

histories of the suspects at different financial institutes, which in

turn facilitates to uncover the complex financial fraud schema. On

the other hand, if nodes in different networks represent different

types of entities, finding the cross-network node associations is

often referred to as the cross-layer dependency inference problem [1].

It indicates how entities of different types from different networks

interact with each other. For instance, the user-product interactions

across a social network and a product similarity network can be

used for social recommendations [34]. In a biological system, the

protein-protein interaction (PPI) networks are often coupled with

the disease networks, and the cross-network node associations may

indicate how diseases are related to different genes [22].

Traditional methods for cross-network node associations are

often, explicitly or implicitly, built upon the linearity and/or con-

sistency assumptions. For example, classic graph matching based

network alignment methods often assume networks are noisy per-

mutations of each other and minimize ∥B0−PA0PT ∥2F whereA0,B0
are the adjacency matrices of two networks and P is the permu-

tation matrix [17, 37]. This formulation together with many of

its variants (e.g., [38]) implicitly embraces a linear operation
1
. As

for cross-layer dependency inference, a typical approach is based

on network-regularized matrix factorization [1, 16, 32] under the

consistency/homophily assumption. For example, in social recom-

mendation, these methods typically assume similar users tend to

share similar latent representations.

More recent efforts aim to approach the cross-network node as-

sociation problem by learning node embedding vectors of different

networks [3, 20]. These methods can potentially go beyond the

linearity and/or the consistency assumptions behind the complex

cross-network node associations by learning node embedding vec-

tors through nonlinear functions. However, the node embedding

vectors of different networks often lie in the disparate vector spaces

which might be incomparable with each other. For instance, if we

shift, rotate or scale the node embeddings of one network, it could

significantly impair network alignment results [5].

In this paper, we address the above limitations and tackle cross-

network node associations from a new angle, i.e., cross-network

transformation. We ask a generic question: Given two different net-

works, how can we transform one network to another?We propose an

end-to-end model NetTrans that bears three key advantages. First

1
To see this, the objective function of graph matching based network alignment is

equivalent to minimizing ∥ vec(B0)− P̃ vec(A0) ∥
2

2
where vec(A0), vec(B0) denote the

vectors of node pairs and P̃ = P⊗P is the Kronecker product of the permutation matrix.

P̃ is used as a single linear transformation across the node pairs of two networks.

https://doi.org/10.1145/3394486.3403141
https://doi.org/10.1145/3394486.3403141

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhang et al.

(composite transformation), instead of learning a single linear trans-

formation function underpinning graph matching based methods,

the proposed model learns a composition of nonlinear functions to

transform both network structures and node attributes, and in the

meanwhile unveils the cross-network associations. Second (repre-

sentation power), by exploiting the multi-resolution characteristics

underlying the networks, the proposed pooling layer TransPool

can learn the hierarchical representations of the networks and the

unpooling layer TransUnPool learns the transformations at different

resolutions. Third (generality), the proposed model is generic and it

can be easily applied to numerous tasks, such as network alignment,

social recommendation, cross-layer dependence inference, etc. The

main contributions of this paper can be summarized as follows:

• Problem Definition. To our best knowledge, we are the

first to address the cross-network transformation problem.

• End-to-End Model. We propose an end-to-end model Net-

Trans which composes of the novel pooling and unpooling

operations to learn the transformation functions and find

the node associations across different networks.

• Experimental Results.We perform extensive experiments

in network alignment and social recommendation, which

demonstrate the effectiveness of the proposed model to find

the cross-network node associations.

The rest of the paper is organized as follows. Section 2 defines

the cross-network transformation problem. Section 3 presents the

proposed NetTransmodel. Section 4 shows the experimental results.

Related works and conclusion are given in Section 5 and Section 6.

2 PROBLEM DEFINITION
Table 1 summarizes the main symbols and notations used through-

out the paper. We use bold uppercase letters for matrices (e.g., A),
bold lowercase letters for vectors (e.g., a), and lowercase letters (e.g.,
α) for scalars. We use A(i, j) to denote the entry at the intersection

of the i-th row and j-th column of the matrix A, A(i, :) to denote

the i-th row of A and A(:, j) to denote the j-th column of A. We

denote the transpose of a matrix by a superscript T (e.g., AT is the

transpose of A). Furthermore, we use subscripts to index the matri-

ces in different layers. For example, we use A0 to denote the input

adjacency matrix and Al as the adjacency matrix of the coarsened

network in the l-th layer. In addition, we useu,v to index the nodes

of two input networks and use u ′,v ′
to index the supernodes of

the coarsened networks in each layer. Note that the supernode-u ′

of the output coarsened network obtained in the (l − 1)-th layer is

equivalent to the node-u ′ of the input network in the l-th layer. In

this paper, we use ‘graphs’ and ‘networks’ interchangeably.

Multi-sourced networks are often associated with each other, in

terms of the network structures, node attributes and cross-network

node associations. In other words, there exist some functions that

link the multi-sourced networks together. In this paper, we consider

to learn a transformation function denoted by д(·) such that the

source network G1 can be transformed to the target network G2,

i.e., д(G1) ≃ G2. Figure 1 (a) presents an illustrative example in the

network alignment scenario. As we can see, the source network G1

and target network G2 have different network structures as well as

node attributes, and more importantly, the cross-network node as-

sociations (i.e., node correspondences) are unknown. Our goal is to

Table 1: Symbols and Notations
Symbols Definition
G1, G2 input source and target networks

V1,V2 the sets of nodes of G1 and G2

A0,B0 input adjacency matrices of G1 and G2

X0,Y0 input node attribute matrices of G1 and G2

n0,m0 # of nodes in A0 and B0
Al ,Bl adjacency matrices of G1 and G2 in the l-th layer

Xl ,Yl node feature matrices in the l-th layer

Pl node-supernode assignment matrix in the l-th layer

nl ,ml # of nodes in Al and Bl in the l-th layer

L # of layers of both encoder and decoder

α, β,γ parameters controlling the importance of loss terms

[·∥·] concatenation operator of two vectors

Male, 40 (age), Beijing
Female, 25 (age), New York

Male, 35 (age), Seattle

Male, 30 (age), Beijing

Source network 𝓖𝟏

Male, Professor, China
Female, Student, USA

Male, Engineer, USA

Male, Engineer, China Female, Student, Korea

Target network 𝓖𝟐

Cross-Network
Transformation

Structure transformation

M 40 Beijing

F 25 NYC

M 35 Seattle

M 30 Beijing

M Prof. China

F Stud. USA

M Eng. USA

F Stud. Korea

M Eng. China

Attribute transformation

Node
associations

𝑔𝑛𝑜𝑑𝑒

(a) (b)

𝑔

𝑔

Figure 1: An illustrative example of cross-network trans-
formation in the network alignment scenario. Figure 1 (a)
shows the entire transformation across input networks. Fig-
ure 1 (b) shows the transformation on network structure,
node attributes and cross-network node associations.
learn the transformation functions on both network structures and

node attributes while identifying the cross-network associations.

To be specific, we use the following major notations to de-

scribe the cross-network transformation. First, we denote the in-

put source network G1 and target network G2 by triplets, i.e.,

G1 = {V1,A0,X0} and G2 = {V2,B0,Y0}2 where V1,A0,X0 de-

note the set of nodes, adjacency matrix and node attributes of G1,

respectively and similarly for G2. Second, we denote the transfor-

mation function on network structures and node attributes by д
such that (B0,Y0) ≃ д(A0,X0). Lastly, the transformation function

induces the node associations across different networks and is de-

noted by д
node

. Figure 1 (b) shows an example of the corresponding

transformation in terms of network structure and node attributes,

as well as the node associations. Given the above notations, we for-

mally define the cross-network transformation problem as follows.

Problem 1. Cross-Network Transformation.

Given: (1) input source network G1 = {V1,A0,X0} and target

network G2 = {V2,B0,Y0} whereV1,V2 denote the nodes of G1,G2,

2
If the attributes are not available, one can simply set X0, Y0 as identity matrices or

manually extract structure-dependent attributes.

NetTrans: Neural Cross-Network Transformation KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

A0,B0 are the adjacency matrices and X0,Y0 are the node attribute
matrices of G1,G2, and (2) partial knowledge of the cross-network

node associations L where L(u,v) indicates whether node-u in G1

associates with node-v in G2 a priori.

Output: (1) the cross-network transformation function д = F ◦

H where F denotes a set of encoding functions and H denotes the

decoding functions such that д(G1) ≃ G2, and (2) the cross-network

association function д
node

where д
node

(u,v) measures to what extent

node-u in G1 is associated with node-v in G2.

Let us take the graph matching based methods as an example

to further illustrate the functions д and д
node

, given two networks

G1 = {V1,A0,X0} and G2 = {V2,B0,Y0} with the same type of

nodes, graph matching based methods aim to learn a permutation

matrix P, indicating the node correspondence between V1,V2 (i.e.,

д
node

). In the meanwhile, the matrix P is also used as a single trans-

formation function such that vec(B0) ≃ P̃ vec(A0) and Y0 ≃ PX0

where P̃ = P⊗P. Thus, the transformation functionд can be written
as д(vec(A0),X0) = (P̃ vec(A0), PX0). And the cross-network node

association function д
node

(u,v) = P(v,u). Despite its elegant math-

ematical formulation, such a single linear transformation might

over-simplify the complex associations across networks.

Remarks. Note that the cross-network transformation problem is

similar to but bears subtle differences from the graph-to-graph

translation problem [10, 13]. For the latter, it implicitly assumes

that nodes in different networks are of the same type and all node

correspondences are perfectly known a priori. In contrast, the cross-

network transformation problem that we study in this paper aims

to learn such node associations from the networks (i.e., the function

д
node

), in addition to learning the transformation function д.
We envision that the learned transformation functions from Prob-

lem 1 can be applied in a variety of data mining tasks. In this paper,

we focus on two such tasks, including (Task 1) network alignment

and (Task 2) social recommendation. In Task 1, we consider two

networks with the same type of nodes and the transformation func-

tion д
node

measures to what extent that two nodes are aligned with

each other. In Task 2, we consider a social network and a product

similarity network, and the transformation function д
node

predicts

whether a user likes/buys a product.

3 THE NETTRANS MODEL
In this section, we present the proposed model NetTrans, an end-to-

end semi-supervised model to solve Problem 1. We start by giving

an overview of our model, and then detail the components of the

model, followed by the discussions on the potential generalizations.

3.1 NetTrans Model Overview
The core challenge of cross-network transformation lies in how

to design a model that can jointly learn the transformation func-

tion д and the cross-network node associations д
node

. In this paper,

we propose an encoder-decoder architecture that decomposes the

transformation function д into two parts, including the encoder F

and the decoder H . We exploit the multi-resolution characteristics

of real-world networks in both the encoder and the decoder. The

overall architecture of the proposed NetTrans model is shown in

Figure 2. The encoder F aims to coarsen the source network and

learn the network structure and node representations at different

resolutions. On the other hand, the decoder H reconstructs the

𝑿0 𝑨0

GCN

TransPool
𝑨1, 𝑿1

𝑨2, 𝑿2

𝒍 = 𝟏

𝒍 = 𝟐

𝒍 = 𝟑Encoder

𝑩1, 𝒀1

𝑩2, 𝒀2

Decoder

𝑨0, ෩𝑿1

𝒌 = 𝟏

𝒌 = 𝟐

𝒌 = 𝟑

TransUnPool

𝑩0 𝒀0𝓖𝟏 𝓖𝟐

𝑨3𝑿3 𝑩3 𝒀3

𝒀3 = MLP 𝑿3

𝑩3 = 𝑨3

𝑨3, 𝑿3 𝑩3, 𝒀3

෩𝑩0, ෩𝒀0

skip connections

Figure 2: The overall architecture of the cross-network trans-
formation model NetTrans (L = 3).
structure and node representations of the target network at differ-

ent resolutions. To make the source network and target network

at different resolutions comparable to each other, we design the

encoder and decoder to have the same number of layers (i.e., L).
To learn the cross-network node associations д

node
, we need to

simultaneously learn the node assignments across two adjacent res-

olutions indicating which nodes at the finer resolution are merged

into which node(s) in the next coarser resolution. To this end, we

propose a pooling layer TransPool as the core component of the

encoder and an unpooling layer TransUnPool in the decoder.

The intuition behind such a design is that we could simplify

the cross-network transformation at the coarser resolutions, since

the coarsened networks are likely to become more similar with

each other. For instance, given a social network and a product

similarity network, the nodes at the coarse resolutions might share

similar latent meanings (e.g., a group of users who like to buy

computers vs. a group of computer-related products). Moreover, the

association between a group of users and a group of similar products

will provide critical auxiliary information to infer the associations

between the users and products in these groups. Finally, with this

hierarchical learning, the proposed TransUnPool layers naturally

learns the functions to model how network structures and node

representations are transformed at different resolutions.

3.2 NetTrans Encoder
Denote F = { fl } as the functions in the encoder where fl , l =
1, · · · , L represents the encoding function in the l-th encoder layer.

In the l-th encoder layer, the function fl (·, ·) on the network can be

decomposed into learning the adjacency matrix and node attributes

of the coarsened network. Denote Al ∈ R
nl×nl and Xl ∈ R

nl×dl as

the output adjacency matrix and node representations of the coars-

ened network in the l-th layer. Given the inputs Al−1 ∈ Rnl−1×nl−1

(nl ≤ nl−1) and Xl−1 ∈ Rnl−1×dl−1 which is the output coarsened

network in the (l −1)-th layer, we can denote the encoding function

by (Al ,Xl) = fl (Al−1,Xl−1). For example, the outputs of the first

encoder layer can be computed by (A1,X1) = f1(A0,X0).

To learn the structure of the coarsened networks, one prevalent

choice is to coarsen the network with an assignment matrix, e.g.,

Al = PlAl−1PTl where Pl ∈ Rnl×nl−1 and Pl−1(u ′,u) measures the

strength of node-u in Al−1 being merged into the supernode-u ′.
Existing methods to compute Pl include the classic methods that

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhang et al.

Self-attention

Message
passing
by Eq. 2

෡𝑿𝑙

𝑷𝑙
𝑇

𝑷𝑙
෡𝑿𝑙𝑾𝑙

1

Max Aggregation

𝑿𝑙
Top-k

selection

Gumbel
softmax

𝑨𝑙

෡𝑨𝑙

1
2

3

4

5

67

8
9

(𝑨𝑙−1, ෩𝑿𝑙)

10
11

𝑨𝑙−1(𝐼, 𝐼) 1’

2’

1

5

Re-index

Figure 3: Description of the pooling layer (TransPool) in the l-th encoder layer.

calculate it deterministically (e.g., [26]) and graph neural networks

based methods [35]. One advantage is that all nodes are assigned to

certain supernodes based on the dense assignment matrix. However,

these methods might lead to costly computations and the densely

connected network structure [35]. We also remark in Proposition 1

that this coarsening process is built upon linear operations which

might insufficiently capture the underlying hierarchical structures.

Proposition 1. Given an assignment matrix Pl , the coarsening
process Al = PlAl−1PTl constructs edges by linear operations.

Proof. See Appendix. □

Another way to coarsen networks is the learnable importance-

based pooling operations [9, 19]. These methods basically select

the top-k important nodes as supernodes, and preserve the orig-

inal connections among the selected nodes as the edges among

the corresponding supernodes. The advantages of these methods

include the efficient computations and the sparse structure of the

coarsened networks. Note that keeping the original connections

can be viewed as a special case of assignment matrix based meth-

ods. Specifically, the assignment matrix Pl (u ′,u) = 1 if and only if

node-u is selected and re-indexed to supernode-u ′. Thus, according
to Proposition 2, the informativeness of the coarsened structure by

these methods is also hindered by the underlying linear operations.

In addition, it is unknown how those unselected nodes are assigned

to the supernodes (i.e., Pl (:,u) = 0 for all u that are not selected).

To this end, we propose a new graph pooling operation TransPool

(shown in Figure 3) that can balance between the above two types

of pooling strategies and learn the assignments for all nodes.

Following [9, 19], in the l-th encoder layer, we first feed the

inputs (Al−1,Xl−1) to a graph convolutional layer (e.g., [15]) before

the pooling layer. By denoting X̃l = GCN(Al−1,Xl−1), we compute

the self-attention scores zl ∈ Rnl−1 by a graph convolutional layer

[15] to measure the node importance [19]. This is formulated by

zl = σ

(
D̃
− 1

2

l−1Ãl−1D̃
− 1

2

l−1X̃lW
self

l

)
(1)

where σ (·) denotes the nonlinear activation function (e.g., tanh),

Ãl−1 = Al−1 + I, Al−1 ∈ Rnl−1×nl−1 is the input adjacency ma-

trix in the l-th encoder layer, D̃l−1 = diag(Ãl−11) is the diago-

nal degree matrix of Ãl−1, X̃l ∈ Rnl−1×dl is the input node fea-

ture matrix, and Wself

l ∈ Rdl contains the parameters to com-

pute the self-attention scores. By using these self-attention scores

to measure node importance, both network structure and node

features are naturally encoded. Thus, nodes of the top-nl scores
are likely to be more important to capture the structural and fea-

ture information. In [9, 19], these selected top-nl nodes are then
used as masks to construct the adjacency matrix and node fea-

tures of the coarsened network. Specifically, by denoting the in-

dices of the selected nodes as I = top-rank(zl ,nl), [9, 19] com-

pute Al = Al−1(I,I) = PlAl−1PTl where Iu′ is the u ′-th element

of I and Pl (u ′,Iu′) = 1, ∀u ′ = 1, · · · ,nl are the only nonzero

elements in Pl . The coarsened node features are computed by

Xl (u
′, :) = X̃l (Iu′, :) ⊙ zl (u ′) where ⊙ is element-wise product.

However, this simple masking-based pooling operation has two

potential limitations. First, the computation of output feature matrix

Xl in [9, 19] insufficiently leverages the representations of the

unselected nodes by simply re-scaling X̃l based on zl . Second, as
mentioned before, edges in the coarsened adjacency matrix are

constructed by linear operations. Besides, the coarsened network

empirically may contain isolated nodes. For example, an isolated

node-u ′ can occur when Al−1(Iu′,I \ Iu′) = 0 for some u ′ (e.g.,
node-1 and node-5 in red in Figure 3). Note that the isolated nodes

cannot be completely avoided by Eq. (1). Such an issue could further

lead to the inability of the information propagation to the isolated

nodes in the next encoder layer, making the network structure and

node representation learning at the coarser resolutions even worse.

To address the first issue, instead of directly rescaling the rep-

resentation vectors, we allow message passing from nl−1 nodes to
the selected nl supernodes. In particular, we use attention-based

message passing [30] formulated as below.

X̂l (u
′, :) = σ

©­«X̃l (Iu′, :)W1

l +
∑

u ∈Nu′

αu′u X̃l (u, :)W
1

l
ª®¬ (2)

αu′u =
exp

(
aTl

[
X̃l (Iu′, :)W1

l ∥X̃l (u, :)W1

l

])
∑
u1∈Nu′

exp

(
aTl

[
X̃l (Iu′, :)W1

l ∥X̃l (u1, :)W1

l

]) (3)

where Nu′ denotes the 1-hop neighborhood of supernode-u ′ in

the bipartite graph Gb formed by Al−1(:,I), al ∈ R2dl and W1

l ∈

Rdl×dl are the parameters to be learned. However, Eq. (2) cannot

aggregate the features from the nodes that are multi-hop away

from the selected nodes (e.g., from node-10 to node-5). As a remedy,

NetTrans: Neural Cross-Network Transformation KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

we propose to additionally aggregate the node features based on

the assignment matrix Pl . To efficiently learn Pl , we propose the
following mechanism to select supernode candidates. First, for a

node-u that have some supernodes as their 1-hop neighbors in Gb ,

they can be assigned only to their 1-hop neighboring supernodes,

i.e., C(u) = {u ′ |Al−1(u,Iu′) = 1,u ′ = 1, · · · ,nl }. For example, in

Figure 3, node-6 can be assigned to either node-1 or node-5. Second,

for some node-u that connects to supernodes exactly in 2 hops

(e.g., node-10 in Figure 3), we select the candidates of supernodes

by C(u) = {u ′ |Al−1(u, :)Al−1(:,Iu′) = 1,Al−1(u,Iu′) = 0,u ′ =
1, · · · ,nl }. For the rest of nodes (e.g., node-11), we simply set C(u) =
{u ′ |u ′ = 1, · · · ,nl }. In addition, a hard assignment matrix Pl often
requires each column of Pl to be a one-hot vector, i.e., Pl (u ′,u) = 1

if and only if node u is merged into supernode u ′. However, it
is very difficult to directly learn those one-hot vectors as they

essentially involve discrete variables, making the computations

non-differentiable. In our paper, we use the continuous Gumbel

softmax [12] functions to approximate them which computes Pl by

Pl (u
′,u) =

exp

([
log

(
X̂l (u

′, :)Wд
l X̃

T
l

)
+ дu′u

]
/τ
)

∑
c ∈C(u)

exp

([
log

(
X̂l (c, :)W

д
l X̃

T
l

)
+ дcu

]
/τ
)

where u ′ ∈ C(u), дu′u is drawn from Gumbel(0, 1) distribution,

Wд
l ∈ Rdl×dl is the parameter matrix and τ is the softmax tem-

perature. According to the Gumbel softmax distribution [12], as

τ → +∞, Pl (:,u) becomes a uniform distribution. In contrast, as

τ → 0, Pl (:,u) is close to a one-hot vector but the variance of

the gradients is large. Thus, we learn the parameters by starting

with a large temperature and annealing to a small temperature τ .
We then aggregate the information from distant nodes into the

supernodes by Pl X̃W1

l , which can aid the representation learning

of supernodes to better summarize the local neighborhoods. The

output representations of the supernodes are computed by

Xl = Aggregate(X̂l , Pl X̃lW
1

l) (4)

where Aggregate(·, ·) is a layer-wise aggregation. In our paper, we

use the max aggregation which simply takes the element-wise max.

To go beyond the linearity behind the coarsening process and

address the issue of isolated supernodes, our key idea is to leverage

the representations of supernodes to add auxiliary weighted edges.

Specifically, we add weights to the existing edges among the su-

pernodes in Al−1(I,I) to measure the edge strengths. For isolated

supernodes, we compensate the edges by adding weighted edges

only between isolated supernodes and the rest of supernodes. Note

that the isolated supernodes Is
l can be simply detected by whether

there exist edges connecting to them inAl−1(I,I) [8]. Then, under

the classic assumption that nodes with similar representations are

likely to be connected, the auxiliary edges to be added are computed

by a sigmoid function, i.e., Al =
1

2
(Al−1(I,I) + Âl) where

Âl (u
′
1
,u ′

2
) =


2σs

(
Xl (u

′
1
, :)Xl (u

′
2
, :)T

)
if u ′

1
∈ Is

l or u ′
2
∈ Is

l

σs
(
Xl (u

′
1
, :)Xl (u

′
2
, :)T

)
if u ′

1
< Is

l and u ′
2
< Is

l

0 otherwise

and σs (x) =
1

1+e−x is the sigmoid function. In summary, we have

the encoding function on adjacency matrices and node features as

(Al ,Xl) = fl (Al−1,Xl−1) = TransPool (GCN(Al−1,Xl−1)) (5)

⋯1 2 3 4 5 6

1’ 2’

Bipartite messages

Unipartite messages
Figure 4: Illustrations of the message passing in TransUn-
Pool layer corresponding to the pooling layer in Figure 3.
3.3 NetTrans Decoder
Our goal of the decoder is to learn node representations and the

edges among the nodes in the context of the target network G2. We

denote the decoder by a set of functions H = {hk }, k = 1, · · · , L
where hk (·, ·) represents the decoding function at the k-th de-

coder layer. At the k-th decoder layer, the decoding function takes

BL−k+1,YL−k+1 as inputs and outputs BL−k ,YL−k as the adjacency

matrix and node representations of the target network at the next

finer resolution. Note that we have YL−k+1 ∈ RmL−k+1×dL−k+1 and

YL−k ∈ RmL−k×dL−k wheremL−k ,mL−k+1 (mL−k ≥ mL−k+1) de-

note the numbers of nodes. Similar to the encoder, we denote the

k-th decoder layer as (BL−1,YL−1) = hk (BL,YL).
Existing unpooling operator includes gUnPool [9] for a single

network that restores the structure and node hidden representa-

tions of the input network G1 obtained in different encoder layers.

However, it is restricted to a single network and cannot be applied

to the cross-network scenario due to the following reasons. First

(node associations), nodes in different networks can have different

types. And even for the networks of the same node type, the cross-

network node correspondences are unknown. Thus, without the

knowledge of the cross-network node associations, it is inappropri-

ate to use the node ordering of the source network as the reference

of the target network. Second (network structure), networks from

different sources might have different structural patterns. In this

way, it might mislead learning the structures of the target network

at different resolutions. Third (node representations), nodes in dif-

ferent networks, either of the same type or of different types, can

carry different structural and attribute information.

In our paper, instead of copying the structure and node repre-

sentations of source network, we design a novel unpooling layer

(TransUnPool) to decode the target network at different resolutions.

To address the first issue, since learning the cross-network node

associations in different layers is nested together leading to a sophis-

ticated learning process and costly computations, we simplify it by

assuming the supernodes in the encoder layers represent the same

set of latent entities as those in the corresponding decoder layers.

For example, suppose a supernode-u ′ of the source social network
in an encoder layer represents a group of users who like computers,

then this supernode in its symmetric decoder layer may represent

a set of products related to computers. That is, the supernode-u ′ in
both encoder and decoder layers represents the same latent entity

‘computer’. By doing this, the supernodes in the encoders and de-

coders are naturally one-to-one mapped and the assignment matrix

Pl (l ≥ 2) can be shared with the k-th (k = L − l + 1) decoder layer.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhang et al.

To address other issues, we hypothesize that two networks are

close to each other at the coarsest resolution such that they share

the same network structure and the node representations YL can

be transformed from XL via a multilayer perceptron (MLP), i.e.,

BL = AL, YL = MLP1(XL). (6)

Then, given the input supernode representations YL−k+1 (k < L)
in the k-th decoder layer, to learn the structure and node represen-

tations of the target network at the corresponding resolution, we

propose the following message passing module (shown in Figure 4)

as a building block. Specifically, we define two types of messages

that propagate to the nodes. The first type of messages are those

that propagate from supernodes to nodes via the bipartite edges

PL−k+1 (denoted by black dashed lines in Figure 4). Mathematically,

these bipartite messages are formulated by

mk
v ′→v = PL−k+1(v

′,v) ⊙ (YL−k+1(v
′, :)W2

k) (7)

whereW2

k ∈ RdL−k+1×dL−k is the parametermatrix and PL−k+1(v ′,v)
is used to weigh the importance of the message based on to what

extent that the node-v is merged into supernode-v ′
in the (L−k+1)-

th encoder layer. Another type of messages are passed among the

nodes in the unipartite graph. Our intuition is that the structures

and node representations of the coarsened source networks in the

encoder layers can provide some initial information, based onwhich

we aim to calibrate the structure and node representations to fit

the target network G2. Specifically, we first transfer the adjacency

matrix AL−k and node representations XL−k through the skip con-

nections (denoted by the black dash dotted lines in Figure 2). Then,

we define the messages along the edges in the unipartite graph by

mk
v1→v =

1√
|Nv |

√
|Nv1

|
XL−k (v1, :)W

3

k (8)

where W3

k ∈ RdL−k+1×dL−k is the parameter matrix and |Nv | de-

notes the number of neighbors of node-v according to AL−k . In

this way, the representations of nodes in the k-th decoder layer can

be computed by combining both types of messages as

YL−k (v, :) =
∑

v ′, s .t .
PL−k+1(v ′,v)>0

mk
v ′→v +

∑
v1∈Nv

AL−k (v1,v) ⊙ mk
v1→v

(9)

where AL−k (v1,v) denotes the weight of the edge (v1,v).
To calibrate the network structure to learn the structural pattern

of G2 at different resolutions, we use YL−k to compute to what

extent we need to add/delete edges upon AL−k , written as

BL−k (v,v1) =
1

2

max{0,AL−k (v,v1)+ σt (YL−k (v, :)YL−k (v1, :)
T)}

(10)

where σt (x) ∈ (−1, 1) denotes the tanh activation function and we

use a ReLU function tomakeBL−k only contain nonnegative entries.

However, Eq. (10) calculates O(m2

L−k) number of values, which is

computationally costly. To make it more efficient, we only compute

σt (YL−k (v, :)YL−k (v1, :)T) for the (v,v1) such thatAL−k (v,v1) , 0,

which in practice performs well in our experiments.

In the last decoder layer (i.e., k = L), we cannot directly use P1
as in Eq. (7) given the fact that nodes in G1 might either (1) have

a different type from nodes in G2 or (2) have the same type but

the correspondences to nodes in G2 are unknown. Fortunately, we

have a partial knowledge of the cross-network node associations

across G1 and G2 based on L(u,v) indicating whether node-u in

G1 associates with node-v in G2 a priori. Note that (P1L)(v ′,v) =∑n1

i=1 P1(v
′,ui)L(ui ,v) measures the strength of the assignment

between node-v in G2 and the supernode-v ′
based on how many

nodes in G1 that are associated with node-v in G2 a priori and also

assigned to supernode-v ′
. In this way, we can use Q1 = P1L as the

partially existing edges for bipartite message passing (i.e., dashed

lines in Figure 4). In addition, we can construct bipartite messages

at the last decoder layer from the nodes in G1 to nodes in G2 at the

finest resolution through the prior knowledge L similarly as

mL
v ′→v = Q1(v

′,v) ⊙ (Y1(v ′, :)W2

L)

mL
v1→v =

1√
|Nv |

√
|Nv1

|
Y0(v1, :)W3

L

mL
u→v = L(u,v) ⊙ (X̃1(u, :)W4

L)

(11)

whereNv denotes the neighborhood of node-v and the node-v itself

in the original target network G2. The final node representations

of G2 can be computed by aggregating the messages in Eq. (11) as

Ỹ0(v , :) =
∑

v ′, s .t .
Q1(v ′,v)>0

mL
v ′→v+

∑
v1∈Nv

B0(v1, v)⊙mL
v1→v+

∑
u , s .t .
L(u ,v)>0

mL
u→v

(12)

In summary, the k-th decoder layer can be computed by Eq. (9)

and Eq. (10) (Eq. (12) in the L-th decoder layer) and

hk = TransUnPool (YL−k+1,AL−k ,XL−k , PL−k+1) (13)

3.4 NetTrans Model Training
With L encoder layers and L decoder layers, we can write the trans-

formation function д of network structure and node attributes as

д = hL ◦ · · · ◦ h1 ◦ fL ◦ · · · ◦ f1. (14)

To learn the model parameters, our objectives are to reconstruct

the target networkG2 in terms of both structure and node attributes,

while reflecting the observed cross-network node associations L.
To reconstruct the structure of G2, we minimize the binary cross-

entropy loss over edges written as follows.

L
adj
= −

1

|E |

∑
(v ,v1)∈E

[yv ,v1
logpv ,v1

+ (1 − yv ,v1
) log (1 − pv ,v1

)]

(15)

where pv ,v1
= σs (Ỹ0(v, :)Ỹ0(v1, :)

T), E = E2∪ ¯E2 denotes the set of

existing edges and samples of non-existent edges of G2 respectively,

and yv ,v1
= 1 if (v,v1) ∈ E2 otherwise yv ,v1

= 0.

To reconstruct node attributes Y0 of G2, we further feed the

output node representations Ỹ0 to an MLP and minimize the mean

squared error with the input node attributes Y0, that is,

Lattr =
1

m0

∥Y0 −MLP2(Ỹ0)∥2F (16)

In addition, we minimize the error of the known cross-network

node associations by a margin ranking loss in the network align-

ment task and by a Bayesian personalized ranking loss [25] in

social recommendation. Specifically in network alignment, given

a set of triplets O = {(u,v,v1)|(u,v) ∈ R+, (u,v1) ∈ R−} where

R+ = {(u,v)|L(u,v) = 1} denotes the observed node associations,

and R− = {(u,v1)|L(u,v1) = 0, ∃v, s .t . L(u,v) = 1} denotes a set

of sampled negative associations, the margin ranking loss is

L
rank
=

1

|O |

∑
(u ,v ,v1)∈O

max{0, λ − (д
node

(u , v) − д
node

(u , v1))} (17)

NetTrans: Neural Cross-Network Transformation KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

where λ is the margin size and д
node

(u,v) is computed by

д
node

(u , v) =
[
PT
1
(Y1ỸT0)

]
(u , v) =

∑
u′

P1(u′, u)
(
Y1Ỹ0

)
(u′, v). (18)

The overall loss function can be now formulated as below.

L = αL
adj
+ βLattr + γLrank

(19)

3.5 NetTrans: Variants and Generalizations
The proposed NetTrans is flexible and can be generalized in multiple

aspects. Due to the space limit, we only give a few examples.

• Bi-directional cross-network transformation. NetTrans
can be generalized to a bi-directional transformation model.

That is, in addition to transforming from the source network

to the target network, the bi-directional model also learns

the transformation functions in the reverse direction.

• Graph-to-subgraph transformation.When input source

network is a large data graph and the target network is a

small query graph, NetTrans can be tailored to learn the

transformation from the data graph to the query graph and

the node associations may indicate the subgraph matching.

• Dynamic network transformation. When we have a dy-

namic network G, we can consider Gt
at timestamp t as

the source network and Gt+1
as the target network. In this

case, we can generalize our transformation model to handle

dynamic networks and learn how networks evolve over time.

• Single network auto-encoder. When the source network

and target network are the same network in which case the

node associations are naturally known, the proposed Net-

Trans model degenerates to an auto-encoder which captures

the hierarchical structure of the network.

4 EXPERIMENTAL RESULTS
We apply the proposed model to network alignment and one-class

social recommendation. We evaluate it in the following aspects:

• How accurate is our proposed transformation model for

network alignment and recommendation?

• How does our model benefit from the proposed TransPool

and TransUnPool layers?

4.1 Experimental Setup
Datasets. The statistics of datasets are summarized in Table 2.

Detailed descriptions and experimental settings are in Appendix.

Baseline methods. For network alignment, the baseline methods

include: (1) FINAL-N [39], (2) FINAL-P [38], (3) REGAL [11] which is

an embedding-based method for attributed networks, (4) IONE [21]

and (5) CrossMNA [3] that are embedding-based methods without

attributes. For fair comparisons, we modify FINAL-N and FINAL-P

to semi-supervised setting using L as the prior alignment matrices.

For one-class social recommendation, the baseline methods include

(1)NGCF [31], (2)GraphRec [6] in which we use the BPR loss instead

of the default mean square loss, (3) SamWalker [2], (4) wpZAN [33]

that factorizes the node association matrix regularized by social

network and product similarity network, and (5) BPR which is a

classic method based on Bayesian personalized ranking loss [25].

4.2 Performance on Network Alignment
In this subsection, we compare our method NetTrans with the base-

line methods in scenarios S1-S3. We evaluate the effectiveness in

terms of Hits@K and alignment accuracy. Given the testing node

Table 2: Data Statistics.
Tasks Networks # of nodes # of edges # of attributes

Network

Alignment

Cora-1 2,708 5,806 1,433

Cora-2 2,708 4,547 1,433

ACM 9,872 39,561 17

DBLP 9,916 44,808 17

Foursquare 5,313 54,233 1

Twitter 5,120 130,575 1

Recommendation

Ciao-user 3,719 65,213 1

Ciao-product 4,612 49,136 28

correspondence (e.g., u,v) across two networks, if д
node

(u,v) is
among the highest top-K values within all the nodes in G2, then we

say there is a hit. We count the number of hits, divided by the total

number of testing node correspondences. Besides, the alignment

accuracy measures the accuracy of the node one-to-one mappings

obtained by using a greedy matching as a postprocess [38]. The re-

sults are summarized in Table 3.We have the following observations.

First, our proposed method NetTrans outperforms both FINAL-N

and FINAL-P. Specifically, it achieves an up to 6.5% improvement

in Hits@30 and an up to 3% improvement in alignment accuracy,

compared to FINAL-N. Note that both FINAL-N and FINAL-P can

be viewed as the variants of the graph matching-based methods

which, as mentioned before, are built upon the linearity/consistency

assumptions. Second, our method achieves a better performance

than other embedding-based network alignment methods (i.e., RE-

GAL, IONE and CrossMNA). In particular, our method can achieve

an at least 20% improvement in alignment accuracy on attributed

networks (i.e., scenarios S1, S2). This demonstrates the improve-

ments of our method compared to the embedding-based methods

that suffer from the embedding space disparity. Third, we observe

that even on the networks without node attributes, our proposed

model still outperforms the baseline methods. Note that FINAL-N

and FINAL-P have the same performance in scenario S3 because

they are essentially equivalent without attributes.

Ablation study on the TransPool layer. To show the effective-

ness of the proposed TransPool layer in identifying cross-network

associations, we compare with two variants by replacing Trans-

Pool with the existing pooling layers UNetPool [9] and SAGPool

[19]. Since these two pooling layers originally do not learn the as-

signment matrices Pl , we calculate the inner products between the

node representations and the supernode representations in the l-th
pooling layer, followed by a softmax as Pl . From Figure 5 we can see

that using TransPool as the pooling layer significantly outperforms

the other two variants. This implies the TransPool layer can learn

better node representations and assignment matrices at different

resolutions to help identify the cross-network node associations.

Ablation study on the TransUnPool layer. To show the effec-

tiveness of the proposed unpooling layer, we compare with the dif-

ferent variants in learning the structure and node representations of

the target network at different resolutions. These variants include:

(1) NetTrans-Skip that directly uses the coarsened source network

at the same resolution (i.e., AL−k = BL−k and XL−k = YL−k), (2)
NetTrans-w/o-Attr that only calibrates the structure (i.e., without

calculating Eq. (9)), and (3) NetTrans-w/o-Adj that in contrast only

calibrates the node representations (i.e., without calculating Eq.

(10)). From Figure 6 we can see that the TransUnPool layer signifi-

cantly outperforms other variants indicating the importance of the

calibrations to earn the transformation across different networks.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhang et al.

Table 3: (Higher is better.) Effectiveness results on network alignment.
Cora1-Cora2 ACM-DBLP Foursquare-Twitter

Hits@10 Hits@30 Accuracy Hits@10 Hits@30 Accuracy Hits@10 Hits@30 Accuracy

NetTrans 90.98% 97.51% 89.89% 84.09% 94.52% 58.21% 24.68% 34.58% 9.17%
FINAL-N 88.73% 90.77% 87.58% 82.91% 90.71% 54.39% 24.09% 33.80% 8.47%

FINAL-P 62.28% 80.01% 54.34% 69.70% 83.12% 36.34% 24.09% 33.80% 8.47%

REGAL 60.90% 69.20% 46.26% 63.68% 71.80% 41.78% 0.15% 2.20% 0.11%

IONE 73.03% 79.92% 42.29% 58.93% 84.19% 33.00% 13.44% 28.17% 4.13%

CrossMNA 59.06% 68.62% 33.26% 42.54% 49.69% 21.04% 3.37% 14.79% 2.48%

Table 4: (Higher is better.) Effectiveness results on social recommendation.
Ciao-0.2 Ciao-0.3 Ciao-0.5

Prec@10 Rec@10 Rec@50 Prec@10 Rec@10 Rec@50 Prec@10 Rec@10 Rec@50

NetTrans 13.87% 11.08% 29.90% 11.01% 13.23% 28.15% 10.87% 12.43% 39.02%
BPR 1.37% 0.6% 20.25% 1.38% 0.62% 20.18% 1.00% 0.37% 14.97%

wpZAN 11.99% 9.19% 20.77% 9.88% 10.33% 23.22% 9.85% 11.64% 26.04%

GraphRec 8.65% 6.62% 17.56% 8.42% 6.60% 18.07% 6.94% 6.63% 18.08%

SamWalker 4.94% 1.97% 5.98% 4.39% 2.07% 5.67% 2.48% 1.58% 4.05%

NGCF 2.77% 1.21% 3.26% 2.77% 1.48% 3.61% 3.17% 1.99% 4.77%

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

SAGPool

Graph UNetPool

TransPool

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

A
lig

n
m

e
n

t
a

c
c
u

ra
c
y

SAGPool

Graph UNetPool

TransPool

Figure 5: Ablation study on the pooling layer.

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

NetTrans-Skip

NetTrans-w/o-Attr

NetTrans-w/o-Adj

NetTrans

Cora1-Cora2 ACM-DBLP Foursquare-Twitter
0

0.2

0.4

0.6

0.8

1

A
lig

n
m

e
n
t
a
c
c
u
ra

c
y

NetTrans-Skip

NetTrans-w/o-Attr

NetTrans-w/o-Adj

NetTrans

Figure 6: Ablation study on the unpooling layer.
4.3 Performance on Recommendation
In addition to network alignment, we apply our proposed model

to one-class social recommendation to predict whether users in-

teract with certain products. In our experiments, we evaluate the

performance by precision@K and recall@K . The results are sum-

marized in Table 4. We have the following observations. First, our

proposed method outperforms all the baseline methods. Specifically,

our method achieves an at least 1% improvement in Precision@10

and an at least 5% improvement in Recall@50 compared to the

best baseline method. Second, our method and wpZAN that is dual-

regularized by both social and product networks outperform other

baseline methods, which implies leveraging the network structure,

especially the product network, is indeed helpful.

5 RELATEDWORKS
Network alignment.Many traditional graph matching based net-

work alignment methods and their variants often assume networks

are noisy permutations of each other. For example, Umeyama pro-

poses to minimize ∥B0 − PA0PT ∥2F by eigen-decomposition [29].

Koutra et al. generalize the graph matching based methods to align

bipartite graphs [17] and Zhang et al. propose to solve the multiple

network alignment problem with transitivity constraints [37]. Be-

sides, Zhang et al. propose an attributed alignment algorithm FINAL

based on the alignment consistency [38]. Du et al. accelerate the al-

gorithm based on Krylov subspace [4]. These graph matching based

methods are often built on the linearity/consistency assumptions.

Moreover, there exist many network embedding based methods,

including IONE [21] and CrossMNA [3]. However, these methods

suffer from the space disparity as the unobserved anchor nodes

could be incomparable in the embedding space. To address this issue,

Zhang et al. propose to leverage the non-rigid point-set registration

[40]. MrMine mitigates this issue by forcing embedding vectors in

the same space, but it needs networks with similar structures [5].

Social Recommendation. Matrix factorization-based methods

[14, 16] are widely used for recommendation. Classic social recom-

mendation approaches are typically based on network-regularized

matrix factorization. For example, SoRec co-factorizes both social

network and the rating matrix with the shared user feature matrix

[24]. TrustMF factorizes the social trust network to capture both

the truster and trustee relations [32]. These methods implicitly em-

brace the linear operations. Graph neural networks based methods

are recently proposed, including GraphRec [6] and DSCF [7]. These

methods only exploit the social relations and user-product interac-

tions. Yao et al. propose to regularize the matrix factorization by

the homophily in both social and product similarity networks [34].

Graph neural networks. Many graph neural network models

have been proposed [15, 23] and a detailed review can be found

in [41]. In addition, to learn the hierarchical representations of

networks, many graph pooling operations have been proposed

including the differentiable pooling [35] and [9, 19] based on top-k
important node selection. Graph-to-graph translation [10, 13] also

relate to ourmodel, but they implicitly require node correspondence

and assume nodes in different networks are of same type.

6 CONCLUSION
Finding the node associations across different networks is a key

step to many real-world applications. In this paper, we tackle the

NetTrans: Neural Cross-Network Transformation KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

cross-network node associations by studying a novel cross-network

transformation problem. To address this problem, we propose an

end-to-end model NetTrans that learns a composition of nonlin-

ear functions to transform one network to another. In details, we

propose a novel graph pooling operation TransPool and an unpool-

ing operation TransUnPool. We perform extensive experiments in

network alignment and social recommendation that validate the

effectiveness of our model to find the cross-network associations.

7 ACKNOWLEDGEMENTS
This work is supported by National Science Foundation under grant

No. 1947135, and 1715385, by the NSF Program on Fairness in AI

in collaboration with Amazon under award No. 1939725, by the

United States Air Force and DARPA under contract number FA8750-

17-C-0153
3
, Department of Homeland Security under Grant Award

Number 17STQAC00001-03-03. The content of the information in

this document does not necessarily reflect the position or the policy

of the Government or Amazon, and no official endorsement should

be inferred. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any

copyright notation here on.

REFERENCES
[1] Chen Chen, Hanghang Tong, Lei Xie, Lei Ying, and Qing He. 2016. FASCINATE:

fast cross-layer dependency inference on multi-layered networks. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. 765–774.

[2] Jiawei Chen, Can Wang, Sheng Zhou, Qihao Shi, Yan Feng, and Chun Chen. 2019.

Samwalker: Social recommendation with informative sampling strategy. In The

World Wide Web Conference. 228–239.

[3] Xiaokai Chu, Xinxin Fan, Di Yao, Zhihua Zhu, Jianhui Huang, and Jingping Bi.

2019. Cross-Network Embedding for Multi-Network Alignment. In The World

Wide Web Conference. 273–284.

[4] Boxin Du and Hanghang Tong. 2018. FASTEN: Fast Sylvester equation solver for

graph mining. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining. 1339–1347.

[5] Boxin Du and Hanghang Tong. 2019. MrMine: Multi-resolution Multi-network

Embedding. In Proceedings of the 28th ACM International Conference on Informa-

tion and Knowledge Management. 479–488.

[6] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In The World Wide Web

Conference. 417–426.

[7] Wenqi Fan, Yao Ma, Dawei Yin, Jianping Wang, Jiliang Tang, and Qing Li. 2019.

Deep social collaborative filtering. In Proceedings of the 13th ACM Conference on

Recommender Systems. 305–313.

[8] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with

PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[9] Hongyang Gao and Shuiwang Ji. 2019. Graph u-nets. arXiv preprint

arXiv:1905.05178 (2019).

[10] Xiaojie Guo, Liang Zhao, Cameron Nowzari, Setareh Rafatirad, Houman Homay-

oun, and Sai Manoj Pudukotai Dinakarrao. 2019. Deep Multi-attributed Graph

Translation with Node-Edge Co-evolution. In he 19th International Conference on

Data Mining (ICDM 2019), pp. to appear.

[11] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. Regal:

Representation learning-based graph alignment. In Proceedings of the 27th ACM

International Conference on Information and Knowledge Management. 117–126.

[12] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization

with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[13] Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. 2018. Learning

multimodal graph-to-graph translation for molecular optimization. arXiv preprint

arXiv:1812.01070 (2018).

[14] Jian Kang and Hanghang Tong. 2019. N2N: Network Derivative Mining. In Pro-

ceedings of the 28th ACM International Conference on Information and Knowledge

Management. 861–870.

[15] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[16] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.

3
Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

[17] Danai Koutra, Hanghang Tong, and David Lubensky. 2013. Big-align: Fast bipar-

tite graph alignment. In 2013 IEEE 13th International Conference on Data Mining.

IEEE, 389–398.

[18] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and

documents. In International conference on machine learning. 1188–1196.

[19] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.

arXiv preprint arXiv:1904.08082 (2019).

[20] Jundong Li, Chen Chen, Hanghang Tong, and Huan Liu. 2018. Multi-layered

network embedding. In Proceedings of the 2018 SIAM International Conference on

Data Mining. SIAM, 684–692.

[21] Li Liu, William K Cheung, Xin Li, and Lejian Liao. 2016. Aligning Users across

Social Networks Using Network Embedding.. In Ijcai. 1774–1780.

[22] Qiao Liu, Chen Chen, Annie Gao, Hang Hang Tong, and Lei Xie. 2017. VariFunNet,

an integrated multiscale modeling framework to study the effects of rare non-

coding variants in genome-wide association studies: Applied to Alzheimer’s

disease. In 2017 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM). IEEE, 2177–2182.

[23] Zhining Liu, Dawei Zhou, and Jingrui He. 2019. Towards Explainable Represen-

tation of Time-Evolving Graphs via Spatial-Temporal Graph Attention Networks.

In Proceedings of the 28th ACM International Conference on Information and Knowl-

edge Management. 2137–2140.

[24] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. 2008. Sorec: social

recommendation using probabilistic matrix factorization. In Proceedings of the

17th ACM conference on Information and knowledge management. 931–940.

[25] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint

arXiv:1205.2618 (2012).

[26] Dorit Ron, Ilya Safro, and Achi Brandt. 2011. Relaxation-based coarsening and

multiscale graph organization. Multiscale Modeling & Simulation 9, 1 (2011),

407–423.

[27] Jiliang Tang, Huiji Gao, and Huan Liu. 2012. mTrust: discerning multi-faceted

trust in a connected world. In Proceedings of the fifth ACM international conference

on Web search and data mining. 93–102.

[28] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-

netminer: extraction and mining of academic social networks. In Proceedings of

the 14th ACM SIGKDD international conference on Knowledge discovery and data

mining. 990–998.

[29] Shinji Umeyama. 1988. An eigendecomposition approach to weighted graph

matching problems. IEEE transactions on pattern analysis and machine intelligence

10, 5 (1988), 695–703.

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint

arXiv:1710.10903 (2017).

[31] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM

SIGIR conference on Research and development in Information Retrieval. 165–174.

[32] Bo Yang, Yu Lei, Jiming Liu, and Wenjie Li. 2016. Social collaborative filtering by

trust. IEEE transactions on pattern analysis and machine intelligence 39, 8 (2016),

1633–1647.

[33] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-

supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861

(2016).

[34] Yuan Yao, Hanghang Tong, Guo Yan, Feng Xu, Xiang Zhang, Boleslaw K Szy-

manski, and Jian Lu. 2014. Dual-regularized one-class collaborative filtering. In

Proceedings of the 23rd ACM International Conference on Conference on Information

and Knowledge Management. 759–768.

[35] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical graph representation learning with differentiable

pooling. In Advances in neural information processing systems. 4800–4810.

[36] Jiawei Zhang and S Yu Philip. 2015. Integrated anchor and social link predic-

tions across social networks. In Twenty-Fourth International Joint Conference on

Artificial Intelligence.

[37] Jiawei Zhang and S Yu Philip. 2015. Multiple anonymized social networks

alignment. In 2015 IEEE International Conference on Data Mining. IEEE, 599–608.

[38] Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 1345–1354.

[39] Si Zhang and Hanghang Tong. 2018. Attributed Network Alignment: Prob-

lem Definitions and Fast Solutions. IEEE Transactions on Knowledge and Data

Engineering 31, 9 (2018), 1680–1692.

[40] Si Zhang, Hanghang Tong, Jiejun Xu, Yifan Hu, and Ross Maciejewski. 2019.

Origin: Non-rigid network alignment. In 2019 IEEE International Conference on

Big Data (Big Data). IEEE, 998–1007.

[41] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2019. Graph convo-

lutional networks: a comprehensive review. Computational Social Networks 6, 1

(2019), 11.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhang et al.

Reproducibility
Dataset descriptions. The datasets that we used in the experi-

ments include:

• Cora citation network: This dataset contains a citation net-

work where nodes represent documents and edges represent

the citations among documents. Each document has a binary

feature vector represented by bag-of-words [33].

• ACM co-author network: This dataset was collected in 2016

including 2,381,688 papers with the author and venue infor-

mation of each paper [28]. A co-author network was then

extracted based on the papers published in four areas (DM,

ML, DB and IR) in [39]. Nodes in the co-author network

represent authors and edges indicate the co-authorship. The

numbers of papers published by an author in 17 venues are

used as the node attributes.

• DBLP co-author network: This dataset was collected in 2016

and it contains 3,272,991 papers. A co-author network was

extracted in [39] similarly to the ACM dataset.

• Foursquare: This dataset contains a social network with

nodes as users and edges as the friendships [36].

• Twitter: This contains a social network where nodes repre-

sent users and edges represent the friendships [36].

• Ciao: This dataset contains a social network whose edges

indicate the trust relationships among users and a set of user-

product ratings with rich attribute information of product

[27]. We extract 3,719 users who like more than 10 products

and 4,612 products that are liked by these users. We use

the product categories as the attributes. We consider ratings

greater than or equal to 3 as interactions (i.e., likes) and

obtain 105,900 user-product interactions.

With these datasets, we construct the scenarios of network align-

ment S1-S3 and the recommendation scenario S4 for evaluations:

• S1. Cora-1 vs. Cora-2: Given the cora citation network, we

generate two permuted networks G1,G2 and add noises by

first inserting 10% edges to G1 and remove 15% edges from

G2, and then adding 10% noises to X0,Y0 (i.e., by randomly

changing 0.1 × 1TX01 entries from 0 to 1). In this scenario,

we aim to align the nodes in G1,G2. The permutation matrix

is used as the ground-truth node correspondences.

• S2. ACM vs. DBLP: We aim to find the node correspondences

across two co-author networks. There exist 6,325 common

authors across two networks used as the ground-truth.

• S3. Foursquare vs. Twitter: In this scenario, we aim to align

nodes in Foursquare and Twitter networks. There are 1,609

common users which are used as the ground-truth.

• S4. Ciao users vs. product: Different from the above scenarios,

here we aim to predict the node associations between users

and products indicating whether a user likes a product. To

construct the product similarity network, similar to [34], we

compute the similarities based on the embedding vectors

of product reviews. The embedding vectors are learned by

doc2vec [18]. Then we consider there exists an edge between

two products if their similarity is larger than 0.5.

Besides, in S1-S3, we use 20% of the ground-truth as the training data

(i.e., L) and test on the rest of the ground-truth. In S4, we evaluate

the performance in three sub-scenarios Ciao-r (r ∈ {0.2, 0.3, 0.5})

with different training ratios 20%, 30% and 50%, respectively.

Machine. The proposed model is implemented in Pytorch. We use

one Nvidia GTX 1080 with 8G RAM as GPU.

Hyperparameters settings.We use Adam optimizer with a learn-

ing rate 0.005 to train the model. For network alignment, we set the

margin size λ = 0.1, α = β = 1, γ = 10 and the dimension of hidden

representations in all layers to 256. As for the model architecture,

in S1, we use L = 2, n1 = 2000 and n2 = 1000. In S2, due to the GPU

memory limit, we use L = 1 and n1 = 5000. In S3, we use L = 2,

n1 = 5000 and n2 = 2500. For one-class social recommendation,

we use the classic Bayesian personalized ranking loss to replace

Eq. (17) and set α = β = 1, γ = 100 and the dimensions of the

representations to 128. The model architecture that we use is L = 2,

n1 = 3000 and n2 = 1500. In both tasks, we set the negative sample

size in Eq. (15) to 5 and that in the ranking loss Eq. (17) to 100. We

use the same embedding dimensions for embedding-based methods,

and other parameters in the baseline methods are set to default.

Proof of Proposition 1
Proposition 2. Given an assignment matrix Pl , the coarsening

process Al = PlAl−1PTl constructs edges by linear operations.

Proof. By eigenvalue decomposition on Al−1, Al−1 = UΣUT ,
we have

Al (u
′
1
,u ′

2
) = (PlUΣU

T PTl)(u1,u2) = [Pl (u
′
1
, :)U]Σ[Pl (u

′
2
, :)U]T

where U ∈ Rnl−1×r and r < nl−1 only if Al−1 is low-rank. In this

way, by considering U as node representations, the existence of

an edge and its weight between supernode u ′
1
and supernode u ′

2

is determined equivalently by first computing supernodes’ repre-

sentations by linear aggregations based upon assignment matrix

Pl , andthen a weighted inner product between the representations

of supernodes u ′
1
,u ′

2
. Both steps only involve linear operations on

node representations. □

Model size.
The parameters of TransPool layer are Θ

p
l = {Wself

l ,W
1

l ,W
д
l , al }.

The total number of parameters are 2d2l + 3dl . Besides, in the k-th

TransUnPool layer, the parameters include Θuk = {W2

k ,W
3

k } which

have 2dL−k+1dL−k parameters. In the last TransUnPool layer, we

additionally have d1d0 more parameters introduced by W4

L . In this

way, the proposed pooling and unpooling layers have an affordable

number of parameters.

Discussions on the Vector Space Comparability
Note that most of the existing embedding-based methods compute

the node association scores based on the similarities of embedding

vectors across different networks [3, 21, 31], which basically com-

pare all node embedding vectors of different networks in the same

vector space. Different from those methods, in Eq. (18), we do not at-

tempt to compare node representations of different networks in the

same space. Instead, we first compute the node-supernode assign-

ment matrix of the target network by the inner products between

the representations of the nodes Ỹ0 and those of supernodes Y1.
Note that here we hypothesize that Ỹ0 and Y1 are more comparable

NetTrans: Neural Cross-Network Transformation KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

10
2

0.06

0.08

10
2

P
re

c
@

1
0

0.1

10
0

0.12

10
0

10
-2

10
-2

(a) Sensitivity of α and β .

Prec@10 Rec@10 Rec@50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L=1

L=2

L=3

L=4

(b) Sensitivity of L.
Figure 7: Sensitivity study on hyperparameters.

as they are both in the context of target network but at different

resolutions. In addition, under our assumption that two supernodes

across different networks represent the same latent entity (e.g.,

same supernode-u ′), it could be more comparable to compare the

association score between u and v through the supernodes.

Hyperparamter sensitivity study
We conduct the hyperparameter sensitivity studies for recommen-

dation on the loss coefficients α, β and on the number of layers.

From Figure 7 (a) we can see that our model is robust to different

choices of α, β ranging from 0.01 to 100. In addition, from Figure 7

(b), we can observe that our model achieves the best performance

with 3 encoder layers and 3 decoder layers (i.e., L = 3). This demon-

strates that learning hierarchical representations of the networks

at different resolutions can lead to a better performance.

	Abstract
	1 Introduction
	2 Problem Definition
	3 The NetTrans Model
	3.1 NetTrans Model Overview
	3.2 NetTrans Encoder
	3.3 NetTrans Decoder
	3.4 NetTrans Model Training
	3.5 NetTrans: Variants and Generalizations

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Performance on Network Alignment
	4.3 Performance on Recommendation

	5 Related Works
	6 Conclusion
	7 Acknowledgements
	References
	Reproducibility
	Proof of Proposition 1
	Model size.
	Discussions on the Vector Space Comparability
	Hyperparamter sensitivity study

