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Abstract. Solving inverse problems without the use of derivatives or adjoints of the forward model is highly
desirable in many applications arising in science and engineering. In this paper we propose a new
version of such a methodology, a framework for its analysis, and numerical evidence of the practicality
of the method proposed. Our starting point is an ensemble of overdamped Langevin diffusions
which interact through a single preconditioner computed as the empirical ensemble covariance. We
demonstrate that the nonlinear Fokker—Planck equation arising from the mean-field limit of the
associated stochastic differential equation (SDE) has a novel gradient flow structure, built on the
Wasserstein metric and the covariance matrix of the noisy flow. Using this structure, we investigate
large time properties of the Fokker—Planck equation, showing that its invariant measure coincides
with that of a single Langevin diffusion, and demonstrating exponential convergence to the invariant
measure in a number of settings. We introduce a new noisy variant on ensemble Kalman inversion
(EKI) algorithms found from the original SDE by replacing exact gradients with ensemble differences;
this defines the ensemble Kalman sampler (EKS). Numerical results are presented which demonstrate
its efficacy as a derivative-free approximate sampler for the Bayesian posterior arising from inverse
problems.
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1. Problem setting.

1.1. Background. Consider the inverse problem of finding v € R? from y € R¥, where
(L.1) y=6(u)+n,

G : R4 — R¥ is a known nonlinear forward operator, and 7 is the unknown observational
noise. Although 7 itself is unknown, we assume that it is drawn from a known probability
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distribution; to be concrete, we assume that this distribution is a centered Gaussian: n ~
N(0,T') for a known covariance matrix I' € RE*X_ In summary, the objective of the inverse
problem is to find information about the truth u! underlying the data y; the forward map G,
the covariance I', and the data y are all viewed as given.

A key role in any optimization scheme for solving (1.1) is played by ¢(y,G(u)) for some
loss function £ : RE x R¥ — R. For additive Gaussian noise the natural loss function is'

1
(. y) =5y =yt
leading to the nonlinear least squares functional
1 2
(1.2) o(u) = Slly = G-

In the Bayesian approach to inversion [46] we place a prior distribution on the unknown
u, with Lebesgue density mo(u); then the posterior density on u|y, denoted 7(u), is given by

(1.3) m(u) o< exp(—®(u))mo(u).

In this paper we will concentrate on the case when the prior is a centered Gaussian N(0,Ty),
assuming throughout that I'g is strictly positive-definite and hence invertible. If we define

(14) R(w) = 3l
and

(15) Da(u) = (u) + Rw),
then

(1.6) 7(u) o< exp(—®p(u)).

Note that the regularization R(-) is of Tikhonov—Phillips form [30].

Our focus throughout is on using interacting particle systems to approximate Langevin-
type stochastic dynamical systems to sample from (1.6). Ensemble Kalman inversion (EKI),
and variants of it, will be central in our approach because these methods play an important role
in large-scale scientific and engineering applications in which it is undesirable, or impossible,
to compute derivatives and adjoints defined by the forward map G. Our goals are to introduce
a noisy version of EKI which may be used to generate approximate samples from (1.6) based
only on evaluations of G(u), to exemplify its potential use, and to provide a framework for its
analysis. We refer to the new methodology as ensemble Kalman sampling (EKS).

'For any positive-definite symmetric matrix A we define {(a,a’)a = (a, A" 'ad') = <A_%a, A_%a’> and |lal]la =
1
ja-dal.
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1.2. Literature review. The overdamped Langevin equation provides the simplest exam-
ple of a reversible diffusion process with the property that it is invariant with respect to
(1.6) [79]. It provides a conceptual starting point for a range of algorithms designed to draw
approximate samples from the density (1.6). This idea may be generalized to nonreversible
diffusions, such as those with state-dependent noise [27], those which are higher order in time
[76], and combinations of these two [33]. In the case of higher order dynamics the desired
target measure is found by marginalization. There are also a range of methods, often going
under the collective names Nosé—Hoover—Poincaré, which identify the target measure as the
marginal of an invariant measure induced by (ideally) chaotic and mixing deterministic dy-
namics [54] or a mixture of chaotic and stochastic dynamics [56]. Furthermore, the Langevin
equation may be shown to govern the behavior of a wide range of Monte Carlo Markov chain
(MCMC) methods; this work was initiated in the seminal paper [85] and has given rise to
many related works [86, 87, 6, 5, 7, 66, 80, 76]; for a recent overview see [97].

In this paper we will introduce an interacting particle system generalization of the over-
damped Langevin equation and use ideas from ensemble Kalman methodology to generate
approximate solutions of the resulting stochastic flow, and hence approximate samples of
(1.6), without computing derivatives of the log likelihood. The ensemble Kalman filter was
originally introduced as a method for state estimation and later extended as the EKI to the
solution of general inverse problems and parameter estimation problems. For a historical
development of the subject, the reader may consult the books [32, 70, 63, 53, 84] and the
recent review [11]. The Kalman filter itself was derived for linear Gaussian state estimation
problems [47, 48]. In the linear setting, ensemble Kalman based methods may be viewed as
Monte Carlo approximations of the Kalman filter; in the nonlinear case ensemble Kalman
based methods do not converge to the filtering or posterior distribution in the large particle
limit [31]. Related interacting particle based methodologies of current interest include Stein
variational gradient descent [61, 60, 24] and the Fokker—Planck particle dynamics of Reich
[83, 78], both of which map an arbitrary initial measure into the desired posterior measure
over an infinite time horizon s € [0,00). A related approach is to introduce an artificial time
s € [0,1] and a homotopy between the prior at time s = 0 and the posterior measure at time
s = 1 and write an evolution equation for the measures [20, 81, 28, 52]; this evolution equation
can be approximated by particle methods. There are also other approaches in which optimal
transport is used to evolve a sequence of particles through a transportation map [82, 65] to
solve probabilistic state estimation or inversion problems as well as interacting particle systems
designed to reproduce the solution of the filtering problem [19, 98]. The paper [23] studies
ensemble Kalman filters from the perspective of the mean-field process and propagation of
chaos. Also of interest are the consensus-based optimization techniques, which are given a
rigorous treatment in [12].

The idea of using interacting particle systems derived from coupled Langevin-type equa-
tions is introduced within the context of MCMC methods in [55]; these methods require
computation of derivatives of the log likelihood. In [26], concurrent with this paper, the inter-
acting Langevin diffusions (2.3), (2.4) below are studied, with the goal being to demonstrate
that the preconditioning removes slow relaxation rates when they are present in the standard
Langevin equation (2.1); such a result is proved in the case when the potential @ is quadratic
and the posterior measure of interest is Gaussian. A key concept underlying both [55] and
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[26] is the idea of finding algorithms which converge to equilibrium at rates independent of
the conditioning of the Hessian of the log posterior, an idea introduced in the affine invariant
samplers of Goodman and Weare [35].

Continuous-time limits of ensemble Kalman filters for state estimation were first intro-
duced and studied systematically in the papers [10, 81, 8, 9]; the papers [8, 9] studied the
“analysis” step of filtering (using Bayes’ theorem to incorporate data) through introduction
of an artificial continuous time; the papers [10, 81] developed a seamless framework that inte-
grated the true time for state evolution and the artificial time for incorporation of data into a
modeling framework. The resulting methodology has been studied in a number of subsequent
papers; see [22, 23, 21, 93] and references therein. A slightly different seamless continuous-
time formulation was introduced and analyzed a few years later in [53, 49]. Continuous-time
limits of ensemble methods for solving inverse problems were introduced and analyzed in the
paper [89]; in fact, the work in the papers [8, 9] can be reinterpreted in the context of ensem-
ble methods for inversion and also results in similar, but slightly different, continuous-time
limits. The idea of iterating ensemble methods to solve inverse problems originated in the
papers [16, 29], which focused on applications to oil reservoirs; the paper [43] describes, and
demonstrates the promise of, the methods introduced in those papers for quite general inverse
problems. The specific continuous-time version of the methodology, which we refer to as EKI
in this paper, was identified in [89].

There has been significant activity devoted to the gradient flow structure associated with
the Kalman filter itself. A well-known result is that for a constant state process, Kalman
filtering is the gradient flow with respect to the Fisher-Rao metric [52, 38, 71]. It is worth
noting that the Fisher-Rao metric connects to the covariance matrix; see details in [3]. On the
other hand, optimal transport [96] demonstrates the importance of the L?-Wasserstein metric
in probability density space. The space of densities equipped with this metric introduces an
infinite-dimensional Riemannian manifold called the density manifold [51, 75, 57]. Solutions to
the Fokker—Planck equation are gradient flows of the relative entropy in the density manifold
[75, 45]. Designing time-stepping methods which preserve gradient structure is also of current
interest; see [78] and, within the context of Wasserstein gradient flows, [59, 94, 58]. The subject
of discrete gradients for time-integration of gradient and Hamiltonian systems is developed
in [40, 34, 67, 37]. Furthermore, the papers [89, 88] study continuous-time limits of EKI
algorithms and, in the case of linear inverse problems, exhibit a gradient flow structure for
the standard least squares loss function, preconditioned by the empirical covariance of the
particles; a related structure was highlighted in [8]. The paper [39], which has inspired aspects
of our work, builds on the paper [89] to study the same problem in the mean-field limit; their
mean-field perspective brings considerable insight, which we build upon in this paper. The
recent work [25] studies the mean-field limit of EKI and makes a connection to the appropriate
Fokker—Planck equation, whose solution characterizes the distribution in the mean-field limit.

In this paper, we study a new noisy version of EKI, called the ensemble Kalman sampler
(EKS), and related mean-field limits, with the aim of constructing methods which lead to
approximate posterior samples, without the use of adjoints, and overcoming the issue that
the standard noisy EKI does not reproduce the posterior distribution, as highlighted in [31].
We emphasize that the practical derivative-free algorithm that we propose rests on a particle-
based approximation of a specific preconditioned gradient flow, as described in section 4.3
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of the paper [50]; we add a judiciously chosen noise to this setting, and it is this additional
noise which enables approximate posterior sampling. Related approximations are also studied
in the paper [78], in which the effects of both time-discretization and particle approximation
are discussed when applied to various deterministic interacting particle systems with gradient
structure. In order to frame the analysis of our methods, we introduce a new metric, named
the Kalman—Wasserstein metric, defined through both the covariance matrix of the mean-field
limit and the Wasserstein metric. The work builds on the novel perspectives introduced in
[39] and leads to new algorithms that will be useful within large-scale parameter learning and
uncertainty quantification studies, such as those proposed in [90]. Since the completion of this
work, several papers have appeared studying related problems: in Niisken and Reich [69] a
correction for finite particle size is introduced; Ding and Li (https://arxiv.org/abs/1910.12923)
study the limit of an infinite number of particles; and Carrillo and Vaes (https://arxiv.org/
abs/1910.07555) study the stability of solutions with respect to perturbations in the initial
condition.

1.3. Our contributions. The contributions in this paper are as follows:

e We introduce a new noisy perturbation of the continuous-time EKS algorithm, leading
to an interacting particle system in stochastic differential equation (SDE) form, the
EKS.

e We also introduce a related SDE, in which ensemble differences are approximated by
gradients; this approximation is exact for linear inverse problems. We study the mean-
field limit of this related SDE and exhibit a novel Kalman—Wasserstein gradient flow
structure in the associated nonlinear Fokker—Planck equation.

e Using this Kalman—Wasserstein structure, we characterize the steady states of the
nonlinear Fokker—Planck equation and show that one of them is the posterior density
(1.6).

e By explicitly solving the nonlinear Fokker—Planck equation in the case of linear G, we
demonstrate that the posterior density is a global attractor for all initial densities of
finite energy which are not a Dirac measure.

e We provide numerical examples which demonstrate that the EKS algorithm gives good
approximate samples from the posterior distribution for both a simple low-dimensional
test problem and a PDE inverse problem arising in Darcy flow.

In section 2 we introduce the various stochastic dynamical systems which form the basis of
the proposed methodology and analysis: subsection 2.1 describes an interacting particle system
variant on Langevin dynamics; subsection 2.2 recaps the EKI methodology and describes the
SDE arising in the case when the data is perturbed with noise; and subsection 2.3 introduces
the new noisy EKS algorithm, which arises from perturbing the particles with noise rather
than perturbing the data. In section 3 we discuss the theoretical properties underpinning the
proposed new methodology, and in section 4 we describe numerical results which demonstrate
the value of the proposed new methodology. We conclude in section 5.

2. Dynamical systems setting. This section is devoted to the various noisy dynamical
systems that underpin the paper: in the three constituent subsections we introduce an inter-
acting particle version of Langevin dynamics, the EKI algorithm, and the new EKS algorithm.
In doing so, we introduce a sequence of continuous-time problems that are designed to either
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maximize the posterior distribution 7(u) (EKI) or generate approximate samples from the
posterior distribution 7(u) (noisy EKI and the EKS). We then make a linear approximation
within part of the EKS and take the mean-field limit leading to a novel nonlinear Fokker—
Planck equation studied in section 3.

2.1. Variants on Langevin dynamics. The overdamped Langevin equation has the form
(2.1) i =—Vor(u)+V2W,

where W denotes a standard Brownian motion in R%.? References to the relevant literature
may be found in the introduction. A common approach to speed up convergence is to introduce
a symmetric matrix C in the corresponding gradient descent scheme,

(2.2) i=—CV®g(u) +V2CW.

The key concept behind this stochastic dynamical system is that, under conditions on ®p
which ensure ergodicity, an arbitrary initial distribution is transformed into the desired poste-
rior distribution over an infinite time horizon.

Finding a suitable matrix C € R%*9 is of general interest. We propose to evolve an
interacting set of particles U = {u(j )}3-]:1 according to the following system of SDEs:

(2.3) W) = —C(U)VORuY) + /2C0) WY

Here, the {W(j)} are a collection of independent and identically distributed (i.i.d.) standard
Brownian motions in the space R%. The matrix C(U) depends nonlinearly on all ensemble
members and is chosen to be the empirical covariance between particles,

(2.4) CU) = w® — @) ® (u® —a) e R4,

where % denotes the sample mean

M \

S

This choice of preconditioning is motivated by an underlying gradient flow structure, which
we exhibit in subsection 3.3. System (2.3) can be rewritten as

(2.5)

o) = —

(@® — @), gu) — y)ru® — Iy + 2C0) WY

S
M“

k=1

(We used the fact that it is possible to replace u® by w®) — @ after the ['-weighted inner-
product in (2.5) without changing the equation.) We will introduce the EKS as an ensemble
Kalman based methodology to approximate this interacting particle system.

2In this SDE and all that follows, the rigorous interpretation is through the Ité integral formulation of the
problem.
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2.2. Ensemble Kalman inversion. To understand the EKS we first recall the EKI method-
ology, which can be interpreted as a derivative-free optimization algorithm to invert G [43, 42].
The continuous-time version of the algorithm is given by [89]

J
—= 37 (G ®) = G.6(u) — y)r u®

k=1

(2.6)

M\*—‘

This interacting particle dynamic acts to both drive particles towards consensus and fit the
data. In [16, 29] the idea of using ensemble Kalman methods to map prior samples into
posterior samples was introduced (see the introduction for a literature review). Interpreted in
our continuous-time setting, the methodology operates by evolving a noisy set of interacting
particles given by

J .
—= 37 (6w™®) = 6,6 — yyru® + cr) T VEWY,

k=1

(2.7)

k\'—‘

where the {W(j )} are a collection of i.i.d. standard Brownian motions in the data space R
different choices of ¥ allow us to remove noise and obtain an optimization algorithm (X = 0)
or to add noise in a manner which, for linear problems, creates a dynamic transporting the
prior into the posterior in one time unit (X = I'; see discussion below).

Here, the operator C*P denotes the empirical cross covariance matrix of the ensemble
members,

| —
(]~
Q
=

J
(2.8) c (U % Z —u) (g(u(k)) — ,C’;) e RK

k=1

The approach is designed in the linear case to transform prior samples into posterior samples
in one time unit [16]. In contrast to Langevin dynamics, this has the desirable property that it
works over a single time unit rather than over an infinite time horizon. But it is considerably
more rigid, as it requires initialization at the prior. Furthermore, the long time dynamics
do not have the desired sampling property but rather collapse to a single point, solving the
optimization problem of minimizing ®(u). We now demonstrate these points by considering
the linear problem.
To be explicit we consider the case when

(2.9) G(u) = Au.

In this case, the regularized misfit equals

(210) Pa(u) = 3l Au— gl + 5 ul?,

The corresponding gradient can be written as

(2.11) Vogr(u) =B tu—r,
ri=AT'yeR!, B:= (ATF_lA + Fgl)fl € R4,
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The posterior mean is thus Br, and the posterior covariance is B.
In the linear setting (2.9) and with the choice ¥ =T, the EKI algorithm defined in (2.7)
has mean m and covariance €, which satisfy the closed equations

d

(2.12a) M) = —€() (ATT ' Am(t) —r),
(2.12b) %@(t) = —C(t)ATT L Ae(t).

These results may be established by techniques similar to those used below in subsection 3.2.
(A more general analysis of the SDE (2.7), and its related nonlinear Fokker—Planck equation,
is undertaken in [25].) It follows that

d 1 1 (d 1 T-1
—&(t = —C(t —&(2 t =A'T A
e = e (e ew ,
and therefore €(¢)~! grows linearly in time. If the initial covariance is given by the prior T'g,
then
)yt =Tyt + ATT T AL,

demonstrating that €(1) delivers the posterior covariance; furthermore, it then follows that

S0 (o)} = r

so that, initializing with prior mean m(0) = 0, we obtain
~1
m(t) = (Fgl + ATF—lAt) rt,

and m(1) delivers the posterior mean.
The resulting equations for the mean and covariance are simply those which arise from
applying the Kalman-Bucy filter [48] to the model

d

auzo,

d .
T =y = Au+ VTW,

where W denotes a standard unit Brownian motion in the data space R¥. The exact closed
form of equations for the first two moments, in the setting of the Kalman—Bucy filter, was
established in section 4 of the paper [81] for finite particle approximations, and it transfers
verbatim to this mean-field setting.

The analysis reveals interesting behavior in the large time limit: the covariance shrinks to
zero, and the mean converges to the solution of the unregularized least squares problem; we
thus have ensemble collapse and solution of an optimization problem rather than a sampling
problem. This highlights an interesting perspective on the EKI, namely as an optimization
method rather than a sampling method. A key point to appreciate is that the noise introduced
in (2.7) arises from the observation y being perturbed with additional noise. In what follows
we instead directly perturb the particles themselves. The benefit of introducing noise on
the particles, rather than the data, was demonstrated in [50], although in that setting only
optimization, and not Bayesian inversion, is considered.
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2.3. The ensemble Kalman sampler. We now demonstrate how to introduce noise on the
particles within the ensemble Kalman methodology, with our starting point being (2.5). This
gives the EKS. In contrast to the standard noisy EKI (2.7), the EKS is based on a dynamic
which transforms an arbitrary initial distribution into the desired posterior distribution, over
an infinite time horizon. In many applications, derivatives of the forward map G are either
not available or extremely costly to obtain. A common technique used in ensemble Kalman
methods is to approximate the gradient V®p by differences in order to obtain a derivative-free
algorithm for inverting G. To this end, consider the dynamical system (2.5) and invoke the
approximation

DG (W) (u®) — @) = (G(u®)) - G).
This leads to the following derivative-free algorithm to generate approximate samples from
the posterior distribution:

1 J

- (Gw®) = G, gy — yyru® — C(U)Tg u® + \/mw(j).

k=1

(2.13) V) =

This dynamical system is similar to the noisy EKI (2.7) but has a different noise structure
(noise in parameter space and not in data space) and explicitly accounts for the prior on the
right-hand side (rather than having it enter through initialization). Inclusion of the Tikhonov
regularization term within EKI is introduced and studied in [15].

Note that in the linear case (2.9) the two systems (2.5) and (2.13) are identical. It
is also natural to conjecture that if the particles are close to one another, then (2.5) and
(2.13) will generate similar particle distributions. Based on this exact (in the linear case)
and conjectured (in the nonlinear case) relationship, we propose (2.13) as a derivative-free
algorithm to approximately sample the Bayesian posterior distribution, and we propose (2.5)
as a natural object of analysis in order to understand this sampling algorithm.

2.4. Mean-field limit. In order to write down the mean-field limit of (2.5), we define the
macroscopic mean and covariance:

mip)i= [vpdv,  Clp)i= [(v=mlp) @ (v m(p) ple) dv.
Taking the large particle limit leads to the mean-field equation
(2.14) i = — Cp)VOR(w) + /2C(0) W,
with corresponding nonlinear Fokker—Planck equation
(2.15) Oip =V - (pC(p)VPr(u)) + C(p) : D?p.

Here A; : As denotes the Frobenius inner-product between matrices A; and As. The existence
and form of the mean-field limit are suggested by the exchangeability of the process (existence)
and by application of the law of large numbers (form). Exchangeability is exploited in a related
context in [22, 23]. The rigorous derivation of the mean-field equations (2.14) and (2.15) is left
for future work; for foundational work relating to mean-field limits, see [92, 44, 13, 36, 77, 95]
and references therein. The following lemma states the intuitive fact that the covariance,
which plays a central role in (2.15), vanishes only for Dirac measures.
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Lemma 2.1. The only probability densities p € P(R?) at which C(p) vanishes are Diracs:
p(u) = 8,(u) for somev eR? &  C(p)=0.

Proof. The fact that C(d,) = 0 follows by direct substitution. For the converse, note that
C(p) = 0 implies [ [ul*pdu = ([up du)Q, which is the equality case of Jensen’s inequality, and
therefore only holds if p is the law of a constant random variable. |

3. Theoretical properties. In this section we discuss theoretical properties of (2.15) which
motivate the use of (2.5) and (2.13) as particle systems to generate approximate samples from
the posterior distribution (1.6). In subsection 3.1 we exhibit a gradient flow structure for
(2.15) which shows that solutions evolve towards the posterior distribution (1.6) unless they
collapse to a Dirac measure. In subsection 3.2 we show that in the linear case, collapse to
a Dirac does not occur if the initial condition is a Gaussian with nonzero covariance, and
instead convergence to the posterior distribution is obtained. In subsection 3.3 we introduce
a novel metric structure which underpins the results in subsections 3.1 and 3.2.

3.1. Nonlinear problem. Because C(p) is independent of u, we may write (2.15) in diver-
gence form, which facilitates the revelation of a gradient structure,

(3.1) Op =V - (pC(p)VPr(u) + pC(p)VInp),

where we use the fact that pVInp = Vp. Indeed, (3.1) is nothing but the Fokker—Planck
equation for (2.2) for a time-dependent matrix C(t) = C(p). Thanks to the divergence form,
it follows that (3.1) conserves mass along the flow, and so we may assume [ p(¢,u)du =1 for
all £ > 0. Defining the energy

(3.2) E(p) = [ (p)n(u) + pu) I p(w)) du.

solutions to (3.1) can be written as a gradient flow,

oF
(3-3) dp=V- (pC(p)Vdp) :
where % denotes the L? first variation. This will be made more explicit in subsection 3.3:

see Proposition 3.6. Thanks to the gradient flow structure (3.3), stationary states of (2.15)
are given either by critical points of the energy E or by choices of p such that C(p) = 0 as
characterized in Lemma 2.1. Critical points of E solve the corresponding Euler—Lagrange
condition

0B

(3.4) e Pr(u) +Inp(u) =c onsupp (p)

for some constant c¢. The unique solution to (3.4) with unit mass is given by the Gibbs measure

(3.5) Poc(u) := Teorn@dy”

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 131.215.252.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

422 A. GARBUNO-INIGO, F. HOFFMANN, W. LI, AND A. M. STUART

Then, up to an additive normalization constant, the energy E(p) is exactly the following
relative entropy of p with respect to poo, also known as the Kullback—Leibler divergence

KL(p(t)|poo),

E(p) = / (®r+Inp(t)) pdu

- /f;(:m (Z(i)) poodu + In (/ e~ PR (W) du)
— KL(p(#)[|poc) + In ( / e ®r(w) du) .

Thanks to the gradient flow structure (3.3), we can compute the dissipation of the energy

d oF
G1F0} = <5p’ 8tp>L2(Rd)

(3.6) = —/p<V(;f,C(p)Vf£> du

— [ o|e)t v @+ 1np)| du.

As a consequence, the energy E decreases along trajectories until either C(p) approaches zero
(that is, p collapses to a Dirac measure by Lemma 2.1) or p becomes the Gibbs measure with
density poo.

The dissipation of the energy along the evolution of the classical Fokker—Planck equation
is known as the Fisher information [96]. We reformulate (3.6) by defining the following
generalized Fisher information for any covariance matrix A:

Ta(p(t)|lpos) = /p <V1n (p’;) AV (p’;)> du.

One may also refer to Zp as a Dirichlet form as it is known in the theory of large particle
systems, since we can write

L (pOllps) = 4 [ o <v\/z , AV\/Z> du.

For A = C(p), we name functional Z;¢ the relative Kalman—Fisher information. We conclude
that the following energy dissipation equality holds:

d

3 KL(e®)llpsc) = —Ze(p(t) o) -

To derive a rate of decay to equilibrium in entropy, we aim to identify conditions on ® p such
that the following logarithmic Sobolev inequality holds: there exists A > 0 such that

(3.7) KL(p(0)lpse) < 551, (p(0)lose) V-
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By [4], it is enough to impose sufficient convexity on ®p, i.e., D?®r > Ay, where D?®p
denotes the Hessian of ®g. This allows us to deduce convergence to equilibrium as long as
C(p) is uniformly bounded from below following standard arguments for the classical Fokker—
Planck equation as presented, for example, in [64].

Proposition 3.1. Assume there exists a > 0 and A > 0 such that
Clp(t)) > aly, D*®p > A\,

Then any solution p(t) to (3.1) with initial condition py satisfying KL(pol|peo) < 00 decays
exponentially fast to equilibrium: there exists a constant ¢ = c(pg, Pr) > 0 such that for any
t>0,

lp(t) = pocll 1 (ray < ce™ .

This rate of convergence can most likely be improved using the correct logarithmic Sobolev
inequality weighted by the covariance matrix C. However, the above estimate already indicates
the effect of having the covariance matrix C present in the Fokker-Planck equation (3.1). The
properties of such inequalities in a more general setting are an interesting future avenue to
explore. The weighted logarithmic Sobolev inequality that is well adapted to the setting here
depends on the geometric structure of the Kalman—Wasserstein metric; see related studies in

[57).

Proof. Thanks to the assumptions, and using the logarithmic Sobolev inequality (3.7), we
obtain decay in entropy,

d

T XL(p®)llpoo) = —aZz,(p(t)]poo) < —2aAKL(p(t)]|poo) -

We conclude using the Csiszar-Kullback inequality as it is mainly known to analysts, also
referred to as the Pinsker inequality in probability (see [2] for more details):

1 —2a
S lle(t) = poolltimay < KL(p(1)]|poo) < KL(pollpoc)e > . u

3.2. Linear problem. Here we show that in the case of a linear forward operator G, the
Fokker—Planck equation (which is still nonlinear) has exact Gaussian solutions. This property
may be seen to hold in two ways: (i) by considering the case in which the covariance matrix is
an exogenously defined function of time alone and in which the observation is straightforward;
and (ii) because the mean-field equation (2.14) leads to exact closed equations for the mean
and covariance. Once the covariance is known, the nonlinear Fokker-Planck equation (2.15)
becomes linear and is explicitly solvable if G is linear and the initial condition is Gaussian.
Consider (2.14) in the context of a linear observation map (2.9). The misfit is given by (2.10),
and the gradient of ®p is given in (2.11). Note that since we assume that the covariance
matrix ['g is invertible, it is then also strictly positive-definite. Thus it follows that B is
strictly positive-definite and hence invertible too. We define ug := Br, noting that this is the
solution of the regularized normal equations defining the minimizer of ® g in this linear case;
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equivalently, ug maximizes the posterior density. Indeed, by completing the square we see
that we may write

(3.8) poo() ox exp (5 lu — woll3,).

Lemma 3.2. Let p(t) be a solution of (2.15) with ®g(-) given by (2.10). Then the mean
m(p) and covariance matriz C(p) are determined by m(t) and €(t) which satisfy the evolution
equations

(3.92) %m(t) — () (B m(t) — 1),
(3.9b) %Q(t) — _oe(t)B e (t) + 2€(b).

In addition, for any €(t) satisfying (3.9b), its determinant and inverse solve

(3.10) %det €(t) = —2 (det €(6)) Tt [Be(t) — L] |

d

(3.11) 4

(¢(t)™) =2B"" —2¢(t)"".

As a consequence, €(t) — B and m(t) — ug exponentially as t — oco.

In fact, solving the ODE (3.11) explicitly and using (3.9a), we see that exponential decay
immediately follows as

(3.12) ¢t) = (e¢0) ' -=B e +B!
and
(3.13) Im(t) = uolleqry = [m(0) — uolleye™

Proof. We begin by deriving the evolution of the first and second moments. This is most
easily accomplished by working with the mean-field flow SDE (2.14), using the regularized
linear misfit written in (2.10). This yields the update

i=—C(p) (B~ lu—r)+/2C()) W,

where W denotes a zero mean random variable. Identical results can be obtained by working
directly with the PDE for the density, namely (2.15) with the regularized linear misfit given
in (2.10). Taking expectations with respect to p results in

m(p) = —C(p) (B~ 'm(p) —r).

Let us use the auxiliary variable e = u — m(p). By linearity of differentiation we can write

é¢=—Clp) B te++/2C(p) W.
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By definition of the covariance operator, C(p) = Ele ® €], its derivative with respect to time
can be written as

Clp)=E[e®@e+e®é

However, we must also include the It6 correction, using It6’s formula, and we can write the
evolution equation of the covariance operator as

C(p) = —2C(p) B~ C(p) +2C(p).

This concludes the proof of (3.9b). For the evolution of the determinant and inverse, note
that

d

d d a
dt

w0 geert=—co(

L detC(p) = T |detC(p) C(p) ar

dt C(P)) Clp)™",

and so (3.10), (3.11) directly follow. Finally, exponential decay is a consequence of the explicit
expressions (3.12) and (3.13). [ ]

Thanks to the evolution of the covariance matrix and its determinant, we can deduce that
there is a family of Gaussian initial conditions that stay Gaussian along the flow and converge
to the equilibrium pso.

Proposition 3.3. Fiz a vector mg € R* and a matriz Cy € R4

the Gaussian distribution

and take as initial density

1 _ 1
po(u) = W(d@tcg) 1/2 exp <_2HU‘ - mo”%o)

with mean mqy and covariance Cy. Then the Gaussian profile

p(t,u) = (27T1)d/2(det ()" exp (_;H“ - m@)“i(t))

solves evolution equation (2.15) with initial condition p(0,u) = po(u), and where m(t) and €(t)
evolve according to (3.9a) and (3.9b) with initial conditions mgy and Cy. As a consequence,
for such initial conditions po(u), the solution of the Fokker—Planck equation (2.15) converges
to poo(u) given by (3.8) ast — oo.

Proof. Tt is straightforward to see that for m(p) and C(p) given by Lemma 3.2,
Vp =—=C(p)~(u—m(p))p,

since both m(p) and C(p) are independent of u. Therefore, substituting the Gaussian ansatz
p(t,u) into the first term in the right-hand side of (2.15), we have

V- (pCp)(B™ u—1)) = (Vp)-C(p)(B'u—7) + pV - (C(p) B~ "w)
(—C(p) " (u—m(p)) - C(p)(B™ u—r) +Tx[C(p) B~1]) p

(=l = m(p)|[5+(u = mlp),uo = m(p) ) +TxlC(p)BT]) p,

(3.14)
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where B~ = ATT 1A+ Fal, r=A'T"1y, and ugp = Br. Recall that B~! is invertible. The
second term on the right-hand side of (2.15) can be simplified as follows:

Clp) : D?p=C(p) : (~C) ™"+ (Cp) ™ = m(p)) @ (Cp) ™ (= m(p)) ) p
(3.15) = (= Trlta] + llu = m(p)l ) o

Thus, combining the previous two equations, we see that the right-hand side of (2.15) is given
by the following expression:

(3.16)

Te[B~1C(p) — L] — |Ju— m(p)||% + ||u — m(p)Hg(p)—I-<u —m(p),ug — m(p)>B] p.

For the left-hand side of (2.15), note that by (3.9a) and (3.9b),

d

%H“ = m(p)le,) =2 <dt(u —m(p)), C(p) " (u - m(,o))>
d

+ (= mle) . (€)= mo)

= —2(u—m(p),uo — m(p)) s 42 |[u — m(p)[|5 — 2||u — m(P)HcZz(p)v

and therefore, combining with (3.10), we obtain

(1 -1 d 1d 2
oup = |~5dencp) (et ) = 5 pllu— ol | o

317)

= | Te{BC(0) — Tl — Il = ()% + [ = 1) |3, +{10 = (), 0 m<p>>B] b,

which concludes the first part of the proof. The second part concerning the large time asymp-
totics is a straightforward consequence of the asymptotic behavior of m and € detailed in
Lemma 3.2. |

In the case of the classical Fokker—Planck equation €(t) = I; with a quadratic confining
potential, the result in Proposition 3.3 follows from the fact that the fundamental solution of
(2.15) is a Gaussian; see [14].

Corollary 3.4. Let py be a non-Gaussian initial condition for (2.15) in the case when ®r
is giwven by (2.10). Assume that py satisfies KL(pol/poo) < 00. Then any solution of (2.15)
converges exponentially fast to ps given by (3.5) as t — oo both in entropy and in L'(R?).

Proof. Let a € R? have Euclidean norm 1, and define ¢(t) := (a, €(t)"*a). From (3.11) it
follows that

where ) is the maximum eigenvalue of B~!. Hence it follows that ¢ is bounded above,
independently of a, and that € is bounded from below as an operator. Together with the fact
that the Hessian D?®r = B~! is bounded from below, we conclude using Proposition 3.1. M
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3.3. Kalman—Wasserstein gradient flow. We introduce an infinite-dimensional Riemann-
ian metric structure, which we name the Kalman—Wasserstein metric, in density space. It
allows the interpretation of solutions to (2.15) as gradient flows in density space. To this end
we denote by P the space of probability measures on a convex set Q C R%:

P = {pELl(Q) :p>0ae., / p(x)der = 1} .
The probability simplex P is a manifold with boundary. For simplicity, we focus on the subset
Pr={peP:p>0ae.,6pcC®Q)}.

The tangent space of Py at a point p € Py is given by

d
T,P+ = {dtp(t) . : p(t) is a curve in P4, p(0) = p}
t—

= {JGCOO(Q): /ad:czo} .

The second equality follows since for all o € TP, we have [o(x)dz = 0 as the mass along
all curves in P, remains constant. For the set P, , the tangent space T,P is therefore
independent of the point p € P,. Cotangent vectors are elements of the topological dual
TP+ and can be identified with tangent vectors via the action of the Onsager operator
[68, 72, 73, 62, 74]

Vp,c : T;P+ — TpP+ .

In this paper, we introduce the following new choice of Onsager operator:
(3.18) Voe(@) ==V - (pC(p)Ve) =: (—Apc) ¢

By Lemma 2.1, the weighted elliptic operator A, becomes degenerate if p is a Dirac. For
points p in the set P, that are bounded away from zero, the operator A, is well-defined,
nonsingular, and invertible since pC(p) > 0. Thus we can write

Ve TPy = TPy, o= (=D,0) 0.

This provides a 1-to-1 correspondence between elements ¢ € TP, and o € T,P4. For general

p € Py, we can instead use the pseudoinverse (—AP,C)T; see [57]. With the above choice of
Onsager operator, we can define a generalized Wasserstein metric tensor as follows.

Definition 3.5 (Kalman—Wasserstein metric tensor). Define
gpc - T,,P+ X Tpp+ - R

as

dpc(o1,0) = /Q (Vé1, C(p)Ven) pda,

where 0; = (=A,c) ¢s = =V - (pC(p)V ;) € T,Py fori=1,2.
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With this metric tensor, the Kalman—Wasserstein metric We: Py x Py — R can be
represented by the geometric action function. Given two densities p°, p' € P,, consider

We(p”, p") 1nf/ / (Vor, C(pt)Vr) prda

subject to Oyt + V- (0C(pe) V) =0, po = p°, pr=p",

where the infimum is taken among all continuous density paths p; := p(t,z) and potential
functions ¢y := ¢(t, z). The Kalman—Wasserstein metric has several interesting mathematical
properties, which will be the focus of future work. In this paper, working in (P4, g,c), we
derive the gradient flow formulation that underpins the formal calculations given in subsec-
tion 3.1 for the energy functional F defined in (3.2).

Proposition 3.6. Given a finite functional F : P — R, the gradient flow of F(p) in

(P+,9pc) satisfies
OF
o= (sC(IVE ).

Proof. The Riemannian gradient operator grad¥ (p) is defined via the metric tensor g, ¢
as follows:

gpc(o, gradF(p / Splu o(u)du VYo eT,Py.
Thus, for ¢ := (—Apyc)_la € TP+, we have

gpc(o,gradF(p /¢ JgradF(p) /V (pC(p Vd)) F(p)du

-/ <v¢, C<p>v;f<p>> pdu
—~ [otw¥ - (s 7)) du.

adF(p) = =V - (pC(IV 5 F(p)).

Thus we derive the gradient flow by

Oup = —gradF(p) = V- (pc<p>v;pf<p>). .

Hence

Remark 3.7. Our derivation concerns the gradient flow on the subset P, of P for simplicity
of exposition. However, a rigorous analysis of the evolution of the gradient flow (3.3) requires
extending the above arguments to the full set of probabilities P, especially because we want
to study Dirac measures in view of Lemma 2.1. If p is an element of the boundary of P, one
may consider instead the pseudoinverse of the operator A, c. This will be the focus of future
work; also see the more general analysis in [1], e.g., Theorem 11.1.6.
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4. Numerical experiments. In this section we demonstrate that the intuition developed
in the previous two sections does indeed translate into useful algorithms for generating ap-
proximate posterior samples without computing derivatives of the forward map G. We do this
by considering non-Gaussian inverse problems defined through a nonlinear forward operator
G, showing how numerical solutions of (2.13) are distributed after large time, and comparing
them with exact posterior samples found from MCMC methods.

Achieving the mean-field limit requires J to be large and hence typically larger than the
dimension d of the parameter space. There are interesting and important problems arising
in science and engineering in which the number of parameters to be estimated is small, even
though evaluation of G involves solution of computationally expensive PDEs; in this case,
choosing J > d is not prohibitive. We also include numerical results which probe outcomes
when J < d. To this end we study two problems, the first an inverse problem for a two-
dimensional vector arising from a two point boundary-value problem, and the second an
inverse problem for permeability from pressure measurements in Darcy flow; in this second
problem the dimension of the parameter space is, in principle, tunable from small up to infinite
dimension.

4.1. Derivative-free. In this subsection we describe how to use (2.13) for the solution
of the inverse problem (1.1). We approximate the continuous-time stochastic dynamics by
means of a linearly implicit split-step discretization scheme given by

J
*,7 i 1 > j — *,J
(1a) ) =ud) = Aty 23 {G(l) = 6,6 — y)rul) — Aty CUL) T w7,
k=1

(41b)  ul)y = ul) + V2 AL, C(U) Y,

where 553 )~ N(0, ), Ty is the prior covariance, and At,, is an adaptive timestep computed as
in [50].

4.2. Gold standard: MCMC. In this subsection we describe the specific Random Walk
Metropolis Hastings (RWMH) algorithm used to solve the same Bayesian inverse problem
as in the previous subsection; we view the results as gold standard samples from the desired
posterior distribution. The link between RWMH methods and Langevin sampling is explained
in the literature review within the introduction, where it is shown that the latter arises as a
diffusion limit of the former, as shown in numerous papers following from the seminal work in
[85]. The proposal distribution is a Gaussian centered at the current state of the Markov chain
with covariance given by ¥ = 7 x C(U*), where C(U*) is the covariance computed from the
last iteration of the algorithm described in the preceding subsection, and 7 is a scaling factor
tuned for an acceptance rate of approximately 25% [85]. In our case, 7 = 4. The RWMH
algorithm was used to get N = 10° samples, with the Markov chain starting at an approximate
solution given by the mean of the last step of the algorithm from the previous subsection. For
the high-dimensional problem we use the preconditioned Crank—Nicolson (pCN) variant on
RWMH [18]; this too has a diffusion limit of Langevin form [80].

4.3. Numerical results: Low-dimensional parameter space. The numerical experiment
considered here is the example originally presented in [31] and also used in [39]. We start
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by defining the forward map, which is given by the one-dimensional elliptic boundary-value
problem

d d
(4.2) e <exp(u1) dxp(a:)> =1, z€][0,1],
with boundary conditions p(0) = 0 and p(1) = uy. The explicit solution for this problem (see
[39]) is given by

(4.3) (@) = usz + exp(—uy) <x22 + ‘2) .

The forward model operator G is then defined by

(4.4) G(u) = < p(@1) > .

p(x2)

Here u = (u1,u2)" is a constant vector that we want to find, and we assume that we are given
noisy measurements y of p(-) at locations 1 = 0.25 and zo = 0.75. The precise Bayesian
inverse problem considered here is to find the distribution of the unknown u conditioned on
the observed data y, assuming additive Gaussian noise n ~ N(0,T'), where I' = 0.12 I and
Iy € R?*2 is the identity matrix. We use as prior distribution N(0,T), T'g = 023 with o = 10.
The resulting Bayesian inverse problem is then solved, approximately, by the algorithms we
now outline and with observed data y = (27.5,79.7)". Following [39], we consider an initial
ensemble drawn from N(0,1) x U(90,110).

Figure 1 shows the results for the solution of the Bayesian inverse problem considered
above. In addition to implementing the algorithms described in the previous two subsections,
we also employ a specific implementation of the EKI formulation introduced in the paper of
Herty and Visconti [39], and defined by the numerical discretization shown in (4.1), but with
C(U) replaced by the identity matrix Io; this corresponds to the algorithm from equation (20)
of [39], and in particular the last display of their section 5, with £ ~ N(0, I2). The blue dots
correspond to the output of this algorithm at the last iteration. The red dots correspond
to the last ensemble of the EKI algorithm as presented in [50]. The orange dots depict the
RWMH gold standard described above. Finally, the green dots show the ensemble members at
the last iteration of the proposed EKS (2.13). In this experiment, all versions of the ensemble
Kalman methods were run with the adaptive timestep scheme from subsection 4.1, and all
were run for 30 iterations with an ensemble size of J = 103.

Consider first the top-left panel. The true distribution, computed by RWMH, is shown
in orange. Note that the algorithm of [50] collapses to a point (shown in red), unable to
escape overfitting, and relating to a form of consensus formation. In contrast, the algorithm
of [39], while avoiding overfitting, overestimates the spread of the ensemble members, relative
to the gold standard RWMH; this is exhibited by the blue overdispersed points. The proposed
EKS (green points) gives results close to the RWMH gold standard. These issues are further
demonstrated in the lower panel, which shows the misfit (loss) function as a function of
iterations for the three algorithms (excluding RWMH); the red line demonstrates overfitting as
the misfit value falls below the noise level, whereas the other two algorithms avoid overfitting,.
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Figure 1. Results of applying different versions of ensemble Kalman methods to the nonlinear elliptic
boundary problem. For comparison, an RWMH algorithm is also displayed to provide a gold standard. The
proposed EKS captures approximately the true distribution, effectively avoiding overfitting or overdispersion
shown with the other two implementations. Overfitting is clearly shown from the red line in the lower subfigure.
The line in blue shows overdispersion exhibited by the algorithm proposed in [39]. The upper right subfigure
illustrates the approximation to the posterior. Color coding is consistent among the subfigures.

We include the derivative-free optimization algorithm EKI (red points) because it gives
insight into what can be achieved with these ensemble-based methods in the absence of noise
(namely, derivative-free optimization); we include the noisy EKI algorithm of [39] (blue points)
to demonstrate that considerable care is needed with the introduction of noise if the goal is
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to produce posterior samples, and we include our proposed EKS algorithm (green points)
to demonstrate that judicious addition of noise into the EKI algorithm helps to produce
approximate samples from the true posterior distribution of the Bayesian inverse problem; we
include true posterior samples (orange points) for comparison. We reiterate that the methods
of [16, 29] also hold the potential to produce good approximate samples, though they suffer
from the rigidity of needing to be initialized at the prior and integrated to exactly time 1.

4.4. Numerical results: High-dimensional parameter space. The forward problem of
interest is to find the pressure field p(-) in a porous medium defined by permeability field a(-);
for simplicity we assume that a(-) is a scalar-field in this paper. Given a scalar-field f defining
sources and sinks of fluid, and assuming Dirichlet boundary conditions on the pressure for
simplicity, we obtain the following elliptic PDE for the pressure:

(4.5) -V - (a(z)Vp(@)) = f(z), weD.
(4.5b) p(z) =0, x € 0D.
In what follows we will work on the domain D = [0, 1]?. We assume that the permeability

is dependent on unknown parameters u € R%, so that a(x) = a(z;u). The inverse problem
of interest is to determine u from d linear functionals (measurements) of p(x;u), subject to
additive noise. Thus

(4.6) Gi(u) = (p(5w) +m;, j=1,....K.

We will assume that a(-) € L°°(D;R) so that p(-) € H}(D;R), and thus we take the
{; to be linear functionals on the space Hg(D;R). In practice we will work with pointwise
measurements so that £;(p) = p(z;); these are not elements of the dual space of H{(D;R) in
dimension 2, but mollifications of them are, and in practice mollification with a narrow kernel
does not affect results of the type presented here, and so we do not use it [41]. We model
a(z;u) as a log-Gaussian field with the precision operator defined as

(4.7) C = (—-A+7121)°,

where the Laplacian A is equipped with Neumann boundary conditions on the space of spatial-
mean zero functions, and 7 and « are known constants that control the underlying lengthscales
and smoothness of the underlying random field. In our experiments, 7 = 3 and « = 2. Such
parametrization yields a Karhunen-Loeve (KL) expansion

(48) logawiu) = 3 e v/Ae (),

leK

where the eigenpairs are of the form
(49) @f($) = COS(TF(Z, 1:>)7 )‘f = (W2|£|2 + 72)_(1)

where K = Z? is the set of indices over which the random series is summed and the wu; ~
N(0,1) are ii.d. [79]. In practice we will approximate K by K; C Z2, a set with finite

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 131.215.252.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ENSEMBLE KALMAN SAMPLER 433

cardinality d, and consider different d. For visualization we will sometimes find it helpful to
write (4.8) as a sum over a one-dimensional variable rather than a lattice:

(4.10) log a(z;u) = Z wy, 1/ A}, o ().
kezZ*

We order the indices in ZT so that the eigenvalues A}, are in descending order by size.

We generate a truth random field by constructing ' € R? by sampling it from N(0, I,),
with d = 2% and I, the identity on R? and using u' as the coefficients in (4.8). We create data
y from (1.1) with  ~ N(0,0.1%2 x If). For the Bayesian inversion we choose prior covariance
Iy = 10%1;; we also sample from this prior to initialize the ensemble for EKS. We run the exper-
iments with different ensemble sizes to understand both strengths and limitations of the pro-
posed algorithm for nonlinear forward models. Finally, we choose J € {8,32,128,512,2048},
which allows the study of both J > d and J < d within the methodology.

Results showing the solution of this Bayesian inverse problem by MCMC (orange dots),
with 10° samples, and by the EKS with different .J (different shades of green dots) are shown
in Figures 2 and 3. For every ensemble size configuration, the EKS algorithm was run until
two units of time were achieved. As can be seen from Figure 2(b) the algorithm has reached
an equilibrium after this duration. The two-dimensional scatter plots in Figure 2(a) show
components uj, with k& = 0,1,2. That is, we are showing the components of u which are
associated to the three largest eigenvalues in the KL expansion (4.8) under the posterior
distribution. We can see that sample spread is better matched to the gold standard MCMC
spread as the size J of the EKS ensemble is increased. In Figures 2(b) and 2(c) we show
the evolution of the dispersion of the ensemble around its mean at every timestep, u(t), and
around the truth u!. The metrics we use to test the ensemble spread are

J J
1 . 1 .
(4.11) dy-2() = \| 5 2wt = [les  dr2() = | 5> (1) = [IZ,
j=1 j=1

where both are evaluated at @(t) and u' at every simulated time ¢. For these metrics we use
the norms defined by

(4.12) lullr—= = [ Y Juel®e, lullz = [ fuel?,
(€K, =

where the first is defined in the negative Sobolev space H~2, while the second is defined in
the L? space. The first norm allows for higher discrepancy in the estimation of the tail of
the modes in equation (4.8), whereas the second norm penalizes equally discrepancies in the
tail of the KL expansion. In Figure 2(b), we see rapid convergence of the spread around the
mean and around the truth for all ensemble sizes J. The evolution in Figure 2(b) for both
cases shows that the algorithm reaches its stationary distribution while incorporating higher
variability with increasing ensemble size. The figures are similar because the posterior mean
and the truth are close to one another. Lower values of the metrics in Figures 2(b) and 2(c)
for smaller ensembles can be understood due to a mixed effect of reduced variability and
overfitting to the maximum a posteriori (MAP) estimate of the Bayesian inverse problem.
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32

128
512
2048
MCMC

(a) Bivariate scatter plots of the approximate posterior distribution on the three largest modes (as ordered by
prior variance and here labeled uo, u1, u2) in the KL expansion (4.8). The pCN algorithm (orange dots) is used
as a reference with 10° samples.
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(b) Evolution statistics of the EKS with respect to simulated time under the negative Sobolev norm || - || z—2.
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(c¢) Evolution statistics of the EKS with respect to simulated time under norm || - || 2.

Figure 2. Results for the Darcy flow inverse problem in high dimensions. The top panel shows scatter plots
for different combinations of the higher modes in the KL expansion (4.8). The green dots correspond to the
last iteration of the EKS at every ensemble size setting as labeled in the legend. Tracking the negative Sobolev
norm of the ensembles with respect to its mean u(t) and underlying truth ul shows a good match with both the
solution of the inverse problem and the stationary distribution of the Fokker—Planck equation (3.5).
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Figure 3. Results showing Darcy flow parameter identifiability. The top panel illustrates how bigger en-
semble sizes are able to better capture the marginal posterior variability of each component, whereas the lower
panel illustrates both variability and consistency of the approzimate posterior samples from EKS.

The results using the L? norm in Figure 2(c) allow us to see more discrepancy between
ensemble sizes. The higher metric value for larger ensembles is due to the ensemble better
approximating the posterior, as will be discussed below. In summary, Figure 2 shows evidence
that the EKS is generating samples from a good approximation to the posterior and that this
posterior is centered close to the truth. Increasing the ensemble size improves these features
of the EKS method.

Figure 3 demonstrates how different ensemble sizes are able to capture the marginal pos-
terior variances of each component in the unknown u. The top panel in Figure 3 tracks the
posterior variance reduction statistic for every component of v € R? which, as mentioned
before, now is viewed as a vector of d components rather than a function on subset K  of the
two-dimensional lattice. The posterior variance reduction is a measure of the relative decrease
of variance for a given quantity of interest under the posterior with respect to the prior. It is
defined as

V(uly)

(4.13) =1~ S

where V(-) denotes the variance of a random variable. The summary statistic ), (i has been
used in [91] to estimate the effective number of parameters in Bayesian models. When this
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parameter is close to 1, the algorithm has reduced the uncertainty considerably, relative to the
prior; when it is close to zero, it has reduced it very little, in comparison with the prior. By
studying the figure for the MCMC algorithm (orange) and comparing with EKS for increasing
J (green), we see that for J around 2000 the match between EKS and MCMC is excellent.
We also see that for smaller-sized ensembles there is a regularizing effect which artificially
reduces the posterior variation for larger k. On the other hand, the lower panel in Figure 3
allows us to identify the location of ensemble density by plotting the residuals ), — (u;rc)’ for
every component k£ = 1,...,d; in particular we plot the algorithmic mean of this quantity
and 95% confidence intervals. It can be seen that the ensemble is well located, as most of
the components include the zero horizontal line, meaning that marginally the distribution of
every component includes the correct value with high probability. Moreover, we can see two
effects in this figure. First, the lower variability in the first components also shows that there
is enough information on the observed data to identify these components. Second, it can be
seen that for very low sized ensembles the least important components of u incorporate higher
error when comparing the green EKS samples with the orange MCMC samples.

Overall, the mismatch between the results from EKS and the MCMC reference in both
numerical examples can be understood from the fact that the use of the ensemble equations
(2.13) introduces a linear approximation to the curvature of the regularized misfit. This effect
is demonstrated clearly in Figure 1, which shows the samples from EKS against a background
of the level sets of the posterior. However, despite this mismatch, the key point is that a
relatively good set of approximate samples in green is computed without use of the derivative
of the forward model G in both numerical examples; it thus holds promise as a method for
large-scale nonlinear inverse problems.

5. Conclusions. In this paper we have demonstrated a methodology for the addition of
noise to the basic EKI algorithm so that it generates approximate samples from the Bayesian
posterior distribution; we call this method the ensemble Kalman sampler (EKS). Our starting
point is a set of interacting Langevin diffusions, preconditioned by their mutual empirical
covariance. To understand this system, we introduce a new mean-field Fokker—Planck equation
which has the desired posterior distribution as an invariant measure. We exhibit the new
Kalman—Wasserstein metric with respect to which the Fokker—Planck equation has gradient
structure. We also show how to compute approximate samples from this model by using a
particle approximation based on using ensemble differences in place of gradients, leading to
the EKS algorithm.

In the future we anticipate that methodology to correct for the error introduced by the
use of ensemble differences will be a worthwhile development from the algorithms proposed,
and we are actively pursuing this [17]. Furthermore, recent interesting work of Niisken and
Reich [69] studies the invariant measures of the finite particle system (2.3), (2.4). The authors
identify a simple linear correction term of order J—! in (2.3) which renders the .J-fold product
of the posterior distribution invariant for finite ensemble number; since one of the major
motivations for the use of ensemble methods is their robustness for small J, this correction is
important.

We also recognize that other difference-based methods for approximating gradients may
emerge and that developing theory to quantify and control the errors arising from such
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difference approximations will be of interest. We believe that our proposed ensemble-based
difference approximation is of particular value to the growing community of scientists and
engineers who work directly with ensemble-based methods because of their simplicity and
black-box nature. In the future, we will also study the properties of the Kalman—Wasserstein
metric, including its duality, geodesics, and geometric structure, a line of research that is of
independent mathematical interest in the context of generalized Wasserstein-type spaces. We
will investigate the analytical properties of the new metric within Gaussian families. We ex-
pect these studies will bring insight to designing new numerical algorithms for the approximate
solution of inverse problems.
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