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Calibrate, Emulate, Sample

Emmet Cleary, Alfredo Garbuno-Inigo, Shiwei Lan, Tapio Schneider and Andrew
M. Stuart

Abstract. Many parameter estimation problems arising in applications
can be cast in the framework of Bayesian inversion. This allows not
only for an estimate of the parameters, but also for the quantification
of uncertainties in the estimates. Often in such problems the parameter-
to-data map is very expensive to evaluate, and computing derivatives
of the map, or derivative-adjoints, may not be feasible. Additionally,
in many applications only noisy evaluations of the map may be avail-
able. We propose an approach to Bayesian inversion in such settings
that builds on the derivative-free optimization capabilities of ensemble
Kalman inversion methods. The overarching approach is to first use en-
semble Kalman sampling (EKS) to calibrate the unknown parameters
to fit the data; second, to use the output of the EKS to emulate the
parameter-to-data map; third, to sample from an approximate Bayesian
posterior distribution in which the parameter-to-data map is replaced
by its emulator. This results in a principled approach to approximate
Bayesian inference that requires only a small number of evaluations of
the (possibly noisy approximation of the) parameter-to-data map. It
does not require derivatives of this map, but instead leverages the doc-
umented power of ensemble Kalman methods. Furthermore, the EKS
has the desirable property that it evolves the parameter ensemble to-
wards the regions in which the bulk of the parameter posterior mass
is located, thereby locating them well for the emulation phase of the
methodology. In essence, the EKS methodology provides a cheap solu-
tion to the design problem of where to place points in parameter space
to efficiently train an emulator of the parameter-to-data map for the
purposes of Bayesian inversion.

Keywords: Approximate Bayesian inversion; uncertainty quantification; Ensemble Kalman
sampling; Gaussian process emulation; experimental design.

1. INTRODUCTION

Ensemble Kalman methods have proven to be highly successful for state estimation in nois-
ily observed dynamical systems [1, 7, 15, 21, 34, 40, 47, 53]. They are widely used, especially
within the geophysical sciences and numerical weather prediction, because the methodology is
derivative-free, provides reliable state estimation with a small number of ensemble members,
and, through the ensemble, provides information about sensitivities. The empirical success in
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2 CLEARY, GARBUNO-INIGO, LAN, SCHNEIDER & STUART

state estimation has led to further development of ensemble Kalman methods in the solution
of inverse problems, where the objective is the estimation of parameters rather than states.
Its use as an iterative method for parameter estimation originates in the papers [12, 19] and
recent contributions are discussed in [2, 22, 35, 70]. But despite their widespread use for
both state and parameter estimation, ensemble Kalman methods do not provide a basis for
systematic uncertainty quantification, except in the Gaussian case [20, 48|. This is for two
primary reasons: (i) the methods invoke a Gaussian ansatz, which is not always justified; (ii)
they are often employed in situations where evaluation of the underlying dynamical system
(state estimation) or forward model (parameter estimation) is very expensive, and only a
small ensemble is feasible. The goal of this paper is to develop a method that provides a
basis for systematic Bayesian uncertainty quantification within inverse problems, building on
the proven power of ensemble Kalman methods. The basic idea is simple: we calibrate the
model using variants of ensemble Kalman inversion; we use the evaluations of the forward
model made during the calibration to train an emulator; we perform approximate Bayesian
inversion using Markov Chain Monte Carlo (MCMC) samples based on the (cheap) emulator
rather than the original (expensive) forward model. Within this overall strategy, the ensemble
Kalman methods may be viewed as providing a cheap and effective way of determining an
experimental design for training an emulator of the parameter-to-data map to be employed
within MCMC-based Bayesian parameter estimation; this is the primary innovation contained
within the paper.

1.1 Literature Review

The ensemble Kalman approach to calibrating unknown parameters to data is reviewed
in [35, 61], and the imposition of constraints within the methodology is overviewed in [2].
We refer to this class of methods for calibration, collectively, as ensemble Kalman inversion
(EKI) methods and note that pseudo-code for a variety of the methods may be found in
[2]. An approach to using ensemble-based methods to produce approximate samples from the
Bayesian posterior distribution on the unknown parameters is described in [26]; we refer to
this method as ensemble Kalman sampling (EKS). Either of these approaches, EKI or EKS,
may be used in the calibration step of our approximate Bayesian inversion method.

Gaussian processes (GPs) have been widely used as emulation tools for computationally
expensive computer codes [69]. The first use of GPs in the context of uncertainty quantification
was proposed in modeling ore reserves in mining [45]. Its motivation was a method to find the
best linear unbiased predictor, known as kriging in the geostatistics community [16, 74]. It was
later adopted in the field of computer experiments [68] to model possibly correlated residuals.
The idea was then incorporated within a Bayesian modeling perspective [17] and has been
gradually refined over the years. Kennedy and O’Hagan [42] offer a mature perspective on the
use of GPs as emulators, adopting a clarifying Bayesian formulation. The use of GP emulators
covers a wide range of applications such as uncertainty analysis [59], sensitivity analysis [60],
and computer code calibration [32]. Perturbation results for the posterior distribution, when
the forward model is approximated by a GP, may be found in [75]. We will exploit GPs for
the emulation step of our method which, when informed by the calibration step, provides a
robust approximate forward model. Neural networks [30] could also be used in the emulation
step and may be preferable for some applications of the proposed methodology.

Bayesian inference is now widespread in many areas of science and engineering, in part
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3

because of the development of generally applicable and easily implementable sampling meth-
ods for complex modeling scenarios. MCMC methods [31, 54, 55] and sequential Monte Carlo
(SMC) [18] provide the primary examples of such methods, and their practical success un-
derpins the widespread interest in the Bayesian solution of inverse problems [39]. We will
employ MCMC for the sampling step of our method. SMC could equally well be used for the
sampling step and will be preferable for many problems; however, it is a less mature method
and typically requires more problem-specific tuning than MCMC.

The impetus for the development of our approximate Bayesian inversion method is the
desire to perform Bayesian inversion on computer models that are very expensive to evaluate,
for which derivatives and adjoint calculations are not readily available and are possibly noisy.
Ensemble Kalman inversion methods provide good parameter estimates even with many pa-
rameters, typically with O(10?) forward model evaluations [40, 61], but without systematic
uncertainty quantification. While MCMC and SMC methods provide systematic uncertainty
quantification the fact that they require many iterations, and hence evaluations of the forward
model in our setting, is well-documented [29]. Several diagnostics for MCMC convergence are
available [63], and theoretical guarantees of convergence exist [56]. The rate of convergence
for MCMC is determined by the size of the step arising from proposal distribution: short
steps are computationally inefficient as the parameter space is only locally explored whereas
large steps lead to frequent rejections and hence to a waste of computational resources (in our
setting forward model evaluations) to generate additional samples. In practice MCMC often
requires O(10%) or more forward model evaluations [29]. This is not feasible, for example, with
climate models [13, 37, 73].

In the sampling step of our approximate Bayesian inversion method, we use an emulator that
can be evaluated rapidly in place of the computationally expensive forward model, leading to
Bayesian parameter estimation and uncertainty quantification essentially at the computational
cost of ensemble Kalman inversion. The ensemble methods provide an effective design for the
emulation, which makes this cheap cost feasible.

In some applications, the dimension of the unknown parameter is high and it is therefore of
interest to understand how the constituent parts of the proposed methodology behave in this
setting. The growing use of ensemble methods reflects, in part, the empirical fact that they
scale well to high-dimensional state and parameter spaces, as demonstrated by applications
in the geophysical sciences [40, 61]; thus, the calibrate phase of the methodology scales well
with respect to high input dimension. Gaussian process regression does not, in general, scale
well to high-dimensional input variables, but alternative emulators, such as those based on
neural networks [30] are empirically found to do so; thus, the emulate phase can potentially
be developed to scale well with respect to high input dimensions. Standard MCMC methods
do not scale well with respect to high dimensions; see [65] in the context of i.i.d. random
variables in high dimensions. However the reviews [11, 15] describe non-traditional MCMC
methods which overcome these poor scaling results for high-dimensional Bayesian inversion
with Gaussian priors, or transformations of Gaussians; the paper [41] builds on the ideas in
[15] to develop SMC methods that are efficient in high- and infinite-dimensional spaces. Thus,
the sampling phase of the methodology scales well with respect to high input dimension for
appropriately chosen priors.

There are alternative strategies related to, but different from, the methodology we present
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in this work. The bulk of these alternative strategies rely on the adaptive construction of
the emulator as the MCMC evolves — learning on the fly [46]. Earlier works have identified
the effectiveness of posterior-localized surrogate models, rather than prior-based surrogates in
the setting of Bayesian inverse problems; see [14, 50] and the references therein. Within the
adaptive surrogate framework, other type of surrogates have been used such as polynomial
chaos expansions (PCE) [76] and deep neural networks [77]; the use of adaptive PCEs has
recently been merged with ensemble based algorithms [78]. The effectiveness of all these
works relies on the compromise between exploring the parameter space with the current
surrogate and refining it further where needed; however, as exposed in [14, 50, 79], the use of
an inadequate surrogate leads to biased posterior estimates. Another strategy for approximate
Bayesian inversion can be found in [23] where adaptivity is incorporated within a sparse
quadrature rule used to approximate the integrals needed in the Bayesian inference.

1.2 Our Contribution

e We introduce a practical methodology for approximate Bayesian parameter learning in
settings where the parameter-to-data map is expensive to evaluate, not easy to differ-
entiate or not differentiable, and where evaluations are possibly polluted by noise. The
methodology is modular and broken into three steps, each of which can be tackled by
different methodologies: calibration, emulation, and sampling.

e In the calibration phase we leverage the power of ensemble Kalman methods, which may
be viewed as fast derivative-free optimizers or approximate samplers. These methods
provide a cheap solution to the experimental design problem and ensure that the forward
map evaluations are well-adapted to the task of Gaussian process emulation, within the
context of an outer Bayesian inversion loop via MCMC sampling.

e We also show that, for problems in which the forward model evaluation is inherently
noisy, the Gaussian process emulation serves to remove the noise, resulting in a more
practical Bayesian inference via MCMC.

o We demonstrate the methodology with numerical experiments on a model linear prob-
lem, on a Darcy flow inverse problem, and on the Lorenz '63 and '96 models.

It is worth emphasizing that the idea of emulation within an MCMC loop is not a new
one (see citations above) and that doing so incurs an error which can be controlled in terms
of the number of samples used to train the emulator [75]. Similarly the use of EKS to solve
inverse problems is not a new idea see [see 2, 35, and the references therein|; however, except
in the linear case [72], the error cannot be controlled in terms of the number of ensemble
members. What is novel in our work is the conjunction of the two approaches lifts the EKS
from being an, in general uncontrolled but reasonable, approximator of the posterior into a
method which provides controllable approximation of the posterior, in terms of the number of
ensemble members used in the GP training; furthermore the EKS may be viewed intuitively
in general, and provably in the linear case, as providing a good solution to the design problem
related to the construction of the emulator. This is because it tends to concentrate points
in the support of the true posterior, even if the points are not distributed according to the
posterior [26].

In Section 2, we describe the calibrate-emulate-sample methodology introduced in this pa-
per, and in Section 3, we demonstrate the method on a linear inverse problem whose Bayesian
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posterior is explicitly known. In Section 4, we study the inverse problem of determining perme-
ability from pressure in Darcy flow, a nonlinear inverse problem in which the coefficients of a
linear elliptic partial differential equation (PDE) are to be determined from linear functionals
of its solution. Section 5 is devoted to the inverse problem of determining parameters appear-
ing in time-dependent differential equations from time-averaged functionals of the solution.
We view finite time-averaged data as noisy infinite time-averaged data and use GP emulation
to estimate the parameter-to-data map and the noise induced through finite-time averaging.
Applications to the Lorenz '63 and ’96 atmospheric science models are described here, and
use of the methodology to study an atmospheric general circulation model is described in the
paper [13].

2. CALIBRATE-EMULATE-SAMPLE

| Calibrate|

y=G(0) +n ~ y = g™ (0) +n(0)

EKI/EKS GP MCMC

Figure 1: Schematic of approximate Bayesian inversion method to find 6 from y. EKI/EKS
produce a small number of approximate (expensive) samples {#(™}M_ . These are used to
train a GP approximation M) of G, used within MCMC to produce a large number of
approximate (cheap) samples {#(™}Ns. N, > M.

n=1»

2.1 Overview

Consider parameters 6 related to data y through the forward model G and noise 7:
y=G(0)+n. (2.1)

The inverse problem is to find unknown 6 from y, given knowledge of G : R? — R? and some
information about the noise level such as its size (classical approach) or distribution (statistical
approach), but not its value. To formulate the Bayesian inverse problem, we assume, for
simplicity, that the noise is drawn from a Gaussian with distribution N(0,T';), that the prior
on 6 is a Gaussian N(0,T), and that § and 1 are a priori independent. If we define!

1 1
@n(0) = 5y — GO, + 51013, (22)
the posterior on # given y has density

7Y(0) o exp(—Pr(0)). (2.3)

'For any positive-definite symmetric matrix A, we define (a,a’Ya = (a,A7'd/) = (Aféa,fr%a') and
_1
llalla =A™ 2al|.
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In a class of applications of particular interest to us, the data y comprises statistical averages
of observables. The map G(6) provides the corresponding statistics delivered by a model that
depends on 6. In this setting the assumption that the noise be Gaussian is reasonable if y and
G(0) represent statistical aggregates of quantities that vary in space and/or time. Additionally,
we take the view that parameters 6’ for which Gaussian priors are not appropriate (for example
because they are constrained to be positive) can be transformed to parameters 6 for which
Gaussian priors make sense.

We use EKS with J ensemble members and N iterations (time-steps of a discretized con-
tinuous time algorithm) to generate approximate samples from (2.3), in the calibration step
of the methodology. This gives us JN parameter-model evaluation pairs {#(™), G (9(’"))}7{5!1
which we can use to produce an approximation of G in the GP emulation step of the algo-
rithm. Whilst the methodology of optimal experimental design can be used, in principle, as
the basis for choosing parameter-data pairs for the purpose of emulation [3] it can be pro-
hibitively expensive. The theory and numerical results shown in [26] demonstrate that EKS
distributes particles in regions of high posterior probability; this is because it approximates
a mean-field interacting particle system with invariant measure equal to the posterior prob-
ability distribution (2.3). Using the EKS thus provides a cheap and effective solution to the
design problem, producing parameter—model evaluation pairs that are well-positioned for the
task of approximate Bayesian inversion based on the (cheap) emulator. In practice it is not
always necessary to use all JNN parameter-model evaluation pairs but to instead use a subset
of size M < JN; we denote the resulting GP approximation of G by G(™). Throughout this
paper we simply take M = J and use the output of the EKS in the last step of the iteration
as the design. However other strategies, such as descreasing J and using all or most of the N
steps, are also feasible.

GgWM) in place of the (expensive) forward model G. With the emulator gWM ), we define the
modified inverse problem of finding parameter 6 from data y when they are assumed to be
related, through noise 7, by

y=G"0(0) +1.

This is an approximation of the inverse problem defined by (2.1). The approximate posterior
on 6 given y has density 7(™) defined by the approximate log likelihood arising from this ap-
proximate inverse problem. In the sample step of the methodology, we apply MCMC methods
to sample from 7).

The overall framework, comprising the three steps calibrate, emulate, and sample is cheap
to implement because it involves a small number of evaluations of G(-) (computed only during
the calibration phase, using ensemble methods where no derivatives of G(+) are required), and
because the MCMC method, which may require many steps, only requires evaluation of the
emulator G (.) (which is cheap to evaluate) and not G(-) (which is assumed to be costly to
evaluate and is possibly only known noisily). On the other hand, the method has ingredients
that make it amenable to produce a controlled approximation of the true posterior. This is
true since the EKS steps generate points concentrating near the main support of the posterior
so that the GP emulator provides an accurate approximation of G(-) where it matters.? A
depiction of the framework and the algorithms involved can be found in Figure 1. In the rest

2By “main support” we mean a region containing the majority of the probability.
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7

of the paper, we use the acronym CES to denote the three step methodology. Furthermore we
employ boldface on one letter when we wish to emphasize one of the three steps: calibration
is emphasized by (CES); emulation by (CES); and sampling by (CES).

2.2 Calibrate — EKI And EKS

The use and benefits of ensemble Kalman methods to solve inverse or parameter calibration
problems have been outlined in the introduction. We will employ particular forms of the
ensemble Kalman inversion methodology that we have found to perform well in practice and
that are amenable to analysis; however, other ensemble methods to solve inverse problems
could be used in the calibration phase.

The basic EKI method is found by time-discretizing the following system of interacting
particles [71]:

€) J . _
wL - ~3 2 (606) = 6.669) ~ i, (0 0) (2.4

where # and G denote the sample means given by

1 1<
=3 > ok = > 60 (2.5)
k=1 k=1
For use below, we also define © = {9 _, and the p x p matrix
J —
Z OF —0) @ (6% —0). (2.6)

k:

The dynamical system (2.4) drives the particles to consensus, while also driving them to fit
the data and hence solve the inverse problem (2.1). Time-discretizing the dynamical system
leads to a form of derivative-free optimization to minimize the least squares misfit defined by
(2.1) [35, 71].

An appropriate modification of EKI, to attack the problem of sampling from the posterior
7¥ given by (2.3), is EKS [26]. Formally this is obtained by adding a prior-related damping
term, as in [10], and a ©-dependent noise to obtain

J

t' Z G(0™) - G,6(0V) —y)r, (0% — ) — C(O)T,

i

(2.7)

where the {W ()} are a collection of i.i.d. standard Brownian motions in the parameter space
RP. The resulting interacting particle system approximates a mean-field Langevin-McKean
diffusion process which, for linear G, is invariant with respect to the posterior distribution
(2.3) and, more generally, concentrates close to it; see [26] and [25] for details. The specific
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algorithm that we implement here time-discretizes (2.7) by means of a linearly implicit split-
step scheme given by [26]

J
*,J ; 1 _ .
O = 0 = At 5 3 (G01) =G, 60—, 00 — At COOTT 0, (280)

e(j +1 = 9n+1 + \/ A gn ’ (28b)

where &(Lj )~ N(0,I), Ty is the prior covariance and At,, is an adaptive timestep given in [26],
and based on methods developed for EKI in [44]. This is a split-step method for the SDE (2.7)
which is linearly implicit and ensures approximation of the It interpretation of the equation;
other discretizations can be used, provided they are consistent with the It6 interpretation.
The finite J correction to (2.7) proposed in [58], and further developed in [25], can easily be
incorporated into the explicit step of this algorithm, and other time-stepping methods can
also be used.

2.3 Emulate — GP Emulation

The ensemble-based algorithm described in the preceding subsection produces input-output
pairs {97?), Q(Qﬁf)) J forn=0,...,N.For n = N and J large enough, the samples of § are
approximately drawn from the posterior distribution. We use a subset of cardinality M < JN
of this design as training points to update a GP prior to obtain the function G(M)(.) that will
be used instead of the true forward model G(-). The cardinality M denotes the total number
of evaluations of G used in training the emulator G(™). Recall that throughout this paper we
take M = J and use the output of the EKS in the last step of the iteration as the design.

The forward model is a multioutput map G : R? — R It often suffices to emulate each
output coordinate [ = 1,...,d independently; however, variants on this are possible, and
often needed, as discussed at the end of this subsection. For the moment, let us consider the
emulation of the [-th component in G(6); denoted by G;(6). Rather than interpolate the data,
we assume that the input-output pairs are polluted by additive noise.® We place a Gaussian
process prior with zero or linear mean function on the /-th output of the forward model and,
for example, use the squared exponential kernel

1
(6.8) = of exp (=516~ 013, ) + 320, (2.9

where o; denotes the amplitude of the covariance kernel; /D; = dlag(é(l) ...,Ez(,l)) is the
diagonal matrix of lengthscale parameters; d,(y) is the Kronecker delta function; and \; the
standard deviation of the observation process. The hyperparameters ¢; = (012, Dy, )\12), which
are learnt from the input-output pairs along with the regression coefficients of the GP, account
for signal strength (o7); sensitivity to changes in each parameter component (D;); and the
possibility of white noise with variance )\12 in the evaluation of the [-th component of the
forward model G;(-). We adopt an empirical Bayes approach to learn the hyperparameters of
each of the d Gaussian processes.

3The paper [5] interprets the use of additive noise within computer code emulation.
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The final emulator is formed by stacking each of the GP models in a vector,
GM(6) ~ N (m(6), Tep(6)) - (2.10)

The noise 7 typically found in (2.1) needs to be incorporated along with the noise 7¢p(0) ~
N (0,T¢p(6)) in the emulator GM)(8), resulting in the inverse problem

y=m(0) +ne(0) + . (2.11)

We assume that ne(0) and 7 are independent of one another. In some cases, one or other
of the sources of noise appearing in (2.11) may dominate the other and we will then neglect
the smaller one. If we neglect 1, we obtain the negative log-likelihood

1 1
o) (g) = Slly = m(0)|1Eeo(0) + 5 log det Teo (6); (2.12)

for example, in situations where initial conditions of a dynamical systems are not known ex-
actly. This situation is encountered in applications where G is defined through time-averaging,
as in Section 5; in these applications the noise 7gp(6) is the major source of uncertainty and
we take 1 = 0. If, on the other hand, we neglect ne then we obtain negative log-likelihood

m

1
00 (0) = Sy — m(O)I2,, (2.13)
If both noises are incorporated, then (2.12) is modified to give

M 1 1
oM (9) = Sl - () ep (o)1, + 5 log det(Tep(0) +T); (2.14)

this is used in Section 4.

We note that the specifics of the GP emulation could be adapted — we could use correla-
tions in the output space R?, other kernels, other mean functions, and so forth. A review of
multioutput emulation in the context of machine learning can be found in [4] and references
therein; specifics on decorrelating multioutput coordinates can be found in [33]; and recent
advances in exploiting covariance structures for multioutput emulation in [8, 9]. For the sake
of simplicity, we will focus on emulation techniques that preserve the strategy of determining,
and then learning, approximately uncorrelated components; methodologies for transforming
variables to achieve this are discussed in Appendix A.

2.4 Sample - MCMC

For the purposes of the MCMC algorithm, we need to initialize the Markov chain and choose
a proposal distribution. The Markov chain is initialized with 8y drawn from the support of the
posterior; this ensures that the MCMC has a short transient phase. To initialize, we use the
ensemble mean of the EKS at the last iteration, 6;. For the MCMC step we use a proposal of
random walk Metropolis type, employing a multivariate Gaussian distribution with covariance
given by the empirical covariance of the ensemble from EKS. We are thus pre-conditioning
the sampling phase of the algorithm with approximate information about the posterior from
the EKS. The resulting MCMC method is summarized in the following steps and is iterated
until a desired number N, > .J of samples {6}, is generated:
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Choose 0y = 0.

Propose a new parameter choice 6} | = 0, + &, where &, ~ N(0,C(0)).
Set 0,41 = 05, | with probability a(6,,0); otherwise set 0,11 = 0y,.

n —n+ 1, return to 2.

Ll e

The acceptance probability is computed as:
1 1
(0,0 =min{ Lexp | (0007 + 310718, ) - (200 g1z, )|} 219

where @™ is defined in (2.12), (2.13) or (2.14), whichever is appropriate.

3. LINEAR PROBLEM

By choosing a linear parameter-to-data map, we illustrate the methodology in a case where
the posterior is Gaussian and known explicitly. This demonstrates both the viability and
accuracy of the method in a transparent fashion.

3.1 Linear Inverse Problem

We consider a linear forward map G(f) = GO, with G € R?P?. Each row of the matrix G
is a p-dimensional draw from a multivariate Gaussian distribution. Concretely we take p = 2
and each row G; ~ N(0,3), where X19 = ¥9; = —0.9, and ¥1; = Y99 = 1. The synthetic data
we have available to perform the Bayesian inversion is then given by

y =GO +n, (3.1)

where 01 = [~1,2]7, and n ~ N(0,T) with T' = 0.121.

We assume that, a priori, parameter § ~ N(mg,¥p). In this linear Gaussian setting the
solution of the Bayesian linear inverse problem is itself Gaussian [see 27, Part IV] and given
by the Gaussian distribution

1
1(0) oxexp (510~ map R, ). (32

where my), and Xy, denote the posterior mean and covariance. These are computed as

S =G G+ mey = oy (G Y+ 37 me) (33)

3.2 Numerical Results

For the calibration step (CES) we consider the EKS algorithm. Figure 2 shows how the
EKS samples estimate the posterior distribution (the far left). The green dots correspond to
20-th iteration of EKS with different ensemble sizes. We also display in gray contour levels
the density corresponding to the 67%, 90% and 99% probability levels under a Gaussian with
mean and covariance estimated from EKS at said 20-th iteration. This allows us to visualize
the difference between the results of EKS and the true posterior distribution in the leftmost
panel. In this linear case, the mean-field limit of EKS exactly reproduces the invariant measure
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[26]. The mismatch between the EKS samples and the true posterior can be understood from
the fact that time discretizations of Langevin diffusions are known to induce errors if no
metropolization scheme is added to the dynamics [49, 64, 66], and from the finite number of
particles used; the latter could be corrected by using the ideas introduced in [58] and further
developed in [25].

Posterior /=8 /=16 J=24 /=32 J=40

Figure 2: Density estimates for different ensemble sizes used for the calibration step. Leftmost
panel show the true posterior distribution. The green dots show the EKS at the 20-th iteration.
The contour levels show the density of a Gaussian with mean and covariance estimated from
EKS at said iteration.

The GP emulation step (CES) is depicted in Figure 3 for one component of G. Each GP is
trained using the 20-th iteration of EKS for each ensemble size. We employ a zero mean GP
with the squared-exponential kernel (2.9). We add a regularization term to the lengthscales
of the GP by means of a prior in the form of a Gamma distribution. This is common in GP
Bayesian inference when the domain of the input variables is unbounded. The choice of this
regularization ensures that the covariance kernels, which are regression functions for the mean
of the emulator, decay fast away from the data, and that no short variations below the levels
of available data are introduced [27, 28]. We can visualize the emulator of the component
of the linear system considered here by fixing one parameter at the true value while varying
the other. The dashed reference in Figure 3 shows the model GA. The red cross denotes the
corresponding observation. The solid lines correspond to the mean of the GP, while the shaded
regions contain 2 standard deviations of predicted variability. Colors correspond to different
ensemble sizes as described in the figure’s legend. We can see in Figure 3 that the GP increases
its accuracy as the amount of training data is increased. In the end, for training sets of size
J > 16, it correctly simulates the linear model with low uncertainty in the main support of
the posterior.

Figure 4 depicts results in the sampling step (CES). These are obtained by using a GP
approximation of G within MCMC. The GP-based MCMC uses (2.14) since the forward
model is deterministic and the data is polluted by noise. The contour levels show a Gaussian
distribution with mean and covariance estimated from Ny = 2x10* GP-based MCMC samples
(not shown) in each of the different ensemble settings. The results show that the true posterior
is captured with an ensemble size of 16 or more. Moreover, Table 1 shows the mean square
error of the posterior location parameter in (3.3); that is, the error in Euclidean norm of the
sample-based mean. This error is computed by means of the ensemble mean and the analytic
posterior mean (top row), and the CES posterior mean and the analytic solution (bottom
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Keeping 0, fixed Keeping 0, fixed
0 -
04 — J=38

J=16

-2 = —2- === — J=24
— J=32

-4 * 4 x — J=40

= T T T T T T T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 25 3.0 35

Figure 3: Gaussian process emulators learnt using different training datasets. The input-
output pairs are obtained from the calibration step using EKS. Each color for the lines and
the shaded regions correspond to different ensemble sizes as described in the legend.

row). Analogously, Table 2 shows the mean square error for the spread; that is, the Frobenius
norm error in the sample-based covariance matrix — both computed from the EKS and CES
samples, top and bottom rows, respectively — and the analytic solution for the posterior
covariance in (3.3). For both parameters, it can be seen that the CES-approximated posterior
achieves higher accuracy relative to the EKS alone. For this linear problem both methods
provably recover the true posterior distribution, in the limit of large ensemble size, so that it
is interesting to see that the CES-approximated posterior improves upon the EKS alone. Recall
from the discussion in Subsection 1.2, however, that for nonlinear problems EKS does not in
general recover the posterior distribution, whilst the CES-approximated posterior converges
to the true posterior distribution as the number of training samples increases, regardless of
the distribution of the EKS particles; what is beneficial, in general, about using EKS to design
the GP is that the samples are located close to the support of the true posterior, even if they
are not distributed according to the posterior.

Posterior /=8 /=16 =24 J=32 J =40

Figure 4: Density of a Gaussian with mean and covariance estimated from GP-based MCMC
samples using M = J design points. The true posterior distribution is shown in the far left.
Each GP-based MCMC generated 2 x 10* samples. These samples are not shown for clarity.

4. DARCY FLOW

In this section, we apply our methodology to a PDE nonlinear inverse problem arising in
porous medium flow: the determination of permeability from measurements of the pressure
(piezometric head).
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TABLE 1
Averaged mean square error of the posterior location (mean) computed from 20 independent realizations.

Ensemble size 8 16 24 32 40
EKS 0.1171 0.0665 0.0528 0.0584 0.0648
CES 0.0652 0.0219 0.0125 0.0122 0.0173

TABLE 2

Averaged mean square error of the posterior spread (covariance) computed by means of the Frobenius norm
and 20 independent realizations.

Ensemble size 8 16 24 32 40
EKS 0.1010 0.0703 0.0937 0.0868 0.0664
CES 0.0555 0.0241 0.0092 0.0050 0.0056

4.1 Elliptic Inverse Problem

4.1.1 Forward Problem The forward problem is to find the pressure field p in a porous
medium defined by the (for simplicity) scalar permeability field a. Given a scalar field f
defining sources and sinks of fluid, and assuming Dirichlet boundary conditions for p on the
domain D = (0,1)2, we obtain the following elliptic PDE determining the pressure from
permeability:

—V - (a(z)Vp(x)) = f(z), =z € D. (4.1a)
p(z) =0, x € 0D. (4.1b)

In this paper we always take f = 1. The unique solution of the equation implicitly defines a
map from a € L>°(D;R) to p € H}(D;R).

4.1.2 Inverse Problem We assume that the permeability is dependent on unknown param-
eters 0 € RP, so that a(x) = a(z;0) > 0 almost everywhere in D. The inverse problem of
interest is to determine 6 from noisy observations of d linear functionals (measurements) of
p(z;0). Thus,

gj(‘g) :Ej(p(79)) + 7, Jj=1--.d. (42)

We assume the additive noise 7 to be a mean zero Gaussian with covariance equal to 21I.
Throughout this paper, we work with pointwise measurements so that ¢;(p) = p(z;). * We
employ d = 50 measurement locations chosen at random from a uniform grid in the interior
of D.

We introduce a log-normal parameterization of a(x;#) as follows:

loga(z; 0) = Y 0p+/ A () (4.3)

(€K,

4The implied linear functionals are not elements of the dual space of H}(D;R) in dimension 2 but mollifi-
cations of them are. In practice, mollification with a narrow kernel does not affect results of the type presented
here [36], and so we do not use it.
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where
po(z) = cos(m(l,x)), Ao = (2|0 + 72 (4.4)

the smoothness parameters are assumed to be 7 = 3, a = 2, and K; C K = Z? is the
set, with finite cardinality |K,| = ¢, of indices over which the random series is summed. A
priori we assume that 6, ~ N(0,1) so that we have a Karhunen-Loeve representation of a
as a log-Gaussian random field [62]. We often find it helpful to write (4.3) as a sum over a
one-dimensional variable rather than a lattice:

loga(z:0) = 3 b/ N, eh(x). (45)

kEZ,

Throughout this paper we choose K, and hence Z;, to contain the g largest {\,}. We order
the indices in Z; C Z" so that the set of {\}.} are non-increasing with respect to k.

4.2 Numerical Results

We generate an underlying true random field by sampling 87 € RP from a standard mul-
tivariate Gaussian distribution, N(0, I,,), of dimension p = 16 = 256. This is used as the
coefficients in (4.3) by means of the re-labelling (4.5). The evaluation of the forward model
G(0) requires solving the PDE (4.1) for a given realization of the random field a. This is done
with a cell-centered finite difference scheme [6, 67]. We create data y from (4.2) with a random
perturbation 1 ~ N(0,0.005? x I;), where I; denotes the identity matrix. The locations for
the data, and hence the evaluation of the forward model, were chosen at random from the 162
computational grid used to solve the Darcy flow. For the Bayesian inversion we use a trunca-
tion of (4.5) with p’ < p terms, allowing us to avoid the inverse crime of using the same model
that generated the data to solve the inverse problem [39]. Specifically, we consider p’ = 10.
We employ a non-informative centered Gaussian prior with covariance I'y = 102 x I,y; this is
also used to initialize the ensemble for EKS. We consider ensembles of size J € {128, 512}.

We perform the complete CES procedure starting with EKS as described above for the
calibration step (CES). The emulation step (CES) uses a GP with a linear mean Gaussian
process with squared-exponential kernel (2.9). Empirically, the linear mean allows us to cap-
ture a significant fraction of the relevant parameter response. The GP covariance matrix
I'¢p(6) accounts for the variability of the residuals from the linear function. The sampling step
(CES) is performed using the Random Walk procedure described in Section 2.4; a Gaussian
transition distribution is used, found by matching to the first two moments of the ensemble at
the last iteration of EKS. In this experiment, the likelihood (2.14) is used because the forward
model is a deterministic map, and we have data polluted by additive noise.

We compare the results of the CES procedure with those obtained from a gold standard
MCMC employing the true forward model. The results are summarized in Figure 5. The
right panel shows typical MCMC running averages, suggesting stationarity of the Markov
chain. The left panel shows the forest plot of each 8 component. The middle panel shows the
standardized components of §. These forest plots show the interquartile range with a thick line;
the 95% credible intervals with a thin line; and the median with circles. The true value of the
parameters are denoted by red crosses. The results demonstrate that the CES methodology
accurately reproduces the true posterior using calibration and training with M = J = 512
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ensemble members. For the smaller ensemble, M = J = 128 there is a visible systematic
deviation in some components, like 67. However, the CES posterior does capture the true
value. Note that the gold standard MCMC employs uses tens of thousands of evaluations of
the map from 6 to y, where asthe CES methodology requires only hundreds, and yet produces
similar results.
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Figure 5: Results of CES in the Darcy flow problem. Colors throughout the panel denote
results using different calibration and GP training settings. This are: light blue — ensemble of
size J = 128; dark blue — ensemble of size J = 512; and orange, the MCMC gold standard.
Left panel shows each # component for CES. The middle panel shows the same information,
but using standardized components of 6. The interquartile range is displayed with a thick
line; the 95% credible intervals with a thin line; and the median with circles. The right panel
shows typical MCMC running averages, demonstrating stationarity of the Markov chain.

The results from the CES procedure are also used in a forward U(Q setting: posterior
variability in the permeability is pushed forward onto quantities of interest. For this purpose,
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we consider exceedances on the pressure and permeability fields above certain thresholds.
These thresholds are computed from the observed data by taking the median across the
50 available locations (4.2). The forward model (4.1) is solved with Nyq = 500 different
parameter settings coming from samples of the CES Bayesian posterior. We also show the
comparison with the gold standard using the true forward model. We evaluate the pressure
and the permeability field at each lattice point, denoted by ¢ € K,, and compare with the
observed threshold levels computed from the 50 available locations, denoted by j in (4.2).
We record the number of lattice points exceeding such bounds for each of the Nyq samples.
Figure 6 shows the corresponding KDE for the probability density function (PDF) in this
forward UQ exercise. The orange lines correspond to the PDF of the number of points in
the lattice that exceed the threshold computed from the samples drawn using MCMC with
the Darcy flow model. The corresponding PDF's associated to the CES posterior, based on
calibration and emulation using different ensemble sizes, are shown in different blue tonalities
(light blue — CES with M = J = 128, and dark blue - CES with M = J = 512). We use a k-
sample Anderson—Darling test to find evidence against the null hypothesis that assumes that
the forward UQ samples using the CES procedure are statistically similar to samples from the
true distribution. This test is non-parametric and relies on the comparison of the empirical
cumulative functions [43, See Ch. 13]. Applying the k-sample Anderson-Darling test at 5%
significance level for the M = J = 128 case, shows evidence to reject the null hypothesis of
the samples being drawn from the same distribution in the pressure exceedance forward UQ.
This means that with such limited number of forward model evalutions, the CES procedure is
not able to generate samples that seem to be generated from the true distribution. In the case
of having more forward model evaluations, such test does not provide statistical evidence to
reject the hypothesis that the distributions are similar to the one based on the Darcy model.

5. TIME-AVERAGED DATA

In parameter estimation problems for chaotic dynamical systems, such as those arising in
climate modeling [13, 37, 73], data may only be available in time-averaged form; or it may be
desirable to study time-averaged quantities in order to ameliorate difficulties arising from the
complex objective functions, with multiple local minima, which arise from trying to match
trajectories [1]. Indeed the idea fits the more general framework of feature-based data assim-
ilation introduced in [57] which, in turn, is closely related to the idea of extracting sufficient
statistics from the raw data [24]. The methodology developed in this section underpins similar
work conducted for a complex climate model described in the paper [13].

5.1 Inverse Problems From Time-Averaged Data

The problem is to estimate the parameters 6 € RP of a dynamical system evolving in R™
from data 3 comprising time-averages of an R%—valued function ¢(-). We write the dynamical
System as

z2=F(z0), =z(0)=z. (5.1)

Since z(t) € R™ and # € RP we have F' : R™ x R? — R™ and ¢ : R™ — RY We will
write z(t;0) when we need to emphasize the dependence of a trajectory on 6. In view of the
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(a) PDF of number lattice points exceeding the  (b) PDF of number lattice points exceeding the
pressure threshold. permeability threshold.

Figure 6: Forward UQ excercise of exceedance on both the pressure field, p(-) > p, and
permeability field, a(-) > a. Both threshold levels are obtained from the forward model at
the truth A7 and taking the median across the locations (4.2). The PDFs are constructed
by running the forward model on a small set of samples, Nyq = 250, and computing the
number of lattice points exceeding the threshold. The samples are obtained by using the CES
methodology (light blue — CES with M = J = 128, and dark blue — CES with M = J = 512).
The samples in orange are obtained from a gold standard MCMC using the true forward
model within the likelihood, rather than the emulator.

time-averaged nature of the data it is useful to define the operator

1 [To+7

0,000 = > [ ela(t0))t (5.2)
T To

where Ty is a predetermined spinup time, 7 is the time horizon over which the time-averaging

is performed, and zy the initial condition of the trajectory used to compute the time-average.

Our approach proceeds under the following assumptions:

ASSUMPTIONS 1. The dynamical system (5.1) satisfies:

1. For every 0 € ©, (5.1) has a compact attractor A, supporting an invariant measure
wu(dz;0). The system is ergodic, and the following limit — a Law of Large Numbers
(LLN) analogue — is satisfied: for zo chosen at random according to measure pu(-;6) we
have, with probability one,

i (6 0) = 6(6) i= [ plz)u(dz:0). 5.3

T—00 A

2. We have a Central Limit Theorem (CLT) quantifying the ergodicity: for zy distributed
according to u(dz;0),

LN, 0)). (5.4)

Gr(0;20) ~ G(0) + 7
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In particular, the initial condition plays no role in time averages over the infinite time
horizon. However, when finite time averages are employed, different random initial conditions
from the attractor give different random errors from the infinite time-average, and these,
for fixed spinup time Ty, are approximately Gaussian. Furthermore, the covariance of the
Gaussian depends on the parameter 6 at which the experiment is conducted. This is reflected
in the noise term in (5.4).

Here we will assume that the model is perfect in the sense that the data we are presented
with could, in principle, be generated by (5.1) for some value(s) of 6 and zy. The only sources
of uncertainty come from the fact that the true value of  is unknown, as is the initial condition
zp. In many applications, the values of 7 that are feasible are limited by computational cost.
The explicit dependence of G, on 7 serves to highlight the effect of 7 on the computational
budget required for each forward model evaluation. Use of finite time-averages also introduces
the unwanted nuisance variable zy whose value is typically unknown, but not of intrinsic
interest. Thus, the inverse problem that we wish to solve is to find # solving the equation

y =Gr(0;20) (5.5)

where zy is a latent variable and T is the computationally-feasible time window we can in-
tegrate the system (5.1). We observe that the preceding considerations indicate that it is
reasonable to assume that

y=6(0)+n, (5.6)

where 7 ~ N(0,T(0)) and I',(0) = T~13(0). We will estimate ', () in two ways: firstly using
long-time series data; and secondly using a GP informed by forward model evaluations.

We first estimate I'y () directly from G, with 7> T. We will not employ #—dependence in
this setting and simply estimate a fixed covariance I',,,. This is because, in the applications
we envisage such as climate modeling [13], long time-series data over time-horizon 7 will
typically be available only from observational data. The cost of repeatedly simulating at
different candidate 6 values is computationally prohibitive, in contrast, to simulations over a
shorter time-horizon T'. We apply EKS to make an initial calibration of € from y given by (5.5),
using G (6\); z(()])) in place of G(A)) and T, in place of T'y(-), within the discretization (2.8)
of (2.7). We find the method to be insensitive to the exact choice of zéj ), and typically use the
final value of the dynamical system computed in the preceding step of the ensemble Kalman
iteration. We then take the evaluations of Gy as noisy evaluations of G, from which we learn
the Gaussian process G(M). We use the mean m(6) of this Gaussian process as an estimate of
G. Our second estimate of Iy (#) is obtained by using the covariance of the Gaussian process
I'¢p(#). We can evaluate the misfit through either of the expressions

1
. (0;9) = lly = mO)IIF,,,. (5.72)
1 1
Per(05y) = 51y — m(0)|F .0 0) + 5 log det T (6). (5.7b)
Note that equations (5.7) are the counterparts of (2.12) and (2.13) in the setting with time-

averaged data. In what follows, we will contrast these misfits, both based on the learnt GP
emulator, with the misfit that uses the noisy evaluations G directly. That is, we use the misfit
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computed as

@r(0:) = gy~ GO}, (58)
In the latter, dependence of Gy on initial conditions is suppressed.
5.2 Numerical Results — Lorenz '63

We consider the 3-dimensional Lorenz equations [52]

i‘l = J(xg — .%'1), (5.9&)
.'I'IQ =Trry — Ty —T1T3, (5.9]3)
i’3 = X1Ty — bxg, (5.9C)

with parameters o, b, € Ry. Our data is found by simulating (5.9) with (o, b, 7) = (10, 28,8/3),
a value at which the system exhibits chaotic behavior. We focus on the inverse problem of
recovering (r,b), with o fixed at its true value of 10, from time-averaged data.

Our statistical observations are first and second moments over time windows of size T' = 10.
Our vector of observations is computed by taking ¢ : R? — R? to be

o(x) = (21, T2, 3, %, 23, 22, 120, Tox3, T3T1). (5.10)

This defines Gr. To compute I',,, we used time-averages of p(z) over 7 = 360 units of time, at
the true value of 6; we split the time-series into windows of size T" and neglect an initial spinup
of Ty = 30 units of time. Together Gy and T',,, produce a noisy function &7 as depicted in
Figure 7. The noisy nature of the energy landscape, demonstrated in this figure, suggests that
standard optimization and MCMC methods may have difficulties; the use of GP emulation
will act to smooth out the noise and lead to tractable optimization and MCMC tasks.

For the calibration step (CES), we run the EKS using the estimate of I' = I',,, within the
algorithm (2.7), and within the misfit function (5.8), as described in Section 5.1. We assumed
the parameters to be a priori governed by an isotropic Gaussian prior in logarithmic scale.
The mean of the prior is mg = (3.3,1.2) T and its covariance is ¥y = diag(0.152,0.52). This
gives broad priors for the parameters with 99% probability mass in the region [20, 40] x [0, 15].
The results of evolving the EKS through 11 iterations can be seen in Figure 7, where the green
dots represent the final ensemble. The dotted lines locate the true underlying parameters in
the (r,b) space.

For the emulation step (CES), we use GP priors for each of the 9 components of the forward
model. The hyper-parameters of these GPs are estimated using empirical Bayes methodology.
The 9 components do not interact and are treated independently. We use only the input-
output pairs obtained from the last iteration of EKS in this emulation phase, although earlier
iterations could also have been used. This choice focuses the training runs in regions of high
posterior probability. Overall, the GP allows us to capture the underlying smooth trend of
the misfit. In Figure 8 (top row) we show (left to right) @7, ®,,, and ®ge given by (5.7)—(5.8).
Note that ®,, produces a smoothed version of @, but that ®¢ fails to do so — it is smooth,
but the orientations and eccentricities of the contours are not correctly captured. This is a
consequence of having only diagonal information to replace the full covariance matrix I' by
I'(#) and not learning dependencies between the 9 simulator outputs that comprise Gr.
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Figure 7: Contour levels of the misfit of the Lorenz 63 forward model corresponding to
(67%,90%,99%) density levels. The dotted lines shows the locations of the true parameter
values that generated the data. The green dots shows the final ensemble of the EKS algorithm.
The marginal plots show the misfit as a 1-d function keeping one parameter fixed at the truth
while varying the other. This highlights the noisy response from the time-average forward
model Gp.

We explore two options to incorporate output dependency. These are detailed in Ap-
pendix A, and are based on changing variables according to either a diagonalization of T,
or on an SVD of the centered data matrix formed from the EKS output used as training
data {Gr(0@W)}M . The effect on the emulated misfit when using these changes of variables is
depicted in the middle and bottom rows of Figure 8. We can see that the misfit @, (5.7a) re-
spects the correlation structure of the posterior. There is no notable difference between using
a GP emulator in the original or decorrelated output system. This can been seen in the middle
column in Figure 8. However, if the variance information of the GP emulator is introduced to
compute Pep (5.7b), decorrelation strategies allows us to overcome the problems caused when
using diagonal emulation.

Finally, the sample step (CES) is performed using the GP emulator to accelerate the sam-
pling and to correct for the mismatch of the EKS in approximating the posterior distribution,
as discussed in Section 2.4. In this section, random walk metropolis is run using 5,000 samples
for each setting — using the misfits &7, ®,, or ®¢p. The Markov chains are initialized at the
mean of the last iteration of the EKS. The proposal distribution used for the random walk
is a Gaussian with covariance equal to the covariance of the ensemble at said last iteration.
The samples are depicted in Figure 9. The orange contour levels represent the kernel density
estimate (KDE) of samples from a random walk Metropolis algorithm using the true forward
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Figure 8: Contour levels of the Lorenz ’63 posterior distribution corresponding to
(67%,90%,99%) density levels. For each row we depict: in the left panel, the contours us-
ing the true forward model; in the middle panel, the contours of the misfit computed as ®,,
(5.7a); and in the right panel, the contours of the misfit obtained using ®¢ (5.7b). The dif-
ference between rows is due to the decorrelation strategy used to learn the GP emulator,
as indicated in the leftmost labels. The GP-based densities show an improved estimation
of uncertainty arising from GP estimation of the infinite time-averages, in comparison with
employing the noisy exact finite time averages, for both decorrelation strategies.

model. On the other hand the blue contour levels represent the KDE of samples using ®,, or
®ep, equations (5.7a) or (5.7b) respectively. The green dots in the left panels depict the final
ensemble from EKS. It should be noted that using ®, for MCMC has an acceptance proba-
bility of around 41% in each of the emulation strategy (middle column). The acceptance rate
increases slightly to around 47% by using ®¢ (right column). The original acceptance rate
is 16% if the true forward model is employed. The main reason is the noisy landscape of the
posterior distribution. In this experiment, the use of a GP emulator showcases the benefits of
our approach as it allows to generate samples from the posterior distribution more efficiently
than standard MCMC, not only because the emulator is faster to evaluate, but also because
it smoothes the log-likelihood. Careful attention to how the emulator model is constructed
and the use of nearly independent co-ordinates in data space, helps to make the approximate
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methodology viable.
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Figure 9: Samples using different modalities of the GP emulator. The orange kernel density
estimate (KDE) is based on samples from random walk Metropolis using the true forward
model. The blue contour levels are KDE using the GP-based MCMC. All MCMC-based KDE
approximate posteriors are computed from Ng; = 20,000 MCMC samples. The green dots
in the left panels depict the final ensemble from the EKS as a comparison. Furthermore,
the CES-based densities are computed more easily as the MCMC samples decorrelate more
rapidly due to a higher acceptance probability for the same size of proposed move.

5.3 Numerical Results — Lorenz '96

We consider the multiscale Lorenz 96 model [51]. This model possesses properties typically
present in the earth system [73] such as advective energy conserving nonlinearity, linear damp-
ing and large scale forcing, and multiscale coexistence of slow and fast variables. It comprises
K slow variables X, (k =1,...K), each coupled to L fast variables Y;, (I =1,...,L). The
dynamical system is written as

dX;,
dt

1dYyp
c dt

= —Xp 1 (X2 — Xp1) = Xp + F = he ¥y (5.11a)

h
= —bYip1 0 YVigok — Yieik) — Yie + — X,

z (5.11b)



603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

23

where Y}, = %Zle Y) 1. The slow and fast variables are periodic over k£ and [, respectively.
This means that X, x = X, Yiiyx = Vi, and Y 1 = Y] x41. This coupling of the fast
variable Y] j, at index k to the fast variables at indices k—1 and k41 has its roots in the physical
interpretation as a simplified multi-scale atmosphere model. A geophysical interpretation may
be found in [51].

The scale separation parameter, ¢, is naturally constrained to be a non-negative number.
Thus, our methods consider the vector of parameters 6 := (h, F,log c,b). We perform Bayesian
inversion for 6 based on data averaged across the K locations and over time windows of length
T = 100. To this end, we define our k—indexed observation operator ¢ : R x RY — RS, by

(;Ok(Z) = QD(XIWYVL/% .. 'aYL,k) = (Xk,?k,Xz,XkYk,Yk?) ) (512)

where Z denotes the state of the system (both fast and slow variables) for £ =1,..., K. Then
we define the forward operator to be

T K
Gr(0) = % /O (;{, ;mm») ds. (5.13)

With this definition, the data we consider is denoted by y and uses the true parameter 87 =
(1,10,1log 10, 10). As in the previous experiment, a long simulation of length 7 = O(4 x 10%)
is used to compute the empirical covariance matrix I',,.. This simulation window (7) is long
enough to reach statistical equilibrium. The covariance structure enables quantification of the
finite time fluctuations around the long-term mean. In the notation of Section 5.1, we have
the inverse problem of using data y of the form

y = Gr(0") +n, (5.14)

where T' is the finite time-window horizon, and the noise is approximately n ~ N(0,T').
The prior distribution used for Bayesian inversion assumes independent components of 6.
More explicitly, it assumes a Gaussian prior with mean mgy = (0,10,2,5)" and covariance
Iy = diag(1,10,.1, 10).

The calibration step (CES) is performed using EKS as described in Section 2.2. The EKS
algorithm is run for 54 iterations with an ensemble of size J = 100 which is initialized
by sampling from the prior distribution. The results of the calibration step are shown in
Figure 10 as both bi-variate scatter plots and kernel density estimates of the ensemble at the
last iteration.

The emulation step (CES) uses a subset of the trajectory of the ensemble as a training
set to learn a GP emulator. The trajectory is sampled in time under the dynamics (2.7), in
such a way that we gather 10 different snapshots of the ensemble. This is done by saving the
ensemble every 6 iterations of EKS. This gives M = 103 training points for the GP. Note
that Figure 10 shows that each of the individual components of 6 has a different scale. We
use a Gamma distribution as a prior for each of the lengthscales to inform the GP of realistic
sensitivities of the space—time averages with respect to changes in the parameters. We use the
last iteration of EKS to inform such priors, as it is expected that the posterior distribution will
exhibit similar behaviour. The GP—lengthscale priors are informed by the pairwise distances
among the ensemble members, shown as histograms in Figure 11. The red dashed lines show
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Figure 10: Samples and kernel density estimates of EKS applied to the Lorenz '96 inverse
problem. The ensemble, J = 100, shown corresponds to the last iteration.

the kernel density estimates of such histograms. The black boxplots in the x-axes in Figure 11
show the elicited priors found by matching a Gamma distribution with 95% percentiles equal
to both a tenth of the minimum pairwise distances, and a third of the maximum pairwise
distances in each component. These are chosen to allow the GP kernel to decay away from
the training data; and to avoid the prediction of spurious short-term variations.
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Figure 11: Histograms of pairwise distances for every component of the unknown parameters
0 using the last iteration of EKS. Red dashed lines show the kernel density estimate of the
histograms. The black box plot at the bottom shows the elicited GP-lengthscale priors. These
priors are chosen to allow the GP kernel to decay rapidly from the training data; and to avoid
the prediction of spurious short- and long-term variations.

As in the Lorenz '63 setting, we tried different emulation strategies for the multioutput for-
ward model. Independent GP models are fitted to the original output and to the decorrelated
output components based on both the diagonalization of I',,, and SVD applied to the training
data points, as outlined in Appendix A. The results shown in Figure 12 are achieved with zero
mean GPs in both the original and time-diagonalized outputs. For the SVD decorrelation, a
linear mean GP was able to produce better bi-variate scatter plots of 6 in the sample step
(CES). That is, the resulting bi-variate scatter plots of 6 resembled better the last iteration
of EKS — understood as our best guess of the posterior distribution. For all GP settings, an
identifiable Matérn kernel was used with smoothness parameter 5/2.

The sample step (CES) uses the GP emulator trained in the step above. We have found
in this experiment that using ®,, for the likelihood term gave the closest scatter plots to the
EKS output. We did not make extensive studies with ®¢ as we found empirically that the
additional uncertainty incorporated in the GP-based MCMC produces an overly dispersed
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posterior, in comparison with EKS samples, for this numerical experiment. The bi-variate
scatter plots of # shown in Figure 12 show N, = 10° samples using random walk Metropolis
with a Gaussian proposal distribution matched to the moments of the ensemble at the last
iteration of EKS. It should be noted that for this experiment we could not compute a gold
standard MCMC as we did in the previous section. This is because of the high rejection rates
and increased computational cost associated with running a typical MCMC algorithm using
the true forward model. These experiments with Lorenz 96 confirm the viability of the CES
strategy proposed in this paper in situations where use of the forward model is prohibitively
expensive.
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Figure 12: Shown in blue are the bi-variate scatter plots of the GP-based random walk
metropolis using N, = 10° samples. The orange dots are used as a reference and they corre-
spond to the EKS’ last iteration from the calibration step (CES) using an ensemble of size
J = 100.

6. CONCLUSIONS

In this paper, we have proposed a general framework for Bayesian inversion in the presence
of expensive forward models where no derivative information is available. Furthermore, the
methodology is robust to the possibility that only noisy evaluations of the forward model
are computable. The proposed CES methodology comprises three steps: calibration (using
ensemble Kalman—EK-—methods), emulation (using Gaussian processes—GP), and sampling
(using Markov chain Monte Carlo—MCMC). Different methods can be used within each block,
but the primary contribution of this paper arises from the fact that the ensemble Kalman
sampler (EKS), used in the calibration phase, both locates good parameter estimates from
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the data and provides the basis of an experimental design for the GP regression step. This
experimental design is well-adapted to the specific task of Bayesian inference via MCMC for
the parameters. EKS achieves this with a small number of forward model evaluations, even
for high-dimensional parameter spaces, which accounts for the computational efficiency of the
method.

There are many future directions stemming from this work:

e Combine all three pieces of CES as a single algorithm by interleaving the emulation step
within the EKS, as done in iterative emulation techniques such as history matching.

e Develop a theory that quantifies the benefits of experimental design, for the purposes of
Bayesian inference, based on samples that concentrate close to where the true Bayesian
posterior concentrates.

e GP emulators are known to work well with low-dimensional inputs, but less well for
the high-dimensional parameter spaces that are relevant in some application domains.
Alternatives include the use of neural networks, or manifold learning to represent lower-
dimensional structure within the input parameters and combination with GP.

e Deploying the methodology in different domains where large-scale expensive legacy for-
ward models need to be calibrated to data.
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APPENDIX A: SCHEMES TO FIND UNCORRELATED VARIABLES
A.1 Time variability decorrelation

We present here a strategy to decorrelate the outputs of the forward model. It is based on
the noise structure of the available data. Here we assume that we have access to I',,, and that
it is diagonalized in the form

11obs = Q fobs QT (A]')

The matrix Q € R%? is orthogonal, and I € R?*? is an invertible diagonal matrix. Recalling
that y = G(0)+n, and defining both j = Q Ty and G(0) = QT G(#), we emulate the components
of G(#) as uncorrelated GPs. Recall that we are given M training pairs {6, G(0W)} M, We
transform these to data of the form {0, QTG(#™)}M | which we emulate to obtain

G(6) ~ N (m(e),f(e)) . (A.2)
This can be transformed back to the original output coordinates as

G(0) ~ N (Qm(8), QT(®) Q). (A.3)
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Using the resulting emulator, we can compute the misfit (2.12) as follows:
1,. . 9 1 -
Dep(0:9) = 515~ (0) 2, + 5 log det T(6). (A.4)

Analogous considerations can be used to evaluate (2.13) or (2.14).
A.2 Parameter variability decorrelation

An alternative strategy to decorrelate the outputs of the forward model is presented. It is
based on evaluations of the simulator rather than the noise structure of the data. As before,
let us denote the set of M available input-output pairs as {H(i), g (G(i)) 21 and let us form the
output-design matrix G € RM*4, Note that this notation implies that the i*"* row-vector of G
stores the d—dimensional response of the i** training point. The corresponding input-output
pair is denoted as (0®)),G(0®)). In [33], it is suggested to use PCA on the column space
of G. This will effectively determine a new set of response-coordinates in which to perform
uncorrelated GP emulation. To this end, we average each of the d components of G(6()) over
the M training points to find the mean output vector mg € R?%. Then, we form the design
mean matrix Mg € RM*? by making each of its M rows equal to the transpose of mg. We
then perform an SVD to obtain

(G—Mg) =GDVT, (A.5)

where V' € R%? is orthogonal, D € R%? is diagonal, and G € RM*? The matrix G has
orthogonal columns that represent uncorrelated output coordinates. The matrix D contains
the unscaled standard deviations of the original data G. Lastly, V contains the proportional
loadings of the original data coordinates [see 38]. It is important to note that the i-th row in
G is related to the i-th row in C, as both can be understood as the output of the i-th ensemble
member 0() in our setting, albeit on an orthogonal coordinate space.

We project the data onto the uncorrelated output space as § = D™V ' (y — mg) and
emulate using the resulting projections of the model output as input-output training runs,
{09 DV (G(0W) —mg)}M,, to obtain

G(6) ~ N (m(e),f(a)) : (A.6)

Transforming back to the original output coordinates leads us to consider the emulation of
the forward model as

G(0) ~ N (VD (0) + mg, VDT(0) DVT), (A7)
This allows us to rewrite the misfit (2.12) in the form of

1, 1 .
B (0;) = 515 — (O) %, + 5 log det T (0), (A8)

2
1'(6)

or compute either (2.13) or (2.14), as discussed in Appendix A.1.
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