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Abstract. Many parameter estimation problems arising in applications4

can be cast in the framework of Bayesian inversion. This allows not5

only for an estimate of the parameters, but also for the quantification6

of uncertainties in the estimates. Often in such problems the parameter-7

to-data map is very expensive to evaluate, and computing derivatives8

of the map, or derivative-adjoints, may not be feasible. Additionally,9

in many applications only noisy evaluations of the map may be avail-10

able. We propose an approach to Bayesian inversion in such settings11

that builds on the derivative-free optimization capabilities of ensemble12

Kalman inversion methods. The overarching approach is to first use en-13

semble Kalman sampling (EKS) to calibrate the unknown parameters14

to fit the data; second, to use the output of the EKS to emulate the15

parameter-to-data map; third, to sample from an approximate Bayesian16

posterior distribution in which the parameter-to-data map is replaced17

by its emulator. This results in a principled approach to approximate18

Bayesian inference that requires only a small number of evaluations of19

the (possibly noisy approximation of the) parameter-to-data map. It20

does not require derivatives of this map, but instead leverages the doc-21

umented power of ensemble Kalman methods. Furthermore, the EKS22

has the desirable property that it evolves the parameter ensemble to-23

wards the regions in which the bulk of the parameter posterior mass24

is located, thereby locating them well for the emulation phase of the25

methodology. In essence, the EKS methodology provides a cheap solu-26

tion to the design problem of where to place points in parameter space27

to efficiently train an emulator of the parameter-to-data map for the28

purposes of Bayesian inversion.29

Keywords: Approximate Bayesian inversion; uncertainty quantification; Ensemble Kalman30

sampling; Gaussian process emulation; experimental design.31

1. INTRODUCTION
sec:I

Ensemble Kalman methods have proven to be highly successful for state estimation in nois-32

ily observed dynamical systems [1, 7, 15, 21, 34, 40, 47, 53]. They are widely used, especially33

within the geophysical sciences and numerical weather prediction, because the methodology is34

derivative-free, provides reliable state estimation with a small number of ensemble members,35

and, through the ensemble, provides information about sensitivities. The empirical success in36
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state estimation has led to further development of ensemble Kalman methods in the solution37

of inverse problems, where the objective is the estimation of parameters rather than states.38

Its use as an iterative method for parameter estimation originates in the papers [12, 19] and39

recent contributions are discussed in [2, 22, 35, 70]. But despite their widespread use for40

both state and parameter estimation, ensemble Kalman methods do not provide a basis for41

systematic uncertainty quantification, except in the Gaussian case [20, 48]. This is for two42

primary reasons: (i) the methods invoke a Gaussian ansatz, which is not always justified; (ii)43

they are often employed in situations where evaluation of the underlying dynamical system44

(state estimation) or forward model (parameter estimation) is very expensive, and only a45

small ensemble is feasible. The goal of this paper is to develop a method that provides a46

basis for systematic Bayesian uncertainty quantification within inverse problems, building on47

the proven power of ensemble Kalman methods. The basic idea is simple: we calibrate the48

model using variants of ensemble Kalman inversion; we use the evaluations of the forward49

model made during the calibration to train an emulator ; we perform approximate Bayesian50

inversion using Markov Chain Monte Carlo (MCMC) samples based on the (cheap) emulator51

rather than the original (expensive) forward model. Within this overall strategy, the ensemble52

Kalman methods may be viewed as providing a cheap and effective way of determining an53

experimental design for training an emulator of the parameter-to-data map to be employed54

within MCMC-based Bayesian parameter estimation; this is the primary innovation contained55

within the paper.56

1.1 Literature Review57

The ensemble Kalman approach to calibrating unknown parameters to data is reviewed58

in [35, 61], and the imposition of constraints within the methodology is overviewed in [2].59

We refer to this class of methods for calibration, collectively, as ensemble Kalman inversion60

(EKI) methods and note that pseudo-code for a variety of the methods may be found in61

[2]. An approach to using ensemble-based methods to produce approximate samples from the62

Bayesian posterior distribution on the unknown parameters is described in [26]; we refer to63

this method as ensemble Kalman sampling (EKS). Either of these approaches, EKI or EKS,64

may be used in the calibration step of our approximate Bayesian inversion method.65

Gaussian processes (GPs) have been widely used as emulation tools for computationally66

expensive computer codes [69]. The first use of GPs in the context of uncertainty quantification67

was proposed in modeling ore reserves in mining [45]. Its motivation was a method to find the68

best linear unbiased predictor, known as kriging in the geostatistics community [16, 74]. It was69

later adopted in the field of computer experiments [68] to model possibly correlated residuals.70

The idea was then incorporated within a Bayesian modeling perspective [17] and has been71

gradually refined over the years. Kennedy and O’Hagan [42] offer a mature perspective on the72

use of GPs as emulators, adopting a clarifying Bayesian formulation. The use of GP emulators73

covers a wide range of applications such as uncertainty analysis [59], sensitivity analysis [60],74

and computer code calibration [32]. Perturbation results for the posterior distribution, when75

the forward model is approximated by a GP, may be found in [75]. We will exploit GPs for76

the emulation step of our method which, when informed by the calibration step, provides a77

robust approximate forward model. Neural networks [30] could also be used in the emulation78

step and may be preferable for some applications of the proposed methodology.79

Bayesian inference is now widespread in many areas of science and engineering, in part80
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because of the development of generally applicable and easily implementable sampling meth-81

ods for complex modeling scenarios. MCMC methods [31, 54, 55] and sequential Monte Carlo82

(SMC) [18] provide the primary examples of such methods, and their practical success un-83

derpins the widespread interest in the Bayesian solution of inverse problems [39]. We will84

employ MCMC for the sampling step of our method. SMC could equally well be used for the85

sampling step and will be preferable for many problems; however, it is a less mature method86

and typically requires more problem-specific tuning than MCMC.87

The impetus for the development of our approximate Bayesian inversion method is the88

desire to perform Bayesian inversion on computer models that are very expensive to evaluate,89

for which derivatives and adjoint calculations are not readily available and are possibly noisy.90

Ensemble Kalman inversion methods provide good parameter estimates even with many pa-91

rameters, typically with O(102) forward model evaluations [40, 61], but without systematic92

uncertainty quantification. While MCMC and SMC methods provide systematic uncertainty93

quantification the fact that they require many iterations, and hence evaluations of the forward94

model in our setting, is well-documented [29]. Several diagnostics for MCMC convergence are95

available [63], and theoretical guarantees of convergence exist [56]. The rate of convergence96

for MCMC is determined by the size of the step arising from proposal distribution: short97

steps are computationally inefficient as the parameter space is only locally explored whereas98

large steps lead to frequent rejections and hence to a waste of computational resources (in our99

setting forward model evaluations) to generate additional samples. In practice MCMC often100

requires O(105) or more forward model evaluations [29]. This is not feasible, for example, with101

climate models [13, 37, 73].102

In the sampling step of our approximate Bayesian inversion method, we use an emulator that103

can be evaluated rapidly in place of the computationally expensive forward model, leading to104

Bayesian parameter estimation and uncertainty quantification essentially at the computational105

cost of ensemble Kalman inversion. The ensemble methods provide an effective design for the106

emulation, which makes this cheap cost feasible.107

In some applications, the dimension of the unknown parameter is high and it is therefore of108

interest to understand how the constituent parts of the proposed methodology behave in this109

setting. The growing use of ensemble methods reflects, in part, the empirical fact that they110

scale well to high-dimensional state and parameter spaces, as demonstrated by applications111

in the geophysical sciences [40, 61]; thus, the calibrate phase of the methodology scales well112

with respect to high input dimension. Gaussian process regression does not, in general, scale113

well to high-dimensional input variables, but alternative emulators, such as those based on114

neural networks [30] are empirically found to do so; thus, the emulate phase can potentially115

be developed to scale well with respect to high input dimensions. Standard MCMC methods116

do not scale well with respect to high dimensions; see [65] in the context of i.i.d. random117

variables in high dimensions. However the reviews [11, 15] describe non-traditional MCMC118

methods which overcome these poor scaling results for high-dimensional Bayesian inversion119

with Gaussian priors, or transformations of Gaussians; the paper [41] builds on the ideas in120

[15] to develop SMC methods that are efficient in high- and infinite-dimensional spaces. Thus,121

the sampling phase of the methodology scales well with respect to high input dimension for122

appropriately chosen priors.123

There are alternative strategies related to, but different from, the methodology we present124
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in this work. The bulk of these alternative strategies rely on the adaptive construction of125

the emulator as the MCMC evolves – learning on the fly [46]. Earlier works have identified126

the effectiveness of posterior-localized surrogate models, rather than prior-based surrogates in127

the setting of Bayesian inverse problems; see [14, 50] and the references therein. Within the128

adaptive surrogate framework, other type of surrogates have been used such as polynomial129

chaos expansions (PCE) [76] and deep neural networks [77]; the use of adaptive PCEs has130

recently been merged with ensemble based algorithms [78]. The effectiveness of all these131

works relies on the compromise between exploring the parameter space with the current132

surrogate and refining it further where needed; however, as exposed in [14, 50, 79], the use of133

an inadequate surrogate leads to biased posterior estimates. Another strategy for approximate134

Bayesian inversion can be found in [23] where adaptivity is incorporated within a sparse135

quadrature rule used to approximate the integrals needed in the Bayesian inference.136

1.2 Our Contribution137
ssec:OC

• We introduce a practical methodology for approximate Bayesian parameter learning in138

settings where the parameter-to-data map is expensive to evaluate, not easy to differ-139

entiate or not differentiable, and where evaluations are possibly polluted by noise. The140

methodology is modular and broken into three steps, each of which can be tackled by141

different methodologies: calibration, emulation, and sampling.142

• In the calibration phase we leverage the power of ensemble Kalman methods, which may143

be viewed as fast derivative-free optimizers or approximate samplers. These methods144

provide a cheap solution to the experimental design problem and ensure that the forward145

map evaluations are well-adapted to the task of Gaussian process emulation, within the146

context of an outer Bayesian inversion loop via MCMC sampling.147

• We also show that, for problems in which the forward model evaluation is inherently148

noisy, the Gaussian process emulation serves to remove the noise, resulting in a more149

practical Bayesian inference via MCMC.150

• We demonstrate the methodology with numerical experiments on a model linear prob-151

lem, on a Darcy flow inverse problem, and on the Lorenz ’63 and ’96 models.152

It is worth emphasizing that the idea of emulation within an MCMC loop is not a new153

one (see citations above) and that doing so incurs an error which can be controlled in terms154

of the number of samples used to train the emulator [75]. Similarly the use of EKS to solve155

inverse problems is not a new idea see [see 2, 35, and the references therein]; however, except156

in the linear case [72], the error cannot be controlled in terms of the number of ensemble157

members. What is novel in our work is the conjunction of the two approaches lifts the EKS158

from being an, in general uncontrolled but reasonable, approximator of the posterior into a159

method which provides controllable approximation of the posterior, in terms of the number of160

ensemble members used in the GP training; furthermore the EKS may be viewed intuitively161

in general, and provably in the linear case, as providing a good solution to the design problem162

related to the construction of the emulator. This is because it tends to concentrate points163

in the support of the true posterior, even if the points are not distributed according to the164

posterior [26].165

In Section 2, we describe the calibrate-emulate-sample methodology introduced in this pa-166

per, and in Section 3, we demonstrate the method on a linear inverse problem whose Bayesian167
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posterior is explicitly known. In Section 4, we study the inverse problem of determining perme-168

ability from pressure in Darcy flow, a nonlinear inverse problem in which the coefficients of a169

linear elliptic partial differential equation (PDE) are to be determined from linear functionals170

of its solution. Section 5 is devoted to the inverse problem of determining parameters appear-171

ing in time-dependent differential equations from time-averaged functionals of the solution.172

We view finite time-averaged data as noisy infinite time-averaged data and use GP emulation173

to estimate the parameter-to-data map and the noise induced through finite-time averaging.174

Applications to the Lorenz ’63 and ’96 atmospheric science models are described here, and175

use of the methodology to study an atmospheric general circulation model is described in the176

paper [13].177

2. CALIBRATE-EMULATE-SAMPLE
sec:M
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the calibrate phase of the methodology scales well with respect to high input dimension for
appropriately chosen priors.

1.2 Our Contribution
ssec:OC

• We introduce a practical methodology for approximate Bayesian parameter learning in
settings where the parameter-to-data map is expensive to evaluate, not easy to di↵er-
entiate or not di↵erentiable, and where evaluations are possibly polluted by noise. The
methodology is modular and broken into three steps, each of which can be tackled by
di↵erent methodologies: calibration, emulation, and sampling.

• In the calibration phase we leverage the power of ensemble Kalman methods, which may
be viewed as fast derivative-free optimizers or approximate samplers. These methods
provide a cheap solution to the experimental design problem and ensure that the forward
map evaluations are well-adapted to the task of Gaussian process emulation, within the
context of an outer Bayesian inversion loop via MCMC sampling.

• We also show that, for problems in which the forward model evaluation is inherently
noisy, the Gaussian process emulation serves to remove the noise, resulting in a more
practical Bayesian inference via MCMC.

• We demonstrate the methodology with numerical experiments on a model linear prob-
lem, on a Darcy flow inverse problem, and on the Lorenz ’63 and ’96 models.

In Section 2, we describe the calibrate-emulate-sample methodology introduced in this pa-
per, and in Section 3, we demonstrate the method on a linear inverse problem whose Bayesian
posterior is explicitly known. In Section 4, we study the inverse problem of determining perme-
ability from pressure in Darcy flow, a nonlinear inverse problem in which the coe�cients of a
linear elliptic partial di↵erential equation (PDE) are to be determined from linear functionals
of its solution. Section 5 is devoted to the inverse problem of determining parameters appear-
ing in time-dependent di↵erential equations from time-averaged functionals of the solution.
We view finite time-averaged data as noisy infinite time-averaged data and use GP emulation
to estimate the parameter-to-data map and the noise induced through finite-time averaging.
Applications to the Lorenz ’63 and ’96 atmospheric science models are described here, and
use of the methodology to study an atmospheric general circulation model is described in the
paper [12].

2. CALIBRATE-EMULATE-SAMPLE
sec:M

y = G(M)(✓) + ⌘(✓)

Sample

G(M)(✓) ⇡ G(✓)

Emulate

y = G(✓) + ⌘

Calibrate

EKI/EKS GP MCMC

Fig 1. Schematic of approximate Bayesian inversion method to find ✓ from y. EKI/EKS produce a small
number of approximate (expensive) samples {✓(m)}Mm=1. These are used to train a GP approximation G(M) of
G, used within MCMC to produce a large number of approximate (cheap) samples {✓(n)}Ns

n=1, Ns � M. fig:ces-framework

Figure 1: Schematic of approximate Bayesian inversion method to find θ from y. EKI/EKS
produce a small number of approximate (expensive) samples {θ(m)}Mm=1. These are used to
train a GP approximation G(M) of G, used within MCMC to produce a large number of
approximate (cheap) samples {θ(n)}Nsn=1, Ns �M.

fig:ces-framework

2.1 Overview178

Consider parameters θ related to data y through the forward model G and noise η:179

y = G(θ) + η. (2.1) {eq:IP}

The inverse problem is to find unknown θ from y, given knowledge of G : Rp → Rd and some180

information about the noise level such as its size (classical approach) or distribution (statistical181

approach), but not its value. To formulate the Bayesian inverse problem, we assume, for182

simplicity, that the noise is drawn from a Gaussian with distribution N(0,Γy), that the prior183

on θ is a Gaussian N(0,Γθ), and that θ and η are a priori independent. If we define1
184

ΦR(θ) =
1

2
‖y − G(θ)‖2Γy +

1

2
‖θ‖2Γθ , (2.2) {eq:phi}

the posterior on θ given y has density185

πy(θ) ∝ exp
(
−ΦR(θ)

)
. (2.3) {eq:post2}

1For any positive-definite symmetric matrix A, we define 〈a, a′〉A = 〈a,A−1a′〉 = 〈A− 1
2 a,A−

1
2 a′〉 and

‖a‖A = ‖A− 1
2 a‖.
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In a class of applications of particular interest to us, the data y comprises statistical averages186

of observables. The map G(θ) provides the corresponding statistics delivered by a model that187

depends on θ. In this setting the assumption that the noise be Gaussian is reasonable if y and188

G(θ) represent statistical aggregates of quantities that vary in space and/or time. Additionally,189

we take the view that parameters θ′ for which Gaussian priors are not appropriate (for example190

because they are constrained to be positive) can be transformed to parameters θ for which191

Gaussian priors make sense.192

We use EKS with J ensemble members and N iterations (time-steps of a discretized con-193

tinuous time algorithm) to generate approximate samples from (2.3), in the calibration step194

of the methodology. This gives us JN parameter–model evaluation pairs {θ(m),G(θ(m))}JNm=1195

which we can use to produce an approximation of G in the GP emulation step of the algo-196

rithm. Whilst the methodology of optimal experimental design can be used, in principle, as197

the basis for choosing parameter-data pairs for the purpose of emulation [3] it can be pro-198

hibitively expensive. The theory and numerical results shown in [26] demonstrate that EKS199

distributes particles in regions of high posterior probability; this is because it approximates200

a mean-field interacting particle system with invariant measure equal to the posterior prob-201

ability distribution (2.3). Using the EKS thus provides a cheap and effective solution to the202

design problem, producing parameter–model evaluation pairs that are well-positioned for the203

task of approximate Bayesian inversion based on the (cheap) emulator. In practice it is not204

always necessary to use all JN parameter–model evaluation pairs but to instead use a subset205

of size M ≤ JN ; we denote the resulting GP approximation of G by G(M). Throughout this206

paper we simply take M = J and use the output of the EKS in the last step of the iteration207

as the design. However other strategies, such as descreasing J and using all or most of the N208

steps, are also feasible.209

G(M) in place of the (expensive) forward model G. With the emulator G(M), we define the210

modified inverse problem of finding parameter θ from data y when they are assumed to be211

related, through noise η, by212

y = G(M)(θ) + η.

This is an approximation of the inverse problem defined by (2.1). The approximate posterior213

on θ given y has density π(M) defined by the approximate log likelihood arising from this ap-214

proximate inverse problem. In the sample step of the methodology, we apply MCMC methods215

to sample from π(M).216

The overall framework, comprising the three steps calibrate, emulate, and sample is cheap217

to implement because it involves a small number of evaluations of G(·) (computed only during218

the calibration phase, using ensemble methods where no derivatives of G(·) are required), and219

because the MCMC method, which may require many steps, only requires evaluation of the220

emulator G(M)(·) (which is cheap to evaluate) and not G(·) (which is assumed to be costly to221

evaluate and is possibly only known noisily). On the other hand, the method has ingredients222

that make it amenable to produce a controlled approximation of the true posterior. This is223

true since the EKS steps generate points concentrating near the main support of the posterior224

so that the GP emulator provides an accurate approximation of G(·) where it matters.2 A225

depiction of the framework and the algorithms involved can be found in Figure 1. In the rest226

2By “main support” we mean a region containing the majority of the probability.
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of the paper, we use the acronym CES to denote the three step methodology. Furthermore we227

employ boldface on one letter when we wish to emphasize one of the three steps: calibration228

is emphasized by (CES); emulation by (CES); and sampling by (CES).229

2.2 Calibrate – EKI And EKS230
ssec:calibrate

The use and benefits of ensemble Kalman methods to solve inverse or parameter calibration231

problems have been outlined in the introduction. We will employ particular forms of the232

ensemble Kalman inversion methodology that we have found to perform well in practice and233

that are amenable to analysis; however, other ensemble methods to solve inverse problems234

could be used in the calibration phase.235

The basic EKI method is found by time-discretizing the following system of interacting236

particles [71]:237

dθ(j)

dt
= − 1

J

J∑
k=1

〈G(θ(k))− Ḡ,G(θ(j))− y〉Γy (θ(k) − θ̄), (2.4) {eq:eki-implement}

where θ̄ and Ḡ denote the sample means given by238

θ̄ =
1

J

J∑
k=1

θ(k), Ḡ =
1

J

J∑
k=1

G(θ(k)). (2.5) {eq:SM}

For use below, we also define Θ = {θ(j)}Jj=1 and the p× p matrix239

C(Θ) =
1

J

J∑
k=1

(θ(k) − θ̄)⊗ (θ(k) − θ̄). (2.6) {eq:CC}

The dynamical system (2.4) drives the particles to consensus, while also driving them to fit240

the data and hence solve the inverse problem (2.1). Time-discretizing the dynamical system241

leads to a form of derivative-free optimization to minimize the least squares misfit defined by242

(2.1) [35, 71].243

An appropriate modification of EKI, to attack the problem of sampling from the posterior244

πy given by (2.3), is EKS [26]. Formally this is obtained by adding a prior-related damping245

term, as in [10], and a Θ-dependent noise to obtain246

dθ(j)

dt
= − 1

J

J∑
k=1

〈G(θ(k))− Ḡ,G(θ(j))− y〉Γy (θ(k) − θ̄) − C(Θ)Γ−1
θ θ(j) +

√
2C(Θ)

dW (j)

dt
,

(2.7) {eq:implement}

where the {W (j)} are a collection of i.i.d. standard Brownian motions in the parameter space247

Rp. The resulting interacting particle system approximates a mean-field Langevin-McKean248

diffusion process which, for linear G, is invariant with respect to the posterior distribution249

(2.3) and, more generally, concentrates close to it; see [26] and [25] for details. The specific250
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algorithm that we implement here time-discretizes (2.7) by means of a linearly implicit split-251

step scheme given by [26]eq:implicit252

θ
(∗,j)
n+1 = θ(j)

n −∆tn
1

J

J∑
k=1

〈G(θ(k)
n )− Ḡ,G(θ(j)

n )− y〉Γy θ(k)
n −∆tn C(Θn) Γ−1

θ θ
(∗,j)
n+1 , (2.8a)

θ
(j)
n+1 = θ

(∗,j)
n+1 +

√
2 ∆tn C(Θn) ξ(j)

n , (2.8b)

where ξ
(j)
n ∼ N(0, I), Γθ is the prior covariance and ∆tn is an adaptive timestep given in [26],253

and based on methods developed for EKI in [44]. This is a split-step method for the SDE (2.7)254

which is linearly implicit and ensures approximation of the Itô interpretation of the equation;255

other discretizations can be used, provided they are consistent with the Itô interpretation.256

The finite J correction to (2.7) proposed in [58], and further developed in [25], can easily be257

incorporated into the explicit step of this algorithm, and other time-stepping methods can258

also be used.259

2.3 Emulate – GP Emulation260
ssec:emulate

The ensemble-based algorithm described in the preceding subsection produces input-output261

pairs {θ(i)
n ,G(θ

(i)
n )}Ji=1 for n = 0, . . . , N . For n = N and J large enough, the samples of θ are262

approximately drawn from the posterior distribution. We use a subset of cardinality M ≤ JN263

of this design as training points to update a GP prior to obtain the function G(M)(·) that will264

be used instead of the true forward model G(·). The cardinality M denotes the total number265

of evaluations of G used in training the emulator G(M). Recall that throughout this paper we266

take M = J and use the output of the EKS in the last step of the iteration as the design.267

The forward model is a multioutput map G : Rp 7→ Rd. It often suffices to emulate each268

output coordinate l = 1, . . . , d independently; however, variants on this are possible, and269

often needed, as discussed at the end of this subsection. For the moment, let us consider the270

emulation of the l-th component in G(θ); denoted by Gl(θ). Rather than interpolate the data,271

we assume that the input-output pairs are polluted by additive noise.3 We place a Gaussian272

process prior with zero or linear mean function on the l-th output of the forward model and,273

for example, use the squared exponential kernel274

kl(θ, θ
′) = σ2

l exp

(
−1

2
‖θ − θ′‖2Dl

)
+ λ2

l δθ(θ
′), (2.9) {eq:gp_rbf}

where σl denotes the amplitude of the covariance kernel;
√
Dl = diag(`

(l)
1 , . . . , `

(l)
p ) is the275

diagonal matrix of lengthscale parameters; δx(y) is the Kronecker delta function; and λl the276

standard deviation of the observation process. The hyperparameters φl = (σ2
l , Dl, λ

2
l ), which277

are learnt from the input-output pairs along with the regression coefficients of the GP, account278

for signal strength (σ2
l ); sensitivity to changes in each parameter component (Dl); and the279

possibility of white noise with variance λ2
l in the evaluation of the l-th component of the280

forward model Gl(·). We adopt an empirical Bayes approach to learn the hyperparameters of281

each of the d Gaussian processes.282

3The paper [5] interprets the use of additive noise within computer code emulation.
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The final emulator is formed by stacking each of the GP models in a vector,283

G(M)(θ) ∼ N (m(θ),ΓGP(θ)) . (2.10) {eq:gp-emulator-noisy}

The noise η typically found in (2.1) needs to be incorporated along with the noise ηGP(θ) ∼284

N (0,ΓGP(θ)) in the emulator G(M)(θ), resulting in the inverse problem285

y = m(θ) + ηGP(θ) + η. (2.11) {eq:IP2}

We assume that ηGP(θ) and η are independent of one another. In some cases, one or other286

of the sources of noise appearing in (2.11) may dominate the other and we will then neglect287

the smaller one. If we neglect η, we obtain the negative log-likelihood288

Φ
(M)
GP (θ) =

1

2
‖y −m(θ)‖2ΓGP(θ) +

1

2
log det ΓGP(θ); (2.12) {eq:phi_gp}

for example, in situations where initial conditions of a dynamical systems are not known ex-289

actly. This situation is encountered in applications where G is defined through time-averaging,290

as in Section 5; in these applications the noise ηGP(θ) is the major source of uncertainty and291

we take η = 0. If, on the other hand, we neglect ηGP then we obtain negative log-likelihood292

Φ(M)
m (θ) =

1

2
‖y −m(θ)‖2Γy . (2.13) {eq:phi_m}

If both noises are incorporated, then (2.12) is modified to give293

Φ
(M)
GP (θ) =

1

2
‖y −m(θ)‖2ΓGP(θ)+Γy

+
1

2
log det

(
ΓGP(θ) + Γy

)
; (2.14) {eq:phi_gp2}

this is used in Section 4.294

We note that the specifics of the GP emulation could be adapted – we could use correla-295

tions in the output space Rd, other kernels, other mean functions, and so forth. A review of296

multioutput emulation in the context of machine learning can be found in [4] and references297

therein; specifics on decorrelating multioutput coordinates can be found in [33]; and recent298

advances in exploiting covariance structures for multioutput emulation in [8, 9]. For the sake299

of simplicity, we will focus on emulation techniques that preserve the strategy of determining,300

and then learning, approximately uncorrelated components; methodologies for transforming301

variables to achieve this are discussed in Appendix A.302

2.4 Sample – MCMC303

ssec:sample
For the purposes of the MCMC algorithm, we need to initialize the Markov chain and choose304

a proposal distribution. The Markov chain is initialized with θ0 drawn from the support of the305

posterior; this ensures that the MCMC has a short transient phase. To initialize, we use the306

ensemble mean of the EKS at the last iteration, θ̄J . For the MCMC step we use a proposal of307

random walk Metropolis type, employing a multivariate Gaussian distribution with covariance308

given by the empirical covariance of the ensemble from EKS. We are thus pre-conditioning309

the sampling phase of the algorithm with approximate information about the posterior from310

the EKS. The resulting MCMC method is summarized in the following steps and is iterated311

until a desired number Ns � J of samples {θn}Nsn=1 is generated:312
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1. Choose θ0 = θ̄J .313

2. Propose a new parameter choice θ∗n+1 = θn + ξn where ξn ∼ N(0, C(ΘJ)).314

3. Set θn+1 = θ∗n+1 with probability a(θn, θ
∗
n+1); otherwise set θn+1 = θn.315

4. n→ n+ 1, return to 2.316

The acceptance probability is computed as:317

a(θ, θ∗) = min

{
1, exp

[(
Φ

(M)
· (θ∗) +

1

2
‖θ∗‖2Γθ

)
−
(

Φ
(M)
· (θ) +

1

2
‖θ‖2Γθ

)]}
, (2.15)

where Φ
(M)
· is defined in (2.12), (2.13) or (2.14), whichever is appropriate.318

319

3. LINEAR PROBLEM
sec:L

By choosing a linear parameter-to-data map, we illustrate the methodology in a case where320

the posterior is Gaussian and known explicitly. This demonstrates both the viability and321

accuracy of the method in a transparent fashion.322

3.1 Linear Inverse Problem323
ssec:TSD1

We consider a linear forward map G(θ) = Gθ, with G ∈ Rd×p. Each row of the matrix G324

is a p-dimensional draw from a multivariate Gaussian distribution. Concretely we take p = 2325

and each row Gi ∼ N(0,Σ), where Σ12 = Σ21 = −0.9, and Σ11 = Σ22 = 1. The synthetic data326

we have available to perform the Bayesian inversion is then given by327

y = Gθ† + η, (3.1)

where θ† = [−1, 2]>, and η ∼ N(0,Γ) with Γ = 0.12I.328

We assume that, a priori, parameter θ ∼ N(mθ,Σθ). In this linear Gaussian setting the329

solution of the Bayesian linear inverse problem is itself Gaussian [see 27, Part IV] and given330

by the Gaussian distribution331

πy(θ) ∝ exp

(
−1

2
‖θ −mθ|y‖2Σθ|y

)
, (3.2)

where mθ|y and Σθ|y denote the posterior mean and covariance. These are computed as332

Σ−1
θ|y = G>Σ−1

y G+ Σ−1
θ , mθ|y = Σθ|y

(
G>Σ−1

y y + Σ−1
θ mθ

)
. (3.3) {eq:linear-posterior}

3.2 Numerical Results333
ssec:LR

For the calibration step (CES) we consider the EKS algorithm. Figure 2 shows how the334

EKS samples estimate the posterior distribution (the far left). The green dots correspond to335

20-th iteration of EKS with different ensemble sizes. We also display in gray contour levels336

the density corresponding to the 67%, 90% and 99% probability levels under a Gaussian with337

mean and covariance estimated from EKS at said 20-th iteration. This allows us to visualize338

the difference between the results of EKS and the true posterior distribution in the leftmost339

panel. In this linear case, the mean-field limit of EKS exactly reproduces the invariant measure340
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[26]. The mismatch between the EKS samples and the true posterior can be understood from341

the fact that time discretizations of Langevin diffusions are known to induce errors if no342

metropolization scheme is added to the dynamics [49, 64, 66], and from the finite number of343

particles used; the latter could be corrected by using the ideas introduced in [58] and further344

developed in [25].345

Figure 2: Density estimates for different ensemble sizes used for the calibration step. Leftmost
panel show the true posterior distribution. The green dots show the EKS at the 20-th iteration.
The contour levels show the density of a Gaussian with mean and covariance estimated from
EKS at said iteration.

fig:lin-calibrate

The GP emulation step (CES) is depicted in Figure 3 for one component of G. Each GP is346

trained using the 20-th iteration of EKS for each ensemble size. We employ a zero mean GP347

with the squared-exponential kernel (2.9). We add a regularization term to the lengthscales348

of the GP by means of a prior in the form of a Gamma distribution. This is common in GP349

Bayesian inference when the domain of the input variables is unbounded. The choice of this350

regularization ensures that the covariance kernels, which are regression functions for the mean351

of the emulator, decay fast away from the data, and that no short variations below the levels352

of available data are introduced [27, 28]. We can visualize the emulator of the component353

of the linear system considered here by fixing one parameter at the true value while varying354

the other. The dashed reference in Figure 3 shows the model Gθ. The red cross denotes the355

corresponding observation. The solid lines correspond to the mean of the GP, while the shaded356

regions contain 2 standard deviations of predicted variability. Colors correspond to different357

ensemble sizes as described in the figure’s legend. We can see in Figure 3 that the GP increases358

its accuracy as the amount of training data is increased. In the end, for training sets of size359

J ≥ 16, it correctly simulates the linear model with low uncertainty in the main support of360

the posterior.361

Figure 4 depicts results in the sampling step (CES). These are obtained by using a GP362

approximation of Gθ within MCMC. The GP-based MCMC uses (2.14) since the forward363

model is deterministic and the data is polluted by noise. The contour levels show a Gaussian364

distribution with mean and covariance estimated from Ns = 2×104 GP-based MCMC samples365

(not shown) in each of the different ensemble settings. The results show that the true posterior366

is captured with an ensemble size of 16 or more. Moreover, Table 1 shows the mean square367

error of the posterior location parameter in (3.3); that is, the error in Euclidean norm of the368

sample-based mean. This error is computed by means of the ensemble mean and the analytic369

posterior mean (top row), and the CES posterior mean and the analytic solution (bottom370
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Figure 3: Gaussian process emulators learnt using different training datasets. The input-
output pairs are obtained from the calibration step using EKS. Each color for the lines and
the shaded regions correspond to different ensemble sizes as described in the legend.

fig:lin-emulate

row). Analogously, Table 2 shows the mean square error for the spread; that is, the Frobenius371

norm error in the sample-based covariance matrix – both computed from the EKS and CES372

samples, top and bottom rows, respectively – and the analytic solution for the posterior373

covariance in (3.3). For both parameters, it can be seen that the CES-approximated posterior374

achieves higher accuracy relative to the EKS alone. For this linear problem both methods375

provably recover the true posterior distribution, in the limit of large ensemble size, so that it376

is interesting to see that the CES-approximated posterior improves upon the EKS alone. Recall377

from the discussion in Subsection 1.2, however, that for nonlinear problems EKS does not in378

general recover the posterior distribution, whilst the CES-approximated posterior converges379

to the true posterior distribution as the number of training samples increases, regardless of380

the distribution of the EKS particles; what is beneficial, in general, about using EKS to design381

the GP is that the samples are located close to the support of the true posterior, even if they382

are not distributed according to the posterior.383

Figure 4: Density of a Gaussian with mean and covariance estimated from GP-based MCMC
samples using M = J design points. The true posterior distribution is shown in the far left.
Each GP-based MCMC generated 2× 104 samples. These samples are not shown for clarity.

fig:lin-sample

4. DARCY FLOW
sec:D

In this section, we apply our methodology to a PDE nonlinear inverse problem arising in384

porous medium flow: the determination of permeability from measurements of the pressure385

(piezometric head).386
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Table 1
Averaged mean square error of the posterior location (mean) computed from 20 independent realizations.

Ensemble size 8 16 24 32 40

EKS 0.1171 0.0665 0.0528 0.0584 0.0648
CES 0.0652 0.0219 0.0125 0.0122 0.0173

tab:linearmean-mean

Table 2
Averaged mean square error of the posterior spread (covariance) computed by means of the Frobenius norm

and 20 independent realizations.

Ensemble size 8 16 24 32 40

EKS 0.1010 0.0703 0.0937 0.0868 0.0664
CES 0.0555 0.0241 0.0092 0.0050 0.0056

tab:linearcov-mean

4.1 Elliptic Inverse Problem387

ssec:TSD
4.1.1 Forward Problem The forward problem is to find the pressure field p in a porous388

medium defined by the (for simplicity) scalar permeability field a. Given a scalar field f389

defining sources and sinks of fluid, and assuming Dirichlet boundary conditions for p on the390

domain D = (0, 1)2, we obtain the following elliptic PDE determining the pressure from391

permeability:392

−∇ · (a(x)∇p(x)) = f(x), x ∈ D. (4.1a)

p(x) = 0, x ∈ ∂D. (4.1b)

In this paper we always take f ≡ 1. The unique solution of the equation implicitly defines aeq:darcy-system393
map from a ∈ L∞(D;R) to p ∈ H1

0 (D;R).394

4.1.2 Inverse Problem We assume that the permeability is dependent on unknown param-395

eters θ ∈ Rp, so that a(x) = a(x; θ) > 0 almost everywhere in D. The inverse problem of396

interest is to determine θ from noisy observations of d linear functionals (measurements) of397

p(x; θ). Thus,398

Gj(θ) = `j
(
p(·; θ)

)
+ η, j = 1, · · · , d. (4.2) {eq:darcy-obs}

We assume the additive noise η to be a mean zero Gaussian with covariance equal to γ2I.399

Throughout this paper, we work with pointwise measurements so that `j(p) = p(xj).
4 We400

employ d = 50 measurement locations chosen at random from a uniform grid in the interior401

of D.402

We introduce a log-normal parameterization of a(x; θ) as follows:403

log a(x; θ) =
∑
`∈Kq

θ`
√
λ` ϕ`(x) (4.3) {eq:adefine}

4The implied linear functionals are not elements of the dual space of H1
0 (D;R) in dimension 2 but mollifi-

cations of them are. In practice, mollification with a narrow kernel does not affect results of the type presented
here [36], and so we do not use it.
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where404

ϕ`(x) = cos
(
π〈`, x〉

)
, λ` = (π2|`|2 + τ2)−α; (4.4) {eq:adefine0}

the smoothness parameters are assumed to be τ = 3, α = 2, and Kq ⊂ K ≡ Z2 is the405

set, with finite cardinality |Kq| = q, of indices over which the random series is summed. A406

priori we assume that θ` ∼ N(0, 1) so that we have a Karhunen-Loève representation of a407

as a log–Gaussian random field [62]. We often find it helpful to write (4.3) as a sum over a408

one-dimensional variable rather than a lattice:409

log a(x; θ′) =
∑
k∈Zq

θ′k

√
λ′k ϕ

′
k(x). (4.5) {eq:adefine2}

Throughout this paper we choose Kq, and hence Zq, to contain the q largest {λ`}. We order410

the indices in Zq ⊂ Z+ so that the set of {λ′k} are non-increasing with respect to k.411

4.2 Numerical Results412
ssec:ND

We generate an underlying true random field by sampling θ† ∈ Rp from a standard mul-413

tivariate Gaussian distribution, N(0, Ip), of dimension p = 162 = 256. This is used as the414

coefficients in (4.3) by means of the re-labelling (4.5). The evaluation of the forward model415

G(θ) requires solving the PDE (4.1) for a given realization of the random field a. This is done416

with a cell-centered finite difference scheme [6, 67]. We create data y from (4.2) with a random417

perturbation η ∼ N(0, 0.0052 × Id), where Id denotes the identity matrix. The locations for418

the data, and hence the evaluation of the forward model, were chosen at random from the 162
419

computational grid used to solve the Darcy flow. For the Bayesian inversion we use a trunca-420

tion of (4.5) with p′ < p terms, allowing us to avoid the inverse crime of using the same model421

that generated the data to solve the inverse problem [39]. Specifically, we consider p′ = 10.422

We employ a non-informative centered Gaussian prior with covariance Γθ = 102 × Ip′ ; this is423

also used to initialize the ensemble for EKS. We consider ensembles of size J ∈ {128, 512}.424

We perform the complete CES procedure starting with EKS as described above for the425

calibration step (CES). The emulation step (CES) uses a GP with a linear mean Gaussian426

process with squared-exponential kernel (2.9). Empirically, the linear mean allows us to cap-427

ture a significant fraction of the relevant parameter response. The GP covariance matrix428

ΓGP(θ) accounts for the variability of the residuals from the linear function. The sampling step429

(CES) is performed using the Random Walk procedure described in Section 2.4; a Gaussian430

transition distribution is used, found by matching to the first two moments of the ensemble at431

the last iteration of EKS. In this experiment, the likelihood (2.14) is used because the forward432

model is a deterministic map, and we have data polluted by additive noise.433

We compare the results of the CES procedure with those obtained from a gold standard434

MCMC employing the true forward model. The results are summarized in Figure 5. The435

right panel shows typical MCMC running averages, suggesting stationarity of the Markov436

chain. The left panel shows the forest plot of each θ component. The middle panel shows the437

standardized components of θ. These forest plots show the interquartile range with a thick line;438

the 95% credible intervals with a thin line; and the median with circles. The true value of the439

parameters are denoted by red crosses. The results demonstrate that the CES methodology440

accurately reproduces the true posterior using calibration and training with M = J = 512441
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ensemble members. For the smaller ensemble, M = J = 128 there is a visible systematic442

deviation in some components, like θ7. However, the CES posterior does capture the true443

value. Note that the gold standard MCMC employs uses tens of thousands of evaluations of444

the map from θ to y, where asthe CES methodology requires only hundreds, and yet produces445

similar results.446

sfig:darcy-fp

(a) Original θ.

sfig:darcy-fpstand

(b) Rescaled θ.

sfig:darcy-rave

(c) MCMC traceplot

Figure 5: Results of CES in the Darcy flow problem. Colors throughout the panel denote
results using different calibration and GP training settings. This are: light blue – ensemble of
size J = 128; dark blue – ensemble of size J = 512; and orange, the MCMC gold standard.
Left panel shows each θ component for CES. The middle panel shows the same information,
but using standardized components of θ. The interquartile range is displayed with a thick
line; the 95% credible intervals with a thin line; and the median with circles. The right panel
shows typical MCMC running averages, demonstrating stationarity of the Markov chain.

fig:darcy-ces

The results from the CES procedure are also used in a forward UQ setting: posterior447

variability in the permeability is pushed forward onto quantities of interest. For this purpose,448
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we consider exceedances on the pressure and permeability fields above certain thresholds.449

These thresholds are computed from the observed data by taking the median across the450

50 available locations (4.2). The forward model (4.1) is solved with NUQ = 500 different451

parameter settings coming from samples of the CES Bayesian posterior. We also show the452

comparison with the gold standard using the true forward model. We evaluate the pressure453

and the permeability field at each lattice point, denoted by ` ∈ Kq, and compare with the454

observed threshold levels computed from the 50 available locations, denoted by j in (4.2).455

We record the number of lattice points exceeding such bounds for each of the NUQ samples.456

Figure 6 shows the corresponding KDE for the probability density function (PDF) in this457

forward UQ exercise. The orange lines correspond to the PDF of the number of points in458

the lattice that exceed the threshold computed from the samples drawn using MCMC with459

the Darcy flow model. The corresponding PDFs associated to the CES posterior, based on460

calibration and emulation using different ensemble sizes, are shown in different blue tonalities461

(light blue – CES with M = J = 128, and dark blue – CES with M = J = 512). We use a k-462

sample Anderson–Darling test to find evidence against the null hypothesis that assumes that463

the forward UQ samples using the CES procedure are statistically similar to samples from the464

true distribution. This test is non-parametric and relies on the comparison of the empirical465

cumulative functions [43, See Ch. 13]. Applying the k-sample Anderson–Darling test at 5%466

significance level for the M = J = 128 case, shows evidence to reject the null hypothesis of467

the samples being drawn from the same distribution in the pressure exceedance forward UQ.468

This means that with such limited number of forward model evalutions, the CES procedure is469

not able to generate samples that seem to be generated from the true distribution. In the case470

of having more forward model evaluations, such test does not provide statistical evidence to471

reject the hypothesis that the distributions are similar to the one based on the Darcy model.472

5. TIME-AVERAGED DATA
sec:T

In parameter estimation problems for chaotic dynamical systems, such as those arising in473

climate modeling [13, 37, 73], data may only be available in time-averaged form; or it may be474

desirable to study time-averaged quantities in order to ameliorate difficulties arising from the475

complex objective functions, with multiple local minima, which arise from trying to match476

trajectories [1]. Indeed the idea fits the more general framework of feature-based data assim-477

ilation introduced in [57] which, in turn, is closely related to the idea of extracting sufficient478

statistics from the raw data [24]. The methodology developed in this section underpins similar479

work conducted for a complex climate model described in the paper [13].480

5.1 Inverse Problems From Time-Averaged Data481

ssec:TS
The problem is to estimate the parameters θ ∈ Rp of a dynamical system evolving in Rm482

from data y comprising time-averages of an Rd−valued function ϕ(·). We write the dynamical483

system as484

ż = F (z; θ), z(0) = z0. (5.1) {eq:ode}

Since z(t) ∈ Rm and θ ∈ Rp we have F : Rm × Rp → Rm and ϕ : Rm → Rd. We will485

write z(t; θ) when we need to emphasize the dependence of a trajectory on θ. In view of the486
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(a) PDF of number lattice points exceeding the
pressure threshold.

(b) PDF of number lattice points exceeding the
permeability threshold.

Figure 6: Forward UQ excercise of exceedance on both the pressure field, p(·) > p̄, and
permeability field, a(·) > ā. Both threshold levels are obtained from the forward model at
the truth θ† and taking the median across the locations (4.2). The PDFs are constructed
by running the forward model on a small set of samples, NUQ = 250, and computing the
number of lattice points exceeding the threshold. The samples are obtained by using the CES
methodology (light blue – CES with M = J = 128, and dark blue – CES with M = J = 512).
The samples in orange are obtained from a gold standard MCMC using the true forward
model within the likelihood, rather than the emulator.

fig:darcy-fwd-uq

time-averaged nature of the data it is useful to define the operator487

Gτ (θ; z0) =
1

τ

∫ T0+τ

T0

ϕ(z(t; θ))dt (5.2) {eq:time-average}

where T0 is a predetermined spinup time, τ is the time horizon over which the time-averaging488

is performed, and z0 the initial condition of the trajectory used to compute the time-average.489

Our approach proceeds under the following assumptions:490

Assumptions 1. The dynamical system (5.1) satisfies:491

1. For every θ ∈ Θ, (5.1) has a compact attractor A, supporting an invariant measure492

µ(dz; θ). The system is ergodic, and the following limit – a Law of Large Numbers493

(LLN) analogue – is satisfied: for z0 chosen at random according to measure µ(·; θ) we494

have, with probability one,495

lim
τ→∞

Gτ (θ; z0) = G(θ) :=

∫
A
ϕ(z)µ(dz; θ). (5.3)

2. We have a Central Limit Theorem (CLT) quantifying the ergodicity: for z0 distributed496

according to µ(dz; θ),497

Gτ (θ; z0) ≈ G(θ) +
1√
τ
N(0,Σ(θ)). (5.4) {eq:clt}
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In particular, the initial condition plays no role in time averages over the infinite time498

horizon. However, when finite time averages are employed, different random initial conditions499

from the attractor give different random errors from the infinite time-average, and these,500

for fixed spinup time T0, are approximately Gaussian. Furthermore, the covariance of the501

Gaussian depends on the parameter θ at which the experiment is conducted. This is reflected502

in the noise term in (5.4).503

Here we will assume that the model is perfect in the sense that the data we are presented504

with could, in principle, be generated by (5.1) for some value(s) of θ and z0. The only sources505

of uncertainty come from the fact that the true value of θ is unknown, as is the initial condition506

z0. In many applications, the values of τ that are feasible are limited by computational cost.507

The explicit dependence of Gτ on τ serves to highlight the effect of τ on the computational508

budget required for each forward model evaluation. Use of finite time-averages also introduces509

the unwanted nuisance variable z0 whose value is typically unknown, but not of intrinsic510

interest. Thus, the inverse problem that we wish to solve is to find θ solving the equation511

y = GT (θ; z0) (5.5) {eq:yT}

where z0 is a latent variable and T is the computationally-feasible time window we can in-512

tegrate the system (5.1). We observe that the preceding considerations indicate that it is513

reasonable to assume that514

y = G(θ) + η , (5.6) {eq:yT2}

where η ∼ N(0,Γy(θ)) and Γy(θ) = T−1Σ(θ). We will estimate Γy(θ) in two ways: firstly using515

long-time series data; and secondly using a GP informed by forward model evaluations.516

We first estimate Γy(θ) directly from Gτ with τ � T. We will not employ θ−dependence in517

this setting and simply estimate a fixed covariance Γobs. This is because, in the applications518

we envisage such as climate modeling [13], long time-series data over time-horizon τ will519

typically be available only from observational data. The cost of repeatedly simulating at520

different candidate θ values is computationally prohibitive, in contrast, to simulations over a521

shorter time-horizon T . We apply EKS to make an initial calibration of θ from y given by (5.5),522

using GT (θ(j); z
(j)
0 ) in place of G(θ(j)) and Γobs in place of Γy(·), within the discretization (2.8)523

of (2.7). We find the method to be insensitive to the exact choice of z
(j)
0 , and typically use the524

final value of the dynamical system computed in the preceding step of the ensemble Kalman525

iteration. We then take the evaluations of GT as noisy evaluations of G, from which we learn526

the Gaussian process G(M). We use the mean m(θ) of this Gaussian process as an estimate of527

G. Our second estimate of Γy(θ) is obtained by using the covariance of the Gaussian process528

ΓGP(θ). We can evaluate the misfit through either of the expressionseq:GPMF529

Φm(θ; y) =
1

2
‖y −m(θ)‖2Γobs

, (5.7a) {eq:ta-phim}

ΦGP(θ; y) =
1

2
‖y −m(θ)‖2ΓGP(θ) +

1

2
log det ΓGP(θ). (5.7b) {eq:ta-phigp}

Note that equations (5.7) are the counterparts of (2.12) and (2.13) in the setting with time-530

averaged data. In what follows, we will contrast these misfits, both based on the learnt GP531

emulator, with the misfit that uses the noisy evaluations GT directly. That is, we use the misfit532
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computed as533

ΦT (θ; y) =
1

2
‖y − GT (θ)‖2Γobs

. (5.8) {eq:OMF}

In the latter, dependence of GT on initial conditions is suppressed.534

5.2 Numerical Results – Lorenz ’63535
ssec:L63

We consider the 3-dimensional Lorenz equations [52]eq:lor63536

ẋ1 = σ(x2 − x1), (5.9a)

ẋ2 = rx1 − x2 − x1x3, (5.9b)

ẋ3 = x1x2 − bx3, (5.9c)

with parameters σ, b, r ∈ R+. Our data is found by simulating (5.9) with (σ, b, r) = (10, 28, 8/3),537

a value at which the system exhibits chaotic behavior. We focus on the inverse problem of538

recovering (r, b), with σ fixed at its true value of 10, from time-averaged data.539

Our statistical observations are first and second moments over time windows of size T = 10.540

Our vector of observations is computed by taking ϕ : R3 7→ R9 to be541

ϕ(x) = (x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x2x3, x3x1). (5.10)

This defines GT . To compute Γobs we used time-averages of ϕ(x) over τ = 360 units of time, at542

the true value of θ; we split the time-series into windows of size T and neglect an initial spinup543

of T0 = 30 units of time. Together GT and Γobs produce a noisy function ΦT as depicted in544

Figure 7. The noisy nature of the energy landscape, demonstrated in this figure, suggests that545

standard optimization and MCMC methods may have difficulties; the use of GP emulation546

will act to smooth out the noise and lead to tractable optimization and MCMC tasks.547

For the calibration step (CES), we run the EKS using the estimate of Γ = Γobs within the548

algorithm (2.7), and within the misfit function (5.8), as described in Section 5.1. We assumed549

the parameters to be a priori governed by an isotropic Gaussian prior in logarithmic scale.550

The mean of the prior is m0 = (3.3, 1.2)> and its covariance is Σ0 = diag(0.152, 0.52). This551

gives broad priors for the parameters with 99% probability mass in the region [20, 40]× [0, 15].552

The results of evolving the EKS through 11 iterations can be seen in Figure 7, where the green553

dots represent the final ensemble. The dotted lines locate the true underlying parameters in554

the (r, b) space.555

For the emulation step (CES), we use GP priors for each of the 9 components of the forward556

model. The hyper-parameters of these GPs are estimated using empirical Bayes methodology.557

The 9 components do not interact and are treated independently. We use only the input-558

output pairs obtained from the last iteration of EKS in this emulation phase, although earlier559

iterations could also have been used. This choice focuses the training runs in regions of high560

posterior probability. Overall, the GP allows us to capture the underlying smooth trend of561

the misfit. In Figure 8 (top row) we show (left to right) ΦT ,Φm, and ΦGP given by (5.7)–(5.8).562

Note that Φm produces a smoothed version of ΦT , but that ΦGP fails to do so – it is smooth,563

but the orientations and eccentricities of the contours are not correctly captured. This is a564

consequence of having only diagonal information to replace the full covariance matrix Γ by565

Γ(θ) and not learning dependencies between the 9 simulator outputs that comprise GT .566
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Figure 7: Contour levels of the misfit of the Lorenz ’63 forward model corresponding to
(67%, 90%, 99%) density levels. The dotted lines shows the locations of the true parameter
values that generated the data. The green dots shows the final ensemble of the EKS algorithm.
The marginal plots show the misfit as a 1-d function keeping one parameter fixed at the truth
while varying the other. This highlights the noisy response from the time-average forward
model GT .

fig:l63-misfit

We explore two options to incorporate output dependency. These are detailed in Ap-567

pendix A, and are based on changing variables according to either a diagonalization of Γobs568

or on an SVD of the centered data matrix formed from the EKS output used as training569

data {GT (θ(i))}Mi=1. The effect on the emulated misfit when using these changes of variables is570

depicted in the middle and bottom rows of Figure 8. We can see that the misfit Φm (5.7a) re-571

spects the correlation structure of the posterior. There is no notable difference between using572

a GP emulator in the original or decorrelated output system. This can been seen in the middle573

column in Figure 8. However, if the variance information of the GP emulator is introduced to574

compute ΦGP (5.7b), decorrelation strategies allows us to overcome the problems caused when575

using diagonal emulation.576

Finally, the sample step (CES) is performed using the GP emulator to accelerate the sam-577

pling and to correct for the mismatch of the EKS in approximating the posterior distribution,578

as discussed in Section 2.4. In this section, random walk metropolis is run using 5,000 samples579

for each setting – using the misfits ΦT , Φm or ΦGP. The Markov chains are initialized at the580

mean of the last iteration of the EKS. The proposal distribution used for the random walk581

is a Gaussian with covariance equal to the covariance of the ensemble at said last iteration.582

The samples are depicted in Figure 9. The orange contour levels represent the kernel density583

estimate (KDE) of samples from a random walk Metropolis algorithm using the true forward584
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Figure 8: Contour levels of the Lorenz ’63 posterior distribution corresponding to
(67%, 90%, 99%) density levels. For each row we depict: in the left panel, the contours us-
ing the true forward model; in the middle panel, the contours of the misfit computed as Φm

(5.7a); and in the right panel, the contours of the misfit obtained using ΦGP (5.7b). The dif-
ference between rows is due to the decorrelation strategy used to learn the GP emulator,
as indicated in the leftmost labels. The GP-based densities show an improved estimation
of uncertainty arising from GP estimation of the infinite time-averages, in comparison with
employing the noisy exact finite time averages, for both decorrelation strategies.

fig:l63-emulator

model. On the other hand the blue contour levels represent the KDE of samples using Φm or585

ΦGP, equations (5.7a) or (5.7b) respectively. The green dots in the left panels depict the final586

ensemble from EKS. It should be noted that using Φm for MCMC has an acceptance proba-587

bility of around 41% in each of the emulation strategy (middle column). The acceptance rate588

increases slightly to around 47% by using ΦGP (right column). The original acceptance rate589

is 16% if the true forward model is employed. The main reason is the noisy landscape of the590

posterior distribution. In this experiment, the use of a GP emulator showcases the benefits of591

our approach as it allows to generate samples from the posterior distribution more efficiently592

than standard MCMC, not only because the emulator is faster to evaluate, but also because593

it smoothes the log-likelihood. Careful attention to how the emulator model is constructed594

and the use of nearly independent co-ordinates in data space, helps to make the approximate595
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methodology viable.

Figure 9: Samples using different modalities of the GP emulator. The orange kernel density
estimate (KDE) is based on samples from random walk Metropolis using the true forward
model. The blue contour levels are KDE using the GP-based MCMC. All MCMC-based KDE
approximate posteriors are computed from Ns = 20, 000 MCMC samples. The green dots
in the left panels depict the final ensemble from the EKS as a comparison. Furthermore,
the CES-based densities are computed more easily as the MCMC samples decorrelate more
rapidly due to a higher acceptance probability for the same size of proposed move.

fig:l63-mcmc

596

5.3 Numerical Results – Lorenz ’96597
ssec:L96

We consider the multiscale Lorenz ’96 model [51]. This model possesses properties typically598

present in the earth system [73] such as advective energy conserving nonlinearity, linear damp-599

ing and large scale forcing, and multiscale coexistence of slow and fast variables. It comprises600

K slow variables Xk (k = 1, . . .K), each coupled to L fast variables Yl,k (l = 1, . . . , L). The601

dynamical system is written aseq:lorenz96602

dXk

dt
= −Xk−1 (Xk−2 −Xk+1)−Xk + F − hc Ȳk (5.11a) {eq:l96-slow}

1

c

dYl,k
dt

= −bYl+1,k (Yl+2,k − Yl−1,k)− Yl,k +
h

L
Xk, (5.11b) {eq:l96-fast}
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where Ȳk = 1
L

∑L
l=1 Yl,k. The slow and fast variables are periodic over k and l, respectively.603

This means that Xk+K = Xk, Yl,k+K = Yl,k, and Yl+L,k = Yl,k+1. This coupling of the fast604

variable Yl,k at index k to the fast variables at indices k−1 and k+1 has its roots in the physical605

interpretation as a simplified multi-scale atmosphere model. A geophysical interpretation may606

be found in [51].607

The scale separation parameter, c, is naturally constrained to be a non-negative number.608

Thus, our methods consider the vector of parameters θ := (h, F, log c, b). We perform Bayesian609

inversion for θ based on data averaged across the K locations and over time windows of length610

T = 100. To this end, we define our k−indexed observation operator ϕk : R× RL 7→ R5, by611

ϕk(Z) := ϕ(Xk, Y1,k, . . . , YL,k) =
(
Xk, Ȳk, X

2
k , XkȲk, Ȳ

2
k

)
, (5.12)

where Z denotes the state of the system (both fast and slow variables) for k = 1, . . . ,K. Then612

we define the forward operator to be613

GT (θ) =
1

T

∫ T

0

(
1

K

K∑
k=1

ϕk(Z(s))

)
ds. (5.13)

With this definition, the data we consider is denoted by y and uses the true parameter θ† =614

(1, 10, log 10, 10). As in the previous experiment, a long simulation of length τ = O(4 × 104)615

is used to compute the empirical covariance matrix Γobs. This simulation window (τ) is long616

enough to reach statistical equilibrium. The covariance structure enables quantification of the617

finite time fluctuations around the long-term mean. In the notation of Section 5.1, we have618

the inverse problem of using data y of the form619

y = GT (θ†) + η, (5.14)

where T is the finite time-window horizon, and the noise is approximately η ∼ N(0,Γy).620

The prior distribution used for Bayesian inversion assumes independent components of θ.621

More explicitly, it assumes a Gaussian prior with mean mθ = (0, 10, 2, 5)> and covariance622

Γθ = diag(1, 10, .1, 10).623

The calibration step (CES) is performed using EKS as described in Section 2.2. The EKS624

algorithm is run for 54 iterations with an ensemble of size J = 100 which is initialized625

by sampling from the prior distribution. The results of the calibration step are shown in626

Figure 10 as both bi-variate scatter plots and kernel density estimates of the ensemble at the627

last iteration.628

The emulation step (CES) uses a subset of the trajectory of the ensemble as a training629

set to learn a GP emulator. The trajectory is sampled in time under the dynamics (2.7), in630

such a way that we gather 10 different snapshots of the ensemble. This is done by saving the631

ensemble every 6 iterations of EKS. This gives M = 103 training points for the GP. Note632

that Figure 10 shows that each of the individual components of θ has a different scale. We633

use a Gamma distribution as a prior for each of the lengthscales to inform the GP of realistic634

sensitivities of the space–time averages with respect to changes in the parameters. We use the635

last iteration of EKS to inform such priors, as it is expected that the posterior distribution will636

exhibit similar behaviour. The GP–lengthscale priors are informed by the pairwise distances637

among the ensemble members, shown as histograms in Figure 11. The red dashed lines show638
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Figure 10: Samples and kernel density estimates of EKS applied to the Lorenz ’96 inverse
problem. The ensemble, J = 100, shown corresponds to the last iteration.

fig:l96-calibrate

the kernel density estimates of such histograms. The black boxplots in the x-axes in Figure 11639

show the elicited priors found by matching a Gamma distribution with 95% percentiles equal640

to both a tenth of the minimum pairwise distances, and a third of the maximum pairwise641

distances in each component. These are chosen to allow the GP kernel to decay away from642

the training data; and to avoid the prediction of spurious short-term variations.643

Figure 11: Histograms of pairwise distances for every component of the unknown parameters
θ using the last iteration of EKS. Red dashed lines show the kernel density estimate of the
histograms. The black box plot at the bottom shows the elicited GP–lengthscale priors. These
priors are chosen to allow the GP kernel to decay rapidly from the training data; and to avoid
the prediction of spurious short- and long-term variations.

fig:l96-emulate

As in the Lorenz ’63 setting, we tried different emulation strategies for the multioutput for-644

ward model. Independent GP models are fitted to the original output and to the decorrelated645

output components based on both the diagonalization of Γobs and SVD applied to the training646

data points, as outlined in Appendix A. The results shown in Figure 12 are achieved with zero647

mean GPs in both the original and time-diagonalized outputs. For the SVD decorrelation, a648

linear mean GP was able to produce better bi-variate scatter plots of θ in the sample step649

(CES). That is, the resulting bi-variate scatter plots of θ resembled better the last iteration650

of EKS – understood as our best guess of the posterior distribution. For all GP settings, an651

identifiable Matérn kernel was used with smoothness parameter 5/2.652

The sample step (CES) uses the GP emulator trained in the step above. We have found653

in this experiment that using Φm for the likelihood term gave the closest scatter plots to the654

EKS output. We did not make extensive studies with ΦGP as we found empirically that the655

additional uncertainty incorporated in the GP-based MCMC produces an overly dispersed656



25

posterior, in comparison with EKS samples, for this numerical experiment. The bi-variate657

scatter plots of θ shown in Figure 12 show Ns = 105 samples using random walk Metropolis658

with a Gaussian proposal distribution matched to the moments of the ensemble at the last659

iteration of EKS. It should be noted that for this experiment we could not compute a gold660

standard MCMC as we did in the previous section. This is because of the high rejection rates661

and increased computational cost associated with running a typical MCMC algorithm using662

the true forward model. These experiments with Lorenz ’96 confirm the viability of the CES663

strategy proposed in this paper in situations where use of the forward model is prohibitively664

expensive.
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Figure 12: Shown in blue are the bi-variate scatter plots of the GP-based random walk
metropolis using Ns = 105 samples. The orange dots are used as a reference and they corre-
spond to the EKS’ last iteration from the calibration step (CES) using an ensemble of size
J = 100.

fig:l96-sample
665

6. CONCLUSIONS
sec:C

In this paper, we have proposed a general framework for Bayesian inversion in the presence666

of expensive forward models where no derivative information is available. Furthermore, the667

methodology is robust to the possibility that only noisy evaluations of the forward model668

are computable. The proposed CES methodology comprises three steps: calibration (using669

ensemble Kalman—EK—methods), emulation (using Gaussian processes—GP), and sampling670

(using Markov chain Monte Carlo—MCMC). Different methods can be used within each block,671

but the primary contribution of this paper arises from the fact that the ensemble Kalman672

sampler (EKS), used in the calibration phase, both locates good parameter estimates from673
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the data and provides the basis of an experimental design for the GP regression step. This674

experimental design is well-adapted to the specific task of Bayesian inference via MCMC for675

the parameters. EKS achieves this with a small number of forward model evaluations, even676

for high-dimensional parameter spaces, which accounts for the computational efficiency of the677

method.678

There are many future directions stemming from this work:679

• Combine all three pieces of CES as a single algorithm by interleaving the emulation step680

within the EKS, as done in iterative emulation techniques such as history matching.681

• Develop a theory that quantifies the benefits of experimental design, for the purposes of682

Bayesian inference, based on samples that concentrate close to where the true Bayesian683

posterior concentrates.684

• GP emulators are known to work well with low-dimensional inputs, but less well for685

the high-dimensional parameter spaces that are relevant in some application domains.686

Alternatives include the use of neural networks, or manifold learning to represent lower-687

dimensional structure within the input parameters and combination with GP.688

• Deploying the methodology in different domains where large-scale expensive legacy for-689

ward models need to be calibrated to data.690
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APPENDIX A: SCHEMES TO FIND UNCORRELATED VARIABLES
apx:diag

A.1 Time variability decorrelation863

apx:time-diag
We present here a strategy to decorrelate the outputs of the forward model. It is based on864

the noise structure of the available data. Here we assume that we have access to Γobs and that865

it is diagonalized in the form866

Γobs = Q Γ̃obsQ
> (A.1)

The matrix Q ∈ Rd×d is orthogonal, and Γ̃ ∈ Rd×d is an invertible diagonal matrix. Recalling867

that y = G(θ)+η, and defining both ỹ = Q>y and G̃(θ) = Q>G(θ), we emulate the components868

of G̃(θ) as uncorrelated GPs. Recall that we are given M training pairs {θ(i),G(θ(i))}Mi=1. We869

transform these to data of the form {θ(i), Q>G(θ(i))}Mi=1, which we emulate to obtain870

G̃(θ) ∼ N
(
m̃(θ), Γ̃(θ)

)
. (A.2)

This can be transformed back to the original output coordinates as871

G(θ) ∼ N
(
Qm̃(θ), Q Γ̃(θ)Q>

)
. (A.3)
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Using the resulting emulator, we can compute the misfit (2.12) as follows:872

ΦGP(θ; y) =
1

2
‖ỹ − m̃(θ)‖2

Γ̃(θ)
+

1

2
log det Γ̃(θ). (A.4)

Analogous considerations can be used to evaluate (2.13) or (2.14).873

A.2 Parameter variability decorrelation874

apx:pca-diag
An alternative strategy to decorrelate the outputs of the forward model is presented. It is875

based on evaluations of the simulator rather than the noise structure of the data. As before,876

let us denote the set of M available input-output pairs as {θ(i),G(θ(i))}Mi=1 and let us form the877

output-design matrix G ∈ RM×d. Note that this notation implies that the ith row-vector of G878

stores the d−dimensional response of the ith training point. The corresponding input-output879

pair is denoted as (θ(i)),G(θ(i))). In [33], it is suggested to use PCA on the column space880

of G. This will effectively determine a new set of response-coordinates in which to perform881

uncorrelated GP emulation. To this end, we average each of the d components of G(θ(i)) over882

the M training points to find the mean output vector mG ∈ Rd. Then, we form the design883

mean matrix MG ∈ RM×d by making each of its M rows equal to the transpose of mG. We884

then perform an SVD to obtain885

(G−MG) = ĜDV >, (A.5)

where V ∈ Rd×d is orthogonal, D ∈ Rd×d is diagonal, and Ĝ ∈ RM×d. The matrix Ĝ has886

orthogonal columns that represent uncorrelated output coordinates. The matrix D contains887

the unscaled standard deviations of the original data G. Lastly, V contains the proportional888

loadings of the original data coordinates [see 38]. It is important to note that the i-th row in889

G is related to the i-th row in Ĝ, as both can be understood as the output of the i-th ensemble890

member θ(i) in our setting, albeit on an orthogonal coordinate space.891

We project the data onto the uncorrelated output space as ŷ = D−1V > (y − mG) and892

emulate using the resulting projections of the model output as input-output training runs,893

{θ(i), D−1V > (G(θ(i))−mG)}Mi=1, to obtain894

Ĝ(θ) ∼ N
(
m̂(θ), Γ̂(θ)

)
. (A.6) {eq:pca_gp}

Transforming back to the original output coordinates leads us to consider the emulation of895

the forward model as896

G(θ) ∼ N
(
V D m̂(θ) +mG, V D Γ̂(θ)DV >

)
, (A.7) {eq:pca_gp_rec}

This allows us to rewrite the misfit (2.12) in the form of897

ΦGP(θ; y) =
1

2
‖ŷ − m̂(θ)‖2

Γ̂(θ)
+

1

2
log det Γ̂(θ), (A.8)

or compute either (2.13) or (2.14), as discussed in Appendix A.1.898
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