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Key Points:

+ An extended eddy-diffusivity mass-flux (EDMF) scheme successfully captures di-
verse regimes of convective motions.

« Unified closures are presented for entrainment and detrainment across the differ-
ent convective regimes.

e With the unified closures, the EDMF scheme can simulate dry convection, shal-
low cumulus, and deep cumulus.
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Abstract

We demonstrate that an extended eddy-diffusivity mass-flux (EDMF) scheme can be used
as a unified parameterization of subgrid-scale turbulence and convection across a range

of dynamical regimes, from dry convective boundary layers, through shallow convection,
to deep convection. Central to achieving this unified representation of subgrid-scale mo-
tions are entrainment and detrainment closures. We model entrainment and detrainment

rates as a combination of turbulent and dynamical processes. Turbulent entrainment/detrainment

is represented as downgradient diffusion between plumes and their environment. Dynam-
ical entrainment/detrainment is proportional to a ratio of a relative buoyancy of a plume
and a vertical velocity scale, that is modulated by heuristic non-dimensional functions
which represent their relative magnitudes and the enhanced detrainment due to evap-
oration from clouds in drier environment. We first evaluate the closures offline against
entrainment and detrainment rates diagnosed from large-eddy simulations (LES) in which
tracers are used to identify plumes, their turbulent environment, and mass and tracer
exchanges between them. The LES are of canonical test cases of a dry convective bound-
ary layer, shallow convection, and deep convection, thus spanning a broad range of regimes.
We then compare the LES with the full EDMF scheme, including the new closures, in

a single column model (SCM). The results show good agreement between the SCM and
LES in quantities that are key for climate models, including thermodynamic profiles, cloud
liquid water profiles, and profiles of higher moments of turbulent statistics. The SCM

also captures well the diurnal cycle of convection and the onset of precipitation.

Plain Language Summary

The dynamics of clouds and turbulence are too small in scale to be resolved in global
models of the atmosphere, yet they play a crucial role controlling weather and climate.
These models rely on parameterizations for representing clouds and turbulence. Inad-
equacies in these parameterizations have hampered especially climate models for decades;
they are the largest source of physical uncertainties in climate predictions. It has proven
challenging to represent the wide range of cloud and turbulence regimes encountered in
nature in a single parameterization. Here we present such a parameterization that does
capture a wide range of cloud and turbulence regimes within a single, unified physical
framework, with relatively few parameters that can be adjusted to fit data. The frame-
work relies on a decomposition of turbulent flows into coherent up- and downdrafts (i.e.
plumes) and random turbulence in their environment. A key contribution of this paper
is to show how the exchange of mass and properties between the plumes and their tur-
bulent environment—the so-called entrainment and detrainment of air into and out of
plumes—can be modeled. We show that the resulting parameterization represents well
the most important features of dry convective boundary layers, shallow cumulus convec-
tion, and deep cumulonimbus convection.

1 Introduction

Turbulence and convection play an important role in the climate system. They trans-
port energy, moisture, and momentum vertically, thereby controlling the formation of
clouds and, especially in the tropics, the thermal stratification of the atmosphere. They
occur on a wide range of scales, from motions on scales of meters to tens of meters in
stable boundary layers and near the trade inversion, to motions on scales of kilometers
in deep convection. General Circulation Models (GCMs), with horizontal resolutions ap-
proaching tens of kilometers, are unable to resolve this spectrum of motions. Turbulence
and convection will remain unresolvable in GCMs for the foreseeable future (Schneider
et al., 2017), although some deep-convective motions, on scales of kilometers to tens of
kilometers, are beginning to be resolved in short-term global simulations (Kajikawa et
al., 2016; Stevens et al., 2019).
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Unable to resolve turbulence and convection explicitly, GCMs rely on parameter-
ization schemes to represent subgrid-scale (SGS) motions. Typically, GCMs have sev-
eral distinct parameterization schemes for representing, for example, boundary layer tur-
bulence, stratocumulus clouds, shallow convection, and deep convection. The different
parameterization schemes interact via trigger functions with discontinuous behavior in
parameter space, even though in reality the flow regimes they represent lie on a contin-
uous spectrum (Xie et al., 2019). This fragmentary representation of SGS motion by mul-
tiple schemes leads to a proliferation of adjustable parameters, including parametric trig-
gering functions that switch between schemes. Moreover, most existing parameteriza-
tions rely on statistical equilibrium assumptions between the SGS motions and the re-
solved scales. These assumptions become invalid as model resolution increases and, for
example, some aspects of deep convection begin to be explicitly resolved (Dirmeyer et
al., 2012; Gao et al., 2017). It is widely recognized that these issues make model cali-
bration challenging and compromise our ability to make reliable climate predictions (Hourdin
et al., 2017; Schmidt et al., 2017; Schneider et al., 2017).

Many known biases in climate models and uncertainties in climate predictions are
attributed to difficulties in representing SGS turbulence and convection. For example,
biases in the diurnal cycle and the continental near-surface temperature, especially in
polar regions, have been traced to inadequacies in turbulence parameterizations for sta-
ble boundary layers (Holtslag et al., 2013). Across climate models, biases in how trop-
ical cloud cover co-varies with temperature and other environmental factors on seasonal
and interannual timescales are correlated with the equilibrium climate sensitivity, thus
revealing the important role the representation of tropical low clouds plays in uncertain-
ties in climate predictions (Bony & Dufresne, 2005; Teixeira et al., 2011; Nam et al., 2012;
Lin et al., 2014; Brient et al., 2016; Brient & Schneider, 2016; Ceppi et al., 2017; Cesana
et al., 2018; Caldwell et al., 2018; Dong et al., 2019; Schneider et al., 2019). Differences
in moisture export from the mixed layer to the free troposphere by cumulus convection
lead to differences in the width and strength of the ascending branch of the Hadley cir-
culation (R. A. Neggers et al., 2007). And biases in the structure of the South Pacific
Convergence Zone have been traced to biases in the intensity of deep-convective updrafts
(Hirota et al., 2014). It is evident from these few examples that progress in the repre-
sentation of SGS turbulence and convection is crucial for progress in climate modeling
and prediction. At the same time, it is desirable to unify the representation of SGS mo-
tions in one continuous parameterization scheme, to reduce the number of adjustable pa-
rameters and obtain a scheme that more faithfully represents the underlying continuum
of physical processes.

Different approaches for a systematic coarse graining of the equations of motion,
leading to a unified parameterization, have been proposed (Lappen & Randall, 2001a;
de Rooy & Siebesma, 2010; Yano, 2014; Park, 2014a, 2014b; Thuburn et al., 2018; Tan
et al., 2018; Han & Bretherton, 2019; Rio et al., 2019; Suselj et al., 2019b). They typ-
ically entail a conditional averaging (or filtering) of the governing equations over several
subdomains (Weller & Mclntyre, 2019), or an assumed probability density function (PDF)
ansatz for dynamical variables and generation of moment equations from the ansatz (Lappen
& Randall, 2001a; Golaz et al., 2002; Larson & Golaz, 2005; Larson et al., 2012). For
example, conditional averaging can lead to a partitioning of a GCM grid box into sub-
domains representing coherent ascending and descending plumes, or drafts, and a more
isotropically turbulent environment. Unclosed terms arise that, for example, represent
interactions among subdomains through entrainment and detrainment. Such unclosed
terms need to be specified through closure assumptions (de Rooy et al., 2013). Or, if mo-
ment equations are generated through an assumed PDF ansatz for dynamical and ther-
modynamic variabels, unclosed interactions among moments and dissipation terms need
to be specified through closure assumptions (Lappen & Randall, 2001b; Golaz et al., 2002).
Our goal in this paper is to develop a unified set of closures that work across the range
of turbulent and convective motions, within one specific type of parameterization scheme
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known as an eddy-diffusivity mass-flux (EDMF) scheme (A. P. Siebesma & Teixeira, 2000;
A. P. Siebesma et al., 2007; Wu et al., 2020).

We build on the extended EDMF scheme of Tan et al. (2018), which extends the
original EDMF scheme of A. P. Siebesma and Teixeira (2000) by retaining explicit time
dependence (SGS memory) and treating subdomain second-moment equations consis-
tently, so that, for example, energy exchange between plumes and their environment obeys
conservation requirements. The explicit SGS memory avoids any statistical equilibrium
assumption. This is a necessary ingredient for the scheme to become scale-aware and be
able to operate in the convective gray zone, where deep convective motions begin to be-
come resolved.

In this and the companion paper Lopez-Gomez et al. (2020) we present a set of uni-
fied closures that allow the extended EDMF parameterization to simulate stable bound-
ary layers, dry convective boundary layers, stratocumulus-topped boundary layers, shal-
low convection, and deep convection, all within a scheme with unified closures and a sin-
gle set of parameters. This paper focuses on unified entrainment and detrainment clo-
sures that are essential for convective regime, and Lopez-Gomez et al. (2020) presents
a closure for turbulent mixing. To demonstrate the viability of our approach, we com-
pare the resulting parameterization scheme against large-eddy simulations (LES) of sev-
eral canonical test cases for different dynamical regimes.

This paper is organized as follows. In section 2, we present the general structure
of the extended EDMF scheme, including the subdomain decomposition and the prog-
nostic equations for subdomain moments. Section 3 introduces the entrainment and de-
trainment closures that are key for the scheme to work across different dynamical regimes.
Section 4 describes the numerical implementation of this scheme in a single column model
(SCM). In section 5, we describe the LES used in this study and how we compare terms
in the EDMF scheme against statistics derived from the LES. Section 6 compares results
from the EDMF scheme against LES of canonical test cases of dry convective boundary
layers, shallow and deep convection. Section 7 summarizes and discusses the main find-
ings.

2 Extended EDMF Scheme
2.1 Equations of Motion

The extended EDMF scheme is derived from the compressible equations of motion
of the host model. As thermodynamic variables, we choose the liquid-ice potential tem-
perature ; and the total water specific humidity ¢;, but these choices can easily be mod-
ified and harmonized with the thermodynamic variables of the host model in which the
scheme is implemented. The unfiltered governing equations are:

% + Vi - (pup) + a(g;u) =0 ®

X0m) 4 9, (puy o) + L2 gt 4 s, )
@'th'(puhw)—’_w - pb_%fj—FpSW )
A V- (ot + L = sy, Y
% + Vi (punar) + w = P (5)

p = pRT,. (6)
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In the momentum equation, to improve numerical stability, we have removed a reference
pressure profile pp,(z) in hydrostatic balance with a density pp(2):

8ph _

where g is the gravitational acceleration. Therefore, the perturbation pressure

Pl =p—pn
and the buoyancy
= —g—
P
appear in the momentum equations in place of the full pressure p and gravitational ac-
celeration g. Otherwise, the notation is standard: p is density, ¢; is the total water spe-
cific humidity, T, is the virtual temperature, Ry is the gas constant for dry air, and

Rg/c
_ o (Ps ’ —Ly(q + ai)
it () e () g

is the liquid-ice potential temperature, with liquid and ice specific humidities ¢; and ¢;
and reference surface pressure p, = 10° Pa. In a common approximation that can eas-
ily be relaxed, we take the isobaric specific heat capacity of moist air ¢, to be constant
and, consistent with Kirchhoff’s law, the latent heat of vaporization L, to be a linear
function of temperature (Romps, 2008). The temperature T is obtained from the ther-
modynamic variables 6;, p, and ¢g; by a saturation adjustment procedure, and the vir-

tual temperature T, is computed from the temperature 7" and the specific humidities (Pressel

et al., 2015). The horizontal velocity vector is uy, and w is the vertical velocity compo-
nent; Vy, is the horizontal nabla operator. The symbol S stands for sources and sinks.
For the velocities, the sources Sy, and S,, include the molecular viscous stress and Cori-
olis forces, and for thermodynamic variables, the sources Sp, and S;, represent sources
from molecular diffusivity, microphysics, and radiation.

When implemented in a GCM, the host model solves for the grid-averaged form
of equations (1)-(6). In the averaged equations, SGS fluxes arise from the application
of Reynolds averaging to quadratic and higher-order terms. As is common, we make the
boundary layer approximation and focus on the vertical SGS fluxes, neglecting horizon-
tal SGS fluxes. The role of the parameterization in the host model is to predict these
vertical SGS fluxes, in addition to cloud properties that are used by radiation and mi-
crophysics schemes. In the next section, a decomposition of grid boxes into subdomains
expresses the vertical SGS fluxes as a sum of turbulent fluxes in the environment (ED)
and convective mass fluxes in plumes (MF). To compute the MF component of the fluxes,
the EDMF scheme solves for first moments of the host model’s prognostic variables (w,
01, ;) in each of its subdomains, as well as for the area fraction of the subdomains. To
compute the ED component, the EDMF scheme solves additionally for the turbulence
kinetic energy in the environment. Finally, to compute cloud properties by sampling from
implied SGS distributions of thermodynamic variables, the EDMF scheme also solves
for variances and covariance of #; and ¢; in the environment. A summary of the prog-
nostic and diagnostic variables in the scheme is given in Table 1.

2.2 Domain Decomposition and Subdomain Moments

The extended EDMF scheme is derived from the equations of motion by decom-
posing the host model grid box into subdomains and averaging the equations over each
subdomain volume. We denote by (@) the average of a scalar ¢ over the host model grid
box, with ¢* = ¢—(¢) denoting fluctuations about the grid mean. Similarly, ¢; is the
average of ¢ over the i-th subdomain, and ¢, = ¢—¢; is the fluctuation about the mean



192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

Table 1. EDMEF scheme variables. In the right two columns, 'upd’, ’env’, and ’gm’ stand
for updrafts, environment, and grid mean respectively and these indicate whether a variable is

prognostic or diagnostic in that model subdomain.

Symbol Description Units Prognostic  Diagnostic

P Pi Density kg m~—3 upd, env, gm
Di, (D) Pressure Pa upd, env, gm
a; Subdomain area fraction upd env

0.1, (0;) Liquid-ice potential temperature K upd, gm env

ti» (qe) Total water specific humidity kg kg ! upd, gm env

Wy, (W) Vertical velocity ms~! upd, gm env

Uy, = (up) Horizontal velocity ms! gm upd , env

bs, (b) Buoyancy ms2 env, upd, gm
0% (0;°) 6;-variance K2 env gm

4%, (%) g-variance kg2 kg=2  env gm

01 04%,00 (0Fqr) Covariance of 6; and ¢, K kg kg=! env gm

o, () Turbulence kinetic energy m?2s~2 env gm

of subdomain i. The difference between the subdomain mean and grid mean then be-
comes ¢} = ¢; — (¢). Common terminology assigns an area fraction a; = A;/Ar to
each subdomain, where A; is the horizontal area of the i-th subdomain and Ar is the
horizontal area of the grid box. This a; is more precisely a volume fraction, since A; is
the vertically averaged horizontal area of the i-th subdomain within the grid box. We
retain here the terminology using subdomain area fractions, which reflect the subdomain
volume fractions, consistent with previous works (A. P. Siebesma et al., 2007).

With this decomposition, the subdomain zeroth moment (area fraction), first mo-
ment (mean), centered second moment (covariance), and centered third moment obey:

Zai = 17 (8)

i>0
= i, (9)
i>0
@97y = 3w [6r0; + 7).
i>0
= 3 [0+ 5 D aias (6 — 65) s — )], (10)
i20 j=0

(6 g ) Z[ (PIFw] + Githitss + i) + 60 + 0[]
i>0
= [(@)whw) + (@) (W ") + W) (8 w") + () 6")]. (1)

Equations (8) and (9) are self-evident; the derivation of (10) and (11) from (8) and (9)
is given in Appendix A. Equation (10) with ¢ = w is the vertical SGS flux of a scalar

1, which is one of the key predictands of any parameterization scheme: the divergence
of this flux appears as a source in the equations for the resolved scales of the host model.
The decomposition in (9)—(11) only applies in general if (-) is a Favre average—an av-
erage weighted by the density that appears in the continuity equation. However, in the
EDMEF scheme we describe in what follows, we make the approximation of ignoring den-
sity variations across subdomains (except in buoyancy terms), so that Favre and volume
averages coincide within a grid box.
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The central assumption in EDMF schemes is that within-subdomain covariances
such as ¢/1)} and higher moments are neglected in all subdomains except one distinguished
subdomain, the environment, denoted by index ¢ = 0. In the environment, covariances
$LY( are retained, and third moments such as w( ¢}, which appear in second-moment
equations, are modeled with closures. The intuition underlying this assumption is that
the flow domain is subdivided into an isotropically turbulent environment (i = 0) and
into coherent structures, identified with plumes (¢ > 1). The environment can have sub-
stantial within-subdomain covariances, whereas the plumes are taken to have compar-
atively little variance within them. Variance within plumes can be represented by hav-
ing an ensemble of plumes with different mean values (R. A. J. Neggers et al., 2002; R. Neg-
gers, 2012; Suselj et al., 2012). For the case of only two subdomains, an updraft (i =
1) and its environment (¢ = 0), the second-moment equation (10) then simplifies to

(¢*0*) = ar @i ] + (1 — a1) Gy + a1 (1 — a1)(d1 — o) (b1 — 1hp)
~ (1= a1)dpuf + a1 (1 — a1)(d1 — o) (P1 — 1hy), (12)

ED MF

where the approximation in the second line reflects the EDMF assumption of neglect-

ing within-plume covariances. The first line states that the covariance on the grid scale
can be decomposed into the sum of the covariances within subdomains and the covari-
ance among subdomain means, as in the analysis of variance (ANOVA) from statistics
(Mardia et al., 1979). The second line reflects the EDMF approximation to only retain
the covariances in the environment. The first term on the right-hand side is closed by

a downgradient eddy diffusion (ED) closure and the second term is represented by a mass
flux (MF) closure, whence EDMF derives its name (A. P. Siebesma & Teixeira, 2000).
Whenever ¢ and 1 are both thermodynamic prognostic variables, the within-environment
covariance ¢(v is solved prognostically. Under the EDMF assumption, the third-moment
equation (11) for two subdomains, written for a single scalar, simplifies to

(@"¢"¢") = —a1(1 — a1)(é1 — ¢o) Py + 3a1(1 — ar)(1 — 2a1)(¢1 — do)°. (13)

That is, third moments (i.e., skewness) on the grid scale are represented through covari-
ances within the environment and through variations among means across subdomains
with differing area fractions.

2.3 EDMF Assumptions

The extended EDMF scheme is obtained by applying this decomposition of grid-
scale variations to the equations of motion (1)—(6), making the following additional as-
sumptions:

1. We make the boundary layer approximation for subgrid scales, meaning that we
assume vertical derivatives to be much larger than horizontal derivatives. This in
particular means that the diffusive closure for fluxes in the environment only in-
volves vertical gradients,

—— 9%
wig; ~ —Koim s (14)

where K ; is the eddy diffusivity (to be specified) for scalar ¢ in subdomain i. Con-
sistent with the EDMF assumptions, we assume Ky ; = 0 for i # 0.

2. We use the same, grid-mean density (p) in all subdomains except in the buoyancy
term. This amounts to making an anelastic approximation on the subgrid scale,
to suppress additional acoustic modes that would otherwise arise through the do-
main decomposition. For notational simplicity, we use p rather than (p) for the
grid-mean density in what follows, and p; for the subdomain density that appears
only in the buoyancy term:

b = _gpz' ;Ph. (15)




238 The grid-mean density p appears in the denominator, playing the role of the ref-

239 erence density in the anelastic approximation. The area fraction-weighted sum of
240 the subdomain buoyancies is the grid-mean buoyancy, ensuring consistency of this
2m decomposition:

) =Y aib; = —g?—" (16)

p
212 3. We take the subdomain horizontal velocities to be equal to their grid-mean val-
243 ues,
Up; = (up). (17)
244 This simplification is commonly made in parameterizations for climate models (Larson
245 et al., 2019). It eliminates mass-flux contributions to the SGS vertical flux of hor-
246 izontal momentum.
247 2.4 EDMF Equations
248 The full derivation of the subdomain-mean and covariance equations from (1)—(6)
249 is given in Appendix B. The derivation largely follows Tan et al. (2018), except for a dis-
250 tinction between dynamical and turbulent entrainment and detrainment following de Rooy

251 and Siebesma (2010). The resulting extended EDMF equation for the subdomain area
252 fraction is

d(pa;)
ot

+ Vi - (pag{ap)) + 3(%5171') = Z (Ez - Aij); (18)
J7#i

the equation for the subdomain-mean vertical momentum is

ot + Vi (Paz<uh>wz) + EP -
0 ow; A L
92 Pain,ig + Z |:(E1] + Eij)w; — (A + Ezg)wz]
J#i

+ pai(b] + (b)) — pai - ;

o (p; + (")
0z

) + gw,i; (19)

and the equation for the subdomain-mean of a thermodynamic scalar ¢ is

O8] 4 V- (pastun) o) + L4020
0 0¢; - AT -
7 (P%qu,iaz> + [(EU + Eij)¢o; — (A + Eij)@} + pa;Sei. (20)
J#i

253 The dynamical entrainment rate from subdomain j into subdomain ¢ is F;j;, and the de-
254 trainment rate from subdomain ¢ into subdomain j is A;;. In addition to dynamical en-
255 trainment, there is turbulent entrainment from subdomain j into subdomain ¢, with rate
256 Eij. Turbulent entrainment differentially entrains tracers but not mass (see Appendix

257 B) .

The pressure and buoyancy terms in the vertical momentum equation (19) are writ-
ten as the sum of their grid-mean value and perturbations from their grid-mean value.
These perturbations vanish when summed over all subdomains because aiéf = 0;
hence, the grid-mean values of the pressure and buoyancy terms are recovered upon sum-
ming over subdomains. Following Pauluis (2008), the pressure gradient term in (19) is
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written with 1/p inside the gradient to ensure energy conservation in our SGS anelas-
tic approximation; see Appendix C for details. The subdomain density p; that is essen-
tial for the subdomain buoyancy is computed from the subdomain virtual temperature
T, using the ideal gas law with the grid-mean pressure (p):

pi= B (21)

In analogy with the anelastic approximation of Pauluis (2008), this formulation of the
ideal gas law ensures that ). a;p;T,; = p(T), while accounting for subdomain virtual
temperature effects that play a key role in the buoyancy of updrafts in shallow convec-

tion.

The scalar equation (20) is applied to any thermodynamic variable, with its cor-
responding subdomain-averaged source SW‘ on the right-hand side. The terms on the
left-hand side represent the explicit time tendencies and fluxes of the subdomain-means,
which can be viewed as forming part of the dynamical core of the host model. The terms
on the right-hand side are sources and sinks that require closure. The covariance equa-
tion for thermodynamic scalars (i.e., when ¢, € [0}, ¢;]) in the environment becomes

+ Vi - (pao(un)dpip)) + W _
[ A—

vertical transport

A(paodiyby)
ot

0 O 060 00
o (pQOKWO oz 0) +2pn0Konop 5,

turbulent production

turbulent transport

+ Z ( fEAOim +217§E0i(<2_50 — i) + %Em(?/;o - 1[%))

i>0

turb. entrainment turb. entrainment production

+ Z ( —Doidhty + Eoi(¢o — i) (Yo — %’))

i>0

dyn. detrainment dyn. entrainment flux
— pagDgryr 0 +pao(n Sy o + 065y o). (22)
————

dissipation

Consistently with the EDMF assumption, we have assumed here that ¢} = 0 for i >
0. Covariance equations of this form are used for the thermodynamic variances 6;% and

qEO and for the covariance ef,oqé,m which are needed in microphysics parameterizations.
Note that some of the entrainment and detrainment terms are cross-subdomain coun-
terparts of the vertical gradient terms. For example, the “dynamical entrainment,” “tur-
bulent entrainment,” and “turbulent entrainment production” are the cross-subdomain
counterparts of the “vertical transport,” “turbulent transport,” and “turbulent produc-
tion,” respectively. The “dynamical entrainment flux” lacks any vertical counterpart. This
term arises as a flux across a variable boundary in the conditional averaging process.
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_ The subdomain turbulence kinetic energy (TKE) is defined as &; = 0.5(u72+?+
w!?), and the TKE equation for the environment is written as

0(paoéo)
ot

b _
+ Vi - (pao(up)ep) + w _

% (paOKm,oa;:> + pagKm o [(%?) + <88<Z>> + (@) ]

turbulent transport shear production

+y° ( —Foeg  +  wyEoi(wo — ;) )
>0 - ~-

turb. entrainment  turb. entrainment production

+ Z ( —Aoi€o +% Eoi(wo — w;)(wo — wi))

i>0 dyn. detrainment dyn. entrainment production
7 7 7
_ g [t a [t g [t -
+ paowjbf — pao | uh5— L I VoA P+ wo A= L — paoDeo; (23)
N—_—— or 14 0 6y 14 0 0z 14 0 N——
buoyancy production dissipation

pressure term

see Appendix B in Lopez-Gomez et al. (2020) for a detailed derivation of the TKE equa-
tion. We have used the EDMF assumption that é; ~ 0 for ¢ > 0. The prognostic TKE

is used for closures of the eddy diffusivity in the environment as described in Lopez-Gomez
et al. (2020).

2.5 Effect on Grid Mean and Constraints on Entrainment/Detrainment

The conservation of mass and scalars in the host model grid box requires that by
summing the EDMF equations over all subdomains, the equations for the grid-mean vari-
ables are recovered. The horizontal flux divergence terms that are included in the EDMF
equations, V,-(pa;(uy,)@;), represent the fluxes across the boundaries of the host model
grid (see Appendix B) and, when summed over all subdomains, recover their grid-mean
counterpart. Additionally, mass conservation requires that between two subdomains i
and j, the entrainment and detrainment rates satisfy (E;; — Ai;) + (Ej; — Aj) = 0.

For entrainment and detrainment of subdomain-mean properties, scalar conservation fur-
ther requires that

Eij = Ajia (24)

so that when summing over two interacting subdomains, the entrainment and detrain-
ment terms cancel out. Similarly, scalar conservation requires symmetry, I;; = FEj;,
for turbulent entrainment.

Taking these requirements into account, a summation of equation (20) over all sub-
domains yields the grid-mean scalar equation

a(/;;t@) £V (plup) (o)) + w — ,%(Mw*(ﬁ*» + p(Sy). (25)

This is the form of the equation solved by the dynamical core of the host model. Using
the covariance decomposition (10), the SGS flux in (25) is written as the sum of the eddy
diffusivity and mass flux components:

plu'6%) = ~paoKso o + 3 paslats — (w)) (61 ~ (9)). (26)

i>0

This illustrates the coupling between the dynamical core equations and the EDMF scheme.
Similarly, the grid covariance equation follows by using the subdomain continuity equa-
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tion (18), scalar-mean equation (20), and the scalar covariance equation (22) in the co-
variance decomposition (10), which yields:

8(p<<(z;’;w*>) -V (plun) (0" + 8(p<wg<z¢*w*>) _
_ 3(ﬂ<w;f*w*>) _p<w*w*>% _p<w*¢*>%

= P(Dgrye) + p(Y7S5) + p(97Sy). (27)

Here, vertical SGS fluxes are decomposed according to equation (26), and the turbulent
transport term is decomposed according to equation (11). In general, equation (27) does
not need to be solved by the host model. However, the consistency of the summation over
subdomains to produce it ensures that the second moments are conserved within the EDMF
scheme.

The subdomain equations in the EDMF scheme require closures for dynamical en-
trainment and detrainment, turbulent entrainment, perturbation pressure, eddy diffu-
sivity, for the various sources, and for covariance dissipation. The following section fo-
cuses on closures for dynamical and turbulent entrainment and detrainment. The per-
turbation pressure closure is given by the sum of a virtual mass effect, momentum con-
vergence, and pressure drag, see equation (11) in Lopez-Gomez et al. (2020). The eddy
diffusivity and mixing length closures are described in Lopez-Gomez et al. (2020).

3 Closures

Entrainment and detrainment closures are a topic of extensive research (de Rooy

et al., 2013). Following de Rooy and Siebesma (2010), we distinguish dynamical and tur-
bulent entrainment and detrainment components. Turbulent entrainment is typically rep-
resented by a diffusive horizontal flux, while diverse closures for dynamical entrainment
and detrainment are in use. It is common to write the dynamical entrainment and de-
trainment rates as a product of the vertical mass flux pa;w; and fractional entrainment/detrainment
rates €;; and d;;

Eij = paﬂf)iéij, (28)
and

Aij = paiu’jiéij. (29)
Closures are then derived for the fractional rates €;; and ¢;; per unit length (they have
units of 1/length).

Various functional forms for the fractional rates ¢;; and J;; have been proposed in
the literature. For example:

+ Based on experiments on dry thermals, Morton et al. (1956) suggested €;; to be
inversely proportional to the updraft radius. This relation has been used in sev-
eral closures (Kain & Fritsch, 1990; Bretherton et al., 2004).

« Using a perturbation-response experiment in LES of shallow convection, Tian and
Kuang (2016) found €;0 o< 1/(w;7) with a mixing timescale 7. Such an entrain-
ment rate was used by R. A. J. Neggers et al. (2002), Suselj et al. (2012), and Langhans
et al. (2019) in shallow convection parameterizations.

« Gregory (2001) analyzed LES of shallow convection and suggested €;o o b; /w2,
which was used by Tan et al. (2018) for shallow convection. The ratio w;/b; plays
the role of the timescale 7 in the formulation of Tian and Kuang (2016). In the
steady equations, this entrainment functional also ensures that the mass flux and
the vertical velocity simultaneously go to zero at the top of updrafts; see Appendix
E and Romps (2016). Alternative derivations of this functional form are based on
a balance of sources and sinks of total kinetic energy in updrafts (Savre & Her-
zog, 2019), or on the dynamics of dry thermals (McKim et al., 2020).
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 Other approaches for entrainment and detrainment include stochastic closures (Suselj
et al., 2013, 2014; Romps, 2016; Suselj et al., 2019a) and higher-order closures (Lappen
& Randall, 2001Db).

Similar closures are often used for both entrainment ¢;; and detrainment §;;. En-
hanced detrainment can occur in cloudy conditions: when the evaporation of cloud con-
densate after mixing with drier environmental air produces a buoyancy sink for an up-
draft, negatively buoyant air can detrain rapidly from the updraft (Raymond & Blyth,
1986; Kain & Fritsch, 1990). Various approaches for representing this enhanced detrain-
ment owing to “buoyancy sorting” have been used, ranging from adding a constant back-
ground detrainment rate (A. Siebesma & Cuijpers, 1995; Tan et al., 2018), over explic-
itly modeling buoyancies of mixtures of cloudy and environmental air (Kain & Fritsch,
1990; Bretherton et al., 2004), to enhancing detrainment by functions of updraft-environment
relative humidity differences (Boing et al., 2012; Bechtold et al., 2008, 2014; Savre & Her-
zog, 2019).

Here we combine insights from several of these studies into a new closure for en-
trainment and detrainment.

Table 2. Closure parameters

Symbol  Description Value (units)
as Combined updraft surface area fraction 0.1

Ce Scaling constant for entrainment rate 0.13

Cs Scaling constant for detrainment rate 0.52

CA Weight of TKE term in entrainment/detrainment rate 0.3

B Detrainment relative humidity power law 2.0

Lo Timescale for b/w in the entrainment sigmoidal function 4 x 10=% (1/s)
Xi Fraction of updraft air in buoyancy mixing 0.25

Cy Scaling constant for turbulent entrainment rate 0.075

3.1 Dynamical Entrainment and Detrainment

We propose closures for dynamical entrainment and detrainment that are in prin-
ciple applicable to many interacting subdomains (e.g., multiple updrafts, or updrafts and
downdrafts). Our point of departure are dry entrainment and detrainment rates which
are symmetric for upward and downward motions. To those we then add the contribu-
tion of evaporation, which is asymmetric between upward and downward motions. We
first write our closures for the rates E;; and A;;, which facilitates ensuring mass and scalar
conservation. In the end, we give the corresponding formulations in terms of the frac-
tional rates €;; and d;;.

3.1.1 General Form of Entrainment and Detrainment Rates

The rates E;; and A;; have units of density divided by time and hence depend on
a flow-dependent time scale, as well as on functions of nondimensional groups in the prob-
lem. Following Gregory (2001); Tan et al. (2018); Savre and Herzog (2019); McKim et
al. (2020), among others, we choose an inverse timescale b/w as the fundamental scale,
depending on a buoyancy b and a vertical velocity w. This vertical velocity scale is taken
to be representative of the vertical velocity difference across the updraft boundary, which
we approximate as the difference between the subdomain means in convective conditions.
In cases of strong environmental turbulence and weak updraft velocities, the environ-
mental turbulent velocity scale é(l)/ % is a better representation of this velocity difference.
This is the case in conditions of weak surface heating, such as those encountered in stratocumulus-

—12—



337

338

339

340

341

342

343

344

345

346

347

topped boundary layers (Lopez-Gomez et al., 2020). Thus, the velocity scale w is taken
as the maximum of the previously described scales. Considerations of symmetry and mass
and tracer conservation lead to the inverse timescale

Aij = Smin (’wz —ey ,Cx NS ) . (30)

Here, Ajj = Aj;, cx is a nondimensional fitting parameter, and sy, is the smooth min-
imum function defined in Lopez-Gomez et al. (2020). The smooth minimum function en-
sures that the strongest characteristic velocity defines the entrainment rate. The inverse
time scale )\;; depends on the buoyancy difference Eiij between subdomains ¢ and 7,

as is physical. Similarly, A;; depends only on the mean vertical velocity difference w;—
wj, as is required by Galilean invariance. In terms of this inverse time scale, the entrain-
ment and detrainment rates are then written as

Ei; = p)\ij (CG'DU‘ + CgMﬁ), (31)

and
Aij = pAU <CEDj¢ + CéMj1'> . (32)

Mass and tracer conservation demand that E;; = Aj; (see Eq. (24)). This is satisfied

by this formulation: The inverse time scale \;; is symmetric under reversal of the ¢ and
j indices by construction. Conservation constraints are satisfied by the choice of the, as
yet unspecified, nondimensional functions D;; and Mj; in the entrainment rate (31) and,
with inverted indices, Dj; and M;; in the detrainment rate (32). The coefficients c. and
c¢s are nondimensional fitting parameters. The functions D;; and M;; in principle can
depend on all nondimensional groups of the problem. Once sufficient data are available,
be they from high-resolution simulations or observations, they can be learned from data.

To demonstrate the viability of the EDMF closure, we use physically motivated and
relatively simple functions for D;; and M,;.

3.1.2 Function D;;

We use the function D;; to estimate the relative magnitudes of entrainment and
detrainment for a subdomain ¢ in dry convection, in which case the subdomain buoyancy
is linearly mixed. We consider the buoyancy bmix of a mixture, composed of a fraction
X; of air from subdomain ¢, and a fraction x; of air from subdomain j (with x;+x; =
1). We define an inverse timescale based on the mixture buoyancy as

bmix - Blj

ij = ) 33
Mg w; — ( )
where : :
by = 0 (34)
a; + aj

is the area-weighted mean buoyancy of subdomains ¢ and j, such that a; +a; = 1 im-
plies Bij = (b). (Note that we are assuming dry conditions here, so buoyancy averages
linearly.) Here p;; = —pij;, and its sign reflects the correlation between the sign of the
velocity difference w;—w; and the sign of the mixture buoyancy bmix relative to the mean
buoyancy l;ij. The mixture buoyancy is defined as

bmix = ngz + Xij, (35)

so that the buoyancy difference in (33) becomes

_ - — - a;
bmix — bz] = (b’L - b])(Xl - a; + aj)7 (36)
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which follows by using x; =1 — x;.

Thus we assumed that the more rapidly rising subdomain entrains air if the mix-
ture buoyancy is positive relative to the mean of the two interacting subdomains, and
vice versa. This means that we expect entrainment from subdomain j into ¢ if p;; > 0,
and we expect detrainment otherwise. This could be modeled by choosing D;; = max(f;;,0).
However, we find that using a smooth sigmoidal function, between 0 and 1, improves our

results, so we define
1

1 4 e—Hii/ko’ (37)

ij
Here, pp is an inverse timescale, a fitting parameter that controls the smoothness of the
sigmoidal function. We estimate jo = 4 x 107% s7! from examining various LES test
cases. The fact that this is a dimensional coefficient is a shortcoming of the current model,;
we aim to replace by a function of grid-mean quantities in future work. The fraction of
air in the mixture, x;, is typically taken from an assumed probability distribution (Kain,
2004; Bretherton et al., 2004). Here we choose a constant x; for updrafts interacting with
their environment, based on a heuristic assumption of an elliptical updraft in a surround-
ing mixing shell. If the mixing eddies at the updraft edge have similar radial extent in
the updraft and in the shell, it implies that y; is proportional to the ratio between the
updraft area and the combined updraft and shell area; that is, x; = 0.25. For interac-
tions between two updrafts (or downdrafts), the corresponding choice would be x; =
Xj = 0.5.

3.1.3 Function M,;

In moist conditions, the function M; represents the enhancement of detrainment
from the rising subdomain 4 (and entrainment into the sinking subdomain j) by evap-
oration of liquid water when ¢ is cloudy (saturated). In dry conditions, we expect M;; =
M;; = 0. Similar to Savre and Herzog (2019), the evaporative potential of the drier
subdomain j, is approximated here by an ad hoc function of the difference between the
relative humidities RH; and RH; of the subdomains, conditioned on the saturation of
subdomain i:

|max(RE, — R, 0)] 7, if RET; = 1,

Mji - PR
0, if RH; < 1.

(38)

Here, g is a nondimensional parameter that controls the magnitude of the evaporative
potential for a given relative humidity difference. With this closure, a saturated updraft
i detrains when the environment j = 0 is subsaturated, and the detrainment rate in-
creases with increasing subsaturation of the environment.

3.1.4 PFractional Entrainment and Detrainment Rates

Given the relationships (28) and (29) between the entrainment rates E;; and D;;
and their fractional counterparts €;; and ¢;;5, the fractional rates are

E;; i
€5 = ijDZ = TUZJI (Cﬁpij + CaMij>, (39)
and
D;; Nid
(51" = Y= 4 ED'i ii |- 40
1T mw; | ey <C J "‘CéMJ) (40)

The relationship F;; = Aj; required for scalar and mass conservation in terms of the

fractional rates implies
a;W;
(5]‘2‘ = - Gij-
a;w;j
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Figure 1. A comparison of the direct estimates (“LES,” solid lines) of fractional entrain-
ment and detrainment rates and their closures (“closure,” dashed lines) evaluated in LES of the
four convective test cases. Panels (a), (b), (c), and (d) show results for the DCBL, BOMEX,
ARM-SGP and TRMM LBA test cases. For each case, the left panel shows the mean profiles of
diagnosed entrainment, detrainment, and their net rate (solid lines), averaged over the last two
hours (hours 9-11 in ARM-SGP), compared with the closures in (39), (40), and (41) (dashed
lines). The right panel for each case shows profiles of relative humidity in the updraft (red) and

environment (green). The legend in (b) applies to all panels.
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The difference between the fractional rates, which is the source of pa;, is

J (CE(DM —Dj;) + cs(Mij — Mji))- (41)

The function D;; — D;; appearing here is a sigmoidal function between —1 and 1.
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Figure 2. Last two hours mean profiles of entrainment and detrainment in the SCM simu-
lations as in Figure 1. Dynamic entrainment rate e¢ (dashed-blue), dynamic detrainment rate §
(dashed-orange), net entrainment rate e-6 (dashed-black), and turbulent entrainment é (dashed-
green). The LES-diagnosed e-§, shown in Figure 1, is added here in solid-gray for comparison.
The corresponding relative humidities (RH) of the updraft (red) and environment (green) are

shown on the right-hand side.

For the situation where entrainment is only considered between an updraft ¢ and
the environment j = 0, and if the environmental mean vertical velocity wy and turbu-
lent kinetic energy €o are neglected, this closure reduces to a closure of the form b;/w?.
It is heuristically modulated by the nondimensional functions D;; and M;;, which ap-
proximate the relative magnitudes of entrainment and detrainment while accounting for
enhanced detrainment owing to evaporation of condensate.

3.2 Turbulent Entrainment

We assume that turbulent entrainment takes place only between the plumes (up-
drafts and downdrafts) and their environment, where second moments are not neglected.
Therefore, we assume it depends on the turbulent velocity scale of the environment, /g,
and the radial scale of a plume R;. The turbulent entrainment rate is related to the flux
across the subdomain boundary via

o A,y —
Eio(do — ¢i) = _paivi(?d)/u;",?m (42)
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where Ay, and V; are the updraft’s interface area and volume (see the derivation of (B10)).
We assume here that the updraft is cylindrical with a circular cross section, so that the
ratio between its interface area and its volume is A,,/V; = 2/R;. Following de Rooy
and Siebesma (2010); Asai and Kasahara (1967) and Kuo (1962) the outwards pointing
turbulent flux across the boundary of the i-th updraft, ¢'u;. ., is modelled by downgra-
dient eddy diffusion ~ ~ B ~

QS/U;«,,” ~ —Kip ¢0Ri bi = Ko (b(iYH:bz ]
Here Ko is the entrainment eddy diffusivity between the environment and the i-th sub-
domain. The cross-subdomain gradient is discretized using the difference in the mean
values of the two interacting subdomains and the radial scale of the updraft R;. The lat-
ter is written in terms of updraft height H; and an aspect ratio v as R; = vH;. The
updraft height H; is taken to be the maximal height at which a; > 0 in the previous
time step, but at least 100m to avoid division by zero in the initial stages of the simu-
lation. For the entrainment eddy diffusivity, we assume the form

Kio = ¢;Riv/eo, (44)

where R; is used as a mixing length and ¢; is a non-dimensional fitting parameter.

(43)

Combining equations (42)—(44), we obtain the turbulent entrainment rate

By = QPCliCti\/a = 2pa;c Veo

iCy 7 4
R’L Yy }[Z ( 5)

where ¢, = ¢;/7 is a fitting parameter that combines ¢; and y (Table 2). The middle
term in (45) shows that E’ij x 1/R;, in agreement with laboratory experiments of dry
plumes (Morton et al., 1956; Turner, 1963). It is also useful to define a fractional coun-
terpart for turbulent entrainment,

N EZJ _207\/5. (46)

4 Numerical Implementation

The model equations and closures are implemented in the single column model (SCM)
used in Tan et al. (2018), where a detailed description of the implementation of the ini-
tial and boundary conditions is given. The model solves for first moments of the prog-
nostic variables {a;, w;, 0., @ ;} in updrafts using (18), (19), and (20), respectively, and
for the grid mean variables {(¢;), (¢:)} using equations of the form of (25), in which pre-
scribed large-scale tendencies are applied as sources.

We consider a single updraft and its turbulent environment. The mean environ-
mental properties are computed diagnostically as the residual of updraft and grid-mean
quantities using (8) and (9). Prognostic equations for the second moments (6,%, ;% 6] 04/ o
€0) in the environment are solved using (22) and (23). The grid-scale second moments
are diagnosed from (10), using the EDMF assumption of neglecting second moments in
the updraft. Grid-scale third moments are diagnosed using (11), neglecting third mo-
ments in all individual subdomains. Thus, from a probability density function perspec-
tive, we are using a closure model that assumes a Gaussian environment and a delta dis-
tribution updraft (Lappen & Randall, 2001a).

The parameters we use in the entrainment and detrainment closures are shown in
Table 2. The parameters in this study and in Lopez-Gomez et al. (2020) were chosen se-
quentially: We first calibrated a subset of parameters associated with turbulent mixing
based on stable boundary layer simulations (Lopez-Gomez et al., 2020). We then searched
for a combination of parameters related to dry convection (c, ¢, cy) so that the EDMF

—17—



397

398

399

400

401

402

403

Height (km)

0 T T T T T \I T T T T
302 304 3 4 5 300 310 5 10 15
3_ -
10 .
£2- :
<
=) 51 1
£ 19 T
0 T T T T T T 0 T 1 T T
310 320 33 5 10 15 300 350 0 10
(6 (K) (gt} (9/kg) (6)) (K) {(g¢) (9/kg)

Figure 3. Comparison of SCM and LES for the last two hours (hours 9-11 in ARM-SGP) for
mean profiles of first moments (6;) and (g:). In all panels, color lines show SCM profiles and grey
lines represent the corresponding LES profiles. DCBL, BOMEX, ARM-SGP, and TRMM-LBA
are color-coded as blue, orange, green, and red. Solid, dashed and dotted color lines show SCM

results for 50 m, 100 m and 150 m resolutions, respectively.

scheme captures the DCBL and the sub-cloud layer in moist convective cases. Finally,
we optimized the moisture-related parameters (3, cs) based the EDMF scheme’s abil-
ity to capture cloud layer properties and the cloud top height.

The initial conditions, surface fluxes, and large-scale forcing are case specific. They
are taken from the papers describing the cases, are linearly interpolated to the model
resolution, and are implemented identically in the SCM and LES.

The SCM implementation of the EDMF scheme makes several assumptions because
the SCM does not solve for the density, pressure, or vertical velocity of the grid-mean.
In the SCM, it is assumed that (w) = 0 and p = pj, in the EDMF equations, and con-
sequently that p = pp in the denominators of the buoyancy definitions (15) and (16).
Furthermore, the grid-mean anelastic approximation requires the use of the reference pres-
sure (pp) in the ideal gas law (21) for consistency (Pauluis, 2008). The SCM is there-
fore fully anelastic, in contrast to the SGS anelastic approximation described in Appendix
C. Since (w) = 0, the balance in the (w) equation is reduced to:

T
)2 o) = 2 (W> ")

pn 0z Ph

thus removing from the subdomain equations the dependence on the grid-mean pressure.
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Figure 4. Same as Figure 3 but for the second moments: (0;6;) and (g; ¢f).

All SCM simulations use a uniform vertical resolution of 50 m, with results from
a resolution sensitivity test at 100 m and 150 m shown for the first three moments in the
grid. Other implementation details, such as how cloud properties are computed via nu-
merical quadrature over implied SGS distributions, are described in Lopez-Gomez et al.
(2020).

5 Large-Eddy Simulations and Diagnosis of EDMF Subdomains

To assess the performance of the extended EDMF scheme, we compared it with LES
in four convective test cases. We use PyCLES (Pressel et al., 2015), an anelastic LES
code with weighted essentially non-oscillatory (WENQO) numerics. We use an implicit
LES strategy, which uses the dissipation inherent to WENO schemes as the only subgrid-
scale dissipation. Such an implicit LES has been shown to outperform explicit SGS clo-
sures in simulations of low clouds (Pressel et al., 2017; Schneider et al., 2019). We use
passive tracers that decay in time to diagnose updrafts and their exchanges with the en-
vironment in the LES (see Appendix D).

Four standard convective test cases are considered here: dry convective boundary
layer, maritime shallow convection, continental shallow convection, and continental deep
convection.

1. The Dry Convective Boundary Layer (DCBL, blue lines in all figures) case is based

on Soares et al. (2004). In this case, convection develops through 8 hours from an
initially neutral profile below 1350 m (which is stable above it) with prescribed
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Figure 5. Same as Figure 3 but for the third moments (6;60;6;) and (g ¢f ¢f ). The DCBL
spike in the (g7 ¢;q;) profile (blue) has an amplitude of -1.5 (g% /kg®).

sensible and latent heat fluxes and negligible large scale winds. We use an isotropic
25 m resolution in a 6.4 x 6.4 km x 3.75 km domain.

. The marine shallow convection test case is based on the Barbados Oceanographic
and Meteorological Experiment (BOMEX, orange lines) described in Holland and
Rasmusson (1973). In this case, large-scale subsidence drying and warming and

fixed surface fluxes are prescribed, and subtropical shallow cumulus convection evolves
over 6 hours, with a quasi-steady state maintained in the last 3 hours (A. P. Siebesma

et al., 2003). We use an isotropic 40 m resolution in a 6.4 km x 6.4 km x 3 km
km domain.

. The continental shallow convection test case is based on the Atmospheric Radi-
ation Measurement Program at the United States’ Southern Great Plains (ARM-
SGP, green lines) described in Brown et al. (2002). This case exhibits a diurnal
cycle of the surface fluxes, with cumulus convection first developing and then de-
caying between 5:30 and 20:00 local time. We use 100 m x 100 m x40 m resolu-
tion in a 25 km x 25 km X 4 km domain. The large surface fluxes of latent and
sensible heat erode the initial inversion as convection penetrates into the free at-
mosphere (Brown et al., 2002).

. The continental deep convection test case is based on the Large-scale Biosphere-
Atmosphere experiment with data from the Tropical Rainfall Measurement Mis-
sion (TRMM-LBA, red lines) observed on 23 February 1999 in Brazil (Grabowski
et al., 2006). In this case, prescribed time-varying surface fluxes and radiative cool-
ing profiles force a diurnal cycle, during which shallow convection transitions into
deep convection in the 6 hours between 7:30 and 13:30 local time. We use 200 m x
200 m x50 m resolution in a 51.2 km x51.2 km x 24 km domain. No subsidence
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drying or warming are prescribed in this case. In our simulations of the TRMM-
LBA case, microphysical rain processes are modelled by a simple warm-rain cut-
off scheme that removes liquid water once it is 2% supersaturated. This simple
scheme is implemented in the LES for a direct comparison with the same simple
microphysics scheme in SCM. In future work, we will implement a more realistic
microphysics scheme.

The different cases span a wide range of conditions that allow us to examine the
different components of the unified entrainment and detrainment formulation presented
in section 3. The DCBL case allows us to examine the dry formulations for dynamic and
turbulent entrainment irrespective of the moisture related detrainment. The differences
in environmental humidity between the shallow and deep convection cases allows us to
test the moisture-dependent detrainment closure. For instance, we found the bulk de-
trainment value used in previous parameterization evaluated with BOMEX (A. Siebesma
& Cuijpers, 1995; Tan et al., 2018) to be excessive for TRMM-LBA.

The diagnosis of the direct estimates of entrainment and detrainment and compar-
ison with the closures (39) and (40) relies on decaying tracers with a surface source, which
uniquely identify each LES grid box as either updraft or environment. Here we use the
tracer scheme described in Couvreux et al. (2010), which labels a grid cell as updraft if
its vertical velocity, tracer concentration, and liquid water specific humidity (above cloud
base) exceed given thresholds. The net of entrainment minus detrainment [right-hand
side of (18)] is diagnosed using the area and vertical velocity of updrafts identified with
the help of the tracer scheme. Fractional entrainment is diagnosed based on an advec-
tive form of the scalar equation, see Eq. (D1). Further information on the diagnosis is
found in Appendix D.

6 Results

A comparison of the closures for the fractional turbulent and dynamic entrainment
and detrainment rates with direct estimates of these terms from LES is shown in Fig-
ure 1. In this comparison, the profiles of the EDMF closures are based on diagnosing all
EDMF components (area fractions, first and second moments) from LES and using those
in the EDMF closures described in Section 3. The profiles of the closures for entrainment
and detrainment are similar to the direct estimates from LES. The role of the environ-
mental moisture deficit in enhancing detrainment in the cloud layer is consistent with
the directly diagnosed detrainment in ARM-SGP, in which convection penetrates into
a dry layer with RH = 50%.

When implemented in the SCM, these closures perform in a similar manner (Fig-
ure 2). Dynamic entrainment prevails in the sub-cloud layer while dynamic detrainment
prevails in the cloud layer, owing to the large environmental moisture deficit. The value
of e—94 predicted by the closures in the EDMF scheme is in agreement with direct es-
timates of this value from LES (solid gray lines). Turbulent entrainment is about half
the dynamic entrainment in the boundary layer and vanishes above it. A discrepancy
between the SCM and LES is found between the entrainment and detrainment profiles
for the DCBL case. The LES updrafts detrain from mid levels and upward, whereas the
SCM updrafts detrain mostly at their tops. This could indicate of a downside of the cur-
rent closure that uses the subdomain mean buoyancy and does not detrain from buoy-
ant updrafts. A more sophisticated scheme, in which entrainment dependents on second
moments, could improve the performance at the cost of computing second moment in
all subdomains.

We now turn to compare the performance of the EDMF scheme with LES. First,
second, and third moments of §; and ¢; are compared in Figures 3, 4 and 5. These show
overall good matches between the SCM and LES, with a few notable mismatches. For
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example, in first moments in the sub-cloud layer in the ARM-SGP case, at cloud top in
the BOMEX case, and at the top of the DCBL; in second moments ((91*2)) throughout
the DCBL; and in the third moments at the overshoots. Moreover, mismatches in sign
are seen for <01*3> in SCM simulations of TRMM-LBA at mid levels, and for (¢ ) at the
top of the DCBL. The sensitivity test at 100 m (dashed color lines) and 150 m (dotted
color lines) resolution in these figures shows that these results are generally robust to

the vertical resolutions expected in the host model.

The grid-mean SGS fluxes, whose divergence is a source in the host model equa-
tions, are shown in Figure 6. We find good agreement in the fluxes except for (w*6;) in
TRMM-LBA at mid levels, where the SCM shows a strongly positive flux while the LES
has a negligible flux there. The ED and MF components of the SCM fluxes show that
the ED components (dotted) is limited to the boundary layer where €y is non negligi-
ble and the MF component (dashed) dominates above it, as expected.
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Figure 6. Solid lines show a comparison of the vertical fluxes (w*6;) and (w”g;) in the grid

with similar color coding of as in Figure 3. Dotted and dashed lines show in addition the SCM

diffusive flux (ED) and massflux (MF) components, respectively. The SCM vertical resolution in

this figure is 50 m.

The comparison of updraft and cloud properties in Figure 7 shows good agreement
with LES above cloud base. Below cloud base and in the DCBL, large disagreements in
the mass flux and updraft fractions are found. However, in the boundary layer, the di-
agnosis of updrafts in the LES can be misleading because lateral turbulent mixing makes
the distinction between updrafts and their environment ambiguous. We did not attempt
to implement a more sophisticated scheme, such as (Efstathiou et al., 2020) in this work.
However, the key predictions of the EDMF scheme (the SGS vertical fluxes and the mean
profiles on the host model grid) are in good agreement with the LES (Figure 6). This
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Figure 7. Mean profiles of cloud properties over the last two hours (hours 9-11 in ARM-
SGP). Top to bottom rows correspond to DCBL, BOMEX, ARM-SGP. and TRMM-LBA, with
SCM following the color-coding in Figure 3 and corresponding LES in gray. Left to right columns
correspond to updraft massflux, updraft fraction (dashed) and cloud fraction (solid), updraft

vertical velocity and liquid water specific humidity, respectively.

implies that the net of ED and MF effects in the SCM reproduces the well-mixed bound-
ary layer, even though the decomposition into updrafts and environment may not be ex-
act.

Diurnal cycles of shallow and deep convection are shown in Figure 8. The onset
of convection in the SCM is found to be about half an hour delayed compared with the
LES, while cloud top height is in good agreement between the models. In the decay stage
in the ARM-SGP case, the cloud in the SCM shuts off abruptly, unlike the gradual de-
cline in the LES. This may result from the EDMF assumption that neglects variance in
the (single) updraft, which cannot cross cloud base when its buoyancy right below cloud
base is too low. Good agreement is found in the liquid water path (LWP) between the
SCM and the LES in both cases. In the TRMM-LBA case, this agreement includes the
effect of precipitation on the column integrated ¢;. The precipitation sink is used to com-
pute rain rates in the cutoff microphysics scheme as the vertically integrated amount of
¢: removed at a model time step per unit area. The EDMF rain rates peak at nearly twice
their LES counterparts in the TRMM-LBA case (Figure 9). This overestimation is con-
sistent with the overestimation of wypq (Figure 7). Tuning the maximum supersatura-
tion in the cutoff microphysics could improve both the vertical velocity and the rain rates,
although this was not explored here. The coarse-graining of the convective plumes into
a single updraft in the EDMF scheme may indicate that a different supersaturation should
be applied in the SCM compared with the LES.
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Figure 8. Diurnal cycle in the TRMM-LBA case (left column) and in the ARM-SGP

case (right column). Contours show updraft vertical velocity in the LES (first row) and

SCM (second row). Contours levels are at (—2,—1,...,10) m s~* for TRMM-LBA and at
(0.5,0,...,4.5) m s~* for ARM-SGP. The third row shows the liquid water path (LWP) in the

SCM (green) and LES (gray). The bottom row shows the surface latent flux (blue) and sensible
heat flux (red).

7 Discussions and Conclusions

We have presented entrainment and detrainment closures that allow the extended
EDMF scheme to simulate boundary layer turbulence, shallow convection, and deep con-
vection, all within a unified physical framework. The results demonstrate the potential
of the extended EDMF scheme to serve as a unified parameterization for all SGS tur-
bulent and convective motions in climate models (other SGS motions such as gravity waves
require additional parameterizations). The choice of parameters used to produce these
results is uniform across all cases, as well as across all cases shown in Lopez-Gomez et
al. (2020). We view these results as a proof of concept, which we will improve further
using automated model calibration techniques and a larger LES data set in the future.
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Figure 9. A comparison of the rain rates in the TRMM-LBA case between the SCM (green)
and LES (gray).

The dynamic entrainment/detrainment closures are based on a combination of a
b/w? scaling and physically motivated non-dimensional functions, which can in princi-
ple be learnt from data. At the moment, these functions are based on arguments from
buoyancy sorting and relative humidity differences between clouds and their environment.
The addition of turbulent entrainment, which only affects scalars, allows us to regulate
the mass flux by reducing the vertical velocity without increasing the area fraction be-
low cloud base, where detrainment is negligible.

The extended EDMF scheme produces good agreement with LES in key proper-
ties needed for climate modeling. The successful simulation of high-order moments and
vertical fluxes justifies the EDMF assumption of a negligible contribution from updraft
covariance to the grid scale covariance. It would be straightforward to include multiple
updrafts (R. A. J. Neggers et al., 2002; R. Neggers, 2012; Suselj et al., 2012), which can
further improve the results. Using multiple updrafts would also open up the opportu-
nity to include stochastic components either in the updrafts’ boundary conditions or in
the entrainment and detrainment closures (Suselj et al., 2013, 2014; Romps, 2016; Suselj
et al., 2019a) , with the nonlinearity of the model ensuring that the stochastic effect will
not average out in the grid mean. Nonetheless, the use of multiple updrafts results in
a higher computational overhead of the parameterization in climate simulations. This
added cost may be ameliorated harnessing the power of parallel architectures.

There is a growing interest in using artificial neural networks as SGS models for
turbulence and convection (e.g., Rasp et al., 2018; O’Gorman & Dwyer, 2018). It is worth
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noting that the extended EDMF scheme with multiple up- and downdrafts has a net-
work structure: the subdomains play the role of network nodes, which interact through
sigmoidal activation functions (entrainment/detrainment). Each node has memory (ex-
plicitly time-dependent terms), somewhat akin to long short-term memory (LSTM) net-
works (Hochreiter & Schmidhuber, 1997). Unlike artificial neural networks whose archi-
tecture is not tailor-made for the physical problem at hand, the architecture of the ex-
tended EDMF scheme ensures physical realizability and conservation of energy. Like for
neural networks, the activation functions and other parameters in the extended EDMF
scheme can be learnt from data. Our results, which required adjustment of only a hand-
ful of parameters, show that only a small fraction of the data typically required to train
neural networks is needed to calibrate the extended EDMF scheme.

The explicitly time-dependent nature of the extended EDMF scheme makes it well
suited to operate across a wide range of GCM resolutions and under time varying large-
scale conditions that may include diurnal cycles and variability on even shorter timescales
(Tan et al., 2018).

Appendix A Computation of Central Second and Third Moments

The second moment of SGS variations is given in terms of the EDMF decompo-
sition by applying the Reynolds decomposition to the product of two scalars,

(@™™) = (P9) — (D) (¥), (A1)
and applying the subdomain decomposition to the first term on right-hand side of (A1):
(¢ 07) =D aidi + Y aidii — (d)(). (A2)
i>0 i>0

Multiplying the last term on the right-hand side of (A2) by (8) (which equals unity), the
entire right-hand side of this equation yields the first equality in (10). Alternatively, re-
placing the grid-mean scalars (¢) and (¢) in (A2) by (9) and combining the summations
of mean terms yields:

(@ 97) =D adi + Y > aia;di(vh —iy). (A3)
i>0 i>0 j>0

From here, the second equality in (10) is derived by splitting the second summation in
(A3) into two identical terms with a factor 1/2, replacing the role of i and j in one of
them and summing them back together.

Similarly, the third moment of SGS variations is given by considering the product
of three scalars as a single variable,

(prw) =" ai(Pw);. (Ad)

20
The mean product of three joint scalars can be decomposed as
(ppw) = (" w") + (9) (P w™) + () (" w™) + (w) (" ¢") + (#) (V) (w),  (A5)
and in the ¢-th subdomain it is
(dvw)i = ¢ibjw] + ¢bjw] + idfw] + D]} + Pitbid;. (A6)

Substituting (A5) and (A6) into (A4) yields (11). Finally, the centered third moment
is computed using the domain averages of the scalar, its square, and its cube as

(@"¢"¢") = (¢ = ())°) = (¢°) — 3(¢)(¢9) + 2(0)°. (A7)
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Appendix B Derivation of Subdomain First and Second Moment Equa-
tions

Here we derive the prognostic equations for the subdomain area fraction a;, the subdomain-
mean, and the subdomain covariance for any pair of scalars ¢, . In this derivation, we
assume p; = {p) anywhere but in the buoyancy term, much like in the anelastic model.
This “SGS anelastic” assumption removes subgrid-scale sound waves and circumvents
the need to define a subdomain pressure (Thuburn et al., 2019). The molecular viscos-
ity and diffusivity are both neglected in the first moment equations, but are reintroduced
in the second moment equations in order to account for the dissipation of covariance at
the smallest scales.

The subdomain-averaged equations are derived by averaging the governing equa-
tions in flux form over the subdomain €2;. For scalar ¢:

/ @dV + V- (ppu)dV = / pS,dV. (B1)
Q. O Qi (1) Q1)

Without loss of generality, the subdomain boundary 0€2; can be expressed as the union
0Q; = 00JU00NY, where 9QY = 0Q,NOOr is the part of the subdomain €; boundary

that coincides with the grid-box Q1 boundary. The domain and subdomain boundaries
are related through Y, 0QY = Qp. The subgrid boundary 9Q;7 is a free moving sur-

face with velocity up, while boundary 0 is fixed. Using the Reynolds transport the-
orem for the transient term, the Gauss-Ostrogradsky theorem for the divergence, and
rearranging the surface integrals yields

9 ppdV —|—/ pou-ndS = —/ pop(u —up) - ndS +/ pSsdV,  (B2)
ot Jo,4 a9¢ 8929 (1) Qi(t)

where n is the outwards pointing unit vector normal to the surface over which the in-

tegration is performed. The first term on the right-hand side is the flux out of subdo-

main (); into other subdomains within the same grid box, and the second term on the

left-hand side is the flux out of subdomain €2; to a neighboring grid-box. The total grid-

scale divergence equals the sum of fluxes from all subdomains across the grid box,

V- [ (ppu)dV = /Q V- (ppu)dV =" /8 . pou - ndS, (B3)

Qr i>0

where the commutativity of the gradient and the volume average is exact for uniform
grids and results in a small error otherwise (Fureby & Tabor, 1997). Using the domain
decomposition in (9), the leftmost term in (B3) can be written in terms of the sum of
the subdomain-mean values,

SV i@ =3 [ pou-nds (B4)

i>0 i>0

where V; is the volume of subdomain €;, and (B4) holds generally. Note that the diver-
gence in (B4) acts on the grid scale. The diagnosis of the contribution of each subdo-
main to the grid-mean divergence requires an assumption regarding the fraction of 0Qp
covered by each 9QY. Here, we assume that A = a; A%, where AY and A% are the ar-
eas of surfaces 907 and dQr, respectively. We further assume that for each €2; the av-
erage over 002 equals the subdomain mean. From this it follows that

[ pomendS = V- [0V (@) = V- [ (605, + T (B5)

Note that (B5) cannot be obtained from the divergence theorem, since 99 is not a closed
surface. Using (B5) and dividing by the grid-box volume Vr, we can rewrite (B2) as

0 (/)ai@)

_ _ 1 _
— V- lpas(Gi + T < - [ poundS+puSs, (BO)
ot 0959 (¢)

Vr
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where u,, = u—uy. Since the vertical extent of the volumes is fixed at the model ver-
tical resolution, V;/Vr = (4;)/Ar = a;, with a; as the area fraction.

The net entrainment flux can be written in terms of a contribution from net mass
entrainment and a contribution due to the subfilter-scale flux of ¢:

1 A . —
v | pourmds = 2 pdi, + o) (B7)
Vr 4039 (t) Vr '~ 2

dynamical  turbulent

—

Here, (-) represents the average over interface 929, u,,, = u,-n, and A, is the total

area of surface 9€2;7. The two terms on the right-hand side of (B7) are denoted as net
dynamical and turbulent entrainment fluxes, respectively. The net dynamical entrain-
ment flux is taken to be the sum of two terms. For mass, it is written as

AS ——
- VTg (plrn) = Z (Bij — Aij), (B8)
J#i
and for a scalar as A
*7‘/39 (pPtrn) = Z (Bijdj — Aijdi), (B9)
J#i

where the entrainment E;; and the detrainment A;; are positive semidefinite. We make
the upwind approximation that the exchanged air mass carries with it the property of
the subdomain from which it emanates, as is common in parameterizations (de Rooy et
al., 2013).

The turbulent entrainment flux does not involve mass exchange between subdo-
mains, and it is modeled as shown in Section 3.2:
A — L
_VisTg(p ) =Y Ei(d; — éi). (B10)
J#i

Here, E’ij is the turbulent entrainment rate from the j-th subdomain into the i-th sub-
domain. Using (B9) and (B10), decomposing the divergence term into vertical and hor-
izontal components, and applying the eddy diffusivity assumption for the vertical tur-
bulent flux, (B6) is written in the form (20). By setting ¢ = 1 in (20), the mass con-
tinuity (i.e., area fraction) equation (18) follows.

The second-moment equations can be derived by first writing (B6) for the prod-
uct of two scalars ¢1p. Using (B7), and decomposing the divergence term into vertical
and horizontal components, we obtain

A(paidib;)
ot

V- (pa ) i) + L0000 | Opei(Oii )

As T — T~ =
= 2 (b0t + p(@0) W, ) + paiSpp. (BLL)
T

The subdomain covariance equation can then be obtained from (20), (18), and (B11) as

Apaipiyi) _ Opaidits) _ - Apaids) - dpaiy) | - - d(pai)
ot N ot — i ot bi 5 + Pith; 2 (B12)
which leads to
A pa; P! L —
% + Vi - (pai{up)@il)) + W _
8(palm) ﬁad}l ﬁaéz As 1ol T Narh (e DNaiT
Tipazwi(bi 0z 7pa1wi i 0z 7pV7Tg <¢) w w r,n*(wsz)ur,nq& 7(¢17¢))ur,nw )

Agg [ o = S —_—
= P2 (& = )& = 60) Ftr n8'') — paiDogyrs + pas(S, 07 + 5, .. (BI3)
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Here, terms of the form (¢; — ﬁ)u’r/;ﬁ’ are written as ﬂfu’r/n?b’ to ensure conservation
of second moments on the host model grid. The last term in (B13) follows from (B12),
given that

Seu,i = GiSy,i + iSp. (B14)

The dissipation of covariance is represented by Dy ;. The vertical subgrid covari-
ance flux is written as downgradient and proportional to the eddy diffusivity Ky i

d(paiwigiip; 9 9 (7
ottt — 2 oaskion (3777) | (B15)

Substituting (B9), (B10), and (B15) in (B13) we obtain (22). The extended EDMF
scheme only makes use of covariance equations for thermodynamic variables 6; and ¢;
and for the turbulence kinetic energy. Subgrid-scale covariances between thermodynamic
variable and momentum are modeled diffusively following (14).

Appendix C Energy conserving form of the SGS anelastic approxima-
tion

The SGS anelastic approximation amounts to assuming p; = (p) everywhere ex-
cept in the gravity term in the vertical momentum equation. Following Pauluis (2008),
the energy-conserving form for the SGS anelastic approximation can be derived from a
linear expansion of the density about its grid-mean value, considering independently the
changes with respect to pressure and with respect to temperature and humidity. Lin-
earizing the density about (p), we write:

pi(01,isGrir Di) = (p) + 0pi(O14, G0 (D)) + <8p> (Pi — (p))- (C1)
01,q¢

Substituting (C1) in (15), the subdomain buoyancy is written as

= opitlp)—pn g [Op _
b = P ( ap)()hqt(pz (). (C2)
b

~b.:
~0;

SGS sound-waves

By using the first term on the right-hand side as the effective subdomain buoyancy, the
SGS sound waves represented by the second term are neglected. The subdomain per-
turbation pressure gradient is written using the SGS anelastic approximation as

R0 A O O - 1T Y A W SR TO R TR
(p) 0z 9z \ (p) (p)? 0=z 9z \ {p) (p)? Opn 0z
An energy conserving form of this “SGS anelastic” approximation (i.e., with (p) inside
the pressure gradient term) is obtained by a mutual cancellation between the last terms

on the right-hand sides of (C3) and (C2). This cancellation of terms is obtained by ap-
plying the hydrostatic balance and assuming

b= () Bi—pn i)
Ph op 0
qt

{(p)  Opn’

This derivation differs from that in Pauluis (2008) by the fact that the grid-mean val-
ues are not necessarily hydrostatic. By setting the grid-mean value to the reference value
for both pressure and density, equation (6) in Pauluis (2008) is recovered. Using these
assumptions in the subdomain vertical velocity equation provides the justification for the
energy conserving form of the pressure term in (19).
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Appendix D Entrainment and Detrainment diagnosis from LES

The direct estimation of entrainment and detrainment is based on calculating e—
d from (18), while e+¢€ can be independently estimated from the advective form of the
equation for g ;,

0Gri  _ O0Gr; 1 O(pawiq; ;) XN _
ot "Wy, T pa; 0z = w; ; (€ij + &) (@5 — Qti) + Sau.- (D1)

When considering the decomposition into one updraft and its environment, this reduces

to
1 Oqt,i Gt ; 1 9(pia;wigy ;)
€i0 + €0 = L+ 5. D2
20 10 wi((jt,o — (jt,i) ( 8t 1 82’ ﬁiai 32 qt,i ( )
Note that the vertical turbulent flux is added in this diagnostic equation for the updrafts,
even though it is neglected in updrafts in the EDMF scheme. It was found that with-

out this vertical turbulent flux in the diagnosis, the estimated €;q is much more likely

to result in unphysical (i.e., negative) values.

Appendix E Derivation of entrainment function from conditions on
the mass-flux and velocity ratio at cloud top

The vertical mass flux is defined as pa;w;. As 2 — 2iop, the height at which the
area fraction vanishes, the ratio between the mass-flux and the vertical velocity should

be maintained:
. paiw; | . d(pa;w;)/0z | .
Bm[ W ]_Eml dw; o= | (E1)

Here, we used L’Hopital’s rule. Using the steady form of (18) in the numerator and the
advective form of (19) in the denominator, we obtain:

i pa;w; (€0 — dio) _
1m = = — " - _ = Pai,
#=zp | [b; — (P /p)/02] /Wi — (€0 + éio) (Wi — o)

where the turbulent transport inside the updraft has been neglected. This equation im-

plies: T
51‘0:62’0(2_1;;2)“"@0(1_1;2)—%[bi—i(;)1. (E3)

If we further assume that in this limit, e+ € < J, the above equation provides a func-
tional form for ¢ similar to that obtained by Romps (2016).

(E2)
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