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Energy dissipation in polymeric composite metamaterials requires special mathematical
models owing to the viscoelastic nature of their constituents, namely, the polymeric
matrix, bonding agent, and local resonators. Unlike traditional composites, viscoelastic
metamaterials possess a unique ability to exhibit strong wave attenuation while retaining
high stiffness as a result of the “metadamping” phenomenon attributed to local resonances.
The objective of this work is to investigate viscoelastic metadamping in one-dimensional
multibandgap metamaterials by combining the linear hereditary theory of viscoelasticity
with the Floquet-Bloch theory of wave propagation in infinite elastic media. Important dis-
tinctions between metamaterial and phononic unit cell models are explained based on the
free wave approach with wavenumber-eliminated damping-frequency band structures. The
developed model enables viscoelastic metadamping to be investigated by varying two inde-
pendent relaxation parameters describing the viscoelasticity level in the host structure and
the integrated resonators. The dispersion mechanics within high damping regimes and the
effects of boundary conditions on the damped response are detailed. The results reveal that
in a multiresonator cell, strategic damping placement in the individual resonators plays a
profound role in shaping intermediate dispersion branches and dictating the primary and
secondary frequency regions of interest, within which attenuation is most required.
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1 Introduction
The study of periodic systems has recently matured and evolved

into a research field that offers a versatile platform for the synthesis
of mechanical structures with properties that go beyond traditional
and natural limits [1]. Specifically, in the domain of acoustic and
elastic wave propagation, periodic architectures such as phononic
crystals (PCs) and locally resonant metamaterials (LRMs) have
been shown to harbor unique and unprecedented wave dispersion
characteristics, which culminate in frequency bandgaps, i.e.,
extended ranges of forbidden wave propagation, as well as interest-
ing directional filtering and energy guidance capabilities [2–6].Most
recently, the tailoring of such PCs and LRMs, and variations thereof,
via active inserts [7,8], topology optimization [9], symmetry break-
age [10], fluid-coupling [11], or selective control of material proper-
ties in time and space [12] have given rise to unconventional patterns
related to insulation [13], atomic and nanoscale heat transfer [14,15],
and wave reciprocity [16,17], which uniquely position such periodic
systems to fundamentally alter and transform awide range of vibroa-
coustic engineering applications.
Although the hallmark features of PCs and LRMs (e.g., frequency

bandgaps) take place in the nondissipative form of such systems, the
effect of damping cannot be ignored [18,19]. Practically speaking,
almost all composite and composite-like structures exhibit a
certain degree of viscous or viscoelastic damping, which interferes

with and alters their dispersion mechanics and dynamic response.
More importantly, owing to natural trends and coupling of mechan-
ical properties (often depicted in Ashby charts of commonly avail-
able materials), high dissipation levels are usually associated with
softer materials, posing serious questions about their ability to func-
tion in certain environments and heavy applications. Over the past
decade, LRMs—where the interplay between a host structure and
periodic resonant inclusions instigates subwavelength and size-
independent bandgaps—have jumped to the forefront of material
candidates that can be tailored to exhibit strong attenuation while
retaining high stiffness. The ability of LRMs to provide this
elusive combination stems from the concept of “damping emer-
gence,” i.e., the ability of an internal structure of a material to
whip up its dissipation performance compared to other materials
with the same damping composition and equivalent static properties.
The latter notion is often referred to as metadamping, a term coined
by Hussein and Frazier who first conceptualized this problem in
canonical spring-mass lattices [20]. The phenomenon has since
spurted a number of efforts, which have examined metadamping in
the context of viscoelasticmetamaterials [21], nontraditional crystals
[22], flexural systems [23], as well as fractional calculus [24]. Exper-
imental evidence of positive and negative metadamping (i.e.,
enhanced and reduced dissipation) in continuous flexural systems
was recently presented [25]. A comprehensive overview of meta-
damping in elastic metamaterials can be found in the study by
Bacquet et al. [26].
Fiber-reinforced polymers (FRPs) are a class of composite mate-

rials characterized by high stiffness and strength, low density, as
well as tunable damping properties that differ from traditional engi-
neering materials. The driving mechanism of energy dissipation in
FRPs stems from the polymeric matrix and bonding agents that
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exhibit viscoelastic features. By increasing the volume fraction of
the matrix and/or bonding agents, damping will increase at the
expense of stiffness and strength. Thermosets (such as epoxy) are
generally preferred over thermoplastics because they exhibit
higher stiffness and better adhesion properties balanced with
eminent (yet lower) damping characteristics [27,28]. Although con-
sidered the main contributor to damping, the matrix is not the only
source of energy dissipation in composite materials. Several other
sources include [29,30] (1) damping in the fibers, (2) damping
due to interphase, (3) damping due to damage, (4) thermoelastic
damping, and (5) viscoplastic damping. The current literature
contains numerous methods for predicting composite damping,
ranging from analytical and computational models [31–34] to
experimental characterization techniques [35–38]. When FRP is
augmented with viscoelastic resonant inclusions, the resultant vis-
coelastic metamaterial attains superior attenuation levels combined
with a high strength-to-mass ratio. The effects of dissipation in vis-
coelastic metamaterials have been studied, for example, using
Kelvin–Voigt and generalized Maxwell models [39] and in the
context of the dynamic homogenization theory [40].
Motivated by the previous expectations and the fact that LRMs

can operate efficiently only within stringent damping limits or con-
straints, this article is concerned with the modeling and analysis of
the metadamping phenomenon associated with multiresonator vis-
coelastic metamaterials. To this end, the free wave approach is
used to investigate the dispersion mechanics of a graphite-epoxy
metamaterial beam both in the infinite and finite medium configura-
tions. This article is organized as follows: following Sec. 1, the
finite element formulation for computing viscoelastic band struc-
tures is detailed along with numerical validations against commonly
used viscously damped models. Section 3, which constitutes the
greater part of this effort, focuses on elucidating the metadamping
phenomenon encountered in the damping-frequency band struc-
tures across independent configurations of one-dimensional (1D)
composites comprising two viscoelastic resonators. Within the anal-
yses, the mechanics of dispersion in high damping regimes and the
effects of physical boundary conditions on the beam’s damped
response are discussed. The obtained results will then be general-
ized for composite metamaterials with multiple resonators.
Finally, the conclusions of the current work are summarized.

2 Viscoelastic Band Structure Computation
We start by presenting a comprehensive mathematical framework

for computing damped band structures (also known as dispersion
diagrams) of viscoelastic and viscous 1D periodic structures
based on the free wave approach. Within the analysis, important
distinctions between (1) metamaterial and (2) phononic unit cell
models are explained in details.

2.1 Viscous DampingModel. Consider a free unit cell of a 1D
infinitely periodic structure with a displacement field denoted by the
vector u. According to Bloch’s theorem, such wave field vector can
be expressed as follows:

u(x, κ, t) = ũ(x, κ)e jκx+λt (1)

satisfying the periodicity constraint ũ(x, κ, t) = ũ(x + a, κ, t), where
ũ is the periodic amplitude vector, a represents the spatial periodic-
ity of the unit cell in the x-direction, κ is the wavenumber, and λ is a
complex frequency function that permits wave attenuation in time.
Applying the periodicity constraint, Eq. (1) can be rewritten as a
relationship between the unit cell boundaries such that

u(x + a, κ, t) = u(x, κ, t)e jκa (2)

In the context of the finite element method (FEM), u is discre-
tized into generalized displacements satisfying the motion equations
given byMÜ + DU̇ +KU = 0, where U is the free generalized dis-
placements vector and M, D, and K denote the unit cell mass,

viscous damping, and stiffness matrices, respectively. For discre-
tized models, Eq. (2) is equivalent to a set of equations relating
the generalized displacements of the unit cells’ right boundary to

their left counterparts. This implies that U = UL UI UR

[ ]T
,

which contains the full set of rearranged degrees-of-freedom

(DOFs), can be expressed as U = PŨ, where Ũ = UL UI

[ ]T
is

the periodic generalized displacements vector that contains the
minimal set of DOFs (including only internal and left boundary dis-
placements and rotations), and P is the Bloch periodicity matrix,
which is expressed as follows:

P(κ) =
I 0
0 I
0 Ie jκa

⎡
⎣

⎤
⎦ (3)

where I and 0 are identity and null matrices of proper sizes, respec-
tively. Consequently, unit cell equations can be written in terms of
Ũ as follows:

M̃ ¨̃U + D̃ ˙̃U + K̃Ũ = 0 (4)

where the reduced matrices M̃, D̃, and K̃ can be computed via

M̃ = P†MP (5a)

D̃ = P†DP (5b)

K̃ = P†KP (5c)

where P† being the Hermitian transpose of the Bloch periodicity
matrix. Equation (4) can be recast into a state-space transformation

by introducing the state vector Ỹ = [ ˙̃U Ũ]T , yielding

Ã ˙̃Y + B̃Ỹ = 0 (6)

where

Ã = 0 M̃
M̃ D̃

[ ]
and B̃ = −M̃ 0

0 K̃

[ ]
(7)

From Eq. (6), the following linear eigenvalue problem

(λÃ + B̃)�Y = 0 (8)

is obtained by assuming a solution Ỹ = �Yeλt , which yields complex
eigenvalues of the form λ(κ)=−ζd (κ)ωr(κ)± jωd (κ), where

ωd(κ) = Im[λ(κ)] and ζd(κ) = −
Re[λ(κ)]
|λ(κ)| (9)

where ωr, ωd, and ζd are the wavenumber-dependent undamped fre-
quency, damped frequency, and damping ratio, respectively. While
this research effort is primarily concerned with the analysis of vis-
coelastic dissipation, the above formulation for viscous wave prop-
agation is included as a benchmark against which the viscoelastic
behavior will be evaluated as outlined in Sec. 2.3.

2.2 Viscoelastic Damping Model. For a viscoelastic material,
damping behavior is classically modeled using the linear hereditary
theory where the nonviscous damping forces depend on the history
of generalized velocities via convolution integrals over kernel func-
tions [41]. In this case, the motion of a free unit cell representing an
infinitely periodic viscoelastic medium can be generally described
by integro-differential equations of the form:

M̃ ¨̃U(t) +
∫t
0
G(t − τ) ˙̃U(τ)dτ + K̃Ũ(t) = 0 (10)

where G(t− τ) is a matrix of damping kernel functions (also known
as hereditary functions) with a series of parameters that are typically
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identified on master curves. Many viscoelastic models have been
developed and applied to replicate the frequency-dependent viscoe-
lastic material properties including, but not limited to, the Golla–
Hughes–McTavish [42], the anelastic displacement field [43], and
the exponential damping models [44]. Some of the kernel functions
commonly known in the literature are presented in Table 1. In this
article, the exponential damping model is implemented due to its
mathematical convenience for modeling complex viscoelastic struc-
tures incorporating combination of damping mechanisms arising
from the host structure and/or local resonators. The model also
enables us to tune the relaxation parameters as needed to replicate
the behavior of (a) a purely elastic material, (b) a purely viscous
material, or (c) a viscoelastic material that provides a critical valida-
tion mechanism of the results presented here.
The exponential damping model is associated with a matrix of

damping kernel functions of the following form:

G(t) =
∑n
k=1

μke
−μk tD̃k (11)

where μk are known as the relaxation parameters and n is the
number of parameters required to replicate the damping behavior
of a given viscoelastic material. Substituting Eq. (11) into (10)
yields

M̃ ¨̃U(t) +
∑n
k=1

D̃k

[∫t
0
μke

−μk(t−τ) ˙̃U(τ)dτ

]
+ K̃Ũ(t) = 0 (12)

First, we introduce a set of internal variables Z̃k , such that

Z̃k(t) =
∫t
0
μke

−μk (t−τ) ˙̃U(τ)dτ (13)

M̃ ¨̃U(t) +
∑n
k=1

D̃kZ̃k(t) + K̃Ũ(t) = 0 (14)

Second, Eq. (13) is differentiated with respect to time, and the Leib-
niz’s integral rule is applied to the right-hand side of the equation,
yielding

˙̃Zk(t) = −
∫t
0
μ2ke

−μk (t−τ) ˙̃U(τ)dτ + μk
˙̃U(t) = μk

[
˙̃U(t) − Z̃k(t)

]
(15)

Premultiplying Eq. (15) by D̃k and dividing by μ2k leads to the fol-
lowing viscoelastic dynamical equations of motion:

M̃ ¨̃U +
∑n
k=1

D̃k

[
˙̃U −

1
μk

˙̃Zk

]
+ K̃Ũ = 0 (16a)

−
1
μk

D̃k
˙̃U +

1

μ2k
D̃k

˙̃Zk = −
1
μk

D̃kZ̃k (16b)

To formulate a state-space problem equivalent to Eq. (6), we

define a new state vector Ỹ = ˙̃U Ũ Z̃1 Z̃2 · · · Z̃n

[ ]T
,

which leads to the following matrices:

Ã =

0 M̃ 0 0 · · · 0

M̃
∑n
k=1

D̃k
−1
μ1

D̃1
−1
μ2

D̃2 · · · −1
μn

D̃n

0
−1
μ1

D̃1
1

μ21
D̃1 0 · · · 0

0
−1
μ2

D̃2 0
1

μ22
D̃2 · · · 0

..

. ..
. ..

. ..
. . .

. ..
.

0
−1
μn

D̃n 0 0 · · · 1
μ2n

D̃n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17a)

B̃ = diag −M̃ K̃
1
μ1

D̃1
1
μ2

D̃2 · · · 1
μn

D̃n

[ ]
(17b)

where diag[ ] contains the elements of a block diagonal matrix. For a
phononic unit cell, the matrices given in Eq. (17) are sufficient to
formulate an eigenvalue problem equivalent to the one provided
by Eq. (8) since for this particular case, all D̃k matrices are of full
rank. On the opposite hand, a metamaterial unit cell may, under
certain circumstances, produce D̃k matrices that are rank deficient,
which requires further manipulations before solving its associated

Table 1 Some viscoelastic functions in the Laplace domain [45]

Viscoelastic function Ref.

G(s) =
∑n

k=1
ak

s + bk
[46]

G(s) = G∞

[∑n
k=1 αk

s + 2ζkωk

s2 + 2ζkωks + ω2
k

]
[42,47]

G(s) = 1 +
∑n

k=1
Δks

s + βk
[48]

(a)

(c)

(b)

Fig. 1 Schematic diagram of (a) A cantilevered fiber-reinforced composite beam along with two distinct periodic
configurations: (b) A phononic beam and (c) A double-resonator metamaterial beam with local resonators con-
nected in series. The unit cells in both cases are a distance a apart.
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eigenvalue problem. For each rank deficient D̃k , we define the par-
titioningΦk = Φkp Φks

[ ]
, where the columns ofΦkp andΦks are

the eigenvectors corresponding to nonzero (p) and zero (s) eigenval-
ues of D̃k , respectively. A reduced set of internal variables Z̃

r
k is then

introduced, such that Z̃k =ΦkpZ̃
r
k. Upon substituting the previous

relation into Eq. (16) and premultiplying Eq. (16b) by ΦT
kp, we

arrive at

M̃ ¨̃U +
∑n
k=1

D̃k

[
˙̃U −

1
μk

Φkp
˙̃Z
r

k

]
+ K̃Ũ = 0 (18a)

−
1
μk

ΦT
kpD̃k

˙̃U +
1

μ2k
ΦT

kpD̃kΦkp
˙̃Z
r

k = −
1
μk

ΦT
kpD̃kΦkpZ̃

r
k (18b)

Finally, a reduced state vector Ỹ
r
=

˙̃U Ũ Z̃
r
1 Z̃

r
2 · · · Z̃

r
p

[ ]T
is defined, which allows Eqs.

(18a) and (18b) to be combined into the reduced state-space form
given by

Ã
r ˙̃Y

r
+ B̃

r
Ỹ

r
= 0 (19)

where

Ã
r
=

0 M̃ 0 0 · · · 0

M̃
∑n
k=1

D̃k
−1
μ1

D̃1Φ1p
−1
μ2

D̃2Φ2p · · · −1
μn

D̃nΦnp

0
−1
μ1

ΦT
1pD̃1

1

μ21
ΦT

1pD̃1Φ1p 0 · · · 0

0
−1
μ2

ΦT
2pD̃2 0

1

μ22
ΦT

2pD̃2Φ2p · · · 0

..

. ..
. ..

. ..
. . .

. ..
.

0
−1
μn

ΦT
npD̃n 0 0 · · · 1

μ2n
ΦT

npD̃nΦnp

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20a)

B̃
r
= diag −M̃ K̃

1
μ1

ΦT
1pD̃1Φ1p

1
μ2

ΦT
2pD̃2Φ2p · · · 1

μn
ΦT

npD̃nΦnp

[ ]
(20b)

From Eqs. (17) and (20), it can be observed that in the limit
μk � ∞∀k, the viscous state-space form given in Eq. (7) is recov-
ered. The previous implies that high values of μk yield a viscous-like
behavior that is less dependent on the history, while low values of μk
are more representative of a full-fledged viscoelastic behavior.

2.3 Numerical Validations. Before pursuing an investigation
of viscoelastic metadamping, which is a phenomenon associated

with dissipative metamaterials, an initial set of results produced
from the analysis of viscoelastic phononic materials is briefly out-
lined here as a baseline for future comparisons. Moreover, this
step provides a simple way for validating the viscoelastic model
presented in Sec. 2.2. To this end, let us consider a 1D fiber-
reinforced composite structure as shown in Fig. 1(a). It consists
of a 3mm thick, 40mm wide, and 360mm long [0 deg]
graphite-epoxy cantilever beam with the following material pro-
perties [49]: ρ= 1389.23 kg/m3, E1= 144.80GPa, E2= 9.65GPa,

(a) (b) (c)

Fig. 2 (a) Frequency and (b) damping ratio band structures for a unit cell of the plain composite beam using the viscoe-
lastic (red, solid) and viscous (black, dotted) damping models when μb=2×1010. (c) Damping-frequency band structure
using relaxation parameters that are tuned to three different damping regimes: (1) undamped, μb=2, (2) viscoelastic, μb
=2×105, and (3) viscous, μb=2×1010. Modal damping ratios of the finite beam corresponding to μb=2×105 are shown
in (c) as discrete squares.
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G12=G13= 4.14GPa, G23= 3.45GPa, and ν12= 0.3, where ρ, E,G,
and ν denote the density, elastic modulus, shear modulus, and Pois-
son’s ratio along the different directions, respectively. A series of 12
lumped masses are periodically attached to the lower surface of the
composite beam at equally spaced distances a= 30mm, as shown
in Fig. 1(b). The lumped masses are chosen such that mv= 0.4 mb,
wheremv andmb denote the lumped and beammasses in a single-unit
cell. A notable advantage of the viscoelastic model presented in Sec.
2.2 is its ability to be validated against classical viscous damping
models. The previous hypothesis can be validated by assuming that
Db= αKb, whereDb andKb represent the viscous damping and stiff-
ness matrices, respectively, associated with the composite beam and
α is a proportionality constant. Throughout this study, the FEM used
to obtain unit cell predictions is based on the first shear deformation
theory andTimoshenko beam assumptions (see Ref. [50] for details).
Furthermore,whilefiber orientation plays a significant role in dictat-
ing several mechanical properties of a given composite material, its
effect on energy dissipation is beyond the scope of this effort. Alter-
natively, a single relaxation parameter μb will be used to describe
the damping behavior of the considered unidirectional composite
beam, enabling the metadamping phenomenon to be evaluated in
a general sense rather than the behavior of a particular viscoelastic
material. As such, it becomes plausible to tune the beam’s viscoe-
lasticity level (dependence on the history) to one of three
damping regimes, namely, (1) undamped, (2) viscoelastic, or (3)
viscous [21].
In Figs. 2(a) and 2(b), frequency and damping ratio band struc-

tures are shown for viscous (α= 3.58 × 10−6) and viscoelastic (μb
= 2 × 1010) plain composite beams (in the absence of lumped
masses). For such a large value of μb, it can be observed that the
band structures of both beams are almost identical across the
entire wavenumber spectrum. To clearly demonstrate the effects
of viscoelasticity on the mechanics of dispersion, Fig. 2(c) is
constructed from a combination of Figs. 2(a) and 2(b). The main
advantage of the resulting figure (henceforth denoted as the
damping-frequency band structure) stems from its readability con-
venience since it eliminates the wavenumber completely, providing
a direct correlation between Bloch damping ratios and the associ-
ated oscillatory frequencies. The damping-frequency band structure
is computed for three different μb values. The first value is selected
to be μb= 2, which is small enough to replicate the behavior of an
undamped beam, producing substantially small values of Bloch
damping ratios across the entire frequency spectrum as inferred
from the flat line coinciding with the frequency axis. For μb= 2 ×
1010, which was used to construct Figs. 2(a) and 2(b), the viscous
damping case is recovered, hence validating the proposed viscoelas-
tic model for the case of a plain composite beam. The figure also
depicts an additional intermediate curve representing a more

realistic behavior of a viscoelastic beam with μb= 2 × 105. For
this particular case, modal damping ratios of the corresponding
finite cantilever beam are plotted as discrete points in the same
figure and showing excellent agreement with the Bloch damping
ratios in the considered frequency range (0–20 kHz).
In a second validation step, the same parameters (α= 3.58 × 10−6

and μb= 2 × 1010) are used to construct the frequency and the
damping ratio band structures shown in Figs. 3(a) and 3(b) for
the corresponding viscous and viscoelastic phononic composite
beams, respectively. Unlike the plain beams, the band structures
expectedly capture Bragg bandgaps spanning two different fre-
quency regions (10.14–13.58 kHz and 30.01–36.19 kHz). Again,
the viscous and viscoelastic beams produce identical results for a
large μb value, and similar observations can be made about Figs.
2(c) and 3(c), with the exception of Bloch damping ratio solutions
that are notably absent within the bandgap region in Fig. 3(c).
Another important observation is that the existence of a Bragg
bandgap in a given phononic beam does not fundamentally influ-
ence its damping behavior. Finally, it is worthy noting that
“band-overtaking” takes place in both Figs. 2(a) and 3(a), which
is a phenomenon associated with higher frequency bands crossing
lower frequency ones as a result of increased damping levels [26].

3 Metadamping Analysis
The objective of this section is to leverage the aforementioned

framework to investigate viscoelastic metadamping in polymeric
composite metamaterial beams, in both the infinite and finite config-
urations. Various phenomena exhibited in the damping-frequency
band structures are herein discussed by exploring independent con-
figurations of 1D composites comprising two viscoelastic resona-
tors. For the basis of our comparisons, consider (1) a viscoelastic
composite beam hosting two undamped resonators, (2) an
undamped composite beam hosting two viscoelastic resonators,
and (3) a viscoelastic composite beam hosting two viscoelastic reso-
nators. Later on, we also shed light onto the mechanics of dispersion
in high damping regimes as well as the effects of different boundary
conditions on the response of the damped beams.
To this end, consider a plain [0 deg] graphite-epoxy composite

beam having the same geometric and material parameters given
in Sec. 2.3. The lower surface of the beam is attached to a series
of 12 equidistant 2-DOF (double) viscoelastic resonators that are
a= 30mm apart. Each double resonator consists of two lumped
masses that are connected in series to the host beam via viscoelastic
springs, as shown in Fig. 1(c). The two discrete masses are selected,
such that m1+m2=mv, with m1= 0.35mb and m2= 0.05mb, thus
ensuring an equal total mass to that of the phononic beam inspected

(a) (b) (c)

Fig. 3 (a) Frequency and (b) damping ratio band structures for a unit cell of the phononic composite beam using the vis-
coelastic (red, solid) and viscous (black, dotted) damping models when μb=2×1010. (c) Damping-frequency band struc-
ture using relaxation parameters that are tuned to three different damping regimes: (1) undamped, μb=2, (2) viscoelastic,
μb=2×105, and (3) viscous, μb=2×1010. Modal damping ratios of the finite beam corresponding to μb=2×105 are shown
in (c) as discrete squares.
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earlier. The first and second viscoelastic resonators are character-
ized by elastic stiffnesses (k1,k2), viscous damping coefficients
(c1,c2), and relaxation parameters (μ1,μ2), respectively. Moreover,
the two resonators are tuned such that their natural frequencies f1 =
(1/2π)

�������
k1/m1

√
and f2 = (1/2π)

�������
k2/m2

√
are equal with f1= f2=

1160Hz.

3.1 Influence of Structural Viscoelasticity. The first con-
figuration consists of a viscoelastic composite beam hosting
two undamped resonators (c1= c2= 0). Consistent with the plain
and phononic beams in Sec. 2.3, the same proportionality constant
(α= 3.58 × 10−6) is used for the hosting beam. Figures 4(a) and 4(b)
depict the frequency and damping ratio band structures for a repre-
sentative unit cell with μb= 3 × 108. More importantly, these two
figures are complemented with close-up insets, revealing band
hybridizations that are associated with local resonance bandgaps
spanning two different frequency zones (959.8–1072Hz and
1398–1484Hz), which lie below and above the resonator’s tuning
frequency. Figure 4(c), on the other hand, displays the damping-
frequency band structure using two relaxation parameters: μb=
3 × 104 and μb= 3 × 108, complemented with the modal damping
ratios of the finite beam corresponding to the first μb value. The
close-up inset provided in Fig. 4(c) reveals that this particular con-
figuration is responsible for producing substantially small damping
ratios around the edges of both bandgaps, irrespective of the viscoe-
lasticity level in the beam. Such unique behavior was absent from

the phononic beam (see Fig. 3(c)) and is attributed to the local reso-
nance properties of the metamaterial beam. Another critical aspect
throughout this effort is how Bloch damping ratios corresponding
to the second band (henceforth plotted in green to distinguish it
from other bands) change as a function of frequency. To fully
understand this, an in-depth study of the viscoelastic effects emerg-
ing from the local resonators is required as will be outlined next.
Finally, it is worthwhile to mention that for the current configura-
tion, the second band follows a concave-down path.

3.2 Influence of Resonator Viscoelasticity. Second, we con-
sider a configuration where an undamped composite beam (α= 0)
hosts two viscoelastic resonators. Such configuration can further
be subdivided into (1) a metamaterial with a viscoelastic first reso-
nator and an undamped second resonator and (2) a metamaterial
where the first resonator is undamped, while the second is viscoelas-
tic. The motivation behind this classification will become apparent
shortly. Starting with the first metamaterial, Figs. 5(a) and 5(b)
show the frequency and damping ratio band structures when the
first resonator is viscoelastic with ζ1= 0.003 and μ1= 106, while
the second resonator is undamped (c2= 0). The local resonance
bandgaps induced in this case are found to be identical to the
ones corresponding to the first configuration in Sec. 3.1.
Figure 5(c) depicts the damping behavior of the metamaterial in
the 0–4 kHz frequency range. It shows that damping in the first reso-
nator is mainly responsible for amplifying the Bloch damping ratios

(a) (b) (c)

Fig. 4 (a) Frequency and (b) damping ratio band structures for a unit cell of a dampedmetamaterial composite beam (μb=3
× 108) with undamped resonators (c1=c2=0). (c) Damping-frequency band structure using two different relaxation param-
eters: (1) μb=3×104 and (2) μb=3×108. Modal damping ratios of the finite beam corresponding to μb=3×104 are shown in
(c) as discrete squares.

(a) (b) (c)

Fig. 5 (a) Frequency, (b) damping ratio, and (c) damping-frequency band structures for a unit cell of an undamped meta-
material composite beam (α=0) with viscoelastic first resonator (μ1=106) and undamped second resonator (c2=0). Modal
damping ratios of the finite beam are shown in (c) as discrete squares.
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around both bandgap edges. More interestingly, the second band
separating the two bandgaps now exhibits a concave-up shape.
The previous damping features are validated by plotting modal
damping ratios of the finite beam in the same figure. Furthermore,
unique viscoelastic characteristics of the metamaterial under consid-
eration can be interpreted graphically by computing damping-
frequency band structures using different relaxation parameters.
For example, Figs. 6(a) and 6(b) correspond to μ1= 3 × 103 and
μ1= 9 × 103, respectively. A careful inspection of both figures
reveals a change in the damping behavior. For μ1= 3 × 103, the
maximum attainable Bloch and modal damping ratios of the acous-
tic band (blue) are larger than their optical band counterparts (red).
As such, the second band starts with higher damping ratios than
those which appear at the band end. As the relaxation parameter
increases to μ1= 9 × 103, this behavior is reversed and the
maximum attainable Bloch and modal damping ratios of the acous-
tic band become smaller than their optical band counterparts, with
the second band starting with lower damping ratios than those at
its end. In Fig. 6(c), the damping-frequency band structure is com-
puted using several relaxation parameters. It shows that at a certain
threshold of the viscoelasticity level in the first resonator, the
damping behavior of the resultant metamaterial switches as dis-
cussed earlier. Nonetheless, the second band maintains the
concave-up shape for all the relaxation parameters used to construct
Fig. 6(c).
The mechanism of energy dissipation due to the second resonator

is radically different. Figures 7(a) and 7(b) show the frequency and

damping ratio band structures, respectively, for a metamaterial
beam with an undamped first resonator (c1= 0) and a viscoelastic
second resonator with ζ2= 0.003 and μ2= 106. While some features
corresponding to the previous metamaterial (with μ1= 106 and c2=
0) remain unchanged, such as for example the frequency regions
spanned by both bandgaps (depicted in Fig. 7(a)) and the general
shape of the acoustic and optical bands in Fig. 7(c), a unique and
distinguishable feature of the current metamaterial can be clearly
seen from the shape of the second band in Fig. 7(c), which
reveals a concave-down formation in contrast to Fig. 5(c). To
explore the evolution of the metamaterial’s behavior as a function
of μ2, damping-frequency band structures are computed in Figs.
8(a) and 8(b) using μ2= 103 and μ2= 5 × 104, respectively.
Similar observations to the ones made in Figs. 6(a) and 6(b) can
be made here as well. In brief, the principal difference between
Figs. 8(a) and 8(b) is a dissipative interchanging behavior.
Finally, Fig. 8(c) reveals that as μ2 increases gradually, the resultant
metamaterial switches its damping behavior at some point.
However, once again, the second bands exhibit a concave-down
shape for all the selected values of μ2.
Designing such structures with multiple bandgaps can be service-

able in many applications that require vibroacoustic attenuation
across broadband frequency ranges or even narrow yet distinct
ones. However, a major hurdle is the existence of a number of una-
voidable vibration modes between every two consecutive bandgaps.
Consequently, a natural question that arises from this discussion is
whether it is possible to mitigate such vibration modes without

(a) (b) (c)

Fig. 6 Damping-frequency band structures for a unit cell of an undamped metamaterial composite beam (α=0) with vis-
coelastic first resonator and undamped second resonator (c2= 0). The relaxation parameter of the first resonator is selected
as follows: (a) μ1=3×103 and (b) μ1=9×103. (c) The evolution of the beam’s damping behavior using several relaxation
parameters.

(a) (b) (c)

Fig. 7 (a) Frequency, (b) damping ratio, and (c) damping-frequency band structures for a unit cell of an undamped meta-
material composite beam (α=0) with undamped first resonator (c1=0) and viscoelastic second resonator (μ2=106). Modal
damping ratios of the finite beam are shown in (c) as discrete squares.
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compromising on the efficiency of the induced bandgaps. Previous
efforts have already shown that excessive amounts of damping can
very well cause bandgap curtailment in locally resonant metamater-
ials [23]. In particular, incorporating damping in the local resonators
without sufficient knowledge can cause severe damage to the meta-
material’s dynamic performance. As such, it is imperative to be con-
scious of dissipative losses in the local resonators when designing
multibandgap metamaterials. To this end, we assemble Figs.
9(a)–9(c), which display the band structures in Fig. 7 superimposed
on their corresponding counterparts in Fig. 5. They represent a fair
comparison between the metamaterial’s behavior when dissipative
effects arise due to the first resonator (alone) or the second resonator
(alone), ensuring equal damping amounts in both resonators.

Two main observations can be drawn from Fig. 9(c): (1) while
both resonators affect the acoustic and optical bands in the same
fashion, amplifying their associated Bloch damping ratios around
the bandgap edges, the first resonator is more efficient than the
second resonator in attaining such amplification. Moreover, it
is clear that damping in the first resonator impacts a wider range of
frequencies than the second resonator does. (2) Damping in the
second resonator is more authoritative than damping in the first reso-
nator for achieving vibration attenuation between induced bandgaps.
The validity of these observations, obtained from unit cell dispersion
analyses, can be readily checked by plotting frequency response
functions (FRFs) of the corresponding finite beams as shown in
Fig. 9(d). Forces with magnitudes of 1 N are applied at 30mm

(a) (b) (c)

Fig. 8 Damping-frequency band structures for a unit cell of an undamped metamaterial composite beam (α=0) with
undamped first resonator (c1=0) and viscoelastic second resonator. The relaxation parameter of the second resonator
is selected as follows: (a) μ2=103 and (b) μ2=5×104. (c) The evolution of the beam’s damping behavior using several
relaxation parameters.

(a)

(d)

(b) (c)

Fig. 9 A comparison between the (a) frequency, (b) damping ratio, and (c) damping-frequency band structures for the unit
cell studied in Fig. 5 (solid) and the unit cell studied in Fig. 7 (dotted). (d) A comparison between FRFs of two finite meta-
material beams corresponding to the unit cells used in (a)–(c).
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from the fixed ends of both beams, and the corresponding transverse
displacements are calculated at the beam tips. The three close-up
insets provided in Fig. 9(d) clearly confirm the main observations
stated earlier. However, the effects of resonator damping will be
revisited when the time domain analysis is conducted in Sec. 3.3.

3.3 Influence of Combined Viscoelasticity. A more realistic
configuration is one which accounts for simultaneous viscoelastic
dissipation from the composite beam and the local resonators. For
brevity, only damping-frequency band structures will be used to
study this configuration as shown in Fig. 10. All displayed subfigures

(a) (b) (c)

Fig. 10 Damping-frequency band structures for a unit cell of a damped metamaterial composite beam (μb=106) with
(a) viscoelastic first resonator and undamped second resonator (c2=0), (b) undamped first resonator (c1=0) and viscoe-
lastic second resonator, and (c) viscoelastic first and second resonators. Each figure is computed using several relaxation
parameters, revealing unique damping characteristics associated with each resonator damping arrangement.

(a) (c)

(b)

Fig. 11 (a) A normalized Gaussian pulse and (b) its corresponding Fourier spectrum. (c) A comparison
between the temporal responses of two damped metamaterial composite beams (μb=106) with (1) viscoelastic
first resonator and undamped second resonator (black) and (2) undamped first resonator and viscoelastic
second resonator (red), under the application of the transient excitation given in (a).

(a) (b) (c)

Fig. 12 (a) Frequency, (b) Damping ratio, and (c) Damping-frequency band structures for a unit cell of a highly damped
metamaterial composite beam (μb=3×108) with undamped resonators (c1=c2=0). Modal damping ratios of the finite
beam are shown in (c) as discrete squares.
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are obtained for a viscoelastic composite beam with μb= 106.
However, each subfigure is associated with a unique resonator
damping arrangement. For the first subfigure (Fig. 10(a)), the first
resonator is viscoelastic (ζ1= 0.1), while the second is kept
undamped (c2= 0). A number of band structures are computed for
relaxation parameters ranging between μ1= 2 × 102 and μ1= 104.
The results reveal that not all the corresponding second bands
have the same shape. For relatively small relaxation parameters
(e.g., μ1= 2 × 102), resulting second bands exhibit concave-down
formations. However, as μ1 gradually increases, the shape of the
second band changes in return, switching to a concave-up formation
at some transition point and maintaining the new shape beyond that
point. Changing the damping behavior in this manner implies that
the second band shape is controlled by the relative damping of
the structure and viscoelastic resonators. In Fig. 10(b), the first
resonator is undamped (c1= 0), whereas the second is viscoelastic
(ζ2= 0.1) with relaxation parameters ranging between μ2= 2 × 102

and μ2= 8 × 103. Unlike the previous resonator damping arrange-
ment, this one is associated with concave-down second bands for
all the considered μ2 values, which confirms the authority of the
second resonator on the second band’s damping behavior, irrespec-
tive of the viscoelasticity level in the hosting beam. Finally, when
both resonators are viscoelastic with ζ1= ζ2= 0.1, Fig. 10(c) dis-
plays the corresponding band structure for relaxation parameters
ranging between μ1= μ2= 2 × 102 and μ1= μ2= 7 × 103. In this
case, the combined mechanism of dissipation from all possible

damping sources yields the second band formations shown in the
figure.
In summary, although the mechanics of dispersion in multiband-

gap metamaterials are fundamentally controlled by the relative
damping of the hosting structure and the resonant inclusions, each
resonator damping arrangement is shown to be associated with its
own damping characteristics as discussed earlier. For a given
finite metamaterial beam, it is interesting to see how different
arrangements impact the temporal response in the context of a time-
transient analysis. To execute this task, let us consider two finite
cantilevered metamaterials that are both assembled from the same
viscoelastic beam (α= 1.19 × 10−5 and μb= 106). However, it is
assumed that the first beam is integrated with a viscoelastic first
resonator (ζ1= 0.015 and μ1= 106) and an undamped second reso-
nator (c2= 0), whereas the second beam is integrated with an
undamped first resonator (c1= 0) and a viscoelastic second resona-
tor (ζ2= 0.015 and μ2= 106). Figure 11(c) shows a comparison
between the temporal responses of the two beams when equal
forces are applied at 30mm from their fixed ends. Displacements
are calculated at the beam tips when excitations of the form f (t) =
Foe−(t−to)

2/2σ2 cos (2πfct) are applied such that the different parame-
ters in the equation are given as follows: Fo= 500N, to= 15ms, σ=
1.25ms, and fc= 1265Hz. The parameters are carefully selected to
represent a Gaussian pulse (Fig. 11(a)), which mainly impacts the
second band with a spectral content that is centered around fc as
depicted from the corresponding Fourier spectrum in Fig. 11(b).

(a) (b) (c)

Fig. 13 (a) Frequency, (b) damping ratio, and (c) damping-frequency band structures for a unit cell of an undamped meta-
material composite beam (α=0) with highly damped viscoelastic first resonator (μ1=106) and undamped second resonator
(c2=0). Modal damping ratios of the finite beam are shown in (c) as discrete squares.

(a) (b) (c)

Fig. 14 Damping-frequency band structures for a unit cell of (a) a moderately damped composite beamwith highly damped
first resonator, (b) a highly damped composite beamwith highly damped first resonator, and (c) a lightly damped composite
beam with highly damped first and second resonators. Modal damping ratios of the corresponding finite beams are shown
as discrete squares.
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The comparison shown in Fig. 11(c) validates the findings of
Sec. 3.2.

3.4 Influence of High Viscoelastic Damping. As discussed
earlier, refraining from using excessive damping in locally resonant
metamaterials is often essential to avoid performance deterioration.
However, such undesirable performance is yet to be investigated in
the context of unit cell predictions. To better understand the
mechanics of dispersion within high damping regimes, different
energy dissipation sources will be analyzed individually then in
combined form. First, only structural damping is increased (α=
1.59 × 10−4 and μb= 3 × 108), while both resonators are kept
undamped. Figure 12(a) shows that the second bandgap disappears
completely although operating in the oscillatory frequency range.
The first bandgap is not terminated but is curtailed to a certain
extent (it would completely disappear if structural damping is
further increased—not shown here for brevity). Moreover, Bloch
damping ratios in the third band are shown to increase until reaching
the nonoscillatory zone (Fig. 12(b)). Bandgap termination in this
particular case (with high structural damping) manifests itself in
the damping-frequency band structure in intriguing fashion that
can be clearly noticed from the close-up inset in Fig. 12(c). It can
be seen that upon reaching a certain point, the second and third
bands drop abruptly, heading down in the same direction before
splitting in opposite directions at some lower damping point.
Such behavior can be realized by superimposing modal damping
ratios of the corresponding finite beam on the same figure. The
obtained results reveal that as long as the resonators are undamped,
the metamaterial beam will still produce frequency regions associ-
ated with strong oscillations, regardless of the existence/absence of
a frequency bandgap and irrespective of the damping level in the
hosting beam. Conversely, when the damping level in the resona-
tors is increased while the host beam is kept undamped, the result-
ing dispersion characteristics substantially change. Consider a case
where only the first resonator is highly damped (ζ1= 0.6 and μ1=
106), while the second resonator is undamped. Figures 13(a) and
13(b) show that all three bands intersect with each other, terminat-
ing both bandgaps even before reaching the nonoscillatory zone. A
notable feature of Fig. 13(c) is the mechanism of the second
bandgap termination, which shows that on reaching a certain
point, the second and third bands rise abruptly, heading up in the
same direction before splitting in opposite directions at some
higher damping point. This behavior can be realized by superimpos-
ing modal damping ratios of the corresponding finite beam on the
same figure. Finally, the combined effect of high structural and
resonator damping is shown in Fig. 14 for three different cases:
(1) moderate structural damping combined with high first resonator
damping as shown in Fig. 14(a), (2) high structural damping

combined with high first resonator damping as shown in
Fig. 14(b), and (3) light structural damping combined with high
damping in both resonators as shown in Fig. 14(c). All three
cases demonstrate the complete extinction of frequency bandgaps
as a result of cumulative damping. Dispersion characteristics
similar to the ones deduced from Figs. 12 and 13 are also observed
in Fig. 14. It should be noted that these cases represent only a few
examples of an infinite number of possible damping combinations.
Nevertheless, we believe the results presented here describe the
most important dispersion features encountered in locally resonant
metamaterials.

3.5 Influence of Physical Boundary Conditions. All the infi-
nite medium predictions have thus far been validated using finite
beams with only one type of physical boundary conditions,
namely, fixed-free (or cantilever). We briefly demonstrate the
robustness of such unit cell predictions by considering finite
beams with three different physical boundary conditions:
(1) hinged-hinged, (2) fixed-hinged, and (3) fixed-fixed. In
Fig. 15, the modal damping ratios of each finite beam are computed
and superimposed on the damping-frequency band structure
obtained from a representative unit cell to produce three subfigures
similar to the one provided in Fig. 9(c). Interestingly, vibration
modes close to bandgap regions exhibit damping ratios that are
only very minimally affected by the type of boundary conditions.
These results confirm that the most important metadamping features
are predominantly controlled by the presence of the resonant inclu-
sions in multibandgap metamaterials.

4 Design for Multiple Bandgaps
To provide general guidelines for the design of multibandgap

viscoelastic metamaterials, consider an undamped composite
beam (α= 0) leveraging triple serially connected local resonators.
To understand the sole damping effect from each resonator,
Fig. 16 is created. Each of its three subfigures depict the metadamp-
ing mechanics when two resonators are kept undamped, while the
third is rendered lossy with ζ= 0.003 and μ= 3 × 108:

• When only the first resonator is damped and the second and
third are kept undamped (c2= c3= 0), resulting intermediate
bands (second and third) produce the concave-up formations
shown in Fig. 16(a). The previous implies that this particular
resonator damping arrangement produces substantially small
Bloch damping ratios at some intermediate points through
each of these two intermediate bands.

• When only the second resonator is damped while the first and
third are kept undamped (c1= c3= 0), the second band ends
with substantially small Bloch damping ratios, while the

(a) (b) (c)

Fig. 15 Modal damping ratios of finite beams with three different physical boundary conditions: (a) hinged-hinged,
(b) fixed-hinged, and (c) fixed-fixed, superimposed on the damping-frequency band structures computed from their repre-
sentative unit cells

Journal of Applied Mechanics FEBRUARY 2021, Vol. 88 / 021003-11



third band begins with relatively small Bloch damping ratios (ζ
< 0.5 × 10−3) as shown in Fig. 16(b). Moreover, this resonator
damping arrangement is less efficient than the previous one in
terms of attenuating vibration modes belonging to the acoustic
(blue, leftmost) and optical (red, rightmost) bands.

• When only the third resonator is damped while the first and
second are kept undamped (c1= c2= 0), relatively small
Bloch damping ratios are observed at the start of the second
band (ζ≅ 0.7 × 10−3) as well as at the end of the third band
(ζ≅ 0.5 × 10−3) as shown in Fig. 16(c). Furthermore, this reso-
nator damping arrangement is the least efficient in attenuating
vibration modes belonging to the acoustic (blue, leftmost) and
optical (red, rightmost) bands.

To achieve broadband vibroacoustic attenuation that extends
from the beginning of (and slightly before) the first bandgap to
the end of (and slightly after) the third bandgap, it is clear that
between the three arrangements discussed earlier, the third is the
best choice. However, such damping performance can be further
enhanced by utilizing an arrangement that incorporates simulta-
neous and concurrent damping in both the second and third resona-
tors. To ensure a fair comparison, total damping (ζ= 0.003) is
equally divided between the second and third resonators such that
ζ2= ζ3= 0.0015 with μ2= μ3= 3 × 108 to produce the damping-
frequency band structure shown in Fig. 17, which is superimposed
on its counterpart from Fig. 16(a). Upon careful inspection of this
figure, it is clear that the second and third bands produce concave-
down formations that exhibit Bloch damping ratios >0.001 without
compromising on the efficiency of the induced bandgaps.

5 Conclusions
An in-depth analysis of the elastic wave dispersion mechanics

was conducted in this article to investigate the viscoelastic
damping behavior of infinite as well as finite 1D polymeric compos-
ite metamaterials with multiple bandgaps. The applied free wave
unit cell model was derived based on well-established theories in
linear viscoelasticity and wave propagation in periodic solids. The
proposed framework was validated against commonly used bench-
mark viscous damping models. Following this, the model was
deployed to elucidate the viscoelastic metadamping phenomenon
in a graphite-epoxy metamaterial beam comprising periodic
double and triple resonators. It was concluded that the dispersion
mechanics associated with a given metamaterial are highly sensitive
to the chosen resonator damping arrangement. Specifically, for a
double resonator metamaterial beam, it has been found that while
both resonators affect the acoustic and optical bands in the same
fashion, amplifying their associated Bloch damping ratios around
the bandgap edges, the first resonator is more efficient than the
second resonator in attaining such amplification. Moreover,
damping in the first resonator was shown to be capable of affecting
a wider range of frequencies than the second resonator. Conversely,
damping in the second resonator is more authoritative than
damping in the first resonator for achieving vibration attenuation
between induced bandgaps. Depending on the selected resonator
damping arrangement, damping-frequency band structures generate
intermediate bands with different shapes and concavities, the
understanding of which is critical to the effective design of
bandgap structures for applications that require vibroacoustic atten-
uation across broadband frequency ranges (or even narrow yet dis-
tinct ones). Finally, the robustness of the unit cell predictions has
been demonstrated. Results show that vibration modes close to
bandgap regions exhibit damping ratios that are only minimally
affected by the type of boundary conditions, implying that the
most important metadamping features are predominantly controlled
by the presence of the resonant inclusions in multibandgap
metamaterials.
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(a) (b) (c)

Fig. 16 Damping-frequency band structures for a unit cell of an undamped metamaterial composite beam (α=0) with vis-
coelastic damping in the (a) first resonator alone, (b) second resonator alone, and (c) third resonator alone

Fig. 17 A comparison between the damping-frequency band
structures for a unit cell of an undamped metamaterial compos-
ite beam (α=0) with (1) viscoelastic damping in the first resona-
tor alone (solid) and (2) combined viscoelastic damping in the
second and third resonators (dotted)
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