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Abstract

Phylogenetic trees inferred from sequence data often have branch lengths measured in the expected

number of substitutions and therefore, do not have divergence times estimated. These trees give an

incomplete view of evolutionary histories since many applications of phylogenies require time trees. Many

methods have been developed to convert the inferred branch lengths from substitution unit to time unit

using calibration points, but none is universally accepted as they are challenged in both scalability and

accuracy under complex models. Here, we introduce a new method that formulates dating as a non-convex

optimization problem where the variance of log-transformed rate multipliers are minimized across the

tree. On simulated and real data, we show that our method, wLogDate, is often more accurate than

alternatives and is more robust to various model assumptions.

Key words: time tree, divergence time estimation, phylogenetic dating, molecular dating, non-convex
optimization.

Introduction

Phylogenetic inference from sequence data does

not reveal divergence time (i.e. exact timing

of evolutionary events) unless paired with

external timing information. Under standard

models of sequence evolution, the evolutionary

processes, including sequence divergence, are

fully determined by the product of the absolute

time and mutation rates in a non-identifiable

form. Thus, these models measure branch

lengths in the unit of expected numbers of

mutations per site (since standard models like

GTR (Tavaré, 1986) only allow substitutions,

focusing on these models, we use substitutions

and mutations interchangeably throughout this

paper). Nevertheless, knowing divergence times is

crucial for understanding evolutionary processes

(Forest, 2009; Hillis et al., 1996) and is a

fundamental need in many clinical applications

of phylogenetics and phylodynamics (Volz et al.,

2013). A commonly used approach first infers

a phylogeny with branch lengths in the unit of

substitution per site and then dates the phylogeny

by translating branch lengths from substitution
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unit to time unit; co-estimation of topology and

dates is also possible (Drummond et al., 2006)

though its merits have been debated (Wertheim

et al., 2010).

The fundamental challenge in dating is to find a

way to factorize the number of substitutions into

the product of the evolutionary rate and time.

A common mechanism allowing this translation

is to impose soft or hard constraints on the

timing of some nodes of the tree, leaving the

divergence times of the remaining nodes to

be inferred based on the constrained nodes.

Timing information is often in one of two forms:

calibration points obtained from the geological

record (Kodandaramaiah, 2011) and imposed on

either internal nodes or tips that represent fossils

(see Donoghue and Yang, 2016), or tip sampling

times for fast-evolving viruses and bacteria. The

constraints still leave us with a need to extrapolate

from observed times for a few nodes to the

remaining nodes, a challenging task that requires

a mathematical approach. Obtaining accurate

timing information and formulating the right

method of extrapolation are both challenging

(e.g., see Rutschmann, 2006).

Many computational methods for dating

phylogenies are available (e.g., see Kumar and

Hedges, 2016; Rutschmann, 2006), and a main

point of differentiation between these methods is

the clock model they assume (Sanderson, 1998).

Some methods rely on a strict molecular clock

(Zuckerkandl, 1962) where rates are effectively

assumed to be constant (e.g., Langley and

Fitch, 1974; Shankarappa et al., 1999). However,

empirical evidence has now made it clear that

rates can vary substantially, and ignoring these

changes can lead to incorrect dating (Bromham

and Penny, 2003; Kumar, 2005). Consequently,

there have been many attempts to relax the

molecular clock and allow variations in rates.

A main challenge in relaxing the clock is the

need for a model of rates, and it is not clear

what model should be preferred. As a result,

many methods for dating using relaxed molecular

clocks have been developed. Some of these

methods allow rates to be drawn independently

from a stationary distribution (Akerborg et al.,

2008; Drummond et al., 2006; Volz and Frost,

2017) while others model the evolution of rates

with time (Huelsenbeck et al., 2000) or allow

correlated rates across branches (e.g., Drummond

and Suchard, 2010; Kishino et al., 2001; Lepage

et al., 2007; Sanderson, 2002; Snir et al., 2012;

Tamura et al., 2012; Thorne et al., 1998).

Despite these developments, strict molecular

clocks continue to be used, especially in the

context of intraspecific evolution where there is

an expectation of relatively uniform rates (Brown

and Yang, 2011).

Another distinction between methods is the

use of explicit models (Sanderson, 1997). Many

dating methods use a parametric statistical model

and formulate dating as estimating parameters

in a maximum likelihood (ML) or Bayesian
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inference framework (e.g., Drummond et al.,

2006; Langley and Fitch, 1974; To et al.,

2015; Volz and Frost, 2017). Another family of

methods (e.g., Sanderson, 2002; Tamura et al.,

2012) formulate dating as optimization problems,

including distance-based optimization (e.g., Xia,

2018; Xia and Yang, 2011), that avoid computing

likelihood under an explicit statistical model.

When the assumed parametric model is close

to the reality, we expect parametric methods to

perform well. However, these methods can be

sensitive to model deviations, a problem that may

be avoided by methods that avoid using specific

models.

In this paper, we introduce LogDate, a new

method of dating rooted phylogenies that allows

variations in rates but without modeling rates

using specific distributions. We define mutation

rates necessary to compute time unit branch

lengths as the product of a single global rate and

a set of rate multipliers, one per branch. We seek

to find the overall rate and all rate multipliers

such that the log-transformed rate multipliers

have the minimum variance. This formulation

gives us a constrained optimization problem,

which although not convex, can be solved in a

scalable fashion using the standard approaches

such as sequential least squares programming.

While formulation of dating as an optimization

problem is not new (Langley and Fitch, 1974; To

et al., 2015), here we introduce log-transformation

of the rate multipliers, which as we will show,

results in more accurate dates. Our observation

is in line with a recent change to RelTime

(Tamura et al., 2018) where the switch from

arithmetic means to geometric means (between

rates of sister lineages) has improved accuracy. In

extensive simulation studies and three biological

data sets, we show that a weighted version of

LogDate, namely wLogDate, has higher accuracy

in inferring node ages compared to alternative

methods, including some that rely on time-

consuming Bayesian inference. While wLogDate

can date trees using both sampling times for leaves

(e.g., in viral evolution) or estimated time of

ancestors, most of our results are focused on cases

with sampling times at the tips of the tree.

Methods

Definitions and notations

For a rooted binary tree T with n leaves, we

give each node a unique index in [0,...,2n−2].

By convention, the root is always assigned 0,

the other internal nodes are arbitrarily assigned

indices in the range [1,...,n−1], and the leaves

are arbitrarily assigned indices in the range [n−

1,...,2n−2]. In the rest of this paper, we will refer

to any node by its index. If a node i is not the root

node, we let par(i) denote the parent of i and if i

is not a leaf, we let cl(i) and cr(i) denote the left

and right children of i, respectively. We refer to

the edge connecting par(i) and i as ei.

We can measure each edge ei of T in either

time unit or substitution unit. Let ti denote the

divergence time of node i, i.e. the time when
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species i diverged into cl(i) and cr(i). Then for

any node i other than the root, τi= ti−tpar(i) is

the length of the edge ei in time unit. We measure

divergence time of a node with respect to a fixed

reference point in the past (i.e., time increases

forward). Thus, we enforce ti>tpar(i) for all i. Let

µi be the substitution rate (per sequence site per

time unit) on branch ei, then the expected number

of substitutions per sequence site is bi=µiτi. Let

τ=[τ1,...,τ2n−2] and b=[b1,...,b2n−2].

From sequence data, b can be inferred using

standard methods such as maximum parsimony

(Fitch, 1971), minimum evolution (Rzhetsky

and Nei, 1993), neighbor-joining (Gascuel, 1997;

Saitou and Nei, 1987), and maximum-likelihood

(ML) (Felsenstein, 1981; Guindon et al., 2010;

Nguyen et al., 2015). Note that inferred trees need

to be rooted subsequently using an outgroup (that

can be removed) or automatic methods such as

midpoint or minimum variance rooting (Mai et al.,

2017). We let b̂i denote the estimate of bi by an

inference method and let b̂=[b̂1,...,b̂2n−1].

In this paper, we are interested in computing

τ from b̂. The computation of τ from b̂ is

complicated by two factors: (1) the possibility of

change among rates, and (2) deviations of the

inferred edge length b̂i from the true value bi.

To better describe the mathematical

formulation of the optimization problem, we

first do the following change of variables.

Assuming the mutation rates on the branches

are distributed around a global rate µ, we define

νi=
µτi
b̂i

. Let x=[ν1,...,ν2n−2,µ]; our goal of

finding τ is identical to finding x.

Dating as a constrained optimization problem

We formulate dating as an optimization problem

on 2n−1 variables x=[ν1,...,ν2n−2,µ], subject

to the linear constraints defined by calibration

points and/or sampling times. Many existing

methods, including LF (Langley and Fitch, 1974)

and LSD (To et al., 2015), can be described in

this framework, with the choice of the objective

function distinguishing them from each other. We

start by describing the setup of the constraints

enforced by a set of calibration points/sampling

times, and show that they can all be written

as linear equations on x. We then give the

formulation of both LF and LSD in this framework

and use their formulation to motivate our own new

approach. Finally, we describe strategies to solve

the wLogDate optimization problem.

Linear constraints Ψ from sampling times

For any pair of nodes (i,j) (where each of i and

j can either be a leaf or an internal node) with

enforced divergence times (ti,tj), the following

constraint ψ(i,j) must be satisfied

ψ(i,j) :µ(tj−ti)=
∑

k∈P (m,j)

νkb̂k−
∑

k∈P (i,m)

νkb̂k (1)

where m is the LCA of i and j and P (m,j) and

P (i,m) are the paths connecting m to j and i tom,

respectively. Thus, given k time points, k(k−1)/2

constraints must hold. However, only k−1 of these

constraints imply all others, as we show below.
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Let t0 be the unknown divergence time at the

root of the tree. For k calibration points t1,...,tk,

we can setup k constraints of the form:

Ci :µ(ti−t0)=
∑

k∈P (0,i)

νkb̂k, (2)

where node 0 is the root and P (0,i) is the path

from the root to node i. For any pair (i,j), the

linear constraint given in Eq. 1 can be derived

by subtracting Ci from Cj side by side. Also,

we can remove t0 from the set of constraints

by subtracting C1 from all other constraints

C2,...,Ck. This gives us the final k−1 linear

constraints on x, which we denote as Ψ. We

can build Ψ using Algorithm 1 (Supplementary

material).

Optimization Criteria

Since νi=
µτi
b̂i

, the distribution of νi is influenced

by both the distribution of the rates (µi) and the

distribution of b̂i around bi. In traditional strict-

clock models (Zuckerkandl, 1962), a constant rate

is assumed throughout the tree (∀iµi=µ ). Under

this model, the distribution of νi is determined by

deviations of b̂i from bi.

Langley and Fitch (1974) (LF) modeled the

number of observed substitutions per sequence site

on a branch i by a Poisson distribution with

mean λ=µτi and treated sb̂i as if they were the

total number of observed substitutions; as such,

they assume sb̂i∼Poisson(sµτi), where s is the

sequence length. Therefore, by changing variable,

we can write the log-likelihood function as:

2n−2∑
i=1

(
sb̂i log(sb̂i)− log((sb̂i)!)

)
+

2n−2∑
i=1

sb̂i(logνi−νi).

Given s and b̂i, LF finds x that maximizes the log-

likelihood function and subject to the constraints

Ψ. As such,

x∗P =argmin
x

2n−2∑
i=1

b̂i
(
νi− logνi

)
subject to Ψ. (3)

To et al. (2015) assume b̂i follows a Gaussian

model: b̂i∼Gaussian(µτi,σ
2
i ) and assume the

variance is approximated by b̂i
s

(the method

includes smoothing strategies omitted here).

Then, the negative log likelihood function can be

written as:

2n−2∑
i=1

(b̂i−µτi)2

σ2
i

≈
2n−2∑
i=1

s

b̂i
(b̂i−µτi)2 =

2n−2∑
i=1

sb̂i(1−νi)2.

Thus, the ML estimate can be formulated as:

x∗G=argmin
x

2n−2∑
i=1

b̂i(1−νi)2 subject to Ψ. (4)

Both LF and LSD have convex formulations.

Langley and Fitch (1974) proved that their

negative log-likelihood function is convex and thus

the local minimum is also the global minimum.

Our constraint-based formulation of LF also can

be easily proved convex by showing its Hessian

matrix is positive definite. To et al. (2015) pointed

out their objective function is a weighted least

squares. Using our formulation, we also see that

Eq. 4 together with the calibration constraints

form a standard convex quadratic optimization

problem which has a unique analytical solution.
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LogDate Method
Motivation

LF only seeks to model the errors in b̂ and ignore

true rate heterogeneity. Strict-clock assumption is

now believed to be unrealistic in many settings

(Ho, 2014; Pulquério and Nichols, 2007; Schwartz

and Maresca, 2006), motivating relaxed clocks,

typically by assuming that µis are drawn i.i.d.

from some distribution (e.g., Akerborg et al.,

2008; Drummond et al., 2006; Volz and Frost,

2017). Most methods rely on presumed parametric

distributions (typically, LogNormal, Exponential,

or Gamma) and estimate parameters using ML

(Volz and Frost, 2017), MAP (Akerborg et al.,

2008), or MCMC (Drummond and Rambaut,

2007; Drummond et al., 2006). The LSD method,

which like LF directly models errors in b̂, is

additionally justified under a normally-distributed

clock model. Choices of specific distributions in

these methods are not motivated by the knowledge

that real data follow them exactly (for example,

the Normal distribution has to be misspecified as

mutation rates cannot be negative).

Our goal is to avoid explicit parameter inference

under a model of rate multipliers. Instead, we

follow the assumption shared by existing methods

like LSD and LF: we assume that given two

solutions of x both satisfying the calibration

constraints, the solution with less variability in

νi values is preferable. Thus, we prefer solutions

that minimize deviations from a strict clock while

allowing deviations. A natural way to minimize

deviations from the clock is to minimize the

variance of τi
b̂i

. This can be achieved by finding

µ and all νi such that νi is centered at 1 and∑2n−2
i=1 (νi−1)2 is minimized. Interestingly, the ML

function used by LSD (Eq. 4) is a weighted version

of this approach.

The minimum variance principle results in a

fundamental asymmetry: multiplying or dividing

the rate of a branch by the same factor are

penalized differently (Fig 1a). For example, the

penalty for νi=4 is more than ten times larger

than νi=1/4. The LF model is more symmetrical

than LSD but remains asymmetrical (Fig 1a).

This asymmetry results from the asymmetric

distribution of the Poisson distribution around

its mean, especially for small mean, in log scale

(Fig 1b). Because of this asymmetry, methods like

LSD and LF judge a very small b̂i/bi to be within

the realm of possible outcomes, and thus penalize

νi<1 multipliers less heavily than νi>1.

Our method is based on a principle, which

we call the symmetry of ratios : the penalty for

multiplying a branch by a factor of ν should

be no different than dividing the branch by ν.

Note that this assertion is only applicable to

true variations of the mutation rate (i.e, ignoring

branch length estimation error). We further

motivate this principle with more probabilistic

arguments below, but here we make the following

case. If one considers the distribution of rate

multipliers for various branches, absent of an

explicit model, it is reasonable to assume that
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FIG. 1. (a) The penalty associated to multiplying a single edge i with multiplier νi in LSD, LF, and LogDate approaches, as
shown in Equations 3, 4, and 5. To allow comparison, we normalize the penalty to be zero at ν=1 and to be 1 at ν=4. (b)
The confidence interval of the ratio between estimated and true branch length using the Poisson model. For this purpose of
this exposition, we assume that the estimated branch length equals the number of substitutions occurring on the branch and
follows a Poisson distribution (i.e., JC69 model), divided by sequence length. With these assumptions, the CI for estimate

length b̂i is between 1/2χ22sbi and 1/2χ22sbi+2; we draw the CI for α/2=0.05 and α/2=0.2 to get 0.2–0.8 and 0.05–0.095 intervals

for 0.0001≤bi≤0.4. (c) and (e): Density and histograms of penalty terms (without square) used by LSD (µτi/̂bi−1) and
LogDate (logµτi/̂bi) under different clock models. (c) Fixing µτi=0.1, we draw 500000 rate multipliers (ri) from LogNormal,
Gamma, or Exponential distributions with mean 1 and variance 0.16 for LogNormal and Gamma. For strict clock, ri=1.
We then draw estimated branch length for each replicate i from the Normal distributed with mean bi=riµτi and variance
bi/s for s=200. (e) The branch lengths are estimated from the sequences using PhyML from simulated sequences of (To
et al., 2015), as explained in the text. Parameters of rate multiplier distributions match part (c). We omit extremely short7
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compared to an overall rate, branches rates are

as likely to increase by a factor of ν as they are to

decrease by a factor of ν. When this statement is

true, we shall prefer a method that penalizes ν and

1/ν identically. To ensure the symmetry of ratios,

we propose taking the logarithm of the multipliers

νi before minimizing their variance. Minimizing

the variance of the rates in log-scale is the essence

of our method. It achieves the symmetry, and, as

we show below, a better correspondence between

penalty and data likelihood.

Log-transformation has long been used to

reduce data skewness before applying linear

regression (Clifford et al., 2013; Keene, 1995;

Stynes et al., 1986; Xiao et al., 2011). In molecular

dating, it can be argued that log-transformation

is implicit in the new version of RelTime (Tamura

et al., 2018) where the geometric means between

sister lineages replaced the arithmetic means

in its predecessor. The improvement in the

accuracy of RelTime encourages a wider use

of log-transformation in molecular dating. Note

that log-transforming the rate multipliers before

minimizing their least squares penalty is identical

to applying linear least squares after log-

transformation of both time and the number of

substitutions. In other fields, log-transformation

has been used to make the least-squares method

more robust to highly skewed distributions (Aban

and Meerschaert, 2004; Meaney et al., 2007).

LogDate optimization function

We formulate the LogDate problem as follows.

Given b̂ and the set of calibration constraints

described earlier, we seek to find

x∗=argmin
x

2n−1∑
i=1

log2(νi) subject to Ψ. (5)

This objective function satisfies the symmetry

of ratio property (Fig. 1a). Since νi values are

multipliers of rates around µ, if we assume µ is

the mean rate, the LogDate problem is equivalent

to minimizing the variance of the log-transformed

rate multipliers (around their mean 1). The

objective function only depends on νi; however,

note that µ is still included in the constraints and

therefore is part of the optimization problem. This

setting reduces the complexity of the objective

function and speeds up the numerical search for

the optimal solution. Since the values of νi close

to 1 are preferred in Eq. 5, the optimal solution

would push µ to the mean rate.

Justification as a relaxed-clock model.

After log-transformation, LogDate, similar to

LSD, constructs the objective function using the

least squares principle (for ease of exposition,

here we discuss ordinary least-squares without

weights). We can rewrite the objective function

of LSD as
∑

i(
µτi
b̂i
−1)2 and that of LogDate as∑

i(log µτi
b̂i

)2 and see that both seek to find a

global rate µ and the time τi for each branch

to minimize the total deviations of the estimated

branches from µτi. This observation may motivate

viewing both LSD and LogDate as strict-clock
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methods. However, the following result justifies

viewing LogDate as a relaxed clock method.

We can prove that if the mutation rates µi are

drawn i.i.d. from a LogNormal distribution with

any parameters with mode µ and the branches

are estimated without error (i.e. b̂i=bi for all i),

then νi follows a LogNormal distribution with

mode 1 and the LogDate optimization problem is

equivalent to finding ν that have maximum joint

probability, subject to the constraints. The proof

is given in Claim 1 (Supplementary materials).

Justification for symmetry of ratios.

Having shown that LogDate has a justification

under the LogNormal distribution, we now

compare LogDate and LSD objective functions in

a wider range of clock models. Recall that the

objective functions of LSD and LogDate are the

sum-of-squares of their penalty terms, which are

µτi
b̂i
−1 for LSD and log µτi

b̂i
for LogDate.

Following the likelihood principle, an ideal

objective function must assign equal penalties

to data values that are equally likely to occur.

Therefore, for an ideal objective function written

as sum-of-squares of the penalty terms, the

probability distribution of its penalty terms

(before square) under the model that generates

the data must be symmetric around 0 (because

of the square). The true distribution of our

penalty terms is a function of both clock rate

variations and branch length estimation error.

While no objective function is ideal for all

compound models of rates and estimation error,

a robust objective function should remain close

to symmetric and maintain a low skewness under

a wide range of models. We now present several

theoretical and empirical results comparing

LogDate and LSD in terms of skewness of

distributions of their penalty terms.

First, consider a relaxed clock model of the

rates and assume no branch estimation error (i.e.,

b̂i=µiτi). If µi follows a LogNormal distribution

parameterized by θ and σ then it is easy to see that

µτi
b̂i

= µ
µi

(penalty of LSD) also follow a LogNormal

distribution and the skewness depends on σ. In

contrast, the log µτi
b̂i

(penalty of LogDate) follows

a Normal distribution, which has skewness 0, and

for which least square estimation is the maximum

likelihood estimator. Thus, as stated before, log-

transforming is the ML solution if rate multipliers

are log-normally distributed.

Now assume µi follows a Gamma distribution

with mean µ. Then µτi/̂bi =µ/µi follows an Inverse

Gamma distribution while its log-transformation

follows a Log-Gamma distribution. We can

analytically compute the skewness of the penalty

terms of LSD and LogDate and compare them

(see Supplementary materials for the equations).

As shown in Fig. S1 (Supplementary materials),

the skewness of LSD is much higher than that

of LogDate, especially for higher variance of the

gamma rates. Higher skewness of penalty terms

violates the likelihood principle mentioned before.

Thus, for the two models where we could compute
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analytical formulas for skewness, we have grounds

to prefer LogDate.

Next, we consider the compound impacts of

branch length estimation error and rate variation,

and we study the question in two ways. One

approach is to measure the combined effect of

error and true variation by simulating sequence

data and measuring b̂i for known bi empirically;

here, we use simulations by To et al. (2015)

with 1000 sites and PhyML-inferred trees (details

will be provided in the Experiments section).

The other approach is modelling the compound

effect. While it is hard to know generally how

estimated branch length is distributed around

its expected value, here, we can follow To

et al. (2015) and assume b̂i∼N (bi,
bi
s

). The other

challenge is that the compound distribution of

estimation error and rate multipliers is hard

to compute analytically. However, we can easily

generate a very large number of samples from

compound distributions and analyze the empirical

distribution to approximate the true distribution.

Inspecting the empirical density of the penalty

terms of LSD and LogDate across different

clock models result in consistent patterns

using both approaches, modeling the compound

distribution (Fig. 1c) and using simulated

sequence data (Fig. 1e). Across three models

of rates, Exponential, LogNormal, and Gamma,

the distributions of the LogDate penalty terms

are always more symmetric than that of LSD.

Results are similar for other rate models such

as Log-Uniform and are further amplified when

the variance is increased (Fig. S2a, Supplementary

Materials).

To further explore that relationship between the

likelihood and the penalty assigned by LogDate

and LSD, we plot the penalty (with square

terms) versus the empirical log likelihood of

the rate multipliers (Figs. 1d and 1f and S2b

in Supplementary Materials). Ideally, increasing

likelihood should monotonically decrease penalty,

and points with similar likelihood should have

similar penalties. In both modelled and simulated

branch lengths and across models, LSD assigns

two sets of widely different penalties (one

for increased and one for decreased rates) to

data with similar likelihood. LogDate, while

far from perfect, is much closer to the ideal

mapping between likelihood and penalty. Also, for

LogNormal with median rate multipliers set to

1, we empirically observe a perfectly monotonic

relationship between the penalty and likelihood

(Fig. S2b), as theory suggested.

wLogDate optimization function

The simple LogDate formulation, however, has a

limitation: by allowing rates to vary freely in a

multiplicative way, it fails to deal with the varied

levels of relative branch error; i.e., the ratio of the

estimated branch length to the true branch length

(b̂i/bi). As b̂i is estimated from the sequences, the

error of b̂i is directly related to the variations in

the number of substitutions occurred along the
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branch bi. Let us assume sequences follow the

Jukes and Cantor (1969) model, and le Ni be

the total number of substitutions occurred along

branch i on a sequence with length s. Under Juke-

Cantor model, we have Ni∼Poisson(sµτi) and

therefore, var(Ni)=sµτi. Therefore, the variance

of the expected number of substitutions around

the true branch length is var(Ni

sbi
)= sµτi

s2b2i
= 1

bis
. As

Figure 1b shows, when bi is small, Ni

s
can easily

vary by several orders of magnitude around bi.

Furthermore, the distribution is not symmetric:

drawing values several factors smaller than the

mean is more likely than drawing values above the

mean by the same factor. These analyses predict

that the distribution of b̂i
bi

depends strongly on bi -

with smaller bi giving higher variance - and is not

symmetric.

The variances of the relative error b̂i
bi

is difficult

to compute analytically due to the involvement

of the sequence substitution model and the

method to estimate b̂i, which are both unknown.

Therefore, we instead use empirical analyses

of the estimated branch lengths by PhyML to

demonstrate our arguments. Consistent with our

prediction, Figures S7 a and c illustrate that the

relative error b̂i
bi

varies more in small branches

and the distribution is not symmetric. These

properties of the branch length estimates are

not modeled in our LogDate formulation and we

seek to incorporate them in a refined version of

LogDate which will be described below.

Since the true branch length bi is unknown,

a common practice is to use the estimated b̂i

in place of bi to estimate its variance as 1

b̂is
.

This explains why both LF and LSD objective

functions (Eqs. 3 and 4) have a weight of b̂i for

each term of νi. Following the same strategy, we

propose weighting each log2(νi) term in a way

that reduces the contribution of short branches to

the total penalty, and thus allows more deviations

in the log space if the branch is small (and

is thus subject to higher error). Since we log-

transform νi and pursue a model-free approach,

explicitly computing the weights to cancel out the

variations of relative error among the branches

is challenging. However, since the weights should

reflect the variance of b̂i
bi

(logarithmic scale), they

should monotonically increase with b̂i (Fig. 1b)

to allow more variance for the relative errors in

short branches than in long branches. We use

√
b̂i

as weights, a selection driven by simplicity and

empirical performance (shown in a later section).

The shortest branches require even more

care. When the branch is very short, for a

limited-size alignment, the evolution produces

zero mutations with high probability. For these

no-event branches, tree estimation tools report

arbitrary small lengths (see Fig. S7), rendering

b̂i values meaningless for very small branches. To

deal with this challenge, the r8s’s implementation

of LF (Sanderson, 2003) collapses all branches

with length b̂i<1/s. To et al. (2015) proposed

adding a smoothing constant c/s to each b̂i
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to estimate the variance of b̂i, where c is a

parameter that the user can tune. Following

a similar strategy, we propose adding a small

constant b̃ to each b̂i. We choose b̃ to be

the maximum branch length that produces no

substitutions with probability at least 1−α for

α∈ [0,1]. Recall that N is the total number

of actual substitutions on a branch. Under the

Jukes and Cantor (1969) model, it is easy

to show that argmaxb̃Pr(N=0|b= b̃)≥1−α=

− 1
s
log(1−α). We choose this value as b̃ and set

α=0.01 by default. Thus, we define the weighted

LogDate (wLogDate) as follows:

x∗=argmin
x

2n−1∑
i=1

√
b̃+ b̂i log2(νi)

subject to Ψ.

(6)

Solving the optimization problem

Both LogDate and wLogDate problems (Eq. 5

and Eq. 6) are non-convex, and hence solving

them is non-trivial. The problem is convex if

0≤νi≤e. For small clock deviation and small

estimation error in b̂i, the νi values should be

small so that the problem becomes convex with

one local minimum. However, as νi≤e is not

guaranteed, we have to rely on gradient-based

numerical methods to search for multiple local

minima and select the best solution we can find.

To search for local minima, we use the Scipy solver

with trust-constr (Lalee et al., 1998) method.

To help the solver work efficiently, we incorporate

three techniques that we next describe.

Computing Jacobian and Hessian matrices

analytically helps speedup the search. By taking

the partial derivative of each νi, we can compute

the Jacobian, J , of Eq. 6. Also, since Eq. 6 is

separable, its Hessian H is a (2n−2)×(2n−2)

diagonal matrix. Simple derivations give us:

J=
[
2

√
b̃+ b̂1

logν1
ν1

,...,2

√
b̃+ b̂2n−2

logν2n−2
ν2n−2

]T
and Hii=2

√
b̃+ b̂i

1− logνi
ν2i

.

Sparse matrix representation further saves space

and computational time. The Hessian matrix is

diagonal, allowing us to store only the diagonal

elements. In addition, the constraint matrix

defined by Ψ is highly sparse. If all sampling

times are given at the leaves, the number of non-

zero elements in our (n−1)×(2n−1) matrix is

O(nlogn) (Claim 3; Supplementary materials).

If the tree is either caterpillar or balanced, the

number of non-zeroes reduced to Θ(n). Thus, we

use sparse matrix representation implemented in

the Scipy package. This significantly reduces the

running time of LogDate.

Starting from multiple feasible initial points is

necessary given that our optimization problem

is non-convex. Providing initial points that are

feasible (i.e. satisfied the calibration constraints)

helps the SciPy solver work efficiently. We

designed a heuristic strategy to find multiple

initial points given sampling times t1,...,tn of all

the leaves (as is common in phylodynamics).
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We first describe the process to get a single

initial point. We compute the root age t0 and µ

using root-to-tip regression (RTT) (Shankarappa

et al., 1999). Next, we scale all branches of T

to conform with Ψ as follow: let m=argminiti

(breaking ties arbitrarily). Let d(r,i) denote the

distance from the root r to node i and P (r,m)

denote the path from r to m. For each node i in

P (r,m), we set τi= b̂i(tm−t0)/d(r,m). Then going

upward from m to r following P (m,r), for each

edge (i,j) we compute tj = ti−τi and recursively

apply the process on the clade i. At the root, we

set tm to the second oldest (second minimum)

sampling time and repeat the process on a new

path until all leaves are processed. Since RTT

gives us µ, to find ν we simply set νi=µτi/̂bi.

To find multiple initial points, we repeatedly

apply RTT to a set of randomly selected clades of

T and scale each clade using the aforementioned

strategy. Specifically, we randomly select a set S

of some internal nodes in the tree and add the

root to S. Then, by a post-order traversal, we

visit each u∈S and date the clade u using the

scaling strategy described above. We then remove

the entire clade u from the tree but keep the node

u as a leaf (note that the age of u is already

computed) and repeat the process for the next

node in S. The root will be the last node to be

visited. After visiting the root, we have all the

τi for all i. After having all the branches in time

unit, we find x to minimize either Eq. 5 or Eq. 6,

depending on whether LogDate or wLogDate is

chosen. In a tree of n leaves, we have 2(n−1)−1

ways to select the initial non-empty set S, giving

us enough room for randomization.

Computing confidence interval

With the ability of wLogDate to work on any

combination of sampling times/calibration points

on both leaves and internal nodes (as long

as at least two time points are provided), we

design a method to estimate the confidence

intervals for the estimates of wLogDate. We

subsample the sampling times/calibration points

given to us repeatedly to create N replicate

datasets (where N is 100 by default, but can be

adjusted). Note our subsampling is not exactly a

bootstrapping procedure as node sampling times

cannot be resampled with replacement. We then

compute the time tree for each replicate to

obtain N different estimates for the divergence

time of each node, from which we can compute

their confidence intervals (95% as default). This

sampling would work best when we have a fairly

large number of calibration points, which is the

case in phylodynamic settings where all (or nearly

all) sampling times for the leaves are given, or

in large phylogenies where abundant calibration

points can be obtained from fossils. Although

we refer to the resulting intervals as confidence

intervals, it is important to recognize that the

resampling procedure is not strictly justified

via bootstrap theory because subsampling is
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necessarily without replacement and sampled

nodes are not independent of each other.

Experiments on simulated data
Phylodynamics setting

To et al. (2015) simulated a dataset of HIV env

gene. Their time trees were generated based on a

birth-death model with periodic sampling times.

There are four tree models, namely D995 11 10

(M1), D995 3 25 (M2), D750 11 10 (M3), and

D750 3 25 (M4), each of which has 100 replicates

for a total of 400 different tree topologies. M1

and M2 simulate intra-host HIV evolution and

are ladder-like while M3 and M4 simulate inter-

host evolution and are balanced. Also, M4 has

much higher root-to-tip distance (mean: 57)

compared to M1–M3 (22, 33, and 29). Starting

from conditions simulated by To et al. (2015), we

use the provided time tree to simulate the clock

deviations. Using an uncorrelated model of the

rates, we draw each rate from one of three different

distributions, each of which is centered at the

value µ=0.006 as in To et al. (2015). Thus, we set

each µi to xiµ where xi is drawn from one of three

distributions: LogNormal (mean:1.0, std: 0.4),

Gamma (α=β=6.05), and Exponential (λ=1).

Sequences of length 1000 were simulated for each

of the model conditions using SeqGen (Rambaut

and Grass, 1997) under the same settings as To

et al. (2015).

Calibrations on autocorrelated rate model.

We used the software NELSI and the same

protocol as in (Ho et al., 2015) to simulate a

dataset where the rates are autocorrelated. The

dataset has 10 replicates, each contains 50 taxa.

The time trees were generated under Birth-death

model and the rate heterogeneity through time is

modeled by the autocorrelation model ( (Kishino

et al., 2001)) with the initial rate set to 0.01

and the autocorrelated parameter set to 0.3.

DNA sequences (1000 bases) were generated under

Jukes-Cantor model. We used PhyML (Guindon

et al., 2010) to estimate the branch lengths in

substitution unit from the simulated sequences

while keeping the true topology. These trees

are the inputs to wLogDate, RelTime, LF, and

DAMBE (Xia, 2018) to infer time trees.

Real biological data

H1N1 2009 pandemic. We re-analyze the H1N1

biological data provided by To et al. (2015) which

includes 892 H1N1pdm09 sequences collected

worldwide between 13 March 2009 and 9 June

2011. We reuse the estimated PhyML (Guindon

et al., 2010) trees, 100 bootstrap replicates, and

all the results of the dating methods other than

LogDate that are provided by To et al. (2015).

San Diego HIV. We study a dataset of 926 HIV-

1 subtype B pol sequences obtained in San Diego

between 1996 and 2018 as part of the PIRC study.

We use IQTree (Nguyen et al., 2015) to infer a

tree under the GTR+Γ model, root the tree on 22

outgroups, then remove the outgroups. Because of

the size, we could not run BEAST.
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West African Ebola epidemic. We study the

dataset of Zaire Ebola virus from Africa, which

includes 1,610 near-full length genomes sampled

between 17 March 2014 and 24 October 2015.

The data was collected and analyzed by Dudas

et al. (2017) using BEAST and re-analyzed by

Volz and Frost (2017) using IQTree to estimate

the ML tree and treedater to infer node ages.

We run LSD, LF, and wLogDate on the IQTree

from Volz and Frost (2017) and use the BEAST

trees from Dudas et al. (2017), which include 1000

sampled trees (BEAST-1000) and the Maximum

clade credibility tree (BEAST-MCC). To root the

IQTree, we search for the rooting position that

minimizes the triplet distance (Sand et al., 2013)

between the IQTree and the BEAST-MCC tree.

Methods Compared

For the phylodynamics data, we compared

wLogDate to three other methods: LSD (To

et al., 2015), LF (Langley and Fitch, 1974), and

BEAST (Drummond and Rambaut, 2007). For all

methods, we fixed the true rooted tree topology

and only inferred branch lengths. For LSD,

LF, and wLogDate, we used phyML (Guindon

et al., 2010) to estimate the branch lengths in

substitution unit from sequence alignments and

used each of them to infer the time tree. LSD

was run in the same settings as the QPD*

mode described in the original paper (To et al.,

2015). LF was run using the implementation in

r8s (Sanderson, 2003). wLogDate was run with

10 feasible starting points. For the Bayesian

method BEAST, we also fixed the true rooted tree

topology and only inferred node ages. Following

To et al. (2015), we ran BEAST using HKY+Γ8

and coalescent with constant population size

tree prior. We used two clock models on the

rate parameter: the strict-clock (i.e. fixed rate)

model and the LogNormal model. For the strict-

clock prior, we set clock rate prior to a uniform

distribution between 0 and 1. For the LogNormal

prior, we set the ucld.mean prior to a uniform

distribution between 0 and 1, and ucld.stdev prior

to an exponential distribution with parameter 1/3

(default). We always set the length of the MCMC

chain to 107 generations, burn-in to 10%, and

sampling to every 104 generations (identical to To

et al. (2015)).

For the autocorrelated rate model, we compared

wLogDate to LF and RelTime (Tamura et al.,

2018), which is one of the state-of-the-art model-

free dating methods. We randomly chose subsets

of the internal nodes (10% on average) as

calibration points and created 20 tests for each

of the 10 replicates (for a total of 200 tests).

We also compared wLogDate to DAMBE using

this dataset. Because DAMBE can only be run in

interactive mode where each calibration point has

to be manually placed onto the tree, we could not

run DAMBE on the 200 tests with hundreds of

calibration points in total. Therefore, we instead

ran DAMBE only once on each of the 10 trees

and infer a unit time tree for each of them (i.e.
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calibrate the root to be at 1 unit time backward)

and compared the results to that of wLogDate.

DAMBE does not accept identical sequences so we

removed identical sequences from the simulated

alignments and trees before running DAMBE and

ran wLogDate using these reduced trees to have a

fair comparison.

Evaluation Criteria

On the simulated phylodynamics dataset where

the ground truth is known, we compare the

accuracy of the methods using several metrics. We

compute the root-mean-square error (RMSE) of

the true and estimated vector of the divergence

times (τ) and normalize it by tree height. We also

rank methods by RMSE rounded to two decimal

digits (to avoid different ranks when errors are

similar). In addition, we examine the inferred

divergence time of the Most Recent Common

Ancestor (tMRCA) and mutation rate. The

comparison of methods mostly focuses on point-

estimates of these parameters and the accuracy

of the estimates (as opposed to their variance).

In one analysis, we also compare the confidence

intervals produced by wLogDate and BEAST on

one model condition (M3 with LogNormal rate

distribution). Finally, we examine the correlation

between variance of the error in wLogDate and

divergence times and branch lengths.

On the simulated data with autocorrelated rate,

we show the distributions of the divergence times

estimated by wLogDate, LF, and RelTime and

report the RMSE normalized by tree height for

each replicate. To compare to DAMBE in inferring

unit time trees, we report the average relative

error of the inferred to the true divergence times.

After removing identical sequences, there are 438

internal nodes in total across the 10 tree replicates.

For each internal nodes, we compute the relative

error of its divergence time inferred by either

DAMBE or wLogDate to its true divergence

time in the normalized true time tree, which is

|t̂i−ti|
ti

where t̂i and ti are the inferred and true

divergence times of node i, respectively. We report

the average relative error per tree replicate and

the average of all 438 nodes for DAMBE and

wLogDate.

On real data, we show lineage-through-time

(LTT) plots (Nee et al., 1994), which trace the

number of lineages at any point in time and

compare tMRCA times to the values reported in

the literature. We also compare the runtime of

wLogDate to all other methods in all analyses.

Results

Simulated data for phylodynamics

We first evaluate the convergence of the ScipPy

solver across 10 starting points (Fig. S3a).

LogDate and wLogDate converge to a stable result

after 50–200 iterations, depending on the model

condition. Convergence seems easier when rates

are Gamma or LogDate and harder when the rates

are Exponential. Next, to control for the effect of

the starting points on the accuracy of our method,

we compare the error of these starting points
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FIG. 2. Analyses of wLogDate on inferring branch lengths on simulated data. (a) error normalized by tree height versus
divergence time (i.e. the time of the midpoint of each branch); both axes are normalized by the tree height. (b) error versus
branch length (in time unit); both axes are normalized by the maximum branch length. For both (a) and (b), the x-axis is
discretized into 10 bins of equal size. We label the bins by their median values, relative to either the tree height for (a) or
the maximum branch length for (b). We also show the number of points in each bin in parentheses. Note the small number
of points in the final bins in panel (b). For each bin, the blue dot represents the mean, the red cross represents the median,
and the bar represents one standard deviations around the mean.

with the wLogDate optimal point (Fig. S3b). In

all model conditions, the optimal point shows

dramatic improvement in accuracy compared to

the starting point. We then compare different

weighting strategies for LogDate (Table S4). In

all model conditions, the weighting

√
b̂i+ b̃, is one

of the two best, so it is chosen as the default

weighting for wLogDate. Moreover, wLogDate is

never worse than LogDate, and under exponential

clock models, appropriate weighting results in

dramatic improvements (Table S4).

model Clock model B lnorm B strict LF LSD wLogDate

LogNormal 1 3 4 5 1
M4 Gamma 2 4 3 5 1

Exponential 4 3 2 5 1

LogNormal 2 3 3 5 1
M3 Gamma 4 2 2 5 1

Exponential 5 3 2 4 1

LogNormal 5 1 3 4 2
M2 Gamma 4 1 3 5 2

Exponential 4 1 2 5 3

LogNormal 4 1 2 4 2
M1 Gamma 5 1 1 4 1

Exponential 2 1 3 3 5

average rank 3.5 2 2.5 4.5 1.75

Table 1. Ranking of the dating methods under different
model conditions. For each model condition, the average
RMSE of all internal node ages is computed and ranked
among the dating methods (rounded to two decimal digits).
The best method is shown in bold.

Next, we study the properties of wLogDate

estimates in relation to: (1) the age of the node

(Fig. 2a), (2) the length of the true branch in
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M 1 – M 4, e a c h wi t h cl o c k m o d el s L o g n o r m, G a m m a, a n d E x p o n e nti al. B o x e s s h o w m e di a n, 1 0 % a n d 9 0 % q u a ntil e s; d o t s a n d
e r r o r b a r s s h o w m e a n a n d s t a n d a r d e r r o r ( 1 0 0 r e pli c a t e s ).

ti m e u nit ( Fi g. 2 b), a n d ( 3) t h e err or of t h e

br a n c h l e n gt h s (i n s u b stit uti o n u nit) e sti m at e d b y

P h y M L ( Fi g. S 6). O v er all, w e d o n ot o b s er v e a

s u b st a nti al c h a n g e i n t h e m e a n e sti m ati o n err or of

w L o g D at e a s t h e n o d e a g e a n d t h e br a n c h l e n gt h

c h a n g e. T h e v ari a n c e, h o w e v er, c a n v ar y wit h

n o d e a g e s ( Fi g ur e 2 a), e s p e ci all y i n M 3 a n d M 4

m o d el c o n diti o n s. M or e o v er, l o n g er br a n c h e s h a v e

a t e n d e n c y t o h a v e hi g h er v ari a n c e i n a b s ol ut e

t er m s ( Fi g. 2 b). H o w e v er, n ot e t h at t h e r el ati v e

err or (i. e., l o g- o d d s err or) dr a m ati c all y r e d u c e s a s

br a n c h e s b e c o m e l o n g er ( Fi g. S 6). I n st u d yi n g t h e

e ff e ct of t h e err or i n br a n c h l e n gt h e sti m ati o n,

w e s e e t h at w L o g D at e c a n u n d er e sti m at e

t h e br a n c h ti m e if t h e br a n c h l e n gt h i n

s u b stit uti o n u nit i s e xtr e m el y u n d er e sti m at e d

( Fi g. S 6 a, S u p pl e m e nt ar y M at eri al s). I n s o m e

c a s e s w L o g D at e u n d er- e sti m at e s br a n c h ti m e s

b y t w o or d er of m a g nit u d e or m or e; all of

t h e s e c a s e s c orr e s p o n d t o s u p er- s h ort br a n c h e s

wit h s u b stit uti o n u nit br a n c h l e n gt h u n d er-

e sti m at e d b y t hr e e or f o ur or d er s of m a g nit u d e

. A s m e nti o n e d pr e vi o u sl y, e xtr e m el y s h ort

e sti m at e d br a n c h l e n gt h s ar e oft e n t h e z er o- e v e nt

br a n c h e s ( Fi g. S 7), w hi c h ar e u n a v oi d a bl e f or s h ort

s e q u e n c e s.

We n e xt c o m p ar e w L o g D at e t o alt er n ati v e

m et h o d s, n a m el y L F, L S D, a n d B E A S T wit h

stri ct- cl o c k a n d L o g n or m al cl o c k. M e a s ur e d b y

R M S E, t h e a c c ur a c y of all m et h o d s v ari e s

s u b st a nti all y a cr o s s m o d el tr e e s ( M 1 – M 4) a n d

m o d el s of r at e v ari ati o n ( Fi g. 3). C o m p ari n g

m et h o d s, f or m a n y c o n diti o n s, w L o g D at e h a s t h e

l o w e st err or, a n d i n m a n y ot h er s, it i s r a n k e d
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second best (Table 1). Across all conditions,

wLogDate has a mean rank of 1.75, followed

by BEAST with strict clock with a mean rank

2; mean normalized RMSE of wLogDate, LF,

BEAST-strict, BEAST-LogNormal, and LSD are

0.072, 0.074, 0.077, 0.087, and 0.116, respectively.

Interestingly, in contrast to wLogDate, LSD seems

to often underestimate branch times for many

short branches even when they are estimated

relatively accurately in substitution units (Fig.

S6b, Supplementary Materials). For all methods,

errors are an order of magnitude smaller for the

LogNormal and Gamma models of rate variations

compared to the Exponential model. In terms of

trees, M4, which simulates inter-host evolution

and high the largest height, presents the most

challenging case for all methods. Interestingly,

wLogDate has the best accuracy under all

parameters of M4 tree and also all parameters of

M3 (thus, both inter-host conditions). On M1, all

methods have very low error and perform similarly

(Fig. 3).

Among other methods, results are consistent

with the literature. Despite its conceptual

similarity to wLogDate, LSD has the worst

accuracy. On M1 and M2, LSD is competitive

with other methods; however, on M3 and M4,

it has a much higher error, especially with the

Exponential model of rate variation. With the

LogNormal clock model, BEAST-LogNormal is

better than BEAST-strict only for M4 but not

for M1–M3; in fact, BEAST-LogNormal has the

highest error for the M2 condition. This result is

surprising given the correct model specification.

Nevertheless, BEAST-LogNormal is competitive

only under the LogNormal model of rate variation

and is one of the two worst methods elsewhere.

Thus, BEAST-LogNormal is sensitive to model

misspecification. In contrast, BEAST-strict is less

sensitive to the model of rate variation and ranks

among the top three in most cases. In particular,

BEAST-strict is always the best method for intra-

host ladder-like trees M1 and M2.

Accuracy of tMRCA follows similar patterns

(Fig. 4). Again, the Exponential rate variation

model is the most difficult case for all methods,

resulting in biased results and highly variable

error rates for most methods. In all conditions

of M3 and M4, wLogDate has the best accuracy

and improves on the second best method by 9 –

66% (Table 2). For M1 and M2, BEAST-strict is

often the best method. The mean tMRCA error

of wLogDate across all conditions is 4.83 (years),

which is substantially better than the second best

method, BEAST-strict (6.21).

In terms of the mutation rate, the distinction

between methods is less pronounced (Table S1).

wLogDate is the best method jointly with the

two strict clock models BEAST-strict and LF.

Overall, even though LF and wLogDate tend

to over-estimate mutation rates, both have less

biased results compared to other methods (Fig. 4).

LSD and BEAST-LogNormal have the highest

errors; depending on the condition, each can
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FIG. 4. The inferred (top) tMRCA and (bottom) expected mutation rate on different tree models and clock models.
Distributions are over 100 replicates. The solid horizontal lines indicate the true mutation rate and tMRCA. Each black is
the average of the inferred values for each method under each model condition. We remove 6 outlier data points (2 LF, 1
LSD, 2 BEAST-LogNormal, 1 BEAST-Strict) with exceptional incorrect tMRCA (<−350) in the M4/Exponential model.

Tree Clock Model B strict B lnorm LF LSD RTT wLogDate

Lognormal 6.99 9.50 6.66 7.38 9.28 6.11 ( 9%↓)

M4 Gamma 7.83 10.48 7.02 8.48 8.24 6.28 (12%↓)

Exponential 43.5 140.9 116.2 62.2 31.5 32.5 (3%↑)

Lognormal 1.37 2.60 1.21 1.39 1.46 1.03 (17%↓)

M3 Gamma 1.60 3.14 1.23 1.67 1.42 0.97 (27%↓)

Exponential 5.76 34.67 4.87 8.35 3.39 2.94 (66%↓)

Lognormal 1.40 1.41 1.50 1.63 2.19 1.47 ( 5%↑)

M2 Gamma 1.54 1.44 1.75 1.92 2.56 1.66 (15%↑)

Exponential 3.39 4.59 4.28 5.27 5.23 3.72 ( 10%↑)

Lognormal 0.28 0.28 0.30 0.37 0.78 0.30 ( 7%↑)

M1 Gamma 0.27 0.29 0.32 0.35 0.80 0.30 (11%↑)

Exponential 0.60 1.11 0.79 0.82 1.37 0.69 (15%↑)

Average 6.21 17.54 12.17 8.13 5.68 4.83

Table 2. Mean absolute error of the inferred tMRCA
of BEAST strict, BEAST lognorm, LF, LSD, RTT, and
wLogDate. For wLogDate, parenthetically, we compare it
with the best (↑) or second best (↓) method for each
condition. We show percent improvement by wLogDate, as
measured by the increase in the error of the second best
method (wLogDate or the alternative) divided by the error
of the best method.

overestimate or underestimate the rate but LSD

tends to underestimate while BEAST-LogNormal

tends to overestimate. On M1, wLogDate and

LF have a clear advantage over BEAST-strict,

which tends to over-estimate the rate. On M2,

the three methods have similar accuracy. For M3

and M4, BEAST-strict under-estimates the rate

under the Exponential model of rate variation,

and wLogDate and LF are closer to the true value.

For all methods, M4 is the most challenging case.

We also compare confidence intervals obtained

from wLogDate and BEAST (Fig.5). Although

wLogDate intervals are on average 2.7 times larger
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FIG. 5. Estimated versus true divergence time. Each bar corresponds to the 95% confidence interval (CI) of one node
estimate (each of the 109 nodes of the 10 replicates) by BEAST strict clock and wLogDate. Red color is used to mark points
where the true time falls outside the CI.

than BEAST, 33% and 12% of the true values fall

outside the 95% confidence interval for BEAST

and wLogDate, respectively. Thus, while both

methods under-estimate the confidence interval

range, wLogDate, with its larger intervals, is closer

to capturing the true value in its confidence

interval at the desired level.

Finally, we compared all methods in terms of

their running time (Table S2). LSD and LF are the

fastest methods in all conditions, always taking

tens of seconds (less than a minute) on these data.

The running time of wLogDate depends on the

model condition and can be an order of magnitude

higher for Exponential rates than the other two

models of rate variation. Nevertheless, wLogDate

finishes on average in half a minute to 12 minutes,

depending on the model condition. In contrast,

BEAST took close to one hour with strict clock

and close to two hours with the LogNormal model

(and even more if run with longer chains; see Table

S5 in Supplementary Materials.

Simulated data with autocorrelated rate

In simulations with the autocorrelated rate model,

we compare wLogDate to LF and RelTime (Fig. 6

and Table S7) and wLogDate to DAMBE (Table

S8). The distribution of the estimated divergence

time of uncalibrated internal nodes does not show

any sign of biased in divergence time estimation

for either method. All methods seem to give less

varied estimates for the younger nodes (i.e. those

with higher divergence times) and have more

varied estimates for older nodes. In addition, the

estimates of wLogDate are more concentrated

around the true values than that of LF and
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RelTime, indicating a better accuracy. In two test

cases (out of 200), LF had extremely high error

(Fig.S7). Once those two cases are removed, the

average RMSE normalized by tree height is 0.09

for wLogDate, 0.10 for LF, and 0.13 for RelTime

(Table S7). Comparing to LF and wLogDate,

RelTime gives wider distributions of the estimates

for a large portion of the nodes. Finally, the

comparison in running time of wLogDate and

RelTime is shown in Fig.S8 (Supplementary

Materials).

Comparing to DAMBE in inferring unit time

trees, wLogDate has lower error in 6/10 replicates

and DAMBE has lower error in the remaining 4

replicates (Table S8). Overall, the average error of

wLogDate is 9.40%, which is slightly lower than

that of DAMBE at 9.66%.

Biological data

On the H1N1 dataset, the best available evidence

has suggested a tMRCA between December

2008 and January 2009 (Hedge et al., 2013;

Lemey et al., 2009; Rambaut and Holmes, 2009).

wLogDate inferred the tMRCA to be 14 December

2008 (Fig. 7a), which is consistent with the

literature. LF and LSD both infer a slightly

earlier tMRCA (10 November 2008), followed

by BEAST-strict and BEAST-lognorm (October

2008 and July 2008), and finally BEAST runs

using the phyML tree (Feb. 2008 for strict

and July 2007 for LogNormal). While the exact

tMRCA is not known on this real data, the

results demonstrate that wLogDate, on a real

data, produces times that match the presumed

ground truth.

On the HIV dataset, wLogDate inferred a

tMRCA of 1958 with only a handful of lineages

coalescing in the 1950s and most others coalescing

in 1960s and early 1970s (Fig. S5). The recovered

tMRCAs is within the range postulated in the

literature for subtype B (Gilbert et al., 2007;

Wertheim et al., 2012) and the fact that randomly

sampled HIV lineages across USA tend to coalesce

deep in the tree is a known phenomenon. LF and

LSD recovered the tMRCA of 1952 and 1953,

respectively. Comparing to wLogDate, these two

strict-clock methods postulate an earlier burst of

subtype B (Fig. 7c). We were not able to run

BEAST on this dataset.

On the Ebola dataset, the BEAST-1000 trees

obtained from Dudas et al. (2017) inferred the

tMRCA to be between 13 September 2013 and

26 January 2014 (95% credible interval) and

the BEAST-MCC inferred the tMRCA to be 5

December 2013 as reported by Volz and Frost

(2017). Here, wLogDate inferred a tMRCA on

7 December 2013, which is very close to the

estimate by BEAST. Both LF and LSD inferred

an earlier tMRCA: 29 October 2013 for LF and 2

October 2013 for LSD, but still within the 95 per

cent credible interval of BEAST-1000. LTT plots

showed a similar reconstruction by all methods for

this dataset (Fig. 7d).

We also compare running times of dating

methods on the three real biological datasets
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FIG. 6. Comparison of LF, RelTime, and wLogDate on the simulated data with autocorrelated rate model. The y-axis
shows estimated divergence times of uncalibrated internal nodes while the x-axis shows the true divergence time. Each bar
shows the 2.5% and 97.5% quantiles of the estimates of a single node’s divergence time across 20 tests, each of them with
different random choices of calibration points (thus, these are not CIs for one run). There are 10 replicate trees, each with 44
uncalibrated nodes (thus, 440 bars in total). This figure discards 2 tests (out of 10×20=200) where LF produced extremely
erroneous time trees (see Fig. S9) for the full results). The root-mean-square error of the un-calibrated internal node ages,
normalized by the tree height averaged across all replicates were 0.09, 0.1, and 0.13, respectively, for wLogDate, LF, and
RelTime (see Table S7).

(Table S3). LSD was always the fastest, running

in just seconds, compared to minutes for LF

and wLogDate. LF is faster than wLogDate

on the H1N1 and HIV data, while on Ebola

data, wLogDate is faster. We report the running

time for wLogDate as the sequential run of

10 independent starting points and note that

wLogDate can easily be parallelized. We further

tested the scaling of wLogDate with respect to the

number of species by subsampling the HIV dataset

to smaller numbers of species (Fig. S4). The

results show that the running time of wLogDate

increases slightly worse than quadratically with

the incrased number of species.

Discussion and future work

We introduced (w)LogDate, a new method

for dating phylogenies based on a non-convex

optimization problem. We showed that by log-

transforming the rates before minimizing their

variance, we obtain a method that performs much

better than LSD, which is a similar method

without the log transformation. In phylodynamics

settings, our relatively simple method also

outperformed other existing methods, including

the Bayesian methods, which are much slower.

The improvements were most pronounced in terms

of the estimation of tMRCA and individual node

ages and less so for the mutation rate. Moreover,
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FIG. 7. (a) Inferred tMRCA of the H1N1 dataset. Boxplots represent the median, maximum, minimum, 97.5% and 2.5%
quantiles of the bootstrap estimates for LF, LSD, and wLogDate, and of the posterior distribution for BEAST. Yellow dot
shows the inferred tMRCA of the best ML or MAP tree. BEAST was run with 4 different settings: B strict and B lnorm
allow BEAST to infer both tree topology and branch lengths, with strict and LogNormal clock models; phyML B strict
and phyML B lnorm fixed the topology to the rooted phyML tree given to BEAST. All other methods (LSD, LF, and
wLogDate) were run on the rooted phyML trees. Results for LSD, LF, and BEAST are all obtained from To et al. (2015).
(b) LTT plot for all methods on the H1N1 data. (c) LTT plot of fast methods on the HIV dataset. (d) LTT plot of BEAST,
LSD, LF, and wLogDate on the Ebola dataset.

improvements are most visible under the hardest

model conditions, and are also observed in when

data are generated according to autocorrelated

model of rates.

The log transformation results in a non-convex

optimization problem, which is harder to solve

than the convex problems solved by LSD and

LF. However, we note that the problem is

convex for rate multipliers between 0 and e.

In addition, given the advances in numerical

methods for solving non-convex optimization

problems, insistence on convex problems seems

unnecessary. Our results indicate that this non-

convex problem can be solved efficiently in the

varied settings we tested. The main benefits of

the log transformation is that it allow us to

define a scoring function that assigns symmetrical

penalties for increased or decreased rates (Fig. 1a);

as we argued, this symmetry is a desirable

property of the penalty function for several clock

models that deviate from a strict clock.

The accuracy of LogDate under varied

conditions we tested is remarkable, especially

given its lack of reliance on a particular model
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of rate evolution. We emphasize that the

parametric models used in practice are employed

for mathematical convenience and not because

of a strong biological reason to believe that they

capture real variations in rates.

Even assuming biological realism of the rate

model, the performance of the relaxed clock model

used in BEAST was surprisingly low. For example,

when rates are drawn from the LogNormal

distribution, BEAST-strict often outperformed

BEAST-LogNormal, especially in terms of the

estimates of tMRCA and the mutation rate. We

confirmed that the lower accuracy was not due to

lack of convergence in the MCMC runs. We reran

all experiments with longer chains (Table S5). to

ensure ESS values are above 300 (Table S6). These

much longer runs failed to improve the accuracy

of the BEAST-LogNormal substantially and left

the ranking of the methods unchanged (Fig. S10).

The LogDate approach can be further improved

in several aspects. First, the current formulation

of LogDate assumes a rooted phylogenetic tree,

whereas most inferred trees are unrooted. Rooting

phylogenies is a non-trivial problem and can also

be done based on principles of minimizing rate

variation (Mai et al., 2017). Similar to LSD,

LogDate can be generalized to unrooted trees

by rooting the tree on each branch, solving the

optimization problem for each root, and choosing

the root that minimizes the (w)LogDate objective

function. We leave the careful study of such an

approach to the future work.

Beyond rooting, the future work can explore

the possibility of building a specialized solver for

LogDate to gain speedup. One approach could be

exploiting the special structure of the search space

defined by the tree, which is the strategy employed

by LSD to solve the least-squares optimization in

linear time. Divide-and-conquer may also prove

effective.

The weighting scheme used in LogDate is

chosen heuristically to deal with the deviations

of estimated branch lengths from the true branch

length. In future, the weighting schema should be

studied more carefully, both in terms of theoretical

properties and empirical performance.

We described, implemented, and tested

LogDate in the condition where calibrations are

given as exact times (for any combinations of

leaves and internal nodes). While the current

settings fit well to phylodynamics data, its

application to paleontological data with fossil

calibrations is somewhat limited due to the

requirements for exact time calibrations (in

contrast to the ability to allow minimum

or maximum constraints on the ages, or a

prior about the distribution of the ages as in

BEAST and RelTime). While the mathematical

formulation extends easily, treatment of fossil

calibrations and uncertainty of times is a complex

topic (Heath, 2012; Ho and Phillips, 2009) that

requires the expansion of the current work.

Applying LogDate for deep phylogenies would

need further tweaks to the algorithm, including
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changing equality to inequality constraints and

the ability to setup feasible starting points for

the solver.

In the studies of LogDate accuracy, we have

explored various models for rate heterogeinety,

including parametric models where rates are

drawn i.i.d. from a fixed distribution (Log-normal,

Exponential, and Gamma) and autocorrelated

model where the rates of adjacent branches

are correlated. Overall, none of the methods

we studied is the best under all conditions. In

phylodynamics data, our simulations showed that

it is more challenging for all the dating methods

to date the phylogenies of the inter-host evolution

(M3 and M4) than the intra-host (M1 and M2).

wLogDate outperforms other methods for the

inter-host phylogenies, regardless of the model of

rate heterogeneity. While all methods have lower

error for intra-host trees, BEAST with strict-

clock prior is often the best method. However,

the differences between BEAST and wLogDate

are small and wLogDate is often the second best.

Thus, wLogDate works well for virus phylogenies,

especially in inter-host conditions. Despite the fact

that RelTime explicitly optimizes the rate for each

pairs of sister lineages, wLogDate is more accurate

than both LF and RelTime on the data where

the rates are autocorrelated between adjacent

branches. These results show that wLogDate is

applicable to a fairly large number of models of

the trees and the rates.

Nevertheless, the approach taken by wLogDate

suffers from its own limitations. By including a

single mean rate around which (wide) variations

are allowed, wLogDate is expected to work

the best when rates have distribution that are

close to being unimodal. However, rates on real

phylogenies may have sudden changes leading to

bimodal (or multimodal) rate distributions with

wide gaps in between modes. For example, certain

clades in the tree may have local clocks that are

very different from other clades. Such a condition

has been studied by Beaulieu et al. (2015) for

a dataset of seed plants. The authors setup a

simulation where there are local clocks on the

tree and the mean values of these clocks are

different by a factor varying from 3 to 6. Beaulieu

et al. (2015) point out that under such condition,

especially when the rate shift occurs near the

root, BEAST usually overestimates the time of the

Angiosperm (i.e. gives older time) by a factor of

2 (BEAST results from Beaulieu et al. (2015) are

reproduced in Fig. S11). We also tested wLogDate,

LF, and RelTime on this dataset (Fig. S11). In

scenario 2 of the simulation, where the rate shift

between the two local clocks is extreme (a factor

of 6), wLogDate clearly over-estimate the age

of Angiosperms (by a median of 55%). In this

same scenario, RelTime slightly underestimate the

age (by 5%). In the other 4 scenarios where the

rate shifts are more gentle, wLogDate continue to

overestimate the age but by small margins (by 6%,

1%, 2%, and 5%), while RelTime underestimates
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ages also by small margins (3%, 5%, 4%, 3%, and

3%). LF has similar patterns to wLogDate. These

results point to a limitation of wLogDate (and

the other dating methods) in phylogenies with

multiple local clocks.

In addition to multiple clocks, future works

should test LogDate under models where rate

continuously change with time, and have a

direction of change. Finally, to facilitate the

comparison between different methods, we used

the true topology with estimated branch lengths.

Future work should also study the impact of the

incorrect topology on LogDate and other dating

methods.

Software availability. The LogDate software

is available on https://github.com/uym2/

wLogDate in open-source format. The command-

line python tool is available through conda for

easy installation. A link to a web sever making

wLogDate available as a web-server is also

available from the github page.

Data availability. All the data are available on

https://github.com/uym2/LogDate-paper.
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