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Abstract

Phylogenetic trees inferred from sequence data often have branch lengths measured in the expected
number of substitutions and therefore, do not have divergence times estimated. These trees give an
incomplete view of evolutionary histories since many applications of phylogenies require time trees. Many
methods have been developed to convert the inferred branch lengths from substitution unit to time unit
using calibration points, but none is universally accepted as they are challenged in both scalability and
accuracy under complex models. Here, we introduce a new method that formulates dating as a non-convex
optimization problem where the variance of log-transformed rate multipliers are minimized across the
tree. On simulated and real data, we show that our method, wLogDate, is often more accurate than

alternatives and is more robust to various model assumptions.

Key words: time tree, divergence time estimation, phylogenetic dating, molecular dating, non-convex
optimization.

Introduction

Phylogenetic inference from sequence data does
not reveal divergence time (i.e. exact timing
of evolutionary events) unless paired with
external timing information. Under standard
models of sequence evolution, the evolutionary
processes, including sequence divergence, are
fully determined by the product of the absolute
time and mutation rates in a mnon-identifiable
form. Thus, these models measure branch

lengths in the unit of expected numbers of

mutations per site (since standard models like
GTR (Tavaré, 1986) only allow substitutions,
focusing on these models, we use substitutions
and mutations interchangeably throughout this
paper). Nevertheless, knowing divergence times is
crucial for understanding evolutionary processes
(Forest, 2009; Hillis et al, 1996) and is a
fundamental need in many clinical applications
of phylogenetics and phylodynamics (Volz et al.,
2013). A commonly used approach first infers
a phylogeny with branch lengths in the unit of
substitution per site and then dates the phylogeny

by translating branch lengths from substitution
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unit to time unit; co-estimation of topology and
dates is also possible (Drummond et al., 2006)
though its merits have been debated (Wertheim
et al., 2010).

The fundamental challenge in dating is to find a
way to factorize the number of substitutions into
the product of the evolutionary rate and time.
A common mechanism allowing this translation
is to impose soft or hard constraints on the
timing of some nodes of the tree, leaving the
divergence times of the remaining nodes to
be inferred based on the constrained nodes.
Timing information is often in one of two forms:
calibration points obtained from the geological
record (Kodandaramaiah, 2011) and imposed on
either internal nodes or tips that represent fossils
(see Donoghue and Yang, 2016), or tip sampling
times for fast-evolving viruses and bacteria. The
constraints still leave us with a need to extrapolate
from observed times for a few nodes to the
remaining nodes, a challenging task that requires
a mathematical approach. Obtaining accurate
timing information and formulating the right
method of extrapolation are both challenging
(e.g., see Rutschmann, 2006).

Many computational methods for dating
phylogenies are available (e.g., see Kumar and
Hedges, 2016; Rutschmann, 2006), and a main
point of differentiation between these methods is
the clock model they assume (Sanderson, 1998).
Some methods rely on a strict molecular clock

(Zuckerkandl, 1962) where rates are effectively

2

assumed to be constant (e.g., Langley and
Fitch, 1974; Shankarappa et al., 1999). However,
empirical evidence has now made it clear that
rates can vary substantially, and ignoring these
changes can lead to incorrect dating (Bromham
and Penny, 2003; Kumar, 2005). Consequently,
there have been many attempts to relar the
molecular clock and allow variations in rates.
A main challenge in relaxing the clock is the
need for a model of rates, and it is not clear
what model should be preferred. As a result,
many methods for dating using relaxed molecular
clocks have been developed. Some of these
methods allow rates to be drawn independently
from a stationary distribution (Akerborg et al.,
2008; Drummond et al., 2006; Volz and Frost,
2017) while others model the evolution of rates
with time (Huelsenbeck et al., 2000) or allow
correlated rates across branches (e.g., Drummond
and Suchard, 2010; Kishino et al., 2001; Lepage
et al., 2007; Sanderson, 2002; Snir et al., 2012;
Tamura et al, 2012; Thorne et al., 1998).
Despite these developments, strict molecular
clocks continue to be used, especially in the
context of intraspecific evolution where there is
an expectation of relatively uniform rates (Brown
and Yang, 2011).

Another distinction between methods is the
use of explicit models (Sanderson, 1997). Many
dating methods use a parametric statistical model
and formulate dating as estimating parameters

in a maximum likelihood (ML) or Bayesian
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inference framework (e.g., Drummond et al.,
2006; Langley and Fitch, 1974; To et al.,
2015; Volz and Frost, 2017). Another family of
methods (e.g., Sanderson, 2002; Tamura et al.,
2012) formulate dating as optimization problems,
including distance-based optimization (e.g., Xia,
2018; Xia and Yang, 2011), that avoid computing
likelihood under an explicit statistical model.
When the assumed parametric model is close
to the reality, we expect parametric methods to
perform well. However, these methods can be
sensitive to model deviations, a problem that may
be avoided by methods that avoid using specific
models.

In this paper, we introduce LogDate, a new
method of dating rooted phylogenies that allows
variations in rates but without modeling rates
using specific distributions. We define mutation
rates necessary to compute time unit branch
lengths as the product of a single global rate and
a set of rate multipliers, one per branch. We seek
to find the overall rate and all rate multipliers
such that the log-transformed rate multipliers
have the minimum variance. This formulation
gives us a constrained optimization problem,
which although not convex, can be solved in a
scalable fashion using the standard approaches
such as sequential least squares programming.
While formulation of dating as an optimization
problem is not new (Langley and Fitch, 1974; To
et al., 2015), here we introduce log-transformation

of the rate multipliers, which as we will show,

results in more accurate dates. Our observation
is in line with a recent change to RelTime
(Tamura et al., 2018) where the switch from
arithmetic means to geometric means (between
rates of sister lineages) has improved accuracy. In
extensive simulation studies and three biological
data sets, we show that a weighted version of
LogDate, namely wLogDate, has higher accuracy
in inferring node ages compared to alternative
methods, including some that rely on time-
consuming Bayesian inference. While wLogDate
can date trees using both sampling times for leaves
(e.g., in viral evolution) or estimated time of
ancestors, most of our results are focused on cases
with sampling times at the tips of the tree.

Methods

Definitions and notations

For a rooted binary tree T with n leaves, we
give each node a unique index in [0,...,2n—2].
By convention, the root is always assigned O,
the other internal nodes are arbitrarily assigned
indices in the range [1,...,n—1], and the leaves
are arbitrarily assigned indices in the range [n—
1,...,2n—2]. In the rest of this paper, we will refer
to any node by its index. If a node 7 is not the root
node, we let par(i) denote the parent of ¢ and if i
is not a leaf, we let ¢;(i) and ¢, (i) denote the left
and right children of i, respectively. We refer to
the edge connecting par(i) and i as e;.

We can measure each edge e; of T in either
time unit or substitution unit. Let ¢; denote the
divergence time of node i, i.e. the time when

3
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species ¢ diverged into ¢;(i) and ¢,(i). Then for
any node 7 other than the root, 7,=t; —t,4,@) is
the length of the edge e; in time unit. We measure
divergence time of a node with respect to a fixed
reference point in the past (i.e., time increases
forward). Thus, we enforce t; >1,,,(;) for all 7. Let
; be the substitution rate (per sequence site per
time unit) on branch e;, then the expected number
of substitutions per sequence site is b; = u;7;. Let
T=[T1,...,Ton_2] and b=[by,...,ba, 2]

From sequence data, b can be inferred using
standard methods such as maximum parsimony
(Fitch, 1971), minimum evolution (Rzhetsky
and Nei, 1993), neighbor-joining (Gascuel, 1997;
Saitou and Nei, 1987), and maximum-likelihood
(ML) (Felsenstein, 1981; Guindon et al., 2010;
Nguyen et al., 2015). Note that inferred trees need
to be rooted subsequently using an outgroup (that
can be removed) or automatic methods such as
midpoint or minimum variance rooting (Mai et al.,
2017). We let I;Z denote the estimate of b; by an
inference method and let b= [131,...,132n_1].

In this paper, we are interested in computing
7 from b. The computation of 7 from b is
complicated by two factors: (1) the possibility of
change among rates, and (2) deviations of the
inferred edge length b; from the true value b;.

To  better describe the mathematical
formulation of the optimization problem, we
first do the following change of variables.
Assuming the mutation rates on the branches

are distributed around a global rate p, we define

4

Let x=[v1,...,V2_2,u]; our goal of

finding 7 is identical to finding x.

Dating as a constrained optimization problem

We formulate dating as an optimization problem
on 2n—1 variables x=[vy,...,V9,_2,u], subject
to the linear constraints defined by calibration
points and/or sampling times. Many existing
methods, including LF (Langley and Fitch, 1974)
and LSD (To et al., 2015), can be described in
this framework, with the choice of the objective
function distinguishing them from each other. We
start by describing the setup of the constraints
enforced by a set of calibration points/sampling
times, and show that they can all be written
as linear equations on x. We then give the
formulation of both LF and LSD in this framework
and use their formulation to motivate our own new
approach. Finally, we describe strategies to solve

the wLogDate optimization problem.

Linear constraints ¥ from sampling times
For any pair of nodes (i,5) (where each of i and
j can either be a leaf or an internal node) with
enforced divergence times (;,t;), the following
constraint ¢(7,7) must be satisfied

V(i g) pult =)= Y wbi— Y wbe (1)

keP(m,j) ke P (i,m)

where m is the LCA of ¢ and j and P(m,j) and
P(i,m) are the paths connecting m to j and i to m,
respectively. Thus, given k time points, k(k—1)/2
constraints must hold. However, only k—1 of these

constraints imply all others, as we show below.
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Let tg be the unknown divergence time at the
root of the tree. For k calibration points tq,...,t,

we can setup k constraints of the form:

Ciu(t;—to)= Z V1D, (2)
kEP(0,7)

where node 0 is the root and P(0,i) is the path
from the root to node i. For any pair (i,5), the
linear constraint given in Eq. 1 can be derived
by subtracting C; from C; side by side. Also,
we can remove tp from the set of constraints
by subtracting C; from all other constraints
Cy,...,Cy. This gives us the final £—1 linear
constraints on x, which we denote as ¥. We
can build ¥ using Algorithm 1 (Supplementary

material).

Optimization Criteria

Since V,»:“B—:", the distribution of v; is influenced
by both the distribution of the rates (u;) and the
distribution of b; around b;. In traditional strict-
clock models (Zuckerkandl, 1962), a constant rate
is assumed throughout the tree (V;u; =p ). Under
this model, the distribution of v; is determined by
deviations of b; from b;.

Langley and Fitch (1974) (LF) modeled the
number of observed substitutions per sequence site
on a branch ¢ by a Poisson distribution with
mean A=pu7; and treated slA)i as if they were the
total number of observed substitutions; as such,

they assume sb; ~ Poisson(sut;), where s is the

sequence length. Therefore, by changing variable,

we can write the log-likelihood function as:

2n—2 2n—2

E (sl;ilog(si)i) —log((si)i)!)> + Z sb; (logv; — ;).

=1 =1
Given s and b;, LF finds x that maximizes the log-

likelihood function and subject to the constraints

W. As such,
2n—2A
Xp=argmin Z b (v; —logy;) subject to ¥. (3)
* i=1

To et al. (2015) assume b; follows a Gaussian
model: b; ~Gaussian(ur;,0?) and assume the

variance is approximated by % (the method
includes smoothing strategies omitted here).
Then, the negative log likelihood function can be
written as:
2n—2 2n—2 2n—2
i=1 9 i=1 61 i=1

Thus, the ML estimate can be formulated as:

xg:argmin2i2l;i(1—yi)2 subject to 0. (4)
x i=1

Both LF and LSD have convex formulations.
Langley and Fitch (1974) proved that their
negative log-likelihood function is convex and thus
the local minimum is also the global minimum.
Our constraint-based formulation of LF also can
be easily proved convex by showing its Hessian
matrix is positive definite. To et al. (2015) pointed
out their objective function is a weighted least
squares. Using our formulation, we also see that
Eq. 4 together with the calibration constraints
form a standard convex quadratic optimization

problem which has a unique analytical solution.

Z w% i i(l;i_ﬁm—i)Q: Z Si)i(l_yi)z'
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LogDate Method

Motivation

LF only seeks to model the errors in b and ignore
true rate heterogeneity. Strict-clock assumption is
now believed to be unrealistic in many settings
(Ho, 2014; Pulquério and Nichols, 2007; Schwartz
and Maresca, 2006), motivating relaxed clocks,
typically by assuming that u;s are drawn i.i.d.
from some distribution (e.g., Akerborg et al.,
2008; Drummond et al., 2006; Volz and Frost,
2017). Most methods rely on presumed parametric
distributions (typically, LogNormal, Exponential,
or Gamma) and estimate parameters using ML
(Volz and Frost, 2017), MAP (Akerborg et al.,
2008), or MCMC (Drummond and Rambaut,
2007; Drummond et al., 2006). The LSD method,
which like LF directly models errors in b, is
additionally justified under a normally-distributed
clock model. Choices of specific distributions in
these methods are not motivated by the knowledge
that real data follow them exactly (for example,
the Normal distribution has to be misspecified as
mutation rates cannot be negative).

Our goal is to avoid explicit parameter inference
under a model of rate multipliers. Instead, we
follow the assumption shared by existing methods
like LSD and LF: we assume that given two
solutions of x both satisfying the calibration
constraints, the solution with less variability in
v; values is preferable. Thus, we prefer solutions
that minimize deviations from a strict clock while

allowing deviations. A natural way to minimize

deviations from the clock is to minimize the
variance of g— This can be achieved by finding
u and all v; such that v; is centered at 1 and
S 7% (v;—1)? is minimized. Interestingly, the ML
function used by LSD (Eq. 4) is a weighted version
of this approach.

The minimum variance principle results in a
fundamental asymmetry: multiplying or dividing
the rate of a branch by the same factor are
penalized differently (Fig la). For example, the
penalty for ;=4 is more than ten times larger
than v;=1/42. The LF model is more symmetrical
than LSD but remains asymmetrical (Fig la).
This asymmetry results from the asymmetric
distribution of the Poisson distribution around
its mean, especially for small mean, in log scale
(Fig 1b). Because of this asymmetry, methods like
LSD and LF judge a very small b;/b, to be within
the realm of possible outcomes, and thus penalize
v; <1 multipliers less heavily than v; > 1.

Our method is based on a principle, which
we call the symmetry of ratios: the penalty for
multiplying a branch by a factor of v should
be no different than dividing the branch by wv.
Note that this assertion is only applicable to
true variations of the mutation rate (i.e, ignoring
branch length estimation error). We further
motivate this principle with more probabilistic
arguments below, but here we make the following
case. If one considers the distribution of rate
multipliers for various branches, absent of an

explicit model, it is reasonable to assume that
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FIG. 1. (a) The penalty associated to multiplying a single edge ¢ with multiplier v; in LSD, LF, and LogDate approaches, as
shown in Equations 3, 4, and 5. To allow comparison, we normalize the penalty to be zero at ¥=1 and to be 1 at v=4. (b)
The confidence interval of the ratio between estimated and true branch length using the Poisson model. For this purpose of
this exposition, we assume that the estimated branch length equals the number of substitutions occurring on the branch and
follows a Poisson distribution (i.e., JC69 model), divided by sequence length. With these assumptions, the CI for estimate

length b; is between 1/2x%5bi and 1/2x%8bi+2; we draw the CI for ¢/2=0.05 and ¢/2=0.2 to get 0.2-0.8 and 0.05-0.095 intervals

for 0.0001<b;<0.4. (c) and (e): Density and histograms of penalty terms (without square) used by LSD (»7i/s; —1) and
LogDate (log#7i/b;) under different clock models. (¢) Fixing pu7m; =0.1, we draw 500000 rate multipliers (r;) from LogNormal,
Gamma, or Exponential distributions with mean 1 and variance 0.16 for LogNormal and Gamma. For strict clock, r; =1.
We then draw estimated branch length for each replicate i from the Normal distributed with mean b; =7;u7; and variance
bi/s for s=200. (e) The branch lengths are estimated from the sequences using PhyML from simulated sequences of (T

et al., 2015), as explained in the text. Parameters of rate multiplier distributions match part (c). We omit extremely shor%

020z Jequeides 0 uo npe’pson@qeleliws Aq 99| 06S/ZZZeeSW/AS]I0W/S60L 0 L/I0p/8|o1B-80uBAPR/aqU/WOo0 dNo-olWwepeoe//:sdiy Wol) papeojumo



Mai and Mirarab - doi:10.1093/molbev/mst012

MBE

compared to an overall rate, branches rates are
as likely to increase by a factor of v as they are to
decrease by a factor of v. When this statement is
true, we shall prefer a method that penalizes v and
1/y identically. To ensure the symmetry of ratios,
we propose taking the logarithm of the multipliers
v; before minimizing their variance. Minimizing
the variance of the rates in log-scale is the essence
of our method. It achieves the symmetry, and, as
we show below, a better correspondence between
penalty and data likelihood.

Log-transformation has long been used to
reduce data skewness before applying linear
regression (Clifford et al., 2013; Keene, 1995;
Stynes et al., 1986; Xiao et al., 2011). In molecular
dating, it can be argued that log-transformation
is implicit in the new version of RelTime (Tamura
et al., 2018) where the geometric means between
sister lineages replaced the arithmetic means
in its predecessor. The improvement in the
accuracy of RelTime encourages a wider use
of log-transformation in molecular dating. Note
that log-transforming the rate multipliers before
minimizing their least squares penalty is identical
to applying linear least squares after log-
transformation of both time and the number of
substitutions. In other fields, log-transformation
has been used to make the least-squares method
more robust to highly skewed distributions (Aban
and Meerschaert, 2004; Meaney et al., 2007).

LogDate optimization function
We formulate the LogDate problem as follows.
Given b and the set of calibration constraints

described earlier, we seek to find

n—1
x* =argmin Z log®(v;)  subject to ¥.  (5)

x i=1
This objective function satisfies the symmetry
of ratio property (Fig. la). Since v; values are
multipliers of rates around pu, if we assume pu is
the mean rate, the LogDate problem is equivalent
to minimizing the variance of the log-transformed
rate multipliers (around their mean 1). The
objective function only depends on v;; however,
note that y is still included in the constraints and
therefore is part of the optimization problem. This
setting reduces the complexity of the objective
function and speeds up the numerical search for
the optimal solution. Since the values of v; close

to 1 are preferred in Eq. 5, the optimal solution

would push p to the mean rate.

Justification as a relaxed-clock model.

After log-transformation, LogDate, similar to
LSD, constructs the objective function using the
least squares principle (for ease of exposition,
here we discuss ordinary least-squares without

weights). We can rewrite the objective function

of LSD as 3=, (4" —1)? and that of LogDate as
Ti )2

Zi(log‘%—i) and see that both seek to find a

global rate p and the time 7; for each branch

to minimize the total deviations of the estimated

branches from p7;. This observation may motivate

viewing both LSD and LogDate as strict-clock
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methods. However, the following result justifies
viewing LogDate as a relaxed clock method.

We can prove that if the mutation rates p; are
drawn i.i.d. from a LogNormal distribution with
any parameters with mode g and the branches
are estimated without error (i.e. b;=b; for all 7),
then v; follows a LogNormal distribution with
mode 1 and the LogDate optimization problem is
equivalent to finding v that have maximum joint
probability, subject to the constraints. The proof

is given in Claim 1 (Supplementary materials).

Justification for symmetry of ratios.
Having shown that LogDate has a justification
under the LogNormal distribution, we now
compare LogDate and LSD objective functions in
a wider range of clock models. Recall that the
objective functions of LSD and LogDate are the
sum-of-squares of their penalty terms, which are
“b—T —1 for LSD and 1og% for LogDate.
Following the likelihood principle, an ideal
objective function must assign equal penalties
to data values that are equally likely to occur.
Therefore, for an ideal objective function written
as sum-of-squares of the penalty terms, the
probability distribution of its penalty terms
(before square) under the model that generates
the data must be symmetric around 0 (because
of the square). The true distribution of our
penalty terms is a function of both clock rate

variations and branch length estimation error.

While no objective function is ideal for all

compound models of rates and estimation error,
a robust objective function should remain close
to symmetric and maintain a low skewness under
a wide range of models. We now present several
theoretical and empirical results comparing
LogDate and LSD in terms of skewness of
distributions of their penalty terms.

First, consider a relaxed clock model of the
rates and assume no branch estimation error (i.e.,
lsi:um). If p; follows a LogNormal distribution

parameterized by 6 and o then it is easy to see that

‘it = 1= (penalty of LSD) also follow a LogNormal
distribution and the skewness depends on o. In
contrast, the log“g—:i (penalty of LogDate) follows
a Normal distribution, which has skewness 0, and
for which least square estimation is the maximum
likelihood estimator. Thus, as stated before, log-
transforming is the ML solution if rate multipliers
are log-normally distributed.

Now assume pu; follows a Gamma distribution
with mean p. Then #7i/b, =#/u, follows an Inverse
Gamma distribution while its log-transformation
follows a Log-Gamma distribution. We can
analytically compute the skewness of the penalty
terms of LSD and LogDate and compare them
(see Supplementary materials for the equations).
As shown in Fig. S1 (Supplementary materials),
the skewness of LSD is much higher than that
of LogDate, especially for higher variance of the
gamma rates. Higher skewness of penalty terms
violates the likelihood principle mentioned before.

Thus, for the two models where we could compute

9
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analytical formulas for skewness, we have grounds
to prefer LogDate.

Next, we consider the compound impacts of
branch length estimation error and rate variation,
and we study the question in two ways. One
approach is to measure the combined effect of
error and true variation by simulating sequence
data and measuring b; for known b; empirically;
here, we use simulations by To et al. (2015)
with 1000 sites and PhyML-inferred trees (details
will be provided in the Experiments section).
The other approach is modelling the compound
effect. While it is hard to know generally how
estimated branch length is distributed around
its expected value, here, we can follow To
et al. (2015) and assume b; ~A(b;,%). The other
challenge is that the compound distribution of
estimation error and rate multipliers is hard
to compute analytically. However, we can easily
generate a very large number of samples from
compound distributions and analyze the empirical
distribution to approximate the true distribution.

Inspecting the empirical density of the penalty
terms of LSD and LogDate across different
clock models result in consistent patterns
using both approaches, modeling the compound
distribution (Fig. 1c) and wusing simulated
sequence data (Fig. le). Across three models
of rates, Exponential, LogNormal, and Gamma,
the distributions of the LogDate penalty terms
are always more symmetric than that of LSD.

Results are similar for other rate models such

10

as Log-Uniform and are further amplified when
the variance is increased (Fig. S2a, Supplementary
Materials).

To further explore that relationship between the
likelihood and the penalty assigned by LogDate
and LSD, we plot the penalty (with square
terms) versus the empirical log likelihood of
the rate multipliers (Figs. 1d and 1f and S2b
in Supplementary Materials). Ideally, increasing
likelihood should monotonically decrease penalty,
and points with similar likelihood should have
similar penalties. In both modelled and simulated
branch lengths and across models, LSD assigns
two sets of widely different penalties (one
for increased and one for decreased rates) to
data with similar likelihood. LogDate, while
far from perfect, is much closer to the ideal
mapping between likelihood and penalty. Also, for
LogNormal with median rate multipliers set to
1, we empirically observe a perfectly monotonic
relationship between the penalty and likelihood

(Fig. S2b), as theory suggested.

wLogDate optimization function

The simple LogDate formulation, however, has a
limitation: by allowing rates to vary freely in a
multiplicative way, it fails to deal with the varied
levels of relative branch error; i.e., the ratio of the
estimated branch length to the true branch length
(bifb;). As b; is estimated from the sequences, the
error of b; is directly related to the variations in

the number of substitutions occurred along the
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branch b;. Let us assume sequences follow the
Jukes and Cantor (1969) model, and le N; be
the total number of substitutions occurred along
branch ¢ on a sequence with length s. Under Juke-
Cantor model, we have N;~ Poisson(sut;) and
therefore, var(N;)=sut;. Therefore, the variance

of the expected number of substitutions around

the true branch length is var(f:)=2%4% =1 Ag

sb; s2 b? T bys

Figure 1b shows, when b; is small, NT can easily

vary by several orders of magnitude around b;.
Furthermore, the distribution is not symmetric:
drawing values several factors smaller than the
mean is more likely than drawing values above the
mean by the same factor. These analyses predict
that the distribution of Z— depends strongly on b; -
with smaller b; giving higher variance - and is not
symmetric.

The variances of the relative error 2— is difficult
to compute analytically due to the involvement
of the sequence substitution model and the
method to estimate l;i, which are both unknown.
Therefore, we instead use empirical analyses
of the estimated branch lengths by PhyML to
demonstrate our arguments. Consistent with our
prediction, Figures S7 a and c illustrate that the
relative error Z— varies more in small branches
and the distribution is not symmetric. These
properties of the branch length estimates are
not modeled in our LogDate formulation and we
seek to incorporate them in a refined version of

LogDate which will be described below.

Since the true branch length b; is unknown,

a common practice is to use the estimated b;

1
biS'

This explains why both LF and LSD objective

in place of b; to estimate its variance as

functions (Eqs. 3 and 4) have a weight of b; for
each term of v;. Following the same strategy, we
propose weighting each log®(v;) term in a way
that reduces the contribution of short branches to
the total penalty, and thus allows more deviations
in the log space if the branch is small (and
is thus subject to higher error). Since we log-
transform v; and pursue a model-free approach,
explicitly computing the weights to cancel out the
variations of relative error among the branches
is challenging. However, since the weights should
reflect the variance of Z— (logarithmic scale), they
should monotonically increase with b; (Fig. 1b)
to allow more variance for the relative errors in
short branches than in long branches. We use b
as weights, a selection driven by simplicity and
empirical performance (shown in a later section).

The shortest branches require even more
care. When the branch is very short, for a
limited-size alignment, the evolution produces
zero mutations with high probability. For these
no-event branches, tree estimation tools report
arbitrary small lengths (see Fig. S7), rendering
b; values meaningless for very small branches. To
deal with this challenge, the r8s’s implementation
of LF (Sanderson, 2003) collapses all branches
with length b;<1/s. To et al. (2015) proposed

adding a smoothing constant ¢/s to each b,

11
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to estimate the variance of b;, where ¢ is a
parameter that the user can tune. Following
a similar strategy, we propose adding a small
constant b to each l;z We choose b to be
the maximum branch length that produces no
substitutions with probability at least 1—« for
a€(0,1]. Recall that N is the total number
of actual substitutions on a branch. Under the
Jukes and Cantor (1969) model, it is easy
to show that argmax; Pr(N=0b=0)>1—a=
—2log(1—a). We choose this value as b and set

a=0.01 by default. Thus, we define the weighted

LogDate (wLogDate) as follows:

2n—1

x" =argmin Z \/ b+ b;log?(1;)
x i=1

subject to W.

(6)

Solving the optimization problem

Both LogDate and wLogDate problems (Eq. 5
and Eq. 6) are non-convex, and hence solving
them is non-trivial. The problem is convex if
0<y;<e. For small clock deviation and small
estimation error in l;i, the v; values should be
small so that the problem becomes convex with
one local minimum. However, as v;<e is not
guaranteed, we have to rely on gradient-based
numerical methods to search for multiple local
minima and select the best solution we can find.
To search for local minima, we use the Scipy solver
with trust-constr (Lalee et al., 1998) method.
To help the solver work efficiently, we incorporate
three techniques that we next describe.

12

Computing Jacobian and Hessian matrices
analytically helps speedup the search. By taking
the partial derivative of each v;, we can compute
the Jacobian, J, of Eq. 6. Also, since Eq. 6 is
separable, its Hessian H is a (2n—2)x(2n—2)

diagonal matrix. Simple derivations give us:

— e
J:[Q by 8L 9\ bt by, p Y202

121 Vop—2
[~ ~ 1—logy;
an + 2

Sparse matrix representation further saves space
and computational time. The Hessian matrix is
diagonal, allowing us to store only the diagonal
elements. In addition, the constraint matrix
defined by W is highly sparse. If all sampling
times are given at the leaves, the number of non-
zero elements in our (n—1)x(2n—1) matrix is
O(nlogn) (Claim 3; Supplementary materials).
If the tree is either caterpillar or balanced, the
number of non-zeroes reduced to ©(n). Thus, we
use sparse matrix representation implemented in
the Scipy package. This significantly reduces the

running time of LogDate.

Starting from multiple feasible initial points is
necessary given that our optimization problem
is non-convex. Providing initial points that are
feasible (i.e. satisfied the calibration constraints)
helps the SciPy solver work efficiently. We
designed a heuristic strategy to find multiple
initial points given sampling times ti,...,t, of all

the leaves (as is common in phylodynamics).

r
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We first describe the process to get a single
initial point. We compute the root age ¢ty and u
using root-to-tip regression (RTT) (Shankarappa
et al., 1999). Next, we scale all branches of T
to conform with ¥ as follow: let m=argmin,t,
(breaking ties arbitrarily). Let d(r,i) denote the
distance from the root r to node i and P(r,m)
denote the path from r to m. For each node 7 in
P(r,m), we set 7; =b; (t,, —to) /d(r,m). Then going
upward from m to r following P(m,r), for each
edge (i,j) we compute t;=t;—7; and recursively
apply the process on the clade i. At the root, we
set t,, to the second oldest (second minimum)
sampling time and repeat the process on a new
path until all leaves are processed. Since RTT
gives us , to find v we simply set v; =#7ifb,.

To find multiple initial points, we repeatedly
apply RTT to a set of randomly selected clades of
T and scale each clade using the aforementioned
strategy. Specifically, we randomly select a set S
of some internal nodes in the tree and add the
root to S. Then, by a post-order traversal, we
visit each ©€S and date the clade u using the
scaling strategy described above. We then remove
the entire clade u from the tree but keep the node
u as a leaf (note that the age of u is already
computed) and repeat the process for the next
node in S. The root will be the last node to be
visited. After visiting the root, we have all the
7; for all 7. After having all the branches in time
unit, we find x to minimize either Eq. 5 or Eq. 6,

depending on whether LogDate or wLogDate is

chosen. In a tree of n leaves, we have 2("~1) —1
ways to select the initial non-empty set S, giving

us enough room for randomization.

Computing confidence interval

With the ability of wLogDate to work on any
combination of sampling times/calibration points
on both leaves and internal nodes (as long
as at least two time points are provided), we
design a method to estimate the confidence
intervals for the estimates of wLogDate. We
subsample the sampling times/calibration points
given to us repeatedly to create N replicate
datasets (where N is 100 by default, but can be
adjusted). Note our subsampling is not exactly a
bootstrapping procedure as node sampling times
cannot be resampled with replacement. We then
compute the time tree for each replicate to
obtain N different estimates for the divergence
time of each node, from which we can compute
their confidence intervals (95% as default). This
sampling would work best when we have a fairly
large number of calibration points, which is the
case in phylodynamic settings where all (or nearly
all) sampling times for the leaves are given, or
in large phylogenies where abundant calibration
points can be obtained from fossils. Although
we refer to the resulting intervals as confidence
intervals, it is important to recognize that the
resampling procedure is not strictly justified
via bootstrap theory because subsampling is

13
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necessarily without replacement and sampled

nodes are not independent of each other.

Experiments on simulated data
Phylodynamics setting

To et al. (2015) simulated a dataset of HIV env
gene. Their time trees were generated based on a
birth-death model with periodic sampling times.
There are four tree models, namely D995_11_10
(M1), D995.3.25 (M2), D750.11.10 (M3), and
D750-3_25 (M4), each of which has 100 replicates
for a total of 400 different tree topologies. M1
and M2 simulate intra-host HIV evolution and
are ladder-like while M3 and M4 simulate inter-
host evolution and are balanced. Also, M4 has
much higher root-to-tip distance (mean: 57)
compared to M1-M3 (22, 33, and 29). Starting
from conditions simulated by To et al. (2015), we
use the provided time tree to simulate the clock
deviations. Using an uncorrelated model of the
rates, we draw each rate from one of three different
distributions, each of which is centered at the
value ¢ =0.006 as in To et al. (2015). Thus, we set
each u; to x;;u where x; is drawn from one of three
distributions: LogNormal (mean:1.0, std: 0.4),
Gamma (a==6.05), and Exponential (A=1).
Sequences of length 1000 were simulated for each
of the model conditions using SeqGen (Rambaut
and Grass, 1997) under the same settings as To

et al. (2015).

Calibrations on autocorrelated rate model.
We used the software NELSI and the same
protocol as in (Ho et al., 2015) to simulate a
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dataset where the rates are autocorrelated. The
dataset has 10 replicates, each contains 50 taxa.
The time trees were generated under Birth-death
model and the rate heterogeneity through time is
modeled by the autocorrelation model ( (Kishino
et al., 2001)) with the initial rate set to 0.01
and the autocorrelated parameter set to 0.3.
DNA sequences (1000 bases) were generated under
Jukes-Cantor model. We used PhyML (Guindon
et al., 2010) to estimate the branch lengths in
substitution unit from the simulated sequences
while keeping the true topology. These trees
are the inputs to wLogDate, RelTime, LF, and
DAMBE (Xia, 2018) to infer time trees.

Real biological data

HiIN1 2009 pandemic. We re-analyze the HIN1
biological data provided by To et al. (2015) which
includes 892 HI1N1pdm09 sequences collected
worldwide between 13 March 2009 and 9 June
2011. We reuse the estimated PhyML (Guindon
et al., 2010) trees, 100 bootstrap replicates, and
all the results of the dating methods other than

LogDate that are provided by To et al. (2015).

San Diego HIV. We study a dataset of 926 HIV-
1 subtype B pol sequences obtained in San Diego
between 1996 and 2018 as part of the PIRC study.
We use IQTree (Nguyen et al., 2015) to infer a
tree under the GTR~+I" model, root the tree on 22
outgroups, then remove the outgroups. Because of

the size, we could not run BEAST.
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West African FEbola epidemic. We study the
dataset of Zaire Ebola virus from Africa, which
includes 1,610 near-full length genomes sampled
between 17 March 2014 and 24 October 2015.
The data was collected and analyzed by Dudas
et al. (2017) using BEAST and re-analyzed by
Volz and Frost (2017) using 1QTree to estimate
the ML tree and treedater to infer node ages.
We run LSD, LF, and wLogDate on the IQTree
from Volz and Frost (2017) and use the BEAST
trees from Dudas et al. (2017), which include 1000
sampled trees (BEAST-1000) and the Maximum
clade credibility tree (BEAST-MCC). To root the
1QTree, we search for the rooting position that
minimizes the triplet distance (Sand et al., 2013)
between the IQTree and the BEAST-MCC tree.

Methods Compared

For the phylodynamics data, we compared
wLogDate to three other methods: LSD (To
et al., 2015), LF (Langley and Fitch, 1974), and
BEAST (Drummond and Rambaut, 2007). For all
methods, we fixed the true rooted tree topology
and only inferred branch lengths. For LSD,
LF, and wLogDate, we used phyML (Guindon
et al., 2010) to estimate the branch lengths in
substitution unit from sequence alignments and
used each of them to infer the time tree. LSD
was run in the same settings as the QPD*
mode described in the original paper (To et al.,
2015). LF was run using the implementation in

r8s (Sanderson, 2003). wLogDate was run with

10 feasible starting points. For the Bayesian
method BEAST, we also fixed the true rooted tree
topology and only inferred node ages. Following
To et al. (2015), we ran BEAST using HKY+I'8
and coalescent with constant population size
tree prior. We used two clock models on the
rate parameter: the strict-clock (i.e. fixed rate)
model and the LogNormal model. For the strict-
clock prior, we set clock rate prior to a uniform
distribution between 0 and 1. For the LogNormal
prior, we set the ucld.mean prior to a uniform
distribution between 0 and 1, and ucld.stdev prior
to an exponential distribution with parameter 1/3
(default). We always set the length of the MCMC
chain to 107 generations, burn-in to 10%, and
sampling to every 10* generations (identical to To
et al. (2015)).

For the autocorrelated rate model, we compared
wLogDate to LF and RelTime (Tamura et al.,
2018), which is one of the state-of-the-art model-
free dating methods. We randomly chose subsets
of the internal nodes (10% on average) as
calibration points and created 20 tests for each
of the 10 replicates (for a total of 200 tests).
We also compared wLogDate to DAMBE using
this dataset. Because DAMBE can only be run in
interactive mode where each calibration point has
to be manually placed onto the tree, we could not
run DAMBE on the 200 tests with hundreds of
calibration points in total. Therefore, we instead
ran DAMBE only once on each of the 10 trees

and infer a unit time tree for each of them (i.e.
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calibrate the root to be at 1 unit time backward)
and compared the results to that of wLogDate.
DAMBE does not accept identical sequences so we
removed identical sequences from the simulated
alignments and trees before running DAMBE and
ran wLogDate using these reduced trees to have a

fair comparison.

Evaluation Criteria
On the simulated phylodynamics dataset where
the ground truth is known, we compare the
accuracy of the methods using several metrics. We
compute the root-mean-square error (RMSE) of
the true and estimated vector of the divergence
times (7) and normalize it by tree height. We also
rank methods by RMSE rounded to two decimal
digits (to avoid different ranks when errors are
similar). In addition, we examine the inferred
divergence time of the Most Recent Common
Ancestor (tMRCA) and mutation rate. The
comparison of methods mostly focuses on point-
estimates of these parameters and the accuracy
of the estimates (as opposed to their variance).
In one analysis, we also compare the confidence
intervals produced by wLogDate and BEAST on
one model condition (M3 with LogNormal rate
distribution). Finally, we examine the correlation
between variance of the error in wLogDate and
divergence times and branch lengths.

On the simulated data with autocorrelated rate,
we show the distributions of the divergence times
estimated by wLogDate, LF, and RelTime and

16

report the RMSE normalized by tree height for
each replicate. To compare to DAMBE in inferring
unit time trees, we report the average relative
error of the inferred to the true divergence times.
After removing identical sequences, there are 438
internal nodes in total across the 10 tree replicates.
For each internal nodes, we compute the relative
error of its divergence time inferred by either
DAMBE or wLogDate to its true divergence
time in the normalized true time tree, which is
”t;tl where f; and t; are the inferred and true
divergence times of node 4, respectively. We report
the average relative error per tree replicate and
the average of all 438 nodes for DAMBE and
wLogDate.

On real data, we show lineage-through-time
(LTT) plots (Nee et al., 1994), which trace the
number of lineages at any point in time and
compare tMRCA times to the values reported in
the literature. We also compare the runtime of
wLogDate to all other methods in all analyses.

Results
Simulated data for phylodynamics

We first evaluate the convergence of the ScipPy
solver across 10 starting points (Fig. S3a).
LogDate and wLogDate converge to a stable result
after 50-200 iterations, depending on the model
condition. Convergence seems easier when rates
are Gamma or LogDate and harder when the rates
are Exponential. Next, to control for the effect of
the starting points on the accuracy of our method,

we compare the error of these starting points
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FIG. 2. Analyses of wLogDate on inferring branch lengths on simulated data. (a) error normalized by tree height versus
divergence time (i.e. the time of the midpoint of each branch); both axes are normalized by the tree height. (b) error versus
branch length (in time unit); both axes are normalized by the maximum branch length. For both (a) and (b), the x-axis is
discretized into 10 bins of equal size. We label the bins by their median values, relative to either the tree height for (a) or
the maximum branch length for (b). We also show the number of points in each bin in parentheses. Note the small number
of points in the final bins in panel (b). For each bin, the blue dot represents the mean, the red cross represents the median,
and the bar represents one standard deviations around the mean.

with the wLogDate optimal point (Fig. S3b). In
all model conditions, the optimal point shows
dramatic improvement in accuracy compared to
the starting point. We then compare different
weighting strategies for LogDate (Table S4). In
all model conditions, the weighting i)ﬁ—f), is one
of the two best, so it is chosen as the default
weighting for wLogDate. Moreover, wLogDate is
never worse than LogDate, and under exponential
clock models, appropriate weighting results in

dramatic improvements (Table S4).

=

model | Clock model | Bnorm | B_strict
LogNormal
M4 Gamma
Exponential
LogNormal
M3 Gamma
Exponential
LogNormal
M2 Gamma
Exponential
LogNormal
M1 Gamma
Exponential
average rank

LSD | wLogDate
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Table 1. Ranking of the dating methods under different
model conditions. For each model condition, the average
RMSE of all internal node ages is computed and ranked
among the dating methods (rounded to two decimal digits).
The best method is shown in bold.

Next, we study the properties of wLogDate
estimates in relation to: (1) the age of the node

(Fig. 2a), (2) the length of the true branch in
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FIG. 3. Distributions of RMSE normalized by the tree height for internal node ages inferred by all methods on model trees
M1-M4, each with clock models Lognorm, Gamma, and Exponential. Boxes show median, 10% and 90% quantiles; dots and

error bars show mean and standard error (100 replicates).

time unit (Fig. 2b), and (3) the error of the
branch lengths (in substitution unit) estimated by
PhyML (Fig. S6). Overall, we do not observe a
substantial change in the mean estimation error of
wLogDate as the node age and the branch length
change. The variance, however, can vary with
node ages (Figure 2a), especially in M3 and M4
model conditions. Moreover, longer branches have
a tendency to have higher variance in absolute
terms (Fig. 2b). However, note that the relative
error (i.e., log-odds error) dramatically reduces as
branches become longer (Fig. S6). In studying the
effect of the error in branch length estimation,
we see that wLogDate can underestimate
the branch time if the branch Ilength in
substitution unit is extremely underestimated

(Fig.S6a, Supplementary Materials). In some
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cases wLogDate under-estimates branch times
by two order of magnitude or more; all of
these cases correspond to super-short branches
with substitution unit branch length wunder-
estimated by three or four orders of magnitude

As mentioned previously, extremely short
estimated branch lengths are often the zero-event
branches (Fig.S7), which are unavoidable for short
sequences.

We next compare wLogDate to alternative
methods, namely LF, LSD, and BEAST with
strict-clock and Lognormal clock. Measured by
RMSE, the accuracy of all methods varies
substantially across model trees (M1 — M4) and
models of rate variation (Fig. 3). Comparing
methods, for many conditions, wLogDate has the

lowest error, and in many others, it is ranked
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second best (Table 1). Across all conditions,
wLogDate has a mean rank of 1.75, followed
by BEAST with strict clock with a mean rank
2; mean normalized RMSE of wLogDate, LF,
BEAST-strict, BEAST-LogNormal, and LSD are
0.072, 0.074, 0.077, 0.087, and 0.116, respectively.
Interestingly, in contrast to wLogDate, LSD seems
to often underestimate branch times for many
short branches even when they are estimated
relatively accurately in substitution units (Fig.
S6b, Supplementary Materials). For all methods,
errors are an order of magnitude smaller for the
LogNormal and Gamma models of rate variations
compared to the Exponential model. In terms of
trees, M4, which simulates inter-host evolution
and high the largest height, presents the most
challenging case for all methods. Interestingly,
wlLogDate has the best accuracy under all
parameters of M4 tree and also all parameters of
M3 (thus, both inter-host conditions). On M1, all
methods have very low error and perform similarly
(Fig. 3).

Among other methods, results are consistent
with the literature. Despite its conceptual
similarity to wLogDate, LSD has the worst
accuracy. On M1 and M2, LSD is competitive
with other methods; however, on M3 and M4,
it has a much higher error, especially with the
Exponential model of rate variation. With the
LogNormal clock model, BEAST-LogNormal is
better than BEAST-strict only for M4 but not
for M1-M3; in fact, BEAST-LogNormal has the

highest error for the M2 condition. This result is
surprising given the correct model specification.
Nevertheless, BEAST-LogNormal is competitive
only under the LogNormal model of rate variation
and is one of the two worst methods elsewhere.
Thus, BEAST-LogNormal is sensitive to model
misspecification. In contrast, BEAST-strict is less
sensitive to the model of rate variation and ranks
among the top three in most cases. In particular,
BEAST-strict is always the best method for intra-
host ladder-like trees M1 and M2.

Accuracy of tMRCA follows similar patterns
(Fig. 4). Again, the Exponential rate variation
model is the most difficult case for all methods,
resulting in biased results and highly variable
error rates for most methods. In all conditions
of M3 and M4, wLogDate has the best accuracy
and improves on the second best method by 9 —
66% (Table 2). For M1 and M2, BEAST-strict is
often the best method. The mean tMRCA error
of wLogDate across all conditions is 4.83 (years),
which is substantially better than the second best
method, BEAST-strict (6.21).

In terms of the mutation rate, the distinction
between methods is less pronounced (Table S1).
wLogDate is the best method jointly with the
two strict clock models BEAST-strict and LF.
Overall, even though LF and wLogDate tend
to over-estimate mutation rates, both have less
biased results compared to other methods (Fig. 4).
LSD and BEAST-LogNormal have the highest

errors; depending on the condition, each can
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FIG. 4. The inferred (top) tMRCA and (bottom) expected mutation rate on different tree models and clock models.
Distributions are over 100 replicates. The solid horizontal lines indicate the true mutation rate and tMRCA. Each black is

the average of the inferred values for each method under each model condition. We remove 6 outlier data points (2 LF, 1
LSD, 2 BEAST-LogNormal, 1 BEAST-Strict) with exceptional incorrect tMRCA (< —350) in the M4/Exponential model.

Tree | Clock Model | B_strict | B_norm LF | LSD | RTT wLogDate
Lognormal 6.99 9.50 | 6.66 | 7.38 | 9.28 6.11 ( 9%)

M4 Gamma 7.83 1048 | 7.02 | 8.48 | 8.24 | 6.28 (12%)
Exponential 43.5 140.9 | 116.2 | 62.2 | 31.5 32.5 (3%1)
Lognormal 1.37 2,60 | 1.21 | 1.39| 1.46 | 1.03 (17%)

M3 Gamma 1.60 3.14 1.23 | 1.67 | 1.42 | 0.97 (27%)
Exponential 5.76 34.67 | 4.87 | 8.35 | 3.39 | 2.94 (66%)
Lognormal 1.40 141 | 1.50 | 1.63 | 2.19 1.47 (5%1)

M2 Gamma 1.54 1.44 1.75 | 1.92 | 2.56 1.66 (15%1)
Exponential 3.39 459 | 4.28 | 5.27 | 5.23 | 3.72 (10%1)
Lognormal 0.28 0.28 | 0.30 | 0.37 | 0.78 0.30 ( 7%1)

M1 Gamma 0.27 0.29 | 0.32| 0.35| 0.80 | 0.30 (11%1)
Exponential 0.60 1.11 | 0.79 | 0.82 | 1.37 0.69 (15%1)
Average 6.21 17.54 | 12.17 | 8.13 | 5.68 4.83

Table 2. Mean absolute error of the inferred tMRCA
of BEAST strict, BEAST lognorm, LF, LSD, RTT, and
wLogDate. For wLogDate, parenthetically, we compare it
with the best (1) or second best (J) method for each
condition. We show percent improvement by wLogDate, as
measured by the increase in the error of the second best
method (wLogDate or the alternative) divided by the error
of the best method.

20

overestimate or underestimate the rate but LSD
tends to underestimate while BEAST-LogNormal
tends to overestimate. On M1, wLogDate and
LF have a clear advantage over BEAST-strict,
which tends to over-estimate the rate. On M2,
the three methods have similar accuracy. For M3
and M4, BEAST-strict under-estimates the rate
under the Exponential model of rate variation,
and wLogDate and LF are closer to the true value.
For all methods, M4 is the most challenging case.

We also compare confidence intervals obtained
from wLogDate and BEAST (Fig.5). Although

wlLogDate intervals are on average 2.7 times larger
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FIG. 5. Estimated versus true divergence time. Each bar corresponds to the 95% confidence interval (CI) of one node
estimate (each of the 109 nodes of the 10 replicates) by BEAST strict clock and wLogDate. Red color is used to mark points

where the true time falls outside the CI.

than BEAST, 33% and 12% of the true values fall
outside the 95% confidence interval for BEAST
and wLogDate, respectively. Thus, while both
methods under-estimate the confidence interval
range, wLogDate, with its larger intervals, is closer
to capturing the true value in its confidence
interval at the desired level.

Finally, we compared all methods in terms of
their running time (Table S2). LSD and LF are the
fastest methods in all conditions, always taking
tens of seconds (less than a minute) on these data.
The running time of wLogDate depends on the
model condition and can be an order of magnitude
higher for Exponential rates than the other two
models of rate variation. Nevertheless, wLogDate
finishes on average in half a minute to 12 minutes,

depending on the model condition. In contrast,

BEAST took close to one hour with strict clock
and close to two hours with the LogNormal model
(and even more if run with longer chains; see Table

S5 in Supplementary Materials.

Simulated data with autocorrelated rate

In simulations with the autocorrelated rate model,
we compare wLogDate to LF and RelTime (Fig. 6
and Table S7) and wLogDate to DAMBE (Table
S8). The distribution of the estimated divergence
time of uncalibrated internal nodes does not show
any sign of biased in divergence time estimation
for either method. All methods seem to give less
varied estimates for the younger nodes (i.e. those
with higher divergence times) and have more
varied estimates for older nodes. In addition, the
estimates of wLogDate are more concentrated

around the true values than that of LF and
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RelTime, indicating a better accuracy. In two test
cases (out of 200), LF had extremely high error
(Fig.S7). Once those two cases are removed, the
average RMSE normalized by tree height is 0.09
for wLogDate, 0.10 for LF, and 0.13 for RelTime
(Table S7). Comparing to LF and wLogDate,
RelTime gives wider distributions of the estimates
for a large portion of the nodes. Finally, the
comparison in running time of wLogDate and
RelTime is shown in Fig.S8 (Supplementary
Materials).

Comparing to DAMBE in inferring unit time
trees, wLogDate has lower error in 6/10 replicates
and DAMBE has lower error in the remaining 4
replicates (Table S8). Overall, the average error of
wLogDate is 9.40%, which is slightly lower than
that of DAMBE at 9.66%.

Biological data

On the HIN1 dataset, the best available evidence
has suggested a tMRCA between December
2008 and January 2009 (Hedge et al., 2013;
Lemey et al., 2009; Rambaut and Holmes, 2009).
wLogDate inferred the tMRCA to be 14 December
2008 (Fig. 7a), which is consistent with the
literature. LF and LSD both infer a slightly
earlier tMRCA (10 November 2008), followed
by BEAST-strict and BEAST-lognorm (October
2008 and July 2008), and finally BEAST runs
using the phyML tree (Feb. 2008 for strict
and July 2007 for LogNormal). While the exact
tMRCA is not known on this real data, the
results demonstrate that wLogDate, on a real

22

data, produces times that match the presumed
ground truth.

On the HIV dataset, wLogDate inferred a
tMRCA of 1958 with only a handful of lineages
coalescing in the 1950s and most others coalescing
in 1960s and early 1970s (Fig. S5). The recovered
tMRCAs is within the range postulated in the
literature for subtype B (Gilbert et al., 2007;
Wertheim et al., 2012) and the fact that randomly
sampled HIV lineages across USA tend to coalesce
deep in the tree is a known phenomenon. LF and
LSD recovered the tMRCA of 1952 and 1953,
respectively. Comparing to wLogDate, these two
strict-clock methods postulate an earlier burst of
subtype B (Fig. 7c). We were not able to run
BEAST on this dataset.

On the Ebola dataset, the BEAST-1000 trees
obtained from Dudas et al. (2017) inferred the
tMRCA to be between 13 September 2013 and
26 January 2014 (95% credible interval) and
the BEAST-MCC inferred the tMRCA to be 5
December 2013 as reported by Volz and Frost
(2017). Here, wLogDate inferred a tMRCA on
7 December 2013, which is very close to the
estimate by BEAST. Both LF and LSD inferred
an earlier tMRCA: 29 October 2013 for LF and 2
October 2013 for LSD, but still within the 95 per
cent credible interval of BEAST-1000. LTT plots
showed a similar reconstruction by all methods for
this dataset (Fig. 7d).

We also compare running times of dating

methods on the three real biological datasets
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FIG. 6. Comparison of LF, RelTime, and wLogDate on the simulated data with autocorrelated rate model. The y-axis
shows estimated divergence times of uncalibrated internal nodes while the x-axis shows the true divergence time. Each bar
shows the 2.5% and 97.5% quantiles of the estimates of a single node’s divergence time across 20 tests, each of them with
different random choices of calibration points (thus, these are not ClIs for one run). There are 10 replicate trees, each with 44
uncalibrated nodes (thus, 440 bars in total). This figure discards 2 tests (out of 10 x 20=200) where LF produced extremely
erroneous time trees (see Fig. S9) for the full results). The root-mean-square error of the un-calibrated internal node ages,
normalized by the tree height averaged across all replicates were 0.09, 0.1, and 0.13, respectively, for wLogDate, LF, and

RelTime (see Table ST7).

(Table S3). LSD was always the fastest, running
in just seconds, compared to minutes for LF
and wLogDate. LF is faster than wLogDate
on the HIN1 and HIV data, while on Ebola
data, wLogDate is faster. We report the running
time for wLogDate as the sequential run of
10 independent starting points and note that
wLogDate can easily be parallelized. We further
tested the scaling of wLogDate with respect to the
number of species by subsampling the HIV dataset
to smaller numbers of species (Fig. S4). The
results show that the running time of wLogDate
increases slightly worse than quadratically with

the incrased number of species.

Discussion and future work

We introduced (w)LogDate, a new method
for dating phylogenies based on a non-convex
optimization problem. We showed that by log-
transforming the rates before minimizing their
variance, we obtain a method that performs much
better than LSD, which is a similar method
without the log transformation. In phylodynamics
settings, our relatively simple method also
outperformed other existing methods, including
the Bayesian methods, which are much slower.
The improvements were most pronounced in terms
of the estimation of tMRCA and individual node

ages and less so for the mutation rate. Moreover,
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FIG. 7. (a) Inferred tMRCA of the HIN1 dataset. Boxplots represent the median, maximum, minimum, 97.5% and 2.5%
quantiles of the bootstrap estimates for LF, LSD, and wLogDate, and of the posterior distribution for BEAST. Yellow dot
shows the inferred tMRCA of the best ML or MAP tree. BEAST was run with 4 different settings: B_strict and B_lnorm
allow BEAST to infer both tree topology and branch lengths, with strict and LogNormal clock models; phyML _B_strict
and phyML_B_Inorm fixed the topology to the rooted phyML tree given to BEAST. All other methods (LSD, LF, and
wLogDate) were run on the rooted phyML trees. Results for LSD, LF, and BEAST are all obtained from To et al. (2015).
(b) LTT plot for all methods on the HIN1 data. (¢) LTT plot of fast methods on the HIV dataset. (d) LTT plot of BEAST,

LSD, LF, and wLogDate on the Ebola dataset.

improvements are most visible under the hardest
model conditions, and are also observed in when
data are generated according to autocorrelated
model of rates.

The log transformation results in a non-convex
optimization problem, which is harder to solve
than the convex problems solved by LSD and
LF. However, we note that the problem is
convex for rate multipliers between 0 and e.
In addition, given the advances in numerical
methods for solving non-convex optimization

problems, insistence on convex problems seems
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unnecessary. Our results indicate that this non-
convex problem can be solved efficiently in the
varied settings we tested. The main benefits of
the log transformation is that it allow us to
define a scoring function that assigns symmetrical
penalties for increased or decreased rates (Fig. 1a);
as we argued, this symmetry is a desirable
property of the penalty function for several clock
models that deviate from a strict clock.

The accuracy of LogDate wunder varied
conditions we tested is remarkable, especially

given its lack of reliance on a particular model
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of rate evolution. We emphasize that the
parametric models used in practice are employed
for mathematical convenience and not because
of a strong biological reason to believe that they
capture real variations in rates.

Even assuming biological realism of the rate
model, the performance of the relaxed clock model
used in BEAST was surprisingly low. For example,
when rates are drawn from the LogNormal
distribution, BEAST-strict often outperformed
BEAST-LogNormal, especially in terms of the
estimates of tMRCA and the mutation rate. We
confirmed that the lower accuracy was not due to
lack of convergence in the MCMC runs. We reran
all experiments with longer chains (Table S5). to
ensure ESS values are above 300 (Table S6). These
much longer runs failed to improve the accuracy
of the BEAST-LogNormal substantially and left
the ranking of the methods unchanged (Fig. S10).

The LogDate approach can be further improved
in several aspects. First, the current formulation
of LogDate assumes a rooted phylogenetic tree,
whereas most inferred trees are unrooted. Rooting
phylogenies is a non-trivial problem and can also
be done based on principles of minimizing rate
variation (Mai et al., 2017). Similar to LSD,
LogDate can be generalized to unrooted trees
by rooting the tree on each branch, solving the
optimization problem for each root, and choosing
the root that minimizes the (w)LogDate objective
function. We leave the careful study of such an

approach to the future work.

Beyond rooting, the future work can explore
the possibility of building a specialized solver for
LogDate to gain speedup. One approach could be
exploiting the special structure of the search space
defined by the tree, which is the strategy employed
by LSD to solve the least-squares optimization in
linear time. Divide-and-conquer may also prove
effective.

The weighting scheme used in LogDate is
chosen heuristically to deal with the deviations
of estimated branch lengths from the true branch
length. In future, the weighting schema should be
studied more carefully, both in terms of theoretical
properties and empirical performance.

We described, implemented, and tested
LogDate in the condition where calibrations are
given as exact times (for any combinations of
leaves and internal nodes). While the current
settings fit well to phylodynamics data, its
application to paleontological data with fossil
calibrations is somewhat limited due to the
requirements for exact time calibrations (in
contrast to the ability to allow minimum
or maximum constraints on the ages, or a
prior about the distribution of the ages as in
BEAST and RelTime). While the mathematical
formulation extends easily, treatment of fossil
calibrations and uncertainty of times is a complex
topic (Heath, 2012; Ho and Phillips, 2009) that
requires the expansion of the current work.
Applying LogDate for deep phylogenies would

need further tweaks to the algorithm, including

25

020z Jequiejdas 0 uo npa pson@aelenws Aq 9y L 06S/2ZZeRSW/ASQIOW/SE0 ] 0L /I0p/a|o1B-00UuBAPR/aqW /W09 dno dlwapeae//:sd)y Wol) PapeojUMOQ



Mai and Mirarab - doi:10.1093/molbev/mst012

MBE

changing equality to inequality constraints and
the ability to setup feasible starting points for
the solver.

In the studies of LogDate accuracy, we have
explored various models for rate heterogeinety,
including parametric models where rates are
drawn i.i.d. from a fixed distribution (Log-normal,
Exponential, and Gamma) and autocorrelated
model where the rates of adjacent branches
are correlated. Overall, none of the methods
we studied is the best under all conditions. In
phylodynamics data, our simulations showed that
it is more challenging for all the dating methods
to date the phylogenies of the inter-host evolution
(M3 and M4) than the intra-host (M1 and M2).
wLogDate outperforms other methods for the
inter-host phylogenies, regardless of the model of
rate heterogeneity. While all methods have lower
error for intra-host trees, BEAST with strict-
clock prior is often the best method. However,
the differences between BEAST and wLogDate
are small and wLogDate is often the second best.
Thus, wLogDate works well for virus phylogenies,
especially in inter-host conditions. Despite the fact
that RelTime explicitly optimizes the rate for each
pairs of sister lineages, wLogDate is more accurate
than both LF and RelTime on the data where
the rates are autocorrelated between adjacent
branches. These results show that wLogDate is
applicable to a fairly large number of models of

the trees and the rates.
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Nevertheless, the approach taken by wLogDate
suffers from its own limitations. By including a
single mean rate around which (wide) variations
are allowed, wLogDate is expected to work
the best when rates have distribution that are
close to being unimodal. However, rates on real
phylogenies may have sudden changes leading to
bimodal (or multimodal) rate distributions with
wide gaps in between modes. For example, certain
clades in the tree may have local clocks that are
very different from other clades. Such a condition
has been studied by Beaulieu et al. (2015) for
a dataset of seed plants. The authors setup a
simulation where there are local clocks on the
tree and the mean values of these clocks are
different by a factor varying from 3 to 6. Beaulieu
et al. (2015) point out that under such condition,
especially when the rate shift occurs near the
root, BEAST usually overestimates the time of the
Angiosperm (i.e. gives older time) by a factor of
2 (BEAST results from Beaulieu et al. (2015) are
reproduced in Fig. S11). We also tested wLogDate,
LF, and RelTime on this dataset (Fig. S11). In
scenario 2 of the simulation, where the rate shift
between the two local clocks is extreme (a factor
of 6), wLogDate clearly over-estimate the age
of Angiosperms (by a median of 55%). In this
same scenario, RelTime slightly underestimate the
age (by 5%). In the other 4 scenarios where the
rate shifts are more gentle, wLogDate continue to
overestimate the age but by small margins (by 6%,

1%, 2%, and 5%), while RelTime underestimates
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ages also by small margins (3%, 5%, 4%, 3%, and
3%). LF has similar patterns to wLogDate. These
results point to a limitation of wLogDate (and
the other dating methods) in phylogenies with
multiple local clocks.

In addition to multiple clocks, future works
should test LogDate under models where rate
continuously change with time, and have a
direction of change. Finally, to facilitate the
comparison between different methods, we used
the true topology with estimated branch lengths.
Future work should also study the impact of the
incorrect topology on LogDate and other dating

methods.

Software availability. The LogDate software
is available on https://github.com/uym2/
wLogDate in open-source format. The command-
line python tool is available through conda for
easy installation. A link to a web sever making
wLogDate available as a web-server is also

available from the github page.

Data availability. All the data are available on

https://github.com/uym2/LogDate-paper.
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