
COOBA: Cross-project Bug Localization via Adversarial Transfer Learning

Ziye Zhu1 , Yun Li1∗ , Hanghang Tong2 and Yu Wang1

1Department of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China
2Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL

{1015041217, liyun, 2017070114}@njupt.edu.cn, htong@illinois.edu

Abstract
Bug localization plays an important role in software
quality control. Many supervised machine learn-
ing models have been developed based on histor-
ical bug-fix information. Despite being success-
ful, these methods often require sufficient historical
data (i.e., labels), which is not always available es-
pecially for newly developed software projects. In
response, cross-project bug localization techniques
have recently emerged whose key idea is to trans-
ferring knowledge from label-rich source project to
locate bugs in the target project. However, a major
limitation of these existing techniques lies in that
they fail to capture the specificity of each individual
project, and are thus prone to negative transfer. To
address this issue, we propose an adversarial trans-
fer learning bug localization approach, focusing on
only transferring the common characteristics (i.e.,
public information) across projects. Specifically,
our approach (COOBA) learns the indicative public
information from cross-project bug reports through
a shared encoder, and extracts the private informa-
tion from code files by an individual feature extrac-
tor for each project. COOBA further incorporates
adversarial learning to ensure that public informa-
tion shared between multiple projects could be ef-
fectively extracted. Extensive experiments on four
large-scale real-world data sets demonstrate that
the proposed COOBA significantly outperforms the
state of the art techniques.

1 Introduction
Bug localization, which aims to locate the corresponding
buggy source code files for a given bug report, has been
attracting more and more attention in software quality con-
trol [Zhou et al., 2012]. Software projects routinely re-
ceive a large number of bug reports describing the errors
or unexpected results during program operation [Li et al.,
2018]. Once a bug report received, programmers can use
it to locate the related buggy source code files (referred to
‘code files’ for short). Many studies have documented the

∗Corresponding Author

tremendous success of applying supervised machine learn-
ing models for bug localization, which are capable of au-
tomatically pointing out the related code files with respect
to a new bug report [Zhou et al., 2012; Ye et al., 2014;
Huo and Li, 2017]. However, much of the work on bug local-
ization only copes with the projects with sufficient historical
bug-fix information (i.e., labels) [Zimmermann et al., 2009].
The performance of these techniques could be dramatically
affected by the quantity and quality of bug reports and their
related code files [Rahman and Roy, 2018]. Unfortunately, in
practice, it might be difficult to obtain sufficient bug-fix data.
This is especially true for new projects in the first release.
Such newly developed projects urgently need an automated
bug localization technique to ease the burden on program-
mers.

One way to deal with the shortage of historical label data
is to leverage the knowledge from label-rich projects to lo-
cate buggy code files in the current project. Recently, a few
works have explored how to transfer available knowledge
from label-rich projects [He et al., 2012; Ma et al., 2012;
Nam et al., 2017]. For example, Huo et al. [2019] pro-
posed the first cross-project bug localization (CPBL) model
TRANP-CNN. It first extracted transferable features from
bug reports and source code files of source and target projects,
then generated project-specific predictions for new bugs by
the extracted features. However, a straight-forward applica-
tion of transfer learning for CPBL is prone to bring the noise
into the model, known as the negative transfer effect. For ex-
ample, the multiple projects in a CPBL task may be produced
by different companies (e.g., Microsoft or Mozilla Founda-
tion), developed for different domains (e.g., web browser or
mobile application), or designed by different development
concept (e.g., large scale development or agile development),
etc [Zimmermann et al., 2009]. Therefore, directly transfer-
ring knowledge from a label-rich project inevitably brings in-
formation that pertains to that specific project (referred to as
‘private information’ in this paper). Transferring such private
characteristic information is likely to hurt, instead of help, the
prediction of the buggy code file in another project.

Based on the above observation, we present a new model
named COOBA for cross-project bug localization. To be spe-
cific, from bug reports, the proposed COOBA learns indica-
tive information about the bug through an encoder that is
shared across multiple projects. From code files, the pro-

posed COOBA simultaneously extracts both the public and
private information. COOBA leverages an individual Graph
Convolutional Networks (GCN)-based feature extractor for
each project to extract the private information and a shared
Convolutional Neural Network (CNN)-based feature extrac-
tor between projects to extract the public information. It fur-
ther introduces adversarial learning to ensure the public in-
formation shared between projects could be effectively ex-
tracted. Extensive experiments on large-scale real-world data
sets reveal that our model COOBA significantly outperforms
state-of-the-art on all evaluation measures.

The main contributions of our work are as follows,

• We present an end-to-end bug localization model called
COOBA, to locate the code files that need to be fixed for
projects with insufficient historical bug-fix data.

• Our model leverages adversarial transfer learning to
transfer public information shared between multiple
projects, while preventing the private information to
avoid negative transfer.

• We explore the rich structural information of the code
file, and extract the private information by a novel multi-
layer GCN.

2 Related Work
2.1 Within-project Bug Localization
Most of the existing bug localization models have been evalu-
ated on within-project bug localization (WPBL) settings. As
shown in Figure 1(a), each instance representing a pair (b, c),
where b is a bug report and c is a code file, with a label (buggy
or clean) to indicate whether the code file c is related to the
bug report b. In this setting, a supervised model is trained
using the fixed bug reports history in Project p. This model
is then used to locate the buggy code files that caused the in-
appropriate bugs described in the upcoming bug reports for
the same Project p. Information Retrieval (IR) and machine
learning methods are widely used in WPBL. For example,
Zhou et al. [2012] proposed the BugLocator based on the re-
vised Vector Space Model (rVSM). Kim et al. [2013] treated
the bug localization as a classification task and proposed a
two-phase prediction model using Naive Bayes. With the ad-
vent of deep learning, many researchers presented deep bug
localization techniques. For instance, Lam et al. [2017] pro-
posed a bug localization model combining rVSM [Zhou et al.,
2012] with Deep Neural Network (DNN). NP-CNN [Huo et
al., 2016] and LS-CNN [Huo and Li, 2017] learned a unified
feature from natural language and programming language to
locate the buggy code files.

2.2 Cross-project Bug Localization
More often than not, software engineers need bug localiza-
tion beyond the same project. Cross-project bug localization
(CPBL) techniques predict buggy code files even for new
projects lacking in fixed bug reports history by ‘borrowing’
information from other projects. As shown in Figure 1(b), a
supervised model is trained by the help of labeled instances
in Project s (source project) and predicts buggy source files
for the upcoming bug reports in Project t (target project).

Figure 1: Within-project and Cross-project Bug Localization

Recently, several works have explored how to transfer avail-
able knowledge from data-rich projects [He et al., 2012;
Ma et al., 2012; Nam et al., 2013]. For example, Turhan et
al. [2009] proposed Nearest Neighbor (NN) Filter by select-
ing similar instances from source project to construct a new
training set that is homogeneous with the target project. Nam
et al. [2013] proposed another cross-project defect prediction
approach, called TCA+, by extending Transfer Component
Analysis (TCA) [Pan et al., 2010], which utilized the latent
feature space provided by TCA for data of source and target
projects. Huo et al. [2019] proposed a cross-project bug lo-
calization model TRANP-CNN that combined deep learning
and transfer learning. It first extracted transferable potential
features from bug reports and source code files for source and
target projects, then generated project-specific predictions for
new bugs by extracted features.

3 The Proposed Model
In this paper, we focus on cross-project bug localization task.
For source project s, we denote Bs = {bs1, bs2, . . . bsms} as the
set of bug reports, and Cs = {cs1, cs2, . . . , csns} as the collec-
tion of code files, where the ms, ns is the number of the bug
reports and code files, respectively. For target project t, we
denote Bt = {bt1, bt2, . . . btmt} as the set of bug reports, and
Ct = {ct1, ct2, . . . , ctnt} as the collection of code files, where
the mt, nt is the number of the bug reports and code files,
respectively. It should be noted that mt is far less than ms.
Besides, indicator matrices Wα ∈ Rmα×nα are used to indi-
cate a code file is buggy or clean with respect to a bug report,
and α ∈ {s, t}. As an example, W s

i,j = 1 indicates that code
file cj is a buggy file of the bug report bi in the source project,
and W s

i,j = 0 indicates not.
We instantiate the cross-project bug localization as a clas-

sification learning task. In the training process, the model
aims to learn prediction functions fα : Bα × Cα → Wα by
the input pairs (bα, cα) from the source and target projects
with their labels, α ∈ {s, t}. After the model is fully trained,

Figure 2: Overall framework of our proposed COOBA, including shared bug report processing, cooperative code file processing, and relevance
prediction. Note that the shared bug report processing module located to the left and right of COOBA share parameters.

prediction function f t is used for determine the relationship
of each pair (bt, ct) from target project t during testing. The
framework of our COOBA is illustrated in Figure 2, which
consists of three integral parts: shared bug report processing,
cooperative code file processing, and relevance prediction.
We will elaborate on each part in the following subsections.

3.1 Shared Bug Report Processing Module
In our task, bug reports submitted to different project groups
are written in the same natural language (English) and share
the same topic (incorrect or unexpected results during pro-
gram operating). We take the attitude that sharing bug re-
port processing module between source and target projects in
training is beneficial for learning natural language knowledge
by one project and subsequently utilized by another one. The
shared bug report processing contains an embedding layer
and a bug report encoder to extract high-level indicative in-
formation about the bugs described in a bug report.

Embedding Layer
Given a bug report, we can extract all sentences from the sum-
mary and description items, which are the main part of a bug
report, then integrate all sentences into one sequence. We ex-
ploit the pre-trained GloVe [Pennington et al., 2014] to map
each word of the sequence into a k-dimensional embedding.
The input embedding layer represents the bug report b as a
embedding sequence w = {w1, . . . ,wn}, n is the number
of words in the sequence. It is worth mentioning that the bug
report embedding layer is shared for both source and target
projects.

Bug Report Encoder
After representing the bug report as an embedding sequence
w, we exploit a Bidirectional Long Short-Term Memory (Bi-
LSTMs) [Schuster and Paliwal, 1997] to encode the input se-
quence w by considering information from both forward and
backward directions. We concatenate the last forward hidden
state

−→
h n and the first backward hidden state

←−
h 1 into a new

vector b as follows,
−→
h t = LSTMf(wt,

−→
h t−1), (1)

←−
h t = LSTMb(wt,

←−
h t+1), (2)

b =
−→
h n ⊕

←−
h 1, (3)

where the wt is the input of the Bi-LSTMs at the time step t,
and the ⊕ is the concatenate operation. After the embedding
sequence w passes through the encoder, we obtain the b that
is the indicative representation of the bug report. For bug
reports from project s or project t, we also share the encoder
layer and denote the generated indicative representation as bs
or bt, respectively.

3.2 Cooperative Code File Processing Module
To appropriately transfer knowledge from a label-rich project
to a target project, we propose a cooperative code file pro-
cessing module for extracting shared information of code files
belonging to different projects and simultaneously extracting
their private information. It is worth mentioning the cooper-
ative nature of our approach. This is crucial because trans-
ferring knowledge directly from a source project will likely

bring its private information that is not applicable to another
(target) project. There are mainly four components in this
module: embedding layer, private feature extraction, public
feature extraction, and project-specific feature fusion.

Embedding Layer
We exploit graph structure to represent code files, thereby
extending the text representation from a sequential (or grid)
point of view to a graphical view. For each code file, we
obtain a graph G and a node embedding matrix X from the
embedding layer. Specifically, the graph G = (V, E) is gen-
erated by the Abstract Syntax Tree (AST) corresponding to
the code file, which is widely used in code analysis and clone
detection [Neamtiu et al., 2005]. V is the node set containing
the code tokens in the AST (each node is a code token) and
a synthetic root node 0 (represents the start of the program).
E is the edge set containing the links between tokens in the
AST. The node embedding matrixX ∈ R|V|×k contains code
token embeddings initialized by GloVe. Each row of X is the
embedding of a node (i.e., code token), and k is the dimension
of the vector. For code files from source and target project,
we set up two code embedding layers with the same structure
but no parameters shared between them. Therefore, we obtain
the graph Gα and the node embeddings Xα then feed into the
individual and shared feature extractors subsequently, where
α ∈ {s, t}.

Private Feature Extraction
For private feature extraction from each project, we employ
the multi-layer GCN [Kipf and Welling, 2016] with the same
structure but no shared parameters as the individual feature
extractor. Previous work of GCN has demonstrated the abil-
ity to operate directly on a graph and induce the embedding
vectors of nodes based on the properties of their neighbor-
hoods [Linmei et al., 2019]. For a code graph G of code file
c, we introduce the Ã = A+I , which is the adjacency matrix
of the undirected graph G with added self-connections, where
I is the identity matrix. And the GCN follows the layer-wise
propagation rule,

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2H lW l), (4)

where D̃ii =
∑
j Ãij , σ(.) denotes an activation function.

H l+1 and W l are the node hidden representations and the
trainable weight matrix in the l-th layer; H0 = X . For a code
file from project α, its corresponding individual encoder Eαin
generates the private feature gαpri as follows,

gspri = Esin(Gs, Xs); gtpri = Etin(Gt, Xt), (5)

where Gα and Xα are obtained from code file embedding
layer.

Public Feature Extraction
Besides the private features of each project, public feature
extraction aims to learn the common feature among different
projects. Specifically, the adversarial training is utilized to en-
sure effective learning public features [Wang et al., 2018a].
The adversarial training strategy [Ganin et al., 2016] nor-
mally consists of a generator and a discriminator. In our task,

we use a shared feature extractor as the generator, and the dis-
criminator aims to estimate which project the code file comes
from.

Shared Feature Extractor. To extract the fundamental in-
formation shared in multiple projects, we adopt CNN, which
is widely used for text processing and analysis tasks [Kim,
2014], in the shared feature extractor. Many experimental re-
sults [Kalchbrenner et al., 2014] have shown that the convolu-
tion and pooling operations enable CNN to induce lexical and
semantic features over the input sequence. Accordingly, we
prefer to choose convolution kernels with small sizes (e.g.,
3, 5), especially including convolution kernels of size 1 to
extract the lexical and semantic features in code files. For
simplicity, we use Esh denote the CNN structure, the input
of it is the embedding matrix Xs of source project or the em-
bedding matrix Xt of target project. The extractor generates
the public feature of code files as the following equations,

gspub = Esh(X
s); gtpub = Esh(X

t). (6)

Project Discriminator. We incorporate adversarial train-
ing into shared space to guarantee that private features of
projects do not exist in shared space. We employ a multi-
layer perceptron (MLP) network as a project discriminator to
estimate which project the code file comes from. Formally,
the project discriminator can be expressed as follow,

D(gαpub) = softmax(MLP(gαpub)), α ∈ {s, t}. (7)

There is a min-max optimization that the shared encoder gen-
erates a representation to mislead the project discriminator
and the discriminator tries its best to correctly determine the
type of project (source project or target project). The adver-
sarial training process can be formalized as follow,

Ladv = min
θsh

(max
θd

∑
α

Tα∑
t=1

logD(Esh(X
α
(i)))), (8)

where θsh and θd denote the trainable parameters of shared
feature extractor and project discriminator, respectively. Tα
is the number of training instance of project α. Xα

(i) is the
i-th instance of project α.

Project-specific Feature Fusion
We obtain the private and public representations for each code
file by the feature extractors. However, due to the unequal
amount of data in the source and target projects, different
projects may differ in how their private and public informa-
tion are correlated. Thus, we design the project-specific fea-
ture fusion layer to learn the project-specific correlation pat-
terns considering the private and public features. For a code
file from project s or project t, we get a fused representation
appropriately merged by a two-layer MLP network as

cs = MLPs(gspri ⊕ gspub); c
t = MLPt(gtpri ⊕ gtpub), (9)

where the ⊕ is the concatenate operation.

3.3 Relevance Prediction Module
The relevance prediction module aims to learn the correlation
patterns of bug reports and their related code files by the in-
formation obtained from bug report and code file processing

module. As the lack of labeled instances, the relevance pre-
diction module cannot perform well on the target project. We
take advantage of the fact that bug reports and related code
files are correlated in a similar way in both source and tar-
get projects, which is all bug reports describe how the prod-
uct was damaged. Therefore, we construct the shared rele-
vance prediction module across the source and target projects.
Specifically, to measure the relevance degree of a (b,c) pair,
the relevance metric in the prediction module is defined as

F (bα, cα) = ‖bα − cα‖22, α ∈ {s, t}. (10)
We encourage the representation of the relevant buggy

code file to be as close as possible to the representation of
the given bug report. For a bug report b, we use C+ to de-
note its related code file set and treat unrelated code file set as
C−. Considering the related pairs (b, c+) should have lower
distance than the unrelated ones (b, c−), where c+ ∈ C+ and
c− ∈ C−. Thus, the task loss function for each project is

Lα =
∑

bα,cα−,c
α
+

max(0, τ − (F (bα, cα−)− F (bα, cα+))), (11)

where F (., .) is computed by Eq. 10; τ is a margin, forcing
F (b, c+) to be greater than F (b, c−); α ∈ {s, t}.

3.4 Training
Giving the labeled bug-fix data of project s and project t, the
final training objective is defined as follow,

L = I(b, c)Ls + (1− I(b, c))Lt + λLadv, (12)
where λ is the hyper-parameter, Ls and Lt are computed via
Eq. 11, and Ladv is computed via Eq. 8. I(b, c) is an indicator
function to identify which project the input pair (b, c) comes
from. It is defined as follow,

I(b, c) =

{
1, if (b, c) ∈ P s;
0, if (b, c) ∈ P t, (13)

where P s and P t are source project corpora and target project
corpora, respectively. At each iteration in the training pro-
cess, we alternately sample a batch of training instances from
P s or P t to update the parameters. In this way, we adapt
Adam [Kingma and Ba, 2014] to directly minimize the final
loss function L in our model.

4 Experimental Results and Analysis
4.1 Experimental Setup
Data sets. We evaluate our method on the data sets pro-
vided by Ye et al. [2014]. The data sets contain the bug
reports, source code links, buggy files, API documentation,
and the oracle of bug-to-file mappings, which are all publicly
available1. Four open-source projects are collected in these
data sets as follows,
• AspectJ: an aspect-oriented programming extension for

Java programming language.
• SWT: an open source widget toolkit for Java.
• JDT: a suite of Java development tools for Eclipse.
• Eclipse Platform UI: a user interface of a development

platform for Eclipse.

1http://dx.doi.org/10.6084/m9.figshare.951967

Comparison methods. We compare COOBA with the fol-
lowing methods, including the conventional models for
within-project bug localization and the recent models for
cross-project bug localization:

• BugLocator [Zhou et al., 2012]: a classic IR-based bug
localization method that consider similar bugs informa-
tion that have been fixed before.

• DNNLOC [Lam et al., 2017]: a model combining rVSM
[Zhou et al., 2012] with DNN while considering the
metadata of the bug-fixing history and API elements.

• NP-CNN [Huo et al., 2016]: a deep learning method
based on CNN, which leverages both lexical and pro-
gram structure information from natural language and
programming language.

• NN Filter [Turhan et al., 2009]: a cross-project and
cross-company defect prediction method by selecting
similar instances from source project to construct a train-
ing set that is homogeneous with target project.

• TCA+ [Nam et al., 2013]: a cross-project defect predic-
tion approach, which is an extension of TCA by normal-
ization before applying it.

• TRANP-CNN [Huo et al., 2019]: a transfer learning ap-
proach for cross-project bug localization by extracting
transferable semantic features from the source project.

Among these methods, BugLocator, DNNLOC, and NP-
CNN are designed for within-project context. Burak, TCA+,
and TRANP-CNN are recent methods for cross-project soft-
ware mining problems. Followed the work of Huo et
al. [2019], we select the cross-project defect prediction mod-
els Burak and TCA+ as our comparison methods. In our ex-
periments, we use the same settings suggested in their orig-
inal works. For bug localization in cross-project context,
we suppose the training data includes all the fixed bug re-
ports of source project and 20% fixed bug reports of target
project. The remaining 80% bug reports of target project
are used for testing. We repeat this experiment for 10 times,
and 10 cross-validation is used in the experiment. We evalu-
ate the bug localization performance with two criteria, i.e.,
Top-10 Rank and Mean Average Precision (MAP), which
are widely adopted in bug localization based on historical
bug-fix information [Zhou et al., 2012; Wang et al., 2018b;
Huo et al., 2019].

4.2 Effectiveness Results
The experimental results of accuracy comparison for different
methods are shown in Figure 3 and the best performance of
each task is marked with •. The top half of the figure depicted
performance w.r.t. Top-10 Rank, and the bottom half w.r.t.
MAP. The horizontal coordinate indicates different tasks, for
example, “AspectJ → JDT” represents using AspectJ as the
source project and locates the bugs in JDT. From Figure 3, we
can observe: 1) Our proposed COOBA can effectively re-
solve the cross-project bug localization problem, and out-
perform the state-of-the-art in all tasks on both metrics.
As we can see, COOBA outperforms all the compared meth-
ods. For example, COOBA defeats its best competitor (i.e.,

Figure 3: Performance comparisons with bug localization models in terms of Top-10 Rank and MAP.

TRANP-CNN) by 6.5% w.r.t. MAP on project Eclipse Plat-
form UI. It also achieves 4.1%, 4.8%, and 5.2% improvement
over its best competitor w.r.t. MAP on JDK, AspectJ, and
SWT respectively. In summary, COOBA performs best con-
sidering cases comprising of all possible pairs of metrics and
tasks. Compared with the average results, COOBA achieves
the average top-10 of 0.652 and MAP of 0.351. 2) The con-
ventional within-project bug localization models trained
in source data cannot be directly used effectively in target
data. The experimental results show that the performance of
all transfer learning bug localization models (i.e.,COOBA and
TRANP-CNN) significantly outperforms the within-project
bug localization models. For example, COOBA and TRANP-
CNN improve NP-CNN by 11.7% and 7.6% w.r.t. MAP on
project JDT. They also achieve 10.3% and 4.5% improvement
over DNNLOC w.r.t. Top-10 on AspectJ. These results indi-
cate that there is a demand to build a specialized technique
for cross-project bug localization, since directly using within-
project methods does not produce satisfactory performance.

4.3 Effectiveness of Adversarial Transfer Learning
To investigate the impact of adversarial learning on transfer-
ring knowledge from the source project to the target project,
we change the model and denote it as COOBA* in this
group of experiments. The main differences between COOBA
and COOBA* are (1) individual feature extractors and (2) a
project discriminator. The COOBA* only use a shared feature
extractor to directly transfer knowledge across projects. We
compare the results of COOBA with COOBA* on all tasks in
Table 1 and find, in terms of MAP, COOBA performs signif-
icantly better in all tasks. The results indicate that a straight-
forward application of transfer learning is prone to negative
transfer effect. And the adversarial transfer learning with a
project discriminator significantly improves the performance
of cross-project bug localization. These results demonstrate
that the adversarial transfer learning indeed avoid bringing in
the noise that does not pertain to the target project, thereby

Task A→J S→J P→J J→A S→A P→A

COOBA 0.363 0.357 0.388 0.347 0.325 0.301
COOBA* 0.311 0.324 0.349 0.295 0.268 0.255

Task A→S J→S P→S A→P J→P S→P

COOBA 0.329 0.351 0.313 0.382 0.353 0.396
COOBA* 0.277 0.304 0.264 0.331 0.304 0.328

Table 1: MAP of the COOBA and COOBA* on all tasks. In this table,
A denotes Aspect, J denotes JDT, S denotes SWT, and P denotes
Eclipse Platform UI.

more effectively and reasonably transferring knowledge from
the source project.

5 Conclusions
Cross-project bug localization is crucial for projects with lim-
ited bug-fix information. It can significantly extend the appli-
cation horizon of bug localization techniques, e.g., locating
system bugs in the first release of a new project. To produce
a successful cross-project bug localization, we need to trans-
fer knowledge from source project carefully, while avoiding
bringing in the noise that does not pertain to the target project.
In this paper, we propose a novel model named COOBA
leveraging adversarial transfer learning. Experimental results
demonstrate the effectiveness of the proposed COOBA. In fu-
ture work, we plan to explore cross-project bug localization
in the context of projects written in different programming
languages.

Acknowledgments
This work was partially supported by Natural Science
Foundation of China (No.61772284), Postgraduate Re-
search&Practice Innovation Program of Jiangsu Province
(SJKY19 0763). Hanghang Tong is partially supported by
NSF (1947135, 1715385, and 1939725).

References
[Ganin et al., 2016] Yaroslav Ganin, Evgeniya Ustinova, Hana

Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. The Journal of Machine Learning
Research, 17(1):2096–2030, 2016.

[He et al., 2012] Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li,
and Qing Wang. An investigation on the feasibility of cross-
project defect prediction. Automated Software Engineering,
19(2):167–199, 2012.

[Huo and Li, 2017] Xuan Huo and Ming Li. Enhancing the unified
features to locate buggy files by exploiting the sequential nature
of source code. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1909–1915,
2017.

[Huo et al., 2016] Xuan Huo, Ming Li, and Zhi-Hua Zhou. Learn-
ing unified features from natural and programming languages for
locating buggy source code. In Proceedings of the 25th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages
1606–1612, 2016.

[Huo et al., 2019] Xuan Huo, Ferdian Thung, Ming Li, David Lo,
and Shu-Ting Shi. Deep transfer bug localization. IEEE Trans-
actions on Software Engineering, 2019.

[Kalchbrenner et al., 2014] Nal Kalchbrenner, Edward Grefen-
stette, and Phil Blunsom. A convolutional neural network for
modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[Kim et al., 2013] Dongsun Kim, Yida Tao, Sunghun Kim, and An-
dreas Zeller. Where should we fix this bug? a two-phase recom-
mendation model. IEEE transactions on software Engineering,
39(11):1597–1610, 2013.

[Kim, 2014] Yoon Kim. Convolutional neural networks for sen-
tence classification. In Proceedings of Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), page
1746–1751, 2014.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba. Adam:
A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling. Semi-
supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[Lam et al., 2017] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh
Nguyen, and Tien N Nguyen. Bug localization with combination
of deep learning and information retrieval. In Proceedings of
the 25th International Conference on Program Comprehension
(ICPC), pages 218–229, 2017.

[Li et al., 2018] Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and
Ge Li. Unsupervised deep bug report summarization. In Proceed-
ings of the 26th Conference on Program Comprehension, pages
144–155, 2018.

[Linmei et al., 2019] Hu Linmei, Tianchi Yang, Chuan Shi, Houye
Ji, and Xiaoli Li. Heterogeneous graph attention networks for
semi-supervised short text classification. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages 4823–4832,
2019.

[Ma et al., 2012] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo
Chen. Transfer learning for cross-company software defect pre-
diction. Information and Software Technology, 54(3):248–256,
2012.

[Nam et al., 2013] Jaechang Nam, Sinno Jialin Pan, and Sunghun
Kim. Transfer defect learning. In Proceedings of International
Conference on Software Engineering (ICSE), pages 382–391.
IEEE, 2013.

[Nam et al., 2017] Jaechang Nam, Wei Fu, Sunghun Kim, Tim
Menzies, and Lin Tan. Heterogeneous defect prediction. IEEE
Transactions on Software Engineering, 44(9):874–896, 2017.

[Neamtiu et al., 2005] Iulian Neamtiu, Jeffrey S Foster, and
Michael Hicks. Understanding source code evolution using ab-
stract syntax tree matching. In Proceedings of the 2005 inter-
national workshop on Mining software repositories, pages 1–5,
2005.

[Pan et al., 2010] Sinno Jialin Pan, Ivor W Tsang, James T Kwok,
and Qiang Yang. Domain adaptation via transfer component anal-
ysis. IEEE Transactions on Neural Networks, 22(2):199–210,
2010.

[Pennington et al., 2014] Jeffrey Pennington, Richard Socher, and
Christopher Manning. Glove: Global vectors for word repre-
sentation. In Proceedings of Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–1543,
2014.

[Rahman and Roy, 2018] Mohammad Masudur Rahman and Chan-
chal K Roy. Improving ir-based bug localization with context-
aware query reformulation. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineer-
ing, pages 621–632, 2018.

[Schuster and Paliwal, 1997] Mike Schuster and Kuldip K Paliwal.
Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

[Turhan et al., 2009] Burak Turhan, Tim Menzies, Ayşe B Bener,
and Justin Di Stefano. On the relative value of cross-company and
within-company data for defect prediction. Empirical Software
Engineering, 14(5):540–578, 2009.

[Wang et al., 2018a] Xiaozhi Wang, Xu Han, Yankai Lin, Zhiyuan
Liu, and Maosong Sun. Adversarial multi-lingual neural relation
extraction. In Proceedings of the 27th International Conference
on Computational Linguistics, pages 1156–1166, 2018.

[Wang et al., 2018b] Yaojing Wang, Yuan Yao, Hanghang Tong,
Xuan Huo, Min Li, Feng Xu, and Jian Lu. Bug localization via
supervised topic modeling. In Proceedings of the 2018 IEEE In-
ternational Conference on Data Mining (ICDM), pages 607–616.
IEEE, 2018.

[Ye et al., 2014] Xin Ye, Razvan Bunescu, and Chang Liu. Learn-
ing to rank relevant files for bug reports using domain knowledge.
In Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 689–699,
2014.

[Zhou et al., 2012] Jian Zhou, Hongyu Zhang, and David Lo.
Where should the bugs be fixed?-more accurate information
retrieval-based bug localization based on bug reports. In Pro-
ceedings of the 34th International Conference on Software Engi-
neering (ICSE), pages 14–24, 2012.

[Zimmermann et al., 2009] Thomas Zimmermann, Nachiappan
Nagappan, Harald Gall, Emanuel Giger, and Brendan Murphy.
Cross-project defect prediction: a large scale experiment on
data vs. domain vs. process. In Proceedings of the 7th joint
meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software
engineering, pages 91–100, 2009.

	Introduction
	Related Work
	Within-project Bug Localization
	Cross-project Bug Localization

	The Proposed Model
	Shared Bug Report Processing Module
	Embedding Layer
	Bug Report Encoder

	Cooperative Code File Processing Module
	Embedding Layer
	Private Feature Extraction
	Public Feature Extraction
	Project-specific Feature Fusion

	Relevance Prediction Module
	Training

	Experimental Results and Analysis
	Experimental Setup
	Effectiveness Results
	Effectiveness of Adversarial Transfer Learning

	Conclusions

