
Bringing Order to Network Embedding: A Relative Ranking
based Approach

Yaojing Wang†, Guosheng Pan†, Yuan Yao†, Hanghang Tong‡, Hongxia Yang§, Feng Xu†, Jian Lu†
† State Key Laboratory for Novel Software Technology, Nanjing University, China

‡ University of Illinois at Urbana-Champaign, USA
§ Alibaba Group, China

{wyj,pgs}@smail.nju.edu.cn,{y.yao,xf,lj}@nju.edu.cn,htong@illinois.edu,yang.yhx@alibaba-inc.com

ABSTRACT

Network embedding aims to automatically learn the node repre-
sentations in networks. The basic idea of network embedding is to
first construct a network to describe the neighborhood context for
each node, and then learn the node representations by designing an
objective function to preserve certain properties of the constructed
context network. The vast majority of the existing methods, explic-
itly or implicitly, follow a pointwise design principle. That is, the
objective can be decomposed into the summation of the certain
goodness function over each individual edge of the context network.
In this paper, we propose to go beyond such pointwise approaches,
and introduce the ranking-oriented design principle for network
embedding. The key idea is to decompose the overall objective func-
tion into the summation of a goodness function over a set of edges
to collectively preserve their relative rankings on the context net-
work. We instantiate the ranking-oriented design principle by two
new network embedding algorithms, including a pairwise network
embedding method PaWine which optimizes the relative weights
of edge pairs, and a listwise method LiWine which optimizes the
relative weights of edge lists. Both proposed algorithms bear a linear
time complexity, making themselves scalable to large networks. We
conduct extensive experimental evaluations on five real datasets
with a variety of downstream learning tasks, which demonstrate
that the proposed approaches consistently outperform the existing
methods.

CCS CONCEPTS

• Information systems→Datamining; •Computingmethod-

ologies→ Knowledge representation and reasoning.
KEYWORDS

Network embedding, pairwise ranking, listwise ranking

ACM Reference Format:

Yaojing Wang†, Guosheng Pan†, Yuan Yao†, Hanghang Tong‡, Hongxia
Yang§, Feng Xu†, Jian Lu†. 2020. Bringing Order to Network Embedding:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412041

A Relative Ranking based Approach. In Proceedings of the 29th ACM In-
ternational Conference on Information and Knowledge Management (CIKM
’20), October 19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3340531.3412041

1 INTRODUCTION

Network embedding, which aims to automatically learn the node
representations/embeddings in networks, has been attracting much
research interest, largely due to its strong empirical performance
in many network analysis tasks including node classification [40],
node clustering [57], and link prediction [19].

To date, many network embedding methods have been proposed.
Generally speaking, a typical network embedding algorithm con-
sists of two major steps: (1) construct the context network for each
node based on the original network (Step 1), and (2) learn the
node embeddings by designing an objective function which pre-
serves certain properties of the constructed context matrix (Step 2).
State-of-the-art, while rich in various ways to construct the con-
text network (Step 1), almost exclusively follows a pointwise design
principle for Step 2, whose objective function can be decomposed
into the summation of the certain separate goodness function over
each individual edge of the context network. The intuition of such
pointwise methods is that the learned embeddings should match
each (positive or negative) edge in the context network. However,
other important semantics, e.g., relative rankings of a set of edges,
might be overlooked.

In this paper, we first conduct a systematic analysis of the existing
network embedding methods based on two orthogonal dimensions,
i.e., context network construction (Step 1) and objective function
design (Step 2). Based on this analysis, we propose to introduce
ranking-oriented design principle into network embedding, whose
key idea is to decompose the objective function into the summation
of a goodness function over a set of edges to collectively preserve
their relative rankings. The ranking-oriented design opens the door
to a whole family of new network embedding methods - it can
either (1) be used in conjunction with or (2) act as a substitute of the
current pointwise objective functions. For the former, we propose
PaWine which augments the existing pointwise objective function
with a pairwise objective function. The intuition of PaWine is that
the learned embeddings should not only match the observed edges,
but also characterize the relative weights of edge pairs. For the latter,
we propose a listwise objective function LiWine to characterize the
relative orders of edge lists (i.e., the relative weights of multiple
edges). Moreover, we develop efficient algorithms to solve both
proposed objectives with a linear time complexity.

https://doi.org/10.1145/3340531.3412041
https://doi.org/10.1145/3340531.3412041

We conduct experiments by utilizing the learned embeddings
for a variety of downstream network mining tasks (e.g., multi-label
prediction, clustering, and multi-class prediction) to validate the
effectiveness of the proposed approaches. The results reveal inter-
esting interaction patterns between context network construction
and objective design, and show that the proposed approaches con-
sistently outperform the existing methods in terms of the prediction
accuracy. For example, the proposed methods achieve better results
even when directly applied on the original network, i.e., using the
input network as the context network. Thus, it helps save the com-
putational efforts to use short random walk or its variants to build
a much denser context network as required by many existing meth-
ods. Our evaluations also indicate that the strength of the proposed
PaWine and LiWine are complementary with each other. That is,
the pairwise objective term in PaWine is more effective when inte-
grated with the pointwise objective functions during the learning
process; whereas LiWine is more effective when acting as a fine-
tuned post-processing step of the existing pointwise embedding
results.

In summary, the main contributions of this paper include:

• Design Principle. Based on a systematic analysis of state-
of-the-art, we introduce a new ranking-oriented design prin-
ciple for network embedding for characterizing the relative
rankings of a set of edges collectively.
• Algorithms andAnalysis.We propose two ranking-oriented
network embedding approaches PaWine and LiWine. PaW-
ine adopts a pairwise loss function in conjunction with the
existing pointwise methods; LiWine encodes a listwise loss
function. Both algorithms bear a linear time complexity.
• Experimental Evaluations. We conduct extensive experi-
mental evaluations on five benchmark datasets demonstrat-
ing the effectiveness of the proposed methods. For exam-
ple, the proposed PaWine algorithm achieves significant
improvements (up to 30.6%) over its best competitor for the
multi-label prediction task.

The rest of the paper is organized as follows. Section 2 presents
a systematic analysis of existing network embedding methods. Sec-
tion 3 describes the proposed approaches. Section 4 presents the
experimental results. Section 5 reviews related work, and Section 6
concludes the paper.

2 A SYSTEMATIC ANALYSIS

In this section, we present a systematic analysis for network embed-
ding, based on which we introduce a new, ranking-oriented design
principle. This paper primarily focuses on random walk based em-
bedding on plain networks1. In a nutshell, we organize existing
methods, including both the existing work and our new proposed
algorithms that will be shown soon, into two orthogonal dimen-
sions: context construction and objective design. Table 1 provides a
summary, where the proposed methods are in bold letters.

1The generalizations of the proposed methods to (1) other types of embedding methods
(e.g., graph convolution networks) and (2) other types of networks (e.g., attributed
networks, heterogeneous information networks, knowledge graphs) are outside the
scope of this paper, and we leave them as the further directions.

For the first dimension (i.e., rows of Table 1), the key idea is to
construct the context network where each node can be character-
ized by a set of context nodes. In literature, existing methods mainly
use the following three categories of context networks.

• N1: original network. The first category defines the connected
nodes as context nodes, and directly uses the original net-
work as the context network. Examples include SDNE [54]
which applies autoencoders to reconstruct the original net-
work, and AANE [23] which uses a graph regularization
term on the original network to preserve node proximities.
• N2: local neighborhood. In addition to the immediate neigh-
bors, methods in this category incorporate intermediate near-
est neighbors as context nodes. For example, M-NMF [57]
finds the local neighbors based on the similarities of imme-
diate neighbors. Earlier network embedding methods such
as Isomap [50] and LLE [45] also belong to this category.
• N3: walking network. The third category of context network is
the walking network, which can be constructed by applying
random walks on the original network. Typical examples in
this class include DeepWalk [40], node2vec [19], GraRep [3],
and SVD## [29] (which has been proved to be equivalent to
random walks).

For the second dimension (i.e., columns of Table 1), the basic
idea is to learn the node representations by designing an objective
function to preserve certain properties of the constructed context
matrix. Based on our literature review, we find that the vast ma-
jority of the existing methods follow a pointwise design principle,
whose objective function can be decomposed into the summation
of the certain goodness function over each individual edge on the
context network. We further divide existing pointwise objective
functions into reconstruction-oriented and discrimination-oriented.2
More importantly, we propose to introduce ranking-oriented design
objective into network embedding.

• J1: reconstruction-oriented objective function. As the name
suggests, this objective function aims to reconstruct the con-
text network. In literature, different types of low-rank matrix
approximations have been applied. For example, SVD## [29]
and NetMF [41] directly use SVD, TADW [61] andHOPE [38]
apply a variant of SVD by keeping the Frobenius norm,
M-NMF [57] further adds non-negativity constraints, etc.
In addition to low-rank matrix approximations, KL diver-
gence [46] and autoencoders [4, 54, 64] (which first map
the context matrix into embeddings and then use the em-
beddings to reconstruct the context matrix) have also been
used.
• J2: discrimination-oriented objective function. The other point-
wise objective function is discrimination-oriented, whose
basic idea is to distinguish the context nodes from the non-
context nodes. Many methods in this category adopt the
skip-gram model [37] or its variants, and typical examples
include DeepWalk [40] which adopts hierarchical softmax,

2Our categorization is based on how the method embeds the context network. For
example, although PRUNE [28] and HOPE [38] consider node rankings in the model,
they are categorized in the pointwise class as their embedding part uses discrimination-
oriented and reconstruction-oriented objective functions, respectively.

Table 1: A unified framework of network embedding methods. The proposed methods are in bold letters.

Context
construction

Objective
design J1: reconstruction J2: discrimination J3: ranking Combinations

-oriented -oriented -oriented of J1/J2/J3

N1: original network
SVD, SDNE [54], AANE [23], LINE [49], HNE [7], PTE [48], BPR [43], EP [14], PaWine

LANE [24], DANE [30], SNEA [55], CENE [47], EOE [59], MVE [42], CNE [25],
MVC-DNE [62], HEER [46] IIRL [60], GATNE [6] LiWine

N2: local neighborhood SVD#, LLE [45], Isomap [50], LINE#, PRUNE [28] BPR#, PaWine#

M-NMF [57], SepNE [32] LiWine#

N3: walking network

SVD## [29], GraRep [3], TADW [61], DeepWalk [40], Planetoid [63], BPR##, PaWine##

HOPE [38], DNGR [4], NetMF [41], GENE [8], TriDNR [39], APP [67], LiWine##

URGE [22], AROPE [66], STNE [33], metapath2vec [13], node2vec [19],
NetRA [64], UltimateWalk [9] HIN2Vec [16], struc2vec [44], SNS [34],

VERSE [51], MINES [35], ANE [11],
GraphSAGE [20], DP-Walker [15]

as well as LINE [49] and node2vec [19] which adopt negative
sampling to distinguish these two types of nodes.
• J3: ranking-oriented objective function. Different from the
above pointwise objective functions which optimize over
each individual edge, ranking-oriented objective functions
aim to optimize over the relative ranking of a set of edges.
Depending on the number of edges considered, we further
divide ranking-oriented objective functions into paiwise and
listwise ones.

We draw the following observations from Table 1. First of all,
we can see that all the three types of context networks (rows of
Table 1) have already been widely used by the existing methods;
on the other hand, the existing methods have almost exclusively
focused on the pointwise design (i.e., the 𝐽1 and 𝐽2 columns of
Table 1). Two exceptions are EP [14] whose focus is to encode the
multi-modal node attributes with a basic pairwise loss function,
and CNE [25] which adds constraints on the pairwise distances
between seen and unseen edges under the Bayesian framework.

More importantly, the proposed ranking-oriented design (the
last two columns of Table 1) would enable a whole family of new
network embedding methods. For example, the proposed LiWine
in the 𝐽3 column encodes a listwise objective function, and PaWine
augments the existing discrimination-oriented pointwise objective
function with a pairwise objective function (i.e., 𝐽2+𝐽3). Further-
more, some existing methods, even though they were originally
designed for other network mining tasks, can be naturally used for
network embedding. For example, BPR [43] in column 𝐽3, which
was originally proposed for recommender systems, can be adapted
as a pairwise network embedding method.

Finally, most of the methods are applicable to different types of
context networks (e.g., SVD, SVD#, and SVD## are variants of SVD
by applying it to the three types of context networks, respectively).
For othermethods (e.g., LINE3, BPR, and the two proposedmethods),
we can also apply them to all the three types of context networks.
We will systematically evaluate the effectiveness of these methods
in the experimental section.

3We use the second order LINE, which can be seen as applying DeepWalk on the
original network instead of the walking network [41].

3 THE PROPOSED APPROACHES

In this section, we state the problem definition and present the
proposed network embedding approaches.

3.1 Problem Statement

We use𝐺 = (𝑉 , 𝐸) to denote the original input network. Following
conventions, we use bold capital letters for matrices. For example,
W is used to denote the (weighted) adjacency matrix of the context
network constructed from the original network. Note thatW can be
the original network. We assume that each node has two roles (i.e.,
central role and context role), and use two 𝑛 × 𝑑 matrices F and H
to denote the corresponding node embedding results, respectively.
We denote the 𝑖-th row of matrix F as F(𝑖, :) which stands for the
embedding of node 𝑖 . With the above notations, we define the
pairwise and listwise network embedding problems as follows.

Problem 1: Pairwise Network Embedding Problem. Given (1) the
(weighted) adjacency matrixW of the context network constructed
from the input network 𝐺 , and (2) the set 𝐷 of edge pairs where
each pair contains a positive edge and a negative edge fromW; the
goal is to find the node embedding matrix F.

Problem 2: Listwise Network Embedding Problem. Given (1) the
(weighted) adjacency matrixW of the context network constructed
from the input network 𝐺 , and (2) a list 𝐿𝑖 of edges for each node 𝑖
from W; the goal is to find the node embedding matrix F.

Different from a typical network embedding setting which is
often defined with respect to the given input network, we have
intentionally defined both Problem 1 and Problem 2 with respect
to the context network. This is because our proposed algorithms
(PaWine and LiWine) are orthogonal to the way the context net-
work is constructed. In other words, they are applicable to any
method to construct the context network (i.e., the three rows of
Table 1). Throughout this paper, we refer to edges as those in the
context network (as opposed to the original input network), unless
stated otherwise. In the above definitions, the constructed context
network could be either unweighted or weighted. The output is
the embedding matrix F. To make the proposed method compatible
to some existing competitors, we could also output an additional
embedding matrix H whose embeddings indicate the node roles
as context nodes. The input of pairwise network embedding con-
tains the set 𝐷 of edge pairs in the form of (𝑖, 𝑗) and (𝑖, 𝑘), where 𝑖

is the central node, and (𝑖, 𝑗)/(𝑖, 𝑘) is one of its positive/negative
(e.g., observed/unobserved) edges from W. The input of listwise
network embedding contains an edge list 𝐿𝑖 (which may contain
both positive and negative edges) for each node 𝑖 . Essentially, pair-
wise methods aim to capture the relative weights of the edge pairs,
whereas listwise methods capture the relative weights of the whole
edge lists.

Preliminaries: Pointwise Objective Function. Here, we discuss the
existing pointwise methods, whose key idea is to design the follow-
ing objective function on the context network,

𝐽𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 =
∑
(𝑖,𝑗)

𝑓 (W(𝑖, 𝑗), F(𝑖, ;), F(𝑗, :)), (1)

where F contains the embeddings we aim to learn, and the objective
is a summation of separate goodness function 𝑓 over each individual
edge (𝑖, 𝑗). Take DeepWalk [40] or node2vec [19] as an example. By
instantiating the 𝑓 function, we have the following formulation,

max
F

∑
(𝑖,𝑗)

W(𝑖, 𝑗) log𝜎 (F(𝑖, :) · F(𝑗, :)), (2)

where · indicates inner product, 𝜎 (𝑥) = 1
1+𝑒−𝑥 , and we have omitted

the negative sampling term for clarity. As we can see, the above
equation can be decomposed into subproblems considering each
edge (𝑖, 𝑗) separately.

3.2 The Proposed PaWine

Pairwise Objective Function. In this subsection, we describe the
proposed PaWine for Problem 1. We start with a basic pairwise
formulation, and then augments it with a pointwise objective func-
tion.

As mentioned above, pairwise methods optimize over edge pairs
of the context network. For example, given a positive edge (𝑖, 𝑗)
and a negative edge (𝑖, 𝑘), pairwise methods aim to learn the em-
beddings so that the proximity between node 𝑖 and 𝑗 is larger than
that between node 𝑖 and 𝑘 , i.e.,

𝐽𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 =
∑

(𝑖,𝑗,𝑘)∈𝐷
𝑔 (W(𝑖, 𝑗), F(𝑖, ;), F(𝑗, :), F(𝑘, :)), (3)

where 𝐷 is the set of (𝑖, 𝑗, 𝑘) tuples containing edge pairs ((𝑖, 𝑗)
v.s. (𝑖, 𝑘)), and function 𝑔 captures the relative weights of (𝑖, 𝑗) and
(𝑖, 𝑘). For example, we can instantiate the following basic pairwise
formulation,

max
F,H

∑
(𝑖,𝑗,𝑘)∈𝐷

W(𝑖, 𝑗) log𝜎 (F(𝑖, :) · H(𝑗, :) − F(𝑖, :) · H(𝑘, :)), (4)

where · and 𝜎 (𝑥) are defined in Eq. (2), and we optimize the prox-
imity difference between edge (𝑖, 𝑗) and edge (𝑖, 𝑘). Compared with
Eq. (3), we consider two roles of each node, i.e., central role (matrix
F) and context role (matrix H). Here, node 𝑖 plays the central role
and nodes 𝑗 and 𝑘 play the context roles. Notice that in Eq. (2), the
edge pairs are from the context network. In contrast, when applying
on the original input network, the above formulation resembles
the so-called Bayesian personalized ranking method [43] which
was originally proposed for recommender systems. We refer to this
basic method as BPR in this paper.

We further integrate the above pairwise formulation with the
pointwise method in Eq. (2). That is, given the (𝑖, 𝑗, 𝑘) tuple, by
treating edge (𝑖, 𝑘) as a negative sample, we have the proposed

PaWine model as follows,

max
F,H

∑
(𝑖,𝑗,𝑘)∈𝐷

W(𝑖, 𝑗) log𝜎 (F(𝑖, :) · H(𝑗, :) − F(𝑖, :) · H(𝑘, :))

+𝜆𝑑W(𝑖, 𝑗) [log𝜎 (F(𝑖, :) · F(𝑗, :))
+ log𝜎 (−F(𝑖, :) · F(𝑘, :))] − 𝜆 (| |F | |2

𝐹
+ | |H | |2

𝐹
), (5)

where we add a pointwise term for edge (𝑖, 𝑗) and a negative sam-
pling term for edge (𝑖, 𝑘). The relative importance of these two
terms are decided by parameter 𝜆𝑑 . The 𝐿2 regularization term
whose relative importance is controlled by parameter 𝜆 is used to
keep the solution in a controllable space. Here, the regularization
term is necessary to compensate for the negative sampling terms,
and we need to balance them when applying the method. For ex-
ample, a relatively large 𝜆 and a relatively small 𝜆𝑑 would lead the
learned embedding values towards zeros. We will experimentally
evaluate this in the next section. To instantiate the 𝑔 function in
Eq. (3), we choose the logistic-like function log𝜎 (𝑥 −𝑦). In addition
to this loss function, other loss functions such as hinge loss, Huber
loss, and WMW loss [1] can also be used. The above formulation
considers two roles of each node (F v.s. H). Alternatively, we could
only consider the central role by substituting the H matrix with
F matrix in Eq. (5). We have experimentally found that these two
choices make little differences, and thus keep the H matrix for
better understanding.

Sampling Strategy. The size of 𝐷 is quadratic w.r.t to the node
number 𝑛. Therefore, in practice, we usually adopt sampling strate-
gies to sample a subset of edge pairs for each node. In this work, We
consider several choices including uniform sampling which sam-
ples the positive edge and negative edge uniformly random, and
degree-based sampling which samples the edge with a probability
proportional to the node degree [37].

Learning Algorithm. Next, we present the learning strategy for
Eq. (5). Here, since the optimization problem is non-convex, we
adopt the alternating strategy. That is, we iteratively update F(𝑖, :
), F(𝑗, :), F(𝑘, :),H(𝑗, :), and H(𝑘, :). For example, by computing the
partial derivatives, the updating rule for F(𝑖, :) is as follows,

F(𝑖, :) ← F(𝑖, :) + 𝜂 {W(𝑖, 𝑗) (1 − 𝜎𝑖,𝑗,𝑘) (H(𝑗, :) − H(𝑘, :))
+𝜆𝑑W(𝑖, 𝑗) [(1 − 𝜎𝑖,𝑗)F(𝑗, :)
−(1 − 𝜎𝑖,𝑘)F(𝑘, :)] − 𝜆F(𝑖, :) }, (6)

where 𝜂 is the learning step size, and 𝜎𝑖, 𝑗,𝑘 , 𝜎𝑖, 𝑗 , and 𝜎𝑖,𝑘 are short
for 𝜎 (F(𝑖, :) ·H(𝑗, :) −F(𝑖, :) ·H(𝑘, :)), 𝜎 (F(𝑖, :) ·F(𝑗, :)), and 𝜎 (−F(𝑖, :
) · F(𝑘, :)), respectively.

The PaWine algorithm is summarized in Alg. 1. In the algorithm,
we iterate over each node 𝑖 (Line 3), and then sample a tuple (𝑖, 𝑗, 𝑘)
for it (Line 4). Based on this tuple, we iteratively update F(𝑖, :), F(𝑗, :
), F(𝑘, :),H(𝑗, :), and H(𝑘, :) in each iteration (Lines 5-9). We stop
the iteration when the results converge (i.e., either the learned
matrices converge or a maximum iteration number is reached).
Such a learning algorithm is naturally parallelizable by sampling
and optimizing a mini-batch of training tuples at the same time.

Algorithm Analysis. Finally, we briefly analyze the computational
complexity of the Alg. 1. The time complexity is summarized in the
following lemma, which says that PaWine enjoys a linear scalability
w.r.t. the data size (i.e., the node number).

Algorithm 1 The PaWine Algorithm.
Input: The adjacency matrix W of the context network
Output: The node embeddings F
1: initialize F and H;
2: while not convergent do
3: for 𝑖 = 1 : 𝑛 do

4: sample a positive edge (𝑖, 𝑗) and a negative edge (𝑖, 𝑘) ;
5: update F(𝑖, :) as Eq. (6);
6: F(𝑗, :) ← F(𝑗, :) + 𝜂 [𝜆𝑑W(𝑖, 𝑗) (1 − 𝜎𝑖,𝑗)F(𝑖, :) − 𝜆F(𝑗, :)];
7: F(𝑘, :) ← F(𝑘, :) + 𝜂 [𝜆𝑑W(𝑖, 𝑗) (𝜎𝑖,𝑘 − 1)F(𝑖, :) − 𝜆F(𝑘, :)];
8: H(𝑗, :) ← H(𝑗, :) + 𝜂 [W(𝑖, 𝑗) (1 − 𝜎𝑖,𝑗,𝑘)F(𝑖, :) − 𝜆H(𝑗, :)];
9: H(𝑘, :) ← H(𝑘, :) + 𝜂 [W(𝑖, 𝑗) (𝜎𝑖,𝑗,𝑘 − 1)F(𝑖, :) − 𝜆H(𝑘, :)];
10: end for

11: end while

12: return F;

Lemma 1. Time Complexity of PaWine. The time complexity
of PaWine is𝑂 (𝑛𝑑𝑙), where 𝑛 is the node number, 𝑑 is the embedding
dimensionality, and 𝑙 is the maximum iteration number.

Proof. The proof is omitted for brevity.

3.3 The Proposed LiWine

Listwise Objective Function. In this subsection, we describe the pro-
posed listwise method LiWine for Problem 2. Compared to pairwise
methods which consider the relative weights of edge pairs, listwise
methods further consider the relative weights of edge lists, i.e., the
relative rankings of a set of edges. Typically, a listwise objective
function can be written as

𝐽𝑙𝑖𝑠𝑡𝑤𝑖𝑠𝑒 =

𝑛∑
𝑖=1

ℎ (
∑
(𝑖,𝑘)∈𝐿𝑖

W(𝑖, 𝑘), F(𝑖, ;), F(𝑘, :)), (7)

where 𝐿𝑖 is the edge list for node 𝑖 , and function ℎ captures the
relative weights of this edge list. Notice that this edge list may
contain multiple positive edges and negative edges.

For the listwise objective function ℎ, we build it upon the fol-
lowing top-one probability function [5] which indicates the (real)
probability of a given edge (𝑖, 𝑗) being ranked in the first position
of list 𝐿𝑖 .

𝑃 (W(𝑖, 𝑗)) = W(𝑖, 𝑗)∑
(𝑖,𝑘)∈𝐿𝑖 W(𝑖, 𝑘)

. (8)

Similarly, we have the following estimated probability of a given
edge being ranked in the first position,

𝑄 (Ŵ(𝑖, 𝑗)) = 𝑄 (F(𝑖, :) · H(𝑗, :))

=
𝜎 (F(𝑖, :) · H(𝑗, :))∑

(𝑖,𝑘)∈𝐿𝑖 𝜎 (F(𝑖, :) · H(𝑘, :))
, (9)

where we have generalized the original top-one probability by in-
troducing the 𝜎 function, which might render extra flexibility of the
learned embeddings. Here, we can also substitute the 𝜎 function
with the 𝑒𝑥𝑝 function, making function 𝑄 the softmax function.
In practice, we found that these two choices have similar perfor-
mance in many cases, and computing 𝜎 can be significantly ac-
celerated [37]. Therefore, we use 𝜎 function for simplicity in this
paper.

Based on functions 𝑃 and 𝑄 , we can have a real probability
distribution and an estimated probability distribution for each edge
in the edge list 𝐿𝑖 . Then, by instantiating the ℎ function as the cross
entropy between these two probability distributions, we have our

LiWine formulation,

min
F,H
−

𝑛∑
𝑖=1

∑
(𝑖,𝑗)∈𝐿𝑖

𝑃 (W(𝑖, 𝑗)) log[𝑄 (F(𝑖, :) · H(𝑗, :))], (10)

where we ignore the regularization term, and functions 𝑃 and 𝑄
are defined in Eq. (8) and Eq. (9), respectively. As we can see from
Eq. (5) and Eq. (10), despite using different objective functions, they
both follow ranking-oriented design to optimize over a set of edges.
Compared with PaWine which contains parameter 𝜆𝑑 to balance
the effect of two components, one advantage of LiWine is that it
does not need such parameters.

Sampling Strategy. Similar to PaWine, we need to determine the
sampling strategy to construct the list 𝐿𝑖 for each node. There are
many potential choices of sampling strategies, and we consider
three of them in this work. The first one is full sampling, i.e., using
all the possible edges (including both positive and negative ones).
While this strategy has a full consideration of the edges, it would
cost quadratic time making it only suitable for medium-size net-
works. The second sampling strategy is uniform partial sampling,
where we keep all the positive edges and randomly sample 𝑟 nega-
tive edges for each positive edge. Finally, we have the third choice
degree-based partial sampling where we sample 𝑟 negative edges
for each positive edge with a probability proportional to the node
degree.

Learning Algorithm. Next, we briefly present the learning algo-
rithm for Eq. (10). To simplify the descriptions, we first define three
𝑛 × 𝑛 matrices whose entries are as follows,

A(𝑖, 𝑗) = 𝑃 (W(𝑖, 𝑗)),
B(𝑖, 𝑗) = 1 − 𝜎 (F(𝑖, :) · H(𝑗, :)),
C(𝑖, 𝑗) = 𝑄 (F(𝑖, :) · H(𝑗, :))B(𝑖, 𝑗) . (11)

In order to solve Eq. (10), we have different strategies depending
on the data size. We can directly compute the partial derivative on
F(𝑖, :) as

𝜕𝐽

𝜕F(𝑖, :) = −
∑
(𝑖,𝑗)∈𝐿𝑖

A(𝑖, 𝑗) [B(𝑖, 𝑗)H(𝑗, :) −
∑
(𝑖,𝑘)∈𝐿𝑖

C(𝑖, 𝑘)H(𝑘, :)] . (12)

When the data size is not large, the above derivative can be
further simplified. For example, if we choose the full sampling
strategy, we have

𝜕𝐽

𝜕F
= CH − (A ⊙ B)H, (13)

where ⊙ means the Hadamard product.
Similar to F, we have the following partial derivative for H(𝑗, :),

𝜕𝐽

𝜕H(𝑗, :) = −
𝑛∑
𝑖=1

A(𝑖, 𝑗) [B(𝑖, 𝑗)F(𝑖, :) − C(𝑖, 𝑗)F(𝑖, :)]

= [A(:, 𝑗) ⊙ (C(:, 𝑗) − B(:, 𝑗))]𝑇 F, (14)

and the following equation when we use the full sampling strategy,
𝜕𝐽

𝜕H
= [A ⊙ (C − B)]𝑇 F. (15)

Based on the above equations, the proposed LiWine algorithm
is summarized in Alg. 2. As we can see, we first fix H and update
F (Lines 3-6). Then, with a given sampling strategy, we sample an
edge list 𝐿𝑗 for the context node 𝑗 and update H(𝑗, :) accordingly
with F fixed (Lines 7-10). The iterations are naturally parallelizable.
In practice, we adopt the full sampling strategy and use Eq. (13) and
Eq. (15) to substitute Lines 3-6 and Lines 7-10 when the network size

Algorithm 2 The LiWine Algorithm.
Input: The adjacency matrix W of the context network
Output: The node embeddings F
1: initialize F and H;
2: while not convergent do
3: for 𝑖 = 1 : 𝑛 do

4: sample an edge list 𝐿𝑖 ;
5: update F(𝑖, :) as Eq. (12);
6: end for

7: for 𝑗 = 1 : 𝑛 do

8: sample an edge list 𝐿𝑗 ;
9: update H(𝑗, :) as Eq. (14);
10: end for

11: end while

12: return F;

is moderate. The algorithm ends when either the learned matrices
converge or a maximum iteration number is reached.

Algorithm Analysis. The time complexity of LiWine is summa-
rized in the following lemma, which says that LiWine enjoys a
linear scalability w.r.t. the edge number of the context network.

Lemma 2. Time Complexity of LiWine. The time complexity
of LiWine is 𝑂 (𝑚𝑑𝑟𝑙), where𝑚 is the edge number in the context
network,𝑑 is the embedding dimensionality, 𝑟 is the negative sampling
ratio, and 𝑙 is the maximum iteration number.

Proof. The proof is omitted for brevity.
Remarks. Note that the linear complexity in both Lemma 1 and
Lemma 2 is stated in terms of the size of the context matrix (e.g., by
short randomwalks), which might be denser than the original input
network. However, as we will show in the experiment section, for
both PaWine and LiWine, we often only need to use the original
network as the context matrix to achieve a superior performance
over the existing methods. Furthermore, even if one prefers a short
random walk as context, we still do not need to explicitly construct
the (potentially dense) context matrix. Instead, we can use a similar
sampling strategy as DeepWalk and node2vec to obtain the pairwise
or listwise context, making the proposed algorithms scalable to
large networks.
Comparisonwith Skip-grambasedModels. For skip-gram based
models such as DeepWalk and node2vec as well as their origin
word2vec, the basic idea is to maximize the following term,∑

𝑣∈𝑉
log𝑃𝑟 (𝑁 (𝑣) |𝑣), (16)

where 𝑁 (𝑣) ⊂ 𝑉 is the context of the center node 𝑣 . The above for-
mulation implicitly learns the joint probability of a subset of edges
of the context matrix, which resembles the high-level idea of the
proposed method in this paper. However, Eq. (16) is computation-
ally expensive or even intractable. Therefore, previous models (e.g.,
DeepWalk, node2vec, and word2vec) simplify Eq. (16) by imposing
the conditional independence assumption, i.e.,

log𝑃𝑟 (𝑁 (𝑣) |𝑣) =
∑

𝑢∈𝑁 (𝑣)
log𝑝 (𝑢 |𝑣) . (17)

This simplification results in the pointwise objective function of
these models, as their goal is to maximize the summation of each
log(𝑝 (𝑢 |𝑣)) term. From this perspective, we can view the proposed
ranking-oriented method as an alternative way to approximate
Eq. (16). That is, our method is able to encode the interactions

Table 2: Statistics of the datasets.

Dataset |𝑉 | |𝐸 | Avg. degree # of labels
PPI 3,890 38,739 9.96 50
BlogCatalog 10,312 333,983 32.39 39
Flickr 80,513 5,899,882 73.28 195
Citerseer 3,312 4,732 1.43 6
Wiki 2,405 17,981 7.48 19

between different edges of the context network by a pairwise or
listwise objective function. This opens the door to a whole family
of network embedding methods, with enhanced empirical perfor-
mance for the downstreammining tasks while still enjoying scalable
computation.

4 EXPERIMENTS

In this section, we present the experimental results.

4.1 Experimental Setup

Datasets. We conduct our experiments on five real datasets: PPI [19],
BlogCatalog [19], Flickr [40], Citeseer [61], and Wiki [61], under
three prediction tasks (multi-label prediction, clustering, and multi-
class prediction). The first three datasets are widely used in the
multi-label prediction task and the last two are widely used in the
multi-class prediction task. All the datasets are publicly available.
The statistics of the datasets are shown in Table 2. EvaluationMetrics.
We study three prediction tasks. For the multi-label prediction task,
we follow DeepWalk [40] and use the one-vs-rest logistic regression
to make the predictions for all the methods. We report the resulting
Micro-F1 and Macro-F1 scores. For clustering, we apply K-means to
the embeddings to identify the clusters, and report the Normalized
Mutual Information (NMI) scores. For multi-class prediction, we
directly report the classification accuracy. All the reported results
are the average of 10 repeating experiments.

Parameters and Implementations. For fair comparisons, all the
embedding dimensionality is set to 128 unless otherwise stated. For
the parameters, the sampling ratio 𝑟 of LiWine is set to 1 for brevity.
For the two parameters 𝜆 and 𝜆𝑑 in PaWine, we search over a grid
𝜆, 𝜆𝑑 ∈ {0.001, 0.01, 0.1} via cross-validation on the training data.
For the other parameters, we either follow the default configuration
or set them equally.

For the compared methods, DeepWalk and node2vec are two
typical network embedding models built upon the skip-gram model.
BPR is the basic pairwise method. GraphSAGE generalizes the
GCN method [27] to unsupervised setting. For GraphSAGE, we
need to initialize the node features. In our experiments, we ini-
tialize them with low-dimensional results from DeepWalk. VERSE
is a recent proposed method that incorporates multiple relation-
ships/similarities between nodes. AROPE is a recent method using
reconstruction-oriented loss function on the walking network with
arbitrary orders. For the implementations of DeepWalk, node2vec,
GraphSAGE, VERSE, and AROPE, we directly use the code provided
by the authors or publicly available in open libraries. For BPR, we
implement it ourselves.4

4The code of the proposed algorithms is publicly available at https://github.com/
SoftWiser-group/RankNE.

Table 3: Systematic evaluations of network embedding

methods on the multi-label prediction task.

PPI data (Method/Micro-F1/Macro-F1)
J1 J2 J3 J2+J3

N1
SVD LINE BPR LiWine PaWine
0.182 0.168 0.212 0.237 0.237

0.127 0.146 0.182 0.201 0.196

N2 SVD# LINE# BPR# LiWine# PaWine#
0.214 0.172 0.214 0.234 0.243

0.178 0.153 0.183 0.200 0.201

N3 SVD## DeepWalk BPR## LiWine## PaWine##
0.220 0.195 0.184 0.210 0.213
0.174 0.171 0.158 0.184 0.181
BlogCatalog data (Method/Micro-F1/Macro-F1)
J1 J2 J3 J2+J3

N1
SVD LINE BPR LiWine PaWine
0.301 0.352 0.405 0.413 0.427

0.114 0.213 0.265 0.275 0.282

N2
SVD# LINE# BPR# LiWine# PaWine#
0.299 0.364 0.393 0.409 0.404
0.121 0.225 0.251 0.261 0.236

N3
SVD## DeepWalk BPR## LiWine## PaWine##
0.349 0.402 0.311 0.335 0.326
0.190 0.269 0.175 0.206 0.186

Flickr data (Method/Micro-F1/Macro-F1)
J1 J2 J3 J2+J3

N1
SVD LINE BPR LiWine PaWine
0.281 0.388 0.396 0.405 0.410

0.108 0.246 0.266 0.281 0.274

N2
SVD# LINE# BPR# LiWine# PaWine#
0.284 0.373 0.385 0.385 0.383
0.112 0.263 0.262 0.242 0.250

N3
SVD## DeepWalk BPR## LiWine## PaWine##
0.365 0.397 0.365 0.372 0.351
0.220 0.261 0.221 0.223 0.210

4.2 Systematic Evaluation Results

We first check the performance of network embedding methods
according to the two dimensions in Section 2. Specially, we take the
multi-label prediction task as an example, and choose one or more
representative methods in each cell of Table 1. The chosen methods
and their results on the first three datasets (PPI, BlogCatalog, and
Flickr) are shown in Table 3. Each cell contains the method name
and its Micro-F1 and Macro-F1 scores. Note that we choose the
methods that can be applied on all the three context networks for
comparison purpose. For example, BPR, BPR#, and BPR## stand
for applying the model on the three types of context networks,
respectively. For the reported results, we randomly select 50% data
as training set and use the rest as test set. The reported results of
PaWine are based on the parameter setting 𝜆𝑑 = 0.1, 𝜆 = 0.01 for
BlogCatalog data, and 𝜆𝑑 = 0.01, 𝜆 = 0.01 for PPI and Flickr.

We can first observe fromTable 3 that the best results are achieved
by the proposed ranking-oriented methods. Moreover, we find that

the basic pairwise method BPR has already achieved a compara-
ble or even better result than the pointwise methods. This result
indicates the high potential of ranking-oriented objective design
for network embedding. Second, we can see that the best results
of the pointwise methods (columns 𝐽1 and 𝐽2) are obtained on the
walking network (row 𝑁3), whereas the best results of ranking-
oriented methods (columns 𝐽3 and 𝐽1 + 𝐽2) are typically achieved
on the original network (row 𝑁 1). In other words, we usually need
to construct a complex context network to ensure the performance
of pointwise methods; in contrast, we can directly use the original
network as context network for the ranking-oriented methods.

4.3 Effectiveness Comparison Results

Next, we compare the proposed methods with several existing
methods including DeepWalk [40], node2vec [19], BPR [43], Graph-
SAGE [20], VERSE [51], and AROPE [66]. We choose these com-
petitors as they address the same problem setting as our methods,
i.e., embedding general networks with only the original network
topology as input. The results are shown in Fig. 1.

(A) Multi-label Prediction Comparison. The Micro-F1 results of
multi-label prediction are shown in Fig. 1(a) and Fig. 1(b). Similar
results are observed on the Macro-F1 metrics and thus are omit-
ted for brevity. Here, we only report the results on the PPI data
and BlogCatalog data, as some of the competitors are computation-
ally prohibitive on the Flickr data (e.g., cannot return results in 24
hours). We can observe from the figures that the proposed methods
generally outperform the compared methods with different size of
training data on both datasets. For example, compared with the best
competitor at each training data size on PPI data, PaWine improves
them by 7.4% - 30.6%, and LiWine improves them by 7.3% - 52.9%.
On BlogCatalog, PaWine and LiWine improve the best competitors
by up to 6.7% and 2.0%.

(B) Multi-class Prediction Comparison. Next, we show the effec-
tiveness comparisons for the multi-class prediction task on the
Citeseer and Wiki data. Fig. 1(c) and Fig. 1(d) show the results,
where the reported results of PaWine are based on the parameter
setting 𝜆𝑑 = 0.1, 𝜆 = 0.1 for Citeseer, and 𝜆𝑑 = 0.01, 𝜆 = 0.01 for
Wiki. As we can see from the figures, PaWine in general has better
prediction accuracy on the Citeseer data, and both PaWine and
LiWine outperform the compared methods on the Wiki data. For
example, on the Citeseer data, PaWine achieves 2.1% - 4.2% im-
provements over its competing results; on the Wiki data, PaWine
improves its best competitor by up to 17.5%.

(C) Clustering Comparison. Here, we evaluate the performance
of the learned embeddings in the clustering task. We set the initial
cluster number from 10 to 50, and show the NMI results of PPI
data in Fig. 1(e). As we can see, the proposed PaWine significantly
outperforms the other methods. For example, compared with the
best competitor, PaWine improves it by 7.7% - 11.9%.

Overall, the above results indicate the usefulness of ranking-
oriented modeling as the baselines all adopt pointwise objective
functions. Moreover, the proposed PaWine achieves significant
improvements in most cases for all the three prediction tasks.

4.4 Effectiveness of LiWine as Post-Processing

Next, we evaluate the effectiveness of the proposed LiWine as a fine-
tuned post-processing step for the embedding results of existing

0 0.2 0.4 0.6 0.8

Percentage of training data

0.1

0.15

0.2

0.25

M
ic

ro
-F

1

(a) Multi-label prediction on PPI data

0 0.2 0.4 0.6 0.8

Percentage of training data

0.2

0.25

0.3

0.35

0.4

M
ic

ro
-F

1

(b) Multi-label prediction on BlogCatalog data

0 0.2 0.4 0.6 0.8

Percentage of training data

0.4

0.45

0.5

0.55

0.6

0.65

A
c
c
u

ra
c
y

(c) Multi-class prediction on Wiki data

0 0.2 0.4 0.6 0.8

Percentage of training data

0.3

0.4

0.5

0.6

A
c
c
u
ra

c
y

(d) Multi-class prediction on Citeseer data

10 20 30 40 50

The number of predicted clusters

0.05

0.1

0.15

0.2

N
M

I

DeepWalk

node2vec

BPR

GraphSAGE

VERSE

AROPE

LIWINE

PAWINE

(e) Clustering on PPI data

Figure 1: The effectiveness comparison results. The proposed methods especially PaWine outperform the compared methods

in general.

Table 4: Fine-tuning results of LiWine. Each result is in the form of 𝑥/𝑦 where 𝑥 means the result of the original method and

𝑦 means that after applying LiWine. (• indicates the 𝑦 result is significantly better than 𝑥 with 𝑝-value< 0.01 and ◦ indicates
no significant difference.)

DeepWalk node2vec BPR GraphSAGE VERSE AROPE
PPI 0.195/0.235 • 0.203/0.236 • 0.212/0.232• 0.209/0.229• 0.206/0.237• 0.190/0.227•

BlogCatalog 0.402/0.415 • 0.395/0.417 • 0.405/0.420• 0.327/0.389• 0.404/0.417• 0.320/0.378•
Wiki 0.647/0.673 • 0.643/0.669 • 0.626/0.639• 0.620/0.668• 0.651/0.678• 0.622/0.653•

Citeseer 0.591/0.603 • 0.598/0.599 ◦ 0.548/0.593• 0.551/0.567• 0.588/0.608• 0.508/0.573•

methods. The results of multi-label and multi-class prediction are
shown in Table 4. For brevity, we still report the results when
50% data is used as training set, and report the Micro-F1 results
for multi-label prediction. Similar results are observed on other
metrics and training data percentages.We do not observe significant
improvements when applying PaWine as a post-processing step in
most cases and thus omit the results for brevity.

We can observe from the table that after applying LiWine as
fine-tuning step, most existing methods have achieved significant
improvements. Additionally, some of the fine-tuned results are even
better than PaWine. For example, applying LiWine after VERSE
leads to 2.0% improvement compared to PaWine. These results
suggest that the strength of the proposed PaWine and LiWine are
complementary with each other. That is, the pairwise objective term
in PaWine is more effective when integrated with the pointwise
objective functions during the learning process; whereas LiWine
is more effective when acting as a fine-tuned post-processing step
of the existing pointwise embedding results.

4.5 Visualization

Finally, we present the visualization results of the learned embed-
dings. We use the Citeseer data as an example. Among the six
labels, we choose three closely related ones which are harder for
visualization, i.e., scientific publications belonging to the areas of
‘Agents’ (blue), ‘AI’ (orange), and ‘ML’ (green), respectively. We
map the learned embeddings into a 2-D space with t-SNE [36], and
the results of DeepWalk, LiWine, and PaWine are shown in Fig. 2.

As we can see, the result of DeepWalk is largely cluttered as
publications of the same area are scattered in the space. The re-
sult of LiWine is much better as we can find some node clusters
with the same color. For example, most of the ‘AI’ and ‘Agents’
publications are in the right and the bottom-right corners of the
space, respectively. The result of PaWine is even better: in addi-
tion to identifying the node clusters of ‘AI’ and ‘Agents’, the ‘ML’
publications are concentrated at the bottom-right corner.

(a) DeepWalk

AI

Agents

(b) LiWine

Agents

ML

AI

(c) PaWine

Figure 2: The visualization results of the Citeseer network. Color of a node indicates the area/venue of the publication. For

the proposed methods (b and c), the generated embeddings with the same label are in a relatively concentrated area.

5 RELATED WORK

In this section, we briefly review the related work, including basic
models and various extensions. Here, we mainly focus on the net-
work embedding methods with explicit or implicit steps of context
construction and objective function, which are most relevant to
our proposed methods. In addition, there exist many other network
embedding models based on convolutional neural networks [65]
(e.g., ChebNet [12] and GCN [27]), recurrent neural networks (e.g.,
GGNN [31]), and attention mechanism (e.g., GAT [53]), etc. We
refer readers to some recent surveys [2, 10, 21, 58] for more details.

Basic Models. Basic network embedding models take only the
original network as the input and output the learned embeddings
via context network construction and objective design. Classic ex-
amples include DeepWalk [40], LINE [49], and node2vec [19] which
apply discrimination-oriented objective functions on the corre-
sponding context networks. The reconstruction-oriented objective
functions have also been widely used. For example, SVD## [29],
GraRep [3], and NetMF [41] mainly focus on the context network
construction and apply SVD on the constructed networks to obtain
the embeddings; in contrast, SDNE [54] and DNGR [4]/NetRA [64]
focus on the objective function by using autoencoders to recon-
struct the original network and walking network, respectively. The
proposed methods in this work fall into the category of basic mod-
els as we take the network structure as the sole input. Different
from the above pointwise methods, we introduce ranking-oriented
design, and further propose pairwise and listwise methods for net-
work embedding.

Variants andExtensions. In addition to the basicmodels, many
variants and extensions have been proposed. The first extension
aims at collectively modeling the network structure and the node
attributes. Examples include [7, 17, 23, 24, 30, 33, 47, 55] which col-
lectively learn and integrate the representations of node attributes,
and [20, 61–63] which develop inductive models to predict the em-
beddings based on the node attributes. The second extension is to
incorporate the community structure for network embedding when
such information is available [8, 57]. The third extension pays spe-
cial attention to directed networks by, for example, computing asym-
metric proximities between nodes [38, 67]. The fourth extension
is specially designed for signed networks (with both positive links
and negative links), where the key issue is to deal with the negative

links [26, 55, 56]. Although some of these signed network embed-
ding methods also use pairwise objective functions, they bear some
subtle differences from the proposed PaWine algorithm, in the sense
that PaWine (1) deals with the general input network with non-
negative link weights and (2) applies the pairwise objective function
on the context network (as opposed to the input network) in con-
juntion with the pointwise objective function. The fifth extension
considers the node embedding problem in heterogeneous networks
which contain nodes/edges of different types [7, 13, 16, 46, 59]. For
example, metapath2vec [13] and HIN2Vec [16] define the context
network with metapaths over the heterogeneous networks, and ap-
ply skip-gram model and logistic classifier to learn the embeddings,
respectively. The sixth extension designs semi-supervised network
embedding models by incorporating the supervision information
of specific prediction tasks [18, 24, 27, 39, 48, 52, 63]. For exam-
ple, PTE [48] and TriNDR [39] incorporate the known labels when
learning the embeddings, and use these embeddings to predict the
unknown labels. The seventh extension targets at the dynamics
of networks [30, 68, 69]. Although not the focus of this work, the
proposed ranking-oriented methods are potentially applicable to
all these extensions and variants.
6 CONCLUSIONS

In this paper, we divide existing network embedding methods into
two stages of context construction and objective design, and pro-
pose the ranking-oriented design principle for network embedding.
We further instantiate two new network embedding algorithms,
including a pairwise network embedding method PaWine which
optimizes the relative weights of edge pairs in conjunction with a
pointwise objective function, and a listwise method LiWine which
optimizes the relative weights of edge lists. Both proposed meth-
ods have a linear time complexity with respect to the size of the
context network. Comprehensive experimental evaluations demon-
strate the effectiveness of the proposed approaches. Future work
includes generalizing the ranking-oriented network embedding to
(1) other types of embedding methods (e.g., graph convolution net-
works) and (2) other types of networks (e.g., attributed networks,
heterogeneous information networks, knowledge graphs).

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation
of China (No.61690204, 61932021, 61672274), and the Collaborative

Innovation Center of Novel Software Technology and Industrial-
ization. Hanghang Tong is partially supported by NSF (1947135,
2003924, and 1939725). Yuan Yao is the corresponding author.

REFERENCES

[1] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting
and recommending links in social networks. InWSDM. ACM, 635–644.

[2] HongyunCai, VincentWZheng, and Kevin Chang. 2018. A comprehensive survey
of graph embedding: problems, techniques and applications. TKDE (2018).

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-
sentations with global structural information. In CIKM. 891–900.

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for
learning graph representations. In AAAI. 1145–1152.

[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
rank: from pairwise approach to listwise approach. In ICML. ACM, 129–136.

[6] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang.
2019. Representation Learning for Attributed Multiplex Heterogeneous Network.
In KDD9.

[7] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and
Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-
tectures. In KDD. 119–128.

[8] Jifan Chen, Qi Zhang, and Xuanjing Huang. 2016. Incorporate group information
to enhance network embedding. In CIKM. 1901–1904.

[9] Siheng Chen, Sufeng Niu, Leman Akoglu, Jelena Kovačević, and Christos Falout-
sos. 2017. Fast, Warped Graph Embedding: Unifying Framework and One-Click
Algorithm. arXiv preprint arXiv:1702.05764 (2017).

[10] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network
embedding. TKDE (2018).

[11] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2018. Adversarial Network
Embedding. In AAAI.

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NIPS.

[13] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In KDD.

[14] Alberto Garcia Duran andMathias Niepert. 2017. LearningGraph Representations
with Embedding Propagation. In NIPS. 5125–5136.

[15] Rui Feng, Yang Yang, Wenjie Hu, Fei Wu, and Yueting Zhuang. 2018. Representa-
tion Learning for Scale-free Networks. In AAAI.

[16] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. HIN2Vec: Explore Meta-paths
in Heterogeneous Information Networks for Representation Learning. In CIKM.
ACM, 1797–1806.

[17] Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding..
In IJCAI. 3364–3370.

[18] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-Scale Learnable
Graph Convolutional Networks. In KDD. 1416–1424.

[19] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD. 855–864.

[20] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1025–1035.

[21] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv (2017).

[22] Jiafeng Hu, Reynold Cheng, Zhipeng Huang, Yixang Fang, and Siqiang Luo. 2017.
On embedding uncertain graphs. In CIKM. ACM, 157–166.

[23] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated attributed network
embedding. In SDM.

[24] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label Informed Attributed Network
Embedding. InWSDM.

[25] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. 2019. Conditional Network Embeddings.
In ICLR.

[26] Junghwan Kim, Haekyu Park, Ji-Eun Lee, and U Kang. 2018. SIDE: Representation
Learning in Signed Directed Networks. InWWW. 509–518.

[27] Thomas Kipf and Max Welling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[28] Yi-An Lai, Chin-Chi Hsu, Wen Hao Chen, Mi-Yen Yeh, and Shou-De Lin. 2017.
PRUNE: Preserving Proximity and Global Ranking for Network Embedding. In
NIPS. 5263–5272.

[29] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In NIPS. 2177–2185.

[30] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
Attributed network embedding for learning in a dynamic environment. In CIKM.

[31] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated
graph sequence neural networks. In ICLR.

[32] Ziyao Li, Liang Zhang, and Guojie Song. 2019. Sepne: Bringing separability to
network embedding. In AAAI.

[33] Jie Liu, Zhicheng He, Lai Wei, and Yalou Huang. 2018. Content to node: Self-
translation network embedding. In KDD. 1794–1802.

[34] Tianshu Lyu, Yuan Zhang, and Yan Zhang. 2017. Enhancing the Network Em-
bedding Quality with Structural Similarity. In CIKM. ACM, 147–156.

[35] Yao Ma, Zhaochun Ren, Ziheng Jiang, Jiliang Tang, and Dawei Yin. 2018. Multi-
Dimensional Network Embedding with Hierarchical Structure. InWSDM.

[36] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[37] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv (2013).

[38] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In KDD. 1105–1114.

[39] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-
party deep network representation. In IJCAI. 1895–1901.

[40] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. 701–710.

[41] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: UnifyingDeepWalk, LINE, PTE, and
node2vec. InWSDM.

[42] Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, and Jiawei Han.
2017. An Attention-based Collaboration Framework for Multi-View Network
Representation Learning. In CIKM. ACM, 1767–1776.

[43] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[44] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In KDD.

[45] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. Science (2000), 2323–2326.

[46] Yu Shi, Qi Zhu, Fang Guo, Chao Zhang, and Jiawei Han. 2018. Easing Embed-
ding Learning by Comprehensive Transcription of Heterogeneous Information
Networks. In KDD. 2190–2199.

[47] Xiaofei Sun, Jiang Guo, Xiao Ding, and Ting Liu. 2016. A General Framework for
Content-enhanced Network Representation Learning. arXiv (2016).

[48] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In KDD. 1165–1174.

[49] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[50] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geometric
framework for nonlinear dimensionality reduction. Science (2000).

[51] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.
VERSE: Versatile Graph Embeddings from Similarity Measures. InWWW.

[52] Cunchao Tu,Weicheng Zhang, Zhiyuan Liu, andMaosong Sun. 2016. Max-margin
DeepWalk: discriminative learning of network representation. In IJCAI.

[53] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[54] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In KDD. 1225–1234.

[55] Suhang Wang, Charu Aggarwal, Jiliang Tang, and Huan Liu. 2017. Attributed
signed network embedding. In CIKM. ACM, 137–146.

[56] Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. 2017.
Signed network embedding in social media. In SDM.

[57] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. In AAAI. 203–209.

[58] Yaojing Wang, Yuan Yao, Hanghang Tong, Feng Xu, and Jian Lu. 2019. A Brief
Review of Network Embedding. BDMA 2, 1 (2019), 35–47.

[59] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. 2017. Embedding of
Embedding (EOE): Joint Embedding for Coupled Heterogeneous Networks. In
WSDM.

[60] Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. 2018. On Exploring
Semantic Meanings of Links for Embedding Social Networks. InWWW. 479–488.

[61] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.
Network representation learning with rich text information. In IJCAI. 2111–2117.

[62] Dejian Yang, Senzhang Wang, Chaozhuo Li, Xiaoming Zhang, and Zhoujun Li.
2017. From Properties to Links: Deep Network Embedding on Incomplete Graphs.
In CIKM. ACM.

[63] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting Semi-
Supervised Learning with Graph Embeddings. In ICML. 40–48.

[64] Wenchao Yu, Cheng Zheng, Wei Cheng, Charu C Aggarwal, Dongjin Song, Bo
Zong, Haifeng Chen, andWeiWang. 2018. Learning deep network representations
with adversarially regularized autoencoders. In KDD. 2663–2671.

[65] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2018. Graph Convo-
lutional Networks: Algorithms, Applications and Open Challenges. In CSoNet.

[66] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.
2018. Arbitrary-Order Proximity Preserved Network Embedding. In KDD.

[67] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable
Graph Embedding for Asymmetric Proximity. In AAAI. 2942–2948.

[68] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
Network Embedding by Modeling Triadic Closure Process. In AAAI.

[69] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In KDD.

	Abstract
	1 Introduction
	2 A Systematic Analysis
	3 The Proposed Approaches
	3.1 Problem Statement
	3.2 The Proposed PaWine
	3.3 The Proposed LiWine

	4 Experiments
	4.1 Experimental Setup
	4.2 Systematic Evaluation Results
	4.3 Effectiveness Comparison Results
	4.4 Effectiveness of LiWine as Post-Processing
	4.5 Visualization

	5 Related Work
	6 Conclusions
	References

