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Abstract. Identifying and classifying defects in scanning probe microscopy (SPM) images
is an important task that is tedious to perform by hand. In this paper we present the defect
identification and statistics toolbox (DIST), an image processing toolbox for identifying and
analyzing atomic defects in SPM images. DIST combines automation with user input to
accurately and efficiently identify defects and automatically compute critical statistics. We
describe using DIST for interactive image processing, generating contour plots for isolating
extrema from an image background, and processes for identifying defects.
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1. Overview

1.1. Introduction

Scanning probe microscopy (SPM) is a powerful, mature technique that enables real-space,
atomic-resolution imaging of surfaces. An important role commonly played by SPM is
imaging defects in order to study their role as chemically active atomic sites [1, 2, 3, 4, 5],
in the assembly or growth of new crystalline layers [6, 7, 8, 9, 10, 11], and in the magnetic,
electronic, and optoelectronic properties of materials [12, 13, 14]. Sometimes studies of single
or small numbers of defects suffice, but when defect statistics are desirable, researchers have
limited options for image analysis that can reliably and controllably generate statistics of
defects in SPM images. While existing programs such as WSxM [15] and SPIW [16] provide
sophisticated processing tools for SPM images, defect analysis is not automated and is time-
consuming to perform by hand. To fill this need, we created a MATLAB-based image analysis
toolbox that automates identification and statistical analysis of defects in SPM images [17].
The Defect Identification and Statistics Toolbox (DIST) identifies defects in SPM images with
user-guided automation and outputs defect locations, counts, and other statistics, as shown in
Figure 1. The defects of interest are typically atomic vacancies, substitutions, or adatoms. As
long as the shape and size of the defects are fairly similar, DIST can be used to identify them
and compile their statistics.

Most of the processing and analysis in DIST is performed automatically, with
opportunities for user input at different stages of defect identification. Collection of defect
statistics, including line profiles of each defect, are completely automated, greatly reducing
user time spent on data analysis. The combination of automation and user input makes for
fast, efficient, and accurate defect identification and analysis. In this paper, we present 1) an
overview of DIST; 2) a step-by-step explanation of how the program works, including inputs,
outputs, and user controls; and 3) a description of limitations and possible expansions.

1.2. Program pathway

Figure 2 outlines the main processes in DIST and the relevant subprocesses. After the image
is first processed through the GUI (Figure 3)), the user chooses to either identify bright or dark
defects with respect to the background of the processed image displayed in the GUI. DIST
uses MATLAB’s contour-generating function to identify defect candidates in the image. Since
this procedure will recognize any features distinct from the background as defect candidates,
user input is needed to narrow the selection to defects of interest. To do this, the user can
choose 1) shape-matching algorithms (Figure 4), or 2) size and apparent height filtering.
For both methods, the user selects a representative defect to be used as a template to which
other defect candidates will be compared. The program then identifies defects that match the
template within defined tolerances.

Since the user is the expert on differentiating between the defects of interest and other
defects or artifacts in the image, it is crucial that users are able to choose the level of processing
best suited for an image, customize analysis on regions in the image, and add or delete defects
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Figure 1. Automated defect identification and statistics a) Line-flattened STM image of
MoTe2. b) Line-flattened image with positively identified defects outlined with contours. The
yellow contours identify bright defects, and the blue identify dark defects. c) Defect count
and defect density. d) Apparent height data, indexed by increasing (decreasing) brightness for
bright (dark) defects. e) Line profiles generated by DIST across the major axis of each defect
contour. Line profiles are each offset by 5⇥10�3 nm for clarity.

to correct the automated identification. The options for user correction are: 1) Applying
a secondary filter (when contour filtering is the specified defect identification process); 2)
Adding or deleting contours to more correctly represent defects; 3) Selecting regions in the
image that require new or further processing to accurately isolate defects. If, after the defect
identification process is finished, there are defects that have not been identified, this function
allows users to re-process specific regions of the image to identify remaining defects.

After a set of defects are identified, their statistics are generated. The user specifies the
direction of the spatial cross-section of the defects for generating line profiles, across either
the major or minor axis. The primary statistics that DIST returns are: X and Y coordinates of
all identified defects, line profiles, apparent height, and area, as shown in Figure 1.
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Figure 2. Flow diagram of program pathway Blue/solid line boxes indicate the main steps
of DIST, and the subcategories describe the processes in each section. Orange/dashed line
boxes indicate automatic processes, and green/dotted line indicate manual options.

2. Program description

2.1. Input Requirements

DIST accepts the following file types for analysis: .sm4, .mat, .png, and .asc. Any other file
type can also be used if it is first converted into a .mat file. If the input file is .sm4, the image
is converted into a .mat structure with attributes such as image width included. If the file is
not in .sm4 form, the width of the image in nanometers is additionally required as an input.

2.2. Image processing

Noise and nonuniform background topography make automated identification of defects in
an image difficult. These challenges also vary from image to image, so image processing
procedures need to be adjustable. DIST provides a GUI with interactive slider controls for
the image processing parameters (Figure 3). Upon opening the program, the raw image is
flattened by subtracting a line-by-line linear fit from the image data. Then four processing
controls are applied according to the slider positions (in order): 1) "strel" object radius, 2)
gaussian filter, 3) lower bound, and 4) upper bound. The user begins with the line-flattened
image and adjusts the sliders to optimize the image for defect identification. Below are
descriptions of each processing parameter.

(i) Strel: MATLAB’s morphological structuring element. Strel generates disks with a
user-specified radius in pixels. MATLAB’s "imopen" function then opens the image
with the structuring element and the user controls the radius of the strel object using a
slider, while the processed image updates in real time. Each time the value of the strel
radius is changed, the image created from the strel object is subtracted from the original
line-flattened image. This function is especially useful for images with nonuniform
background topography.
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Figure 3. A snapshot of the MATLAB graphical user interface (GUI) a) Line-flattened
image. b) Result of interactive processing sliders.

(ii) Gaussian filter: smooths the image using a Gaussian filter of a specified width (standard
deviation). The user controls the width using the slider. A larger (smaller) value results
in a correspondingly large (small) Gaussian spatial averaging. This parameter is useful
especially for images with grainy or high-frequency noise.

(iii) Lower/upper bound: parameters to determine the range of pixel values in the image that
define the background. A slightly simpler method of defining an image background
is via "flooding," which sets a threshold brightness value that a feature must exceed
in order to be considered part of the foreground. Problems with flooding arise when
the brightness of image features are nonuniform, and applying a single threshold value
destroys valuable information in the image. The earlier processing steps partially address
this. Additionally, we implement two brightness parameters, rather than one, to set a
lower and upper bound on the image background. Both parameters can be adjusted
independently in order to customize the background for each image. If both values are
set to zero, every pixel value in the image is considered part of the foreground. When the
lower and upper bounds are increased, any pixel values that are brighter than the lower
bound parameter and darker than the upper bound parameter are set to the mean pixel
value of the whole image. What remains are the brightest and darkest extrema in the
image, while the rest of the image is a uniform brightness (Figure 4(a)).
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2.3. Defect identification

2.3.1. Contour Filters The defect identification process begins when the user chooses either
bright or dark extrema. MATLAB’s built-in contour generating function then creates a
topographical-like map on the processed image, where contours are generated around all
features that are brighter (or darker) than the image mean pixel value. The brightness
gradient in the image is divided into 20 values, or brightness levels, so that each contour
line corresponds to a specific brightness value in the image. We have found that 20 brightness
levels is a good balance between having too many or too few contours in the majority of
images. Having too many levels introduces an unnecessary amount of detail for defining
defect boundaries and increases the computational time needed to analyze the contours, while
having too few will not accurately capture defect boundaries.

Since extrema in the processed image are isolated from the background following the
interactive user-processing, potential defects will be enclosed by rings of contours. Before
precisely identifying defects, the contours are filtered to limit the pool. The user can filter
contours based on their attributes: contour area, brightness level, and minimum vertex count.
The contour area value is computed from the difference in area between the template defect
selected by the user and all other contours. The vertex count refers to the number of points that
comprise each contour plot. This crude filtering process reduces the pool of contours used for
defect identification, which makes further computation faster. The results of contour filtering
are plotted in Figure 4(a) and Figure 1(b). For images with defects that do not vary much
by brightness or size, most of the defect candidates can be isolated through crude filtering
alone. After filtering, multiple contours may encircle one potential defect. In this case the
outer contour(s) typically capture the outermost edges of the defect, where there is less of a
distinction between the background and the defect, while the inner contours capture the actual
shape of the defect where the brightness is most extreme as compared to the background.
Thus, in the case of multiple contours per defect after filtering, the inner contour is always
chosen.

2.3.2. Shape Matching After the filtering process is completed, the remaining contours
constitute the pool from which defects will be identified. At this point, the defects are
identified through either a second round of filtering identical to the process outlined in 2.3.1
or a shape-matching algorithm. To conduct shape-matching, DIST uses an algorithm written
by Oliver Van Kaick et al. to perform contour correspondence using ant colony optimization
(ACO)[18]. First, each defect candidate is enclosed by a cluster of contours (Figure 5(a)).
DIST then prompts the user to draw a rectangle around a defect with a shape of interest. The
set of contours enclosed in the rectangle is displayed in a second window, where the user
can then select the contour that most closely resembles the shape of the defect. The selected
contour (seen in Figure 4(b)) serves as the template defect to which all other contours will be
compared.

The ACO shape-matching algorithm [18] is a type of quadratic assignment problem
(QAP) that compares two contours. The ACO approach emulates how ants use pheromones
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to let the rest of the colony know where food is located. The algorithm determines the contour
correspondence by allowing agents (“ants”) to traverse possible paths between vertices
defining two contours and deposit virtual pheromones according to the degree the contours
match (see Figure 4(c) for a visual example). The cost of matching between two contours
is computed with the QAP objective function and reflects how similar two contours are in
shape. The best cost is used in DIST to sort contours based on how close they are in shape to
the user-selected reference contour. The ACO algorithm is unique from other correspondence
optimization algorithms because it incorporates both order-preservation (maintaining vertex
order), and proximity information, which ensures that a pair of vertices that outline a feature
on one contour is mapped to the same feature pair on another contour. Because ACO searches
for optimum paths between two contours, it is orientation and size independent.

In DIST, shape matching is applied first within each cluster of contours so that the
contour that best matches (lowest cost) the shape of the template is selected and the remainder
are discarded. This process ensures that only one contour per defect is saved. Figure 5 shows
how all the contours in a cluster compare to the shape matching criteria.

Once the best-matching shape from each contour cluster is determined, the user may
filter the identified defect candidates for shape using the best cost value. If the user is only
interested in shapes that very closely resemble the target shape, they may identify a cut-off
point in a histogram of best cost values, after which point defects with a higher cost value will
be removed from the pool. The results of both the shape-matching process and filtering by the
best cost parameter are shown in Figure 4. Figure 5(a) is an example of a perfect shape match,
panel (b) is an example of a contour with an acceptable shape, and panel (c) is an example of
a contour that falls beyond the best cost parameter threshold and is rejected.

2.4. Outputs

DIST automatically computes a number of statistics after all the defects in the image have been
identified. Through MATLAB’s "regionprops" function, the centroid coordinates, contour
areas, eccentricity value, lengths of major and minor axes, and orientation of each defect are
computed. The major and minor axes and orientation data are used to generate line profiles
across each defect, which are automatically plotted as in Figure 1(e). The line-flattened image
with the identified contours is also displayed automatically.

Additionally, DIST calculates the maximum and mean apparent height across each line
profile (relative to the background). The apparent height data is automatically plotted from
least to greatest to demonstrate the defect brightness associated with each layer of the sample
(see Figure 1(d)). Perhaps the most valuable of all the outputs are the X and Y coordinates data
of every defect, organized into their own matrices. With access to the contour coordinates,
users can generate their own statistics as well. The combined output statistics give users
increased flexibility in manipulating the defect data after identification. See Table 1 for a
list of all the statistics automatically compiled. The statistics are output to the MATLAB
workspace, where the user can choose to save and display the data of interest.
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Figure 4. Shape matching a) Processed STM images with filtered contour plots. Contours
with an area below a certain threshold were excluded. b) Close-up example of a contour
cluster. The blue curves indicate the contour cluster, and the red curve indicates the selected
template. c) Example of contour correspondence during shape-matching process. The red
plot indicates a template contour, and the blue plot is the shape being compared. The black
lines connecting the matching vertices of the two contours are the results of the contour
correspondence algorithm. d) Image with defects identified after the shape-matching process.
Plots are color-coded according to the histogram in (e). e) Histogram plotting the best cost
value for each of the contours displayed on the image in (d). Green indicates the lowest cost
value, i.e., the closest match, and red indicates contours that were excluded after filtering the
results by best cost values. The black dashed line indicates the threshold best cost value.

Table 1. Defect statistics compiled by DIST
Computed statistics regionprops statistics
Apparent height Area
Line profile Eccentricity
X/Y coordinates Major/minor axis
Defect contours Centroid

Orientation
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Figure 5. Shape filtering (a) Results of shape-matching for a perfect match (i.e., comparing
the template shape with itself). (b) Example of a shape that is within the best cost parameter
threshold, indicated by the black dashed line. (c) Example of a shape that is beyond the best
cost parameter threshold and rejected. (The best matching contour in the cluster has a best
cost value above the threshold.) In each panel, the dark histogram bar corresponds to the dark
contour in the image.

3. Flexibility and development

3.1. Manual control

For images with high levels of background noise that make defects hard to distinguish, DIST
might misidentify defects or fail to isolate defects. Therefore, there are points in the program
at which the user can provide input to make defect identification more accurate. If, after both
shape-matching and contour-filtering, there are unidentified defects in the image, the user may
opt to use a rectangle to select a region that needs further analysis. By choosing a small region
of the image to be analyzed, the contour plots generated around the potential defect are finer
in resolution. The user may then choose shape-matching or filtering to compare the contours
generated in the small region, or simply manually select a contour that encircles a defect.

Additionally, there may be defects that are incorrectly identified. Before defect statistics
are computed, the user may delete contours surrounding incorrectly identified defects. The
last step before defect analysis allows the user to "quick add" any contours around defect
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candidates that are not yet included in the set. This is a faster process than re-processing a
region of the image, because the user can simply pick contours by eye that were missed in the
automated identification.

3.2. Examples of use

Here we present several examples of use of the toolbox, including images with atomic
resolution and selected images from the literature. We began analysis using .png files and
employed various processing techniques available in DIST to identify defects in the images.
The defect identification results are shown in Figure 6. Below is a description of the
processing for each image as well as the time spent using DIST.

Figure 6(a) is an atomically-resolved image of black phosphorus 18 nm wide. There
are four bright defects present in the image, three of which are not cut off by the image
boundary. To process this image for defect identification, we applied a large Gaussian filter
using the image processing GUI (Section 2.2) to blur the atomic resolution. Blurring the fine
image details resulted in a more uniform brightness in the defect regions, so that generated
contours encapsulate the entire defect. After the Gaussian filter, the lower bound parameter
(Section 2.2) was adjusted to the maximum value to leave only the bright extrema in the
image. The upper bound parameter was then slowly adjusted to remove the lighter background
surrounding the defects, leaving only the bright defect areas. After image processing, the
defects were selected from the contours using area filtering (Section 2.3.1). Since there are no
other major artifacts in the image, all three defects were identified by contours after the first
round of filtering, and no other defects needed to be manually added or deleted. Processing
this image took approximately three minutes.

Figure 6(b) is an image of epitaxial graphene from [19] with atomic resolution. In the
image processing GUI, the lower bound parameter was adjusted to the maximum value since
the defects are brighter than the background. As with the image in Figure 6(a), the upper
bound parameter was slowly adjusted until the defects were isolated from the background.
The lattice structure visible in the image was reduced by adjusting the upper bound, since
the structure is brighter than the background but not as bright as the defects. After image
processing, the defects were identified with area filtering. The first round of filtering captured
all of the defect contours as they are fairly uniform in size. No manual adding or deleting of
contours was necessary. Processing this image took approximately three minutes.

Figure 6(c) is an image of MoS2 with bright defects in which the atomic lattice is clearly
resolved. Here, the maximum Gaussian filter was applied to blur the atomic lattice. The
contours were isolated using area filtering (Section 2.3.1). The generated contours captured
most of the potential bright defects in the image as well as some non-defect artifacts. In areas
with large bright spots, the contours did not isolate the defects. After filtering, eight contours
missed by the area filter were manually added by re-analyzing specific regions of the image,
and three non-defect contours were manually deleted (shown in Figure 6(c)). Including the
manual steps, this image took approximately 10 minutes to process.

Figure 6(d) is an image of Sb2Te3(0001) from [21]. Here, the different defects have



Defect Identification for SPM 11

6 nm

(a)

(c) (d)

Figure 6. Examples of defect identification using DIST. a) Atomically resolved image of
defects in black phosphorus. b) Image of epitaxial graphene with mostly uniform defects from
[19]. c) Image of MoS2 with defects and defect clusters from [20]. Red indicates contours
that were manually deleted, and blue indicates contours that were manually added. d) Image
of Sb2Te3(0001) from [21] with bright, triangle-shaped defects identified. Green indicates a
manually deleted contour.

distinct shapes, making this image a good candidate for shape-matching (Section 2.3.2).
After isolating the bright defects by a similar process as in Figure 6(a) and (b), we used
shape matching to isolate the bright triangle-shaped defects. A reference triangular contour
was chosen for comparison. The shape-matching process took 10 minutes to complete, after
which the results were filtered based on best cost values, as in Figure 4 (Section 2.3.2). After
the best cost filter, there remained one contour that was manually deleted (Figure 6(d)). The
total time elapsed processing this image was approximately 18 minutes. This example shows
that while filtering contours is typically faster for defect identification, there are cases where
shape-matching and filtering by shape similarity is useful for isolating defects with a distinct
shape.

3.3. Limitations and future development

DIST is limited in part by the quality of the STM images. For images where defects are
difficult to distinguish even by eye, it is likely that the image processing will fail to isolate
extrema from the background without also losing defect information. Additionally, in such
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images contour plots may not accurately encircle defects. DIST also relies on a relatively
uniform background. Images with defects on separate crystalline terraces may need special
treatment, such as analyzing terraces separately or first applying a derivative filter, in order
for DIST to work well.

Due to the flexibility of DIST, there are many features that could be added to the program
in the future. A function that can track how the shape and location of a defect changes over
the course of multiple images could be implemented, providing users with data on defect
dynamics. Implementing a smooth way to do batch processing and analysis on many similar
images would also improve the program and lower analysis time for users.

Any future changes to DIST will be updated on GitHub [17] and the Hollen Lab website.
We plan to upload the complete toolbox to MathWorks.
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