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Abstract. Recent scientific computing increasingly relies on multi-scale
multi-physics simulations to enhance predictive capabilities by replacing
a suite of stand-alone simulation codes that independently simulate var-
ious physical phenomena. Inevitably, multi-physics simulation demands
high performance computing (HPC) through advanced hardware and
software accelerating due to its intensive computing workload and run-
time communication needs. Thus, its research has become a hotspot
across different disciplines. However, it is observed that most benchmarks
used in the evaluation of corresponding work are through commercial or
in-house codes. Then, the lack of accessible open-source multi-physics
benchmark suites has presented a challenge in uniformly evaluating sim-
ulation performance across related disciplines. This work proposes the
first open-source based benchmark suite with 12 selected benchmarks for
research in multi-physics simulation, the Clarkson Open-Source Multi-
physics Benchmark Suite (COMBS). Multiple metrics have been gath-
ered for these benchmarks, such as instructions per second and memory
usage. Also provided are build and benchmark scripts to improve usabil-
ity. Additionally, their source codes and installation guides are available
for downloading through a github repository built by the authors. The
selected benchmarks are from key applications of multi-physics simula-
tion and highly cited publications. It is believed that this benchmark
suite will facilitate to harness the full potential of HPC research in the
field of multi-physics simulation.

Keywords: multi-physics simulation · high performance computing · bench-
mark suite · open-source
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1 Introduction

Recent trends in scientific computing increasingly rely on multi-scale multi-
physics computer simulations to enhance predictive capabilities by replacing
conventional methods that are largely empirically based with a more scientifi-
cally based methodology. Through this approach, one addresses the issue of tra-
ditionally employing a suite of stand-alone codes that independently simulate
various physical phenomena that were previously disconnected [1]. For exam-
ple, coupled multi-physics codes have been developed worldwide to address the
growing concerns of reactor performance and nuclear safety [1–5]. Also, multi-
physics simulations are helping researchers make progress in finding effective
cancer treatments through simulating and modeling the background dose of tar-
geted alpha therapy (TAT) [6–8]. Moreover, multi-physics simulation plays an
important role in semiconductor design [9] and aerospace engineering [10].

Multi-physics simulation requires capturing many physical interactions among
complex phenomena through rigorous coupling at run-time, facilitating the need
for high performance computing (HPC) through advanced hardware and soft-
ware acceleration due to its massive computing workload and fast run-time com-
munication needs. Thus, prior research has been done to boost the general soft-
ware and hardware HPC computing environment for multi-physics simulations
in recent years, which is briefly described in Section 2. However, the authors
realize that one of the research obstacles in this domain is the lack of an open-
source benchmark suite for research evaluation. The lack of accessible open-
source multi-physics benchmark suites has presented a challenge in uniformly
evaluating simulation performance across related disciplines.

To the best of our knowledge, this work proposes the first open-source bench-
mark suite for multi-physics simulation relevant HPC research, the Clarkson
Open-Source Multi-physics Benchmark Suite (COMBS). These benchmarks have
been installed and evaluated on an Ubuntu Linux server, e.g., instructions per
second or memory usage. Also provided are build and benchmark scripts to im-
prove usability. Additionally, their source code and installation guides are avail-
able for downloading through a Github repository built by the authors. The
selected 12 benchmarks are from key applications of multi-physics simulations
and highly cited publications, which will be detailed in Section 3. It is believed
that this benchmark suite will facilitate to harness the full potential of the HPC
research in the field of multi-physics simulation. The contributions of this paper
are three-fold:

– Propose the first benchmark suite for multi-physics simulation relevant HPC
research;

– Each benchmark is open-source, allowing for free access and modification as
desired;

– All benchmarks have been installed and evaluated on an Ubuntu Linux
server.

The rest of the paper is organized as follows. Section 2 describes the related
work and motivation of this paper. Section 3 introduces the selected benchmarks
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in detail, along with the benchmark selection criteria. The benchmark data and
website are illustrated in Section 4. Lastly, the authors summarize the conclusion
of this work and discuss planned future work in Section 6.

2 Related Work and Motivation

To satisfy the HPC needs of multi-physics simulation, many research projects
have been done to adapt simulation codes, optimize the HPC based software
framework, and explore novel computer architectures for HPC systems. One re-
search focus is in exploring software coupling platforms, simulation codes (a.k.a.,
applications), algorithms with the objective of reaching a performance boost
through the HPC systems, exchange run-time data effectively, and cost-effective
transition. The other focus is in hardware design, e.g., investigating multi-physics
simulation aware computer architectures and HPC systems. The objective of re-
cent research is to improve the general software and hardware HPC computing
environment for large-scale multi-physics simulations.

Many HPC technique based code coupling platforms have been developed;
the capabilities and intended applications of each code differ, such as the Back-
bone [1], MOOSE [11], LIME [12], and SALOME [13]. The Backbone, developed
at the Canadian Nuclear Laboratories (CNL), has the capability of synchronizing
various reactor performance and safety analysis codes, which permits appropri-
ate and efficient coupling at the time step level. Idaho National Laboratory (INL)
proposed the Multi-physics Object Oriented Simulation Environment (MOOSE)
[11], and a code matching MOOSE standard can “plug and play” into the en-
vironment. The Open Source Integration Platform for Numerical Simulation
(SALOME) [13], funded by the French Energy Commission (CEA), is based on
the model of distributed components as a distributed objects architecture. The
Lightweight Integrating Multi-physics Environment (LIME) toolset[12], devel-
oped by Sandia National Laboratory (SNL), is used within the Consortium for
Advanced Simulation of Light Water Reactors (CASL) hub and also supports
coupling of multiple codes in other fields. Besides this platform based work, other
research focuses on resource allocation and load balancing to achieve an effective
run-time computing environment for multi-physics simulations [14, 15].

Compared to general HPC applications, multi-physics simulations have their
own unique characteristics. For example, the simulation codes involved in a sim-
ulation may request intensive run-time data to be exchanged by them. Also,
some applications (e.g., Monte Carlo (MC)) with long consequential computing-
intensive codes may run faster on multi-core CPUs, which offer high degrees of
instruction level parallelism (ILP). Other codes (e.g., Computational Fluid Dy-
namics (CFD)) might have a high degree of parallelism, which could make use
of the hundreds of simple and effective cores of general purpose GPUs. Thus,
much work has been done to satisfy these unique needs through designing ad-
vanced computer architectures or HPC systems, such as heterogeneous design,
3D architecture, etc. [16].
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However, it is observed that their evaluation is based on either commercial/in-
house simulation codes (a.k.a., applications), or limited applications in specific
areas. Research on designing a benchmark suite for multi-physics simulations is
inspired by the lack of available open-source suites that measure performance
evaluation. Some of the available benchmarks are locked behind licenses and use
in-house codes that make easy comparisons across different simulations chal-
lenging. Benchmark suites have been created to measure the performance of
multi-physics simulations but suffer from certain flaws. No open source bench-
mark suite has ever been proposed to facilitate the relevant evaluation work
specific to multi-physics simulation.

For example, COMSOL and other commercial packages provide benchmarks
to test simulations but the codes are not open-source, and require a license to
use. In [1, 6, 7], in-house simulation codes (e.g., Element Loss-Of-Coolant Acci-
dents (ELOCA), Canadian Algorithm for Thermalhydraulic Network Analysis
(CATHENA)) are used, which are confidential and not accessible by researchers
outside CNL. In [14], the authors only mentioned the benchmark is a MC sim-
ulation used as a bigJob, while [15] used 7 problems named P1 to P7. Both [14]
and [15] work on resource allocation algorithms for multi-physics simulations.

Since very few of these works provide detailed information regarding their
benchmarks, is it possible for us to evaluate their advantages and disad-
vantages? Is it fair if one of them declares performance improvement
over the other? In addition, general purpose open-source benchmark suites
like CORAL-2 [17] are just a collection and still require users to individually
install, build, and run each benchmark in the suite. The CORAL-2 benchmarks
also include wide variations in lines of code and other attributes like uneven
testing of CPU compared to GPU.

Thus, it is very difficult for researchers to duplicate the achievements of pre-
vious publications. In addition, evaluating performance between new proposed
systems and legacy ones is almost impossible, since the evaluations are based on
different benchmarks. Thus, the authors believe that this situation becomes an
obstacle for future research regarding multi-physics simulations. Thus, it is nec-
essary to propose an open-source based benchmark suite to address this concern.
The authors believe that the open-source nature of such a suite could guarantee
the access of benchmarks and build a general foundation for relevant research.

3 Benchmark Suite

Through the compilation of 12 benchmarks that measure performance indicative
of multiple physics algorithm designs, research in the field will benefit from an
open-source suite that is modifiable and free to use. The benchmark codes have
been tested to successfully build on an Ubuntu 18.04 server, allowing for the
codes to be ran in a stable, easily configurable environment.
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3.1 Selection Criteria

In order to construct a benchmark suite that would provide adequate coverage
and measure desired performance, potential benchmarks have to meet certain
criteria, as follows:

– open-source;
– able to be built and compiled with few additional external libraries;
– written in C or C++ as to allow for the use of a single compiler;
– measures performance typical of an aspect of multi-physics simulations (e.g.,

tightly coupled codes).

Fig. 1. A pie chart showing the different multi-physics-related benchmarks that are
present in the suite. Note the relatively even distribution among selected topics.

The last point was of particular importance, as it is difficult to determine
the most salient aspects of a field with limited background experience in multi-
physics algorithm design. Upon consulting literature in the field, it was deter-
mined that finding algorithms that solve partial differential equations (PDEs)
was necessary, as multi-physics simulation solution times depend on how quickly
PDEs can be solved. Secondary characteristics used for the selection of bench-
marks included their relatedness to the field in terms of the problem they solved
or their presence in licensed benchmark suites. In this work, queries were con-
ducted primarily through GitHub.

3.2 Benchmarks

The benchmark suite proposed in this paper is named the Clarkson Open-Source
Multi-physics Benchmark Suite (COMBS). A total 12 benchmarks are divided
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into 2 groups, including 8 key application/framework benchmarks, and 4 supple-
mental benchmarks. The distribution of the selected 12 benchmarks are shown
in Fig. 1.

The 8 selected key application/platform benchmarks These 8 bench-
marks consist of 8 applications. Each benchmark is open-source, allowing for free
access and modification as desired. Each benchmark consists of algorithm(s) that
solve problems related to the field. As an example, one of the selected benchmarks
is a solver for the Kuramoto-Sivashinsky (KS) equation. The KS equation is one
of the principal equations in connecting PDEs and dynamical systems. Since
multi-physics simulations rely heavily on the tight coupling between dynamic
algorithms, this benchmark appears to be reasonable to test baseline perfor-
mance, at least on a much simpler, one dimensional problem. The KS equation
is a highly cited problem in the field dating back over 30 years and being a PDE
problem, fits directly in to multi-physics, since such systems depend on the how
quickly a PDE system can be solved [18]. Similar reasoning is given for the other
benchmarks, which are hosted on a GitHub repository.

The 8 application type benchmarks can be coupled through the distributed
code coupling platforms, such as CNL’s Backbone [1], CEA’s SALOME [13],
SNL’s LIME [12], etc. The 8 key benchmarks are described in the following.

Benchmark - 2D Heat: This benchmark compares the utility of MPI,
OpenMP, and serial implementations of the 2d-heat benchmark [19]. This work
is related to HPC applications as shown in related papers that attempt to par-
allelize the 2D heat equation to improve performance [20]. The tight coupling of
a heat distribution algorithm makes it an obvious candidate for a multi-physics
benchmark suite.

Benchmark - Advection-Diffusion Equation: Advection-diffusion equa-
tions [21] are used in the field of CFD to measure phenomena like the time evo-
lution of chemical or biological species in a flowing medium such as water or air.
Since such an evolution can be modeled with PDEs, an algorithm that models
a simpler, one dimensional aspect of advection-diffusion can be useful in mea-
suring simulation performance. This benchmark was adapted from open-source
codes at [22].

Benchmark - Fidibench: FiDiBench is a finite difference suite of codes that
can be used to benchmark hardware performance on HPC and other systems.
The code examples are small enough to be well understood, typically averag-
ing a few hundred lines of code, but are also relevant to scientific computing,
which often involves nearest neighbor communication. FiDiBench can be used
to compare the execution speed obtained by implementing a given algorithm in
different languages (e.g., C++ vs Python vs Julia). This benchmark was adapted
from open-source codes at [23].

Benchmark - High Performance Conjugate Gradient (HPCG): HPCG
[24] is a software package that performs a fixed number of multigrid precondi-
tioned (using a symmetric Gauss-Seidel smoother) conjugate gradient (PCG)
iterations using double precision floating point values. The HPCG rating is is a



Title Suppressed Due to Excessive Length 7

weighted GFLOP/s (billion floating operations per second) value that is com-
posed of the operations performed in the PCG iteration phase over the time
taken. The overhead time of problem construction and any modifications to im-
prove performance are divided by 500 iterations (the amortization weight) and
added to the run-time.

Benchmark - KS-PDE: The Kuramoto-Sivashinsky (KS) equation [18] is
one of the principal equations in connecting partial differential equations (PDEs)
and dynamical systems. Since multi-physics simulations rely heavily on the tight
coupling between dynamic algorithms, this benchmark appears to be reasonable
to test baseline performance, at least on a much simpler, one dimensional prob-
lem. The KS equation is a highly cited problem in the field dating back over
30 years and being a PDE problem, fits directly in to multi-physics, since such
systems depend on the how quickly a PDE system solved.

The code for this benchmark is adapted from a recent open-source work [25],
which is in an attempt to compare run-time performance between different pro-
gramming languages, with the goal of legitimizing Julia as having the potential
to be among the fastest languages if used correctly. Additionally, the benchmark
can be adapted to test the performance of just the C code.

Benchmark - 2D Lid-driven Cavity: This is a concise finite difference
method based code for solving the Navier-Stokes equation in a 2D Lid-driven
cavity. The problem is to move fluid in a box from one corner to another, mea-
suring the fluid’s velocity. The Navier-Stokes equation is commonly used to solve
CFD relevant problems and then couple with other codes in many multi-physics
simulation scenarios.

Benchmark - Phase Retrieval: The mathematical and algorithmic as-
pects of the phase retrieval problem have received considerable attention. In
crystallography, a principal application in this area, the signal to be recovered is
periodic and comprised of atomic distributions arranged homogeneously in the
unit cell of the crystal. The crystallographic problem is both the leading appli-
cation and one of the hardest forms of phase retrieval [26]. This benchmark is
used to solve phase retrieval, which uses techniques such as 3D Fourier Trans-
forms that are applicable to multi-physics simulation designs. This benchmark
is adapted from a recent open-source implementation at [27].

Benchmark - SOMBRERO: In physics, lattice field theory is the study
of lattice models of quantum field theory, i.e., of field theory on a spacetime that
has been discretized onto a lattice. Lattice field theory is directly applicable
to high performance computing and adjacent multi-physics simulations. This
benchmark is adapted from open-source codes at [28]. SOMBRERO runs 6 sub-
benchmarks, each representing a theory under active study by the lattice field
theory community. For the purposes of benchmarking, the models vary only in
the amount of data communicated and the number of floating point operation
required.

The 4 Supplement Benchmarks of HPC Mathematics/Algorithms Along
with the 8 benchmarks selected from the key areas involved in the multi-physics
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simulation, the authors also chose 4 benchmarks regarding general HPC mathe-
matics and algorithms, e.g., Monte Carlo, MPI matrix multiplication, Gaussian
Blur, Radix Sort, etc. These benchmarks are a good complement to the key
benchmarks for evaluating the basic performance and optimization of the pro-
posed new software and hardware systems, such as inter-node communication
latency, shared last level cache (LLC) performance, etc.

Fig. 2. HPC Techniques Coverage

3.3 HPC Coverage Analysis

Fig. 2 shows the coverage of HPC techniques of the 10 key application/framework
benchmarks. It is observed that about 70% of them utilize Message Passing Inter-
face (MPI) [29] and OpenMP [30], which are the most popular HPC techniques
used in the field of multi-physics simulation. Although 30% of them are based
on other techniques, they can be easily coupled through the distribution style
software framework like Backbone, SALOME and LIME.

4 Benchmark Repository on Github

A Github repository has been designed to include the source codes of all bench-
marks, the installation guide (tested on Ubuntu Linux 18.04). This website is
shown in Fig. 3, and the link is at [31]. Users can download the source codes of
all benchmarks through the git utility, and then follow the guide to install the
dependencies for the benchmarks and run them.

5 Characteristics of the Benchmark Suite

By building and running the benchmark suite using the provided scripts in the
github page built by authors, it is possible and convenient to create an overview
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Benchmark Time(s)
Instruction Max Memory

MIPS
Count(Millions) Usage(kB)

2d-heat 12.628 62091.213 10400 4917

FourierBenchmarks 85.937 288618.737 53272 3358

advection-diffusion 9.638 170011.780 10360 17640

fidibench 43.565 50.128 178028 1.151

hpcg 99.667 222584.356 971244 2233

ks-pde 24.375 174739.281 21392 7169

lid-driven-cavity 3.553 31345.988 6492 8822

matrix-mpi 8.541 46539.884 535608 5449

monte-carlo 116.524 233543.444 1506492 2004

phase-retrieval-benchmarks 4.141 26685.456 15888 6444

radix sort 4.968 37136.804 16052 7475

sombrero 59.478 8.747 22124 0.147

Table 1. Example Output from the Benchmark Suite showing selected Benchmarks

of all the benchmarks with multiple metrics as the characteristics of this bench-
mark suite. Table 1 shows this characteristics of COMBS for selected benchmarks
when formatted as a table. This run of the benchmarks was gathered on a Dell
Precision 7920 Tower server with two Intel Xeon Silver 4110 16 core 3GHz pro-
cessors and 32 GB of RAM. The server also has two GPUs: an NVIDIA NVS 310
and an NVIDIA TITAN Xp. The server is running Ubuntu 18.04.3 LTS x86 64
with Linux kernel 5.0.0-32-generic.

These metrics were gathered using tools from the valgrind toolset, and the
timing functionality of the Linux time command [32]. First, the time command
is used to time the wall-clock execution time of the program. This gives a feel for
how long the program takes to run. Then, maximum memory usage is gathered
using the massif [33] tool in the valgrind toolchain. This measurement shows
the space complexity of the program as it is running, along with any extra
memory that might be used by the program while it is in operation. Lastly, the

COMBS CORAL-2[17]

Focus Multi-physics Simulation General Purpose

Compilation Scripts to compile all Compile each individually

Running Automatic Run Run each individually

Benchmark Size Similar Size Wide Variations
Table 2. Features of COMBS compared to CORAL-2
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Fig. 3. Github Repository of Clarkson Open-Source Multi-physics Benchmark Suite
(COMBS).

callgrind [34] tool of valgrind was used to gather the instruction count of the
program. This, along with the timing information and size of a program gives a
way to see if a program may spend a lot of time in a loop, or if it is using more
complex instructions.

These metrics were chosen because they are similar to the metrics used in [35],
another research-oriented benchmark suite. Also, a comparison of the features
of COMBS with CORAL-2 [17] mentioned in Section 2 is given in Table 2,
which indicates the difference between the two open source benchmark suites.
Furthermore, as described above, they give a method for determining certain
platform-specific characteristics of a program, such as whether a long-running
program simply spends a large amount of time in loops, or if a program is
compiled to use complex instructions. Moreover, the memory usage measurement
gives a method to determine if a program may be accessing memory to a large
degree; as high memory use would typically indicate high memory access. The
authors believe these metrics are necessary for researchers to determine and
adapt this benchmark suite based on their research purpose in the field of multi-
physics simulation.

6 Conclusion and Future Work

The lack of accessible open-source multi-physics benchmark suites has presented
a challenge in uniformly evaluating simulation performance across related dis-
ciplines. Through the compilation of 12 benchmarks that measure performance
indicative of multiple physics algorithm designs, research in the field will benefit
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from an open-source suite that is modifiable and free to use. A dedicated Github
repository is setup to host this benchmark suite, where users will have access to
all documentation for each benchmark along with building scripts to facilitate
easy use of the suite. Also provided are build and benchmark scripts to automat-
ically perform the aforementioned steps. In the future, the authors would like to
have the suite build and compile with a simulated computer architecture. Also,
GPU acceleration-aware benchmarks will be selected and evaluated.
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1 Artifact Description Appendix

A Github website [31] has been designed to include the source codes of all bench-
marks and the installation guide (tested on Ubuntu Linux 18.04). Users can
download the source codes of all benchmarks through the command below, and
then follow the installation guide of each benchmark to install and test them.


