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Abstract—A previously developed thermal simulation 

technique based on model order reduction is applied to the 

simulation of a CPU. The approach is derived from proper 

orthogonal decomposition (POD) that projects the physical 
domain onto the POD space. It has been demonstrated that the 

developed approach offers an accurate thermal simulation of the 

CPU with a reduction in numerical degrees of freedom by several 

orders of magnitude compared to the direct numerical simulation 

(DNS).  In addition, the technique has the capability of providing 
spatial resolution as fine as the direct numerical simulation for the 

CPU.   
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I. INTRODUCTION  

With the miniaturization of devices and multifunctional chip 

design, CPUs and GPUs are being produced with an extremely 

high density of devices and complex interconnections. 

According to Moore’s, law the number of transistors on 

semiconductor chips ha s increased, following an exponential 

curve and in recent decades this number has increased 

drastically [1]. Along with the increase in the number of devices 

integrated into these chips, the power density has also increased 

substantially leading to undesirable temperature gradients and 

hot-spot formation [2]. High-temperature gradients and hot-

spot formations have led to a degradation in the performance 

and reliability of CPU and GPU technology [3], [4]. A more 

effective thermal management is thus vital to assist in 

protecting these chips and improving their performance. Since 

the beginning of integrated-circuit (IC) technology,  more than 

60 years ago, thermal simulations for semiconductor chips have 

been modeled using lumped RC thermal circuits that, although 

offering efficient thermal analysis, do not provide accurate 

thermal prediction and very often fitting/scaling factors are 

needed to improve the accuracy [5], [6].  In addition, the poor 

resolution in the lumped elements of the RC thermal circuit  

models is incapable of capturing submicron- or nano-scale hot 

spots. To obtain high resolution and accurate prediction of the 

thermal distribution on the semiconductor chips, direct  

numerical simulations (DNSs) based on finite difference [7]-[9] 

or finite element methods [10]-[12] are usually needed. These 

approaches are however computationally time-consuming and 

are prohibitive for thermal simulation at the architecture level. 

We have recently developed an innovative thermal simulation 

approach based on model order reduction enabled by a data-

driven learning process [13], [14] for semiconductor ICs. The 

approach is able to offer a thermal prediction with the efficiency 

of the RC thermal model and the accuracy of the DNS. In this 

work, the approach is applied to the thermal simulation of a  

selected CPU at the architecture level.    

The developed approach utilizes proper orthogonal 

decomposition (POD) [15], a  projection-based reduced-order 

model that generates the basis functions (or modes hereafter) 

and projects the system partial differential equation(s) onto a 

functional space described by these modes [13]-[18].  The POD 

generates orthogonal modes from solution data of the DNSs in 

a domain subjected to the parametric variations. For heat 

transfer problems, these usually include variations of 

spatial/temporal power sources and boundary conditions (BCs).  

In this study, DNSs are performed in an open-source 

computational platform known as FEniCS [19]. The POD 

approach optimizes the modes from the thermal data 

specifically tailored to the geometry and parametric variations 

of the problem using a data-driven learning process. With the 

heat conduction equation projected to the POD modes, the 

approach can significantly reduce the degree of freedom (DoF) 

needed to accurately predict the thermal profile in the domain.  

II. BRIEF OVERVIEW OF PROPER ORTHOGONAL 

DECOMPOSITION 

POD generates a set of modes from spatial/temporal thermal 

data accounting for the parametric variation. This is done by 
maximizing the mean square inner product of the thermal data 

and the modes in the domain , 



 ⟨(∫ 𝑇(𝑟, 𝑡) 𝜑𝑑𝛺𝛺
)

2
⟩ ∫ 𝜑2𝑑𝛺𝛺
⁄ , (1) 

where 〈〉  indicates an average. Each mode derived from this 
maximization process contains the maximum least squares (LS) 

information of the thermal behavior described by the thermal 
data [20], [21]. The generated modes constitute an orthogonal 

functional space and can offer the best LS solution provided by 

the thermal data with a very small number of modes (i.e., DoF). 

Applying variational calculus to (1), this problem is 

reformulated to the Fredholm equation,  

 ∫ 𝑹(𝑟,𝑟 ′)𝜑⃗⃗(𝑟′)𝑑𝑟 ′
𝑥⃗′ = 𝜆𝜑⃗⃗(𝑟), (2) 

where 𝑹(𝑥, 𝑥 ′) is a  two-point correlation tensor given by 

 𝑹(𝑟, 𝑟 ′) = ⟨𝑇(𝑟, 𝑡) ⊗ 𝑇(𝑟 ′, 𝑡)⟩, (3) 

and  is the POD eigenvalue of R and represents the mean 
squared temperature captured by the corresponding POD mode.  

This decomposition process leads to an eigenvalue problem 
represented by (2) for R. Once the POD modes are found, the 

temperature 𝑇(𝑥, 𝑡) can be represented by a linear combination 

of the POD modes,  

 𝑇(𝑟, 𝑡) = ∑ 𝑎𝑗
(𝑡) 𝜑𝑗

(𝑟)𝑀
𝑗=1    (4) 

where M is the selected number of modes for the temperature 
solution and aj is the time-dependent coefficient for each mode.  

To generate POD modes and eigenvalues more efficiently, the 

method of snapshots [13], [14], [18] is applied.  

Using the Galerkin projection method, a set of equations for 

aj is derived by projecting the heat conduction equation onto an 

eigenspace,  

∫ (𝜑
𝜕𝜌𝐶𝑇

𝜕𝑡
+ 𝛻𝜑 ⋅ 𝑘𝛻𝑇)

𝛺 𝑑𝛺    

= ∫ 𝜑𝑃𝑑 (𝑟, 𝑡)𝛺 𝑑𝛺 − ∫ 𝜑(−𝑘𝛻𝑇 ⋅ 𝑛⃗⃗)𝑑𝑆𝑆 ,            (5) 

where k is the thermal conductivity, Pd the power density,   the 

density, C the specific heat, S the boundary surface, 𝑛⃗⃗  the 

outward normal vector of the surface, and (-kT) the heat flux 

on the surface. With a selected number of modes M, the spatial 
integrals in (5) can be pre-evaluated to construct a set of M 

ordinary differential equations (ODEs) for aj, 

   ∑ 𝑐𝑖,𝑗

𝑑𝑎𝑗

𝑑𝑡

𝑀
𝑗=1 + ∑ 𝑔𝑖 ,𝑗𝑎𝑗

𝑀
𝑗=1 = 𝑃𝑝𝑜𝑑 ,𝑖 , 𝑖 = 1  𝑡𝑜  𝑀, (6) 

where ci,j and gi,j are elements of the thermal capacitance and 

conductance matrices in the POD space and given by 

𝑐𝑖,𝑗 = ∫ 𝜌𝐶𝜑
𝑖
𝜑

𝑗𝛺
𝑑𝛺   and  𝑔𝑖,𝑗

= ∫ 𝑘𝛻𝜑
𝑖

⋅ 𝛻𝜑
𝑗𝛺

𝑑𝛺. (7) 

Ppod,i represents the projected power density in  and heat flux 

across S along the ith POD mode and is given by 

 𝑃𝑝𝑜𝑑 ,𝑖 = ∫ 𝜑𝑖𝑃𝑑 (𝑟, 𝑡)𝛺 𝑑𝛺 − ∫ 𝜑𝑖(−𝑘𝛻𝑇 ⋅ 𝑛⃗⃗)𝑆 𝑑𝑆. (8) 

 The crucial but time-consuming steps for developing a POD 

thermal model for thermal simulation of a  CPU include (i) 
collection of thermal data from DNSs of the selected CPU, (ii) 

generation of the POD modes given in (2), and (iii) evaluation 

of the POD model parameters in (7).   

III. DEVELOPMENT OF POD MODELS FOR THERMAL 

SIMULATION OF A CPU 

A. Thermal data collection 

The Alpha EV6 processor shown in Fig. 1 [22] is selected 

for this work. Dynamic thermal simulations of the selected CPU 
are performed from a finite element simulator FEniCS [19] to 

collect thermal data that are needed for generating (or training) 
the POD modes. Adiabatic boundary conditions are applied to 

the surfaces of the chip except for the bottom of its substrate 

where the Robin boundary condition is used with ambient 
temperature taken as 0℃.  In Fig. 1, A, B and C are the locations 

of the functional units where the uniform power pulses are 

applied. Each power source with a period of 3.333μs represents 
an average, over 10k cycles at 3 GHz.  Thermal simulation of 

the CPU structure with meshes of 129×129×7 is performed in 

FEniCS for 3ms.      

(a) 

(b) 

Fig. 1.  (a) Floorplan of the CPU chip (Alpha EV6 processor) with dimensions 
and (b) its 3D structure. 

 

B. Generation of POD mode and evaluation of model 

parameters 

Once the thermal data are collected from the FEniCS 

simulation of the CPU, the method of snapshots [13], [14], [18] 
is applied to solve (2) for POD modes and eigenvalues. The 

eigenvalue λ of each mode solved from (2) represents the mean 
squared temperature variations captured by the mode and thus 

reveals the importance of the mode. The eigenvalue for the 



collected data is displayed in Fig. 2 which shows that the 
eigenvalue decreases by 4 orders of magnitude from the first  

POD mode to the 3rd mode and nearly 6 orders to the 5th mode.  
This strongly indicates that the POD approach would provide 

very good accuracy with 3 to 5 modes. The eigenvalue curve 
becomes nearly flat beyond the 17 th mode due to the machine 

precision. 

With the modes determined from (2), the model parameters, 
ci,j and gi,j in (7) and power density in the POD space Ppod,i in 

(8) need to be evaluated to solve aj from the ODEs given in (6).  

The spatial and dynamic temperature on the CPU chip can then 
be determined from (4). It should be noted that the resolution of 

the temperature solved from the POD approach is determined 

by the POD modes 𝜑𝑖  whose resolution is identical to the DNS. 

 
Fig. 2.  The eigenvalue spectrum for the thermal data generated from the 
FEniCS thermal simulation of the CPU. 

 

Fig. 3.  Thermal distribution of the CPU subjected to 3 power sources indicated 
in Fig. 1. 

 

IV. POD THERMAL SIMULATION OF THE SELECTED CPU 

The developed POD approach presented in Section III is 
applied to the thermal simulation of the CPU structure given in 

Fig. 1.  The results are compared to the thermal FEniCS 

simulation of the same CPU.  For a meaningful comparison, 
power sources and BCs a re identical between these 2 

approaches. Power sources are located in the same functional 
units shown in Fig. 1. The thermal profile of the CPU at t = 3ms 

(see Fig. 4(a)) on the device layer, where the power sources are 

located, is illustrated in Fig. 3. 

 

 

 

 

Fig. 4.  Temperature distributions derived from the POD models, each with a 
different number of modes, compared to FEniCS simulation. (a) Dynamic 
temperature at the hot spot, in the Functional unit C, shown in Fig. 1. (b) The 

temperature distribution in the x-direction at t = 3𝑚𝑠 through the hot spots C 
and B. (c) The temperature distribution in the y-direction at t = 3𝑚𝑠 through the 
hot spots, C and A.  The temperature values, included in these figures, are given 

as the number of degrees above the ambient temperature.   

 
POD simulation results with different numbers of modes are 

illustrated in Figs. 4(a)-4(c) compared to the finite element 



simulations. The dynamic temperature evolution in the 
functional unit C (see Fig. 1) is shown in Fig. 4(a).  Although  

the one-mode POD provides the dynamic thermal prediction 
with a large LS error, the inclusion of 3 modes in the POD 

approach offers a good agreement with the FEniCS result.  
Results from these 2 approaches are indistinguishable when 5 

modes are included.  Such a small DoF can be achieved by the 

POD approach is clearly indicated by the substantial decrease 

in the eigenvalue shown in Fig. 2.   

Spatial profiles of temperature on the device layer along the 
x and y directions (see Fig. 1) reveal a  similar capability to that 

of the POD approach, as shown in Figs. 4(b) and 4(c) when 
comparing the POD and FEniCS simulation results.  That is, the 

3 -mode POD model provides an accurate prediction, compared 
to the FEniCS simulation. Also, the 5-mode POD results are in  

excellent agreement with FEniCS simulation results.  In 

addition, the resolution derived from the POD models is as fine 

as that in FEniCS simulation. 

V. CONCLUSION 

A reduced-order thermal model based on POD has been 

applied to the thermal simulation of a  CPU structure subjected 

to several dynamic power sources.  It is found the POD model 
with only 3 modes presents a  thermal prediction of a CPU with 

good accuracy, compared to DNSs using the finite element 
method from FEniCS. With 5 modes included in the POD 

model, an excellent agreement with FEniCS can be achieved.  
This amounts to a reduction of numerical DoF by more than 4 

orders of magnitude. In cases where finer resolutions are 
needed, the reduction in the DoF will be even greater. With  

such a small DoF, even smaller tha n the lumped thermal circuit 

model, the POD not only offers thermal prediction as accurate 
as that of the DNSs, but also provides resolution as fine as that 

of the DNSs. This is compared to the conventional thermal 
simulations at the architecture level where only a lower 

resolution can be achieved due to the simulation efficiency.  
The developed POD technique offers a n innovative approach 

that will offer accurate and efficient thermal simulations for 

CPUs and GPUs with a finer resolution that has been 

unattainable in the past. 
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