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MMSE Approximation For Sparse Coding
Algorithms Using Stochastic Resonance

Dror Simon, Jeremias Sulam, Yaniv Romano, Yue M. Lu and Michael Elad

Abstract—Sparse coding refers to the pursuit of the sparsest
representation of a signal in a typically overcomplete dictionary.
From a Bayesian perspective, sparse coding provides a Maximum
a Posteriori (MAP) estimate of the unknown vector under a
sparse prior. In this work, we suggest enhancing the performance
of sparse coding algorithms by a deliberate and controlled
contamination of the input with random noise, a phenomenon
known as stochastic resonance. The proposed method adds
controlled noise to the input and estimates a sparse representation
from the perturbed signal. A set of such solutions is then obtained
by projecting the original input signal onto the recovered set
of supports. We present two variants of the described method,
which differ in their final step. The first is a provably convergent
approximation to the Minimum Mean Square Error (MMSE)
estimator, relying on the generative model and applying a
weighted average over the recovered solutions. The second is
a relaxed variant of the former that simply applies an empirical
mean. We show that both methods provide a computationally
efficient approximation to the MMSE estimator, which is typically
intractable to compute. We demonstrate our findings empirically
and provide a theoretical analysis of our method under several
different cases.

Index Terms—Sparse coding, stochastic resonance, basis pur-
suit, orthogonal matching pursuit, MMSE estimation

I. INTRODUCTION

N signal processing, often times we have access to a

corrupted signal and we wish to estimate its clean version.
This process includes a wide variety of problems, such as
denoising, where we wish to remove noise from a noisy signal;
deblurring where we look to sharpen an image that has been
blurred or was taken out of focus; and inpainting in which we
fill-in missing data that have been removed from the image.
All the aforementioned tasks, and many others, include a linear
degradation operator and a stochastic corruption. The forward
model can be described by y = Hx + v, where x is the
clean signal, H is the linear degradation operator, v denotes
additive noise, and y stands for the noisy measurements.

In order to provide a good estimate of x, it is useful to
incorporate both the statistical properties of the corruption as
well as prior knowledge on the signal. In image processing
in particular, many such priors have been developed over
the years, such as total-variation, self-similarity, sparsity, and
many others [1-3].

In this work we focus our attention on the sparse model
prior, which assumes that the clean signal * € R" is a
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linear combination of a small number of columns from an
overcomplete dictionary D € R™*™, where n < m, referred
to as atoms. In this case, we can write £ = Do, where the
representation vector o« € R™ is sparse. One of the most
fundamental problems in this model is termed sparse coding:
Given «, find the sparsest o such that * = Da. Formally,
this calls for solving

(Pp): & =argmin ||af|, st. Da ==,
[

where || - ||o stands for the [y pseudo-norm that counts the
number of non-zero elements in the vector.

Returning to the real measurements setting, and in particular
for a denoising task, the degradation is simply given by
additive noise v, typically assumed Gaussian or with bounded
energy ||v||2 < e, resulting in y = « + v. Hence, the above
problem is naturally modified to

(P5): a=argmin ||af|, st |[Da—yl|l, <e.
(a7

The solution of (FPS) can be then used to provide an estimate
of x, in the form of & = Dé.

Without further assumptions, (F§) is non-convex and NP-
Hard in general [4], as it requires searching through all the
possible supports of c. Nonetheless, different approximation
or pursuit algorithms have been developed in order to manage
this task effectively. Some of these include greedy strategies,
such as the Orthogonal Matching Pursuit (OMP) [5], or
relaxation alternatives, like Basis-Pursuit (BP) [6].

These approximation algorithms have been accompanied
by theoretical guarantees for finding a sparse representation
& that is close to the original representation, e.g. in an /{5
sense, ||& — a||2. Additionally, they often assure the correct
recovery of the support [7]. Such results rely on the cardinality
of «, the range of the non-zero values and properties of the
dictionary D. These algorithms succeed not only in cases of
noise with bounded energy, but also accurate solutions with
high probability in more general settings [8, 9].

From a Bayesian point of view, pursuit algorithms provide
an approximation to a Maximum a Posteriori (MAP) estimator
[14, 15]. Indeed, the objective seeks the most likely signal
under the sparse prior, subject to the noise deviation. Such an
estimator does not coincide with the Minimum Mean Squared
Error (MMSE) estimate, which is of great interest in many
cases. Unfortunately, however, exact MMSE estimation has
been shown to be computationally intractable and unfeasible
in practice [14, 15].

In this paper, we provide an efficient way to approximate
the MMSE by means of contaminating the input signal with a
controlled amount of (further) noise. The proposed method



leans on the Stochastic Resonance (SR) phenomenon, in
which the addition of noise to a weak signal can increase its
output Signal-to-Noise Ratio (SNR) in the context of a non-
linear transfer function. This field has been broadly developed
to improve the performance of sub-optimal detectors [10],
non-linear parametric estimators [11] and image processing
algorithms [12]. As we will careful comment later, our method
shares similarities with the Supra-threshold SR (SSR) algo-
rithm [13] while providing a generalization thereof. After
providing a provably convergent algorithm, we will explore an
alternative relaxation that will enable the deployment of this
idea to general pursuit methods and in more practical scenar-
ios. The proposed approach provides a general tool that can
improve performance of different sparse coding algorithms,
both in synthetic and real data settings, as we demonstrate
numerically.

The rest of the paper is structured as follows. Section
IT explores and comments on related previous work, and
Section III reviews Bayesian estimation under the sparse prior.
Then, in Section IV we present and analyze our provably
convergent MMSE approximation algorithm, followed by a
practical variation in Section V. We study the properties of
the general algorithm under specific cases in Sections VI and
VIL In Section VIII we explore the application of different SR
noise distributions, before showcasing our proposed approach
for image denoising in Section IX. Finally, we conclude our
work in Section X.

II. RELATED WORK

Providing solutions to inverse problems with minimal MSE
has remained a problem of great interest for many years. In the
context of sparse modeling in particular, the work in [14] sug-
gested an MMSE approximation in terms of the Random-OMP
(RandOMP) algorithm. This approach consists in running a
stochastic variant of OMP several times, introducing some
randomness in the choice of the supports at every iteration,
and finally averaging the results. RandOMP was shown to
coincide with the MMSE estimator under a unitary dictionary
assumption, or when D is overcomplete and the cardinality of
the representations is restricted to one atom. RandOMP also
improves the MSE empirically in more general cases, where
the MMSE cannot be practically computed. On the other hand,
this approach inherits the limitation of OMP, and specifically
the gradual increase of the support one element at a time. As a
result, this method is impractical in cases where the cardinality
of the solution is in the order of hundreds and beyond — as
for many real world signals.

In [15] a pursuit based on a Bayesian approach was
suggested. The Fast Bayesian Matching Pursuit (FBMP) is
a method that seeks the most probable supports and then
approximates their posterior probabilities in order to provide
an estimate of the MMSE. FBMP has been developed under a
specific sparse prior model and relies on it in order to properly
compute its estimate. This limits this approach to cases that
follow the assumed signal model and less applicable to real
applications where the prior is unknown.

A closely related method to our work is that of Supra-
threshold Stochastic Resonance, first described in [13]. SSR

consists in the addition of noise to a signal before it is passed
through a set of thresholds, or other analytic non-linearities
[16]. All outputs are then averaged to obtain a final result.
Just as in SR, the amount of noise to be added is a parameter
that needs careful tuning, and it can be set to maximize some
statistical measure (e.g. SNR, Mutual Information, among
others). On the other hand, SSR is usually motivated by a
fixed physical system (e.g. sensory neurons [17]) where one
has only limited control over the input signal.

As we will explore in the following sections, our work is
inspired by SSR and it can be understood as a generalization of
it. In particular, we will regard pursuit algorithms as more gen-
eral non-linear functions, moving beyond simple thresholding
rules. Moreover, the output of our algorithm will subtract some
of the effect of the added noise, providing a better estimate,
asymptotically converging to the MMSE estimator. Finally,
the proposed approach will be general, making it possible
to consider convex relaxation alternatives, this way making
MMSE approximation plausible for large dimensional signals.
Before moving to the presentation of the main algorithm,
however, we review some general results in Bayesian sparse
estimation in the following Section.

III. BAYESIAN ESTIMATION UNDER THE SPARSE PRIOR

Let us formulate our model in more details. The matrix
D € R™ " is an overcomplete dictionary, while the represen-
tation o € R™ is a sparse vector with either fixed cardinality
|lello = M or with a prior probability p; for each entry to
be non-zero — we will use both alternatives in this work. The
generative model consists of first drawing a support S from a
distribution Pg. We denote the set of all probable supports by
) = {S|Ps(S) > 0}. The non-zero elements in c, denoted as
ag, are then drawn from a distribution P, , which is assumed
to be a white Gaussian distribution A'(0,021). A signal =
is constructed by a linear combination of atoms = Da,
and the measured samples are given by y = x + v, where
v ~ N(0,021I) is additive Gaussian noise. Under such a
generative model, a Bayesian formulation for estimating o
deploys the prior on the representations « in different ways.
We now describe different Bayesian estimators that can be
formulated in this context, as described in [18].

We begin with the Oracle estimator, which seeks to estimate
the clean signal when the support is assumed to be known.
This is a simplistic assumption, as retrieving the correct
support S of the original sparse representation ¢ is the
essence of the combinatorial (Pg) problem. In such a case,
the MMSE estimator is simply the conditional expectation
agde = E [aly, S, given by

A racle 1 -
&3 (y) = Q5" Dsy, (1)

where Dg is the sub-dictionary containing only the atoms
indexed by S, and Qg is given by

1 1.
QS = gI|S| + ;gDsDS.

We refer to this estimator as the Oracle, as there is no possible
way of knowing the true support beforehand.



Next is the MAP estimator, which searches for the most
probable support S given the measurements and uses it to
estimate the signal'. The relevant posterior probability for this
estimation is given by [18]

ts N
P(Sly) = 7 t£) ts @
SeQ
where
1
te 2 —— expl—= TC_l} i 1—=pi),

i¢S
and Cg' = 51, — % DsQ5'DY.

The MAP estimator is obtained by maximizing P(S|y) with
respect to S, which (employing Bayes’ rule) can be written as

S = argmax P(S|y) = argmax P(y|S)P(95).
s s

By replacing the conditional probability and the prior on the
support, one can show [18] that this corresponds to
2

A 1]]1 1 1
S = arg;naxi ’ ﬁQszDéTwy , ~3 log(det(C's))
+3 log(pi) + Y log(1 — p;).
icS jgs

In the case where the cardinality of « is constant, ||| = M,
and all supports are equally likely, the last two terms above
can be omitted. Once the most probable support is recovered,
the oracle formula can then be employed to estimate the
corresponding coefficients as

~ MA ~ Oracl
&M (y) = a2 ().

The last estimator we discuss here is the MMSE, which is
given by the conditional expectation,

& (y) = Elaly] = > P(S|y)E[aly, S].
SeqQ
This is a weighted sum over all the possible supports. More-
over, each element calls for the oracle estimator over the
candidate support, allowing us to write

&ME(y) = Y P(Sly)a§ ™ (y). 3)
SeQ

Because of this massive averaging of all the possible supports,
somewhat surprisingly, the MMSE under a sparse prior is
actually a dense vector.

Both estimators, &™VSE and GMAP | are NP hard to obtain
in general, as they require either a sum over all the possible
supports or the computation of all posterior probabilities and
selecting the highest one. Either option is prohibitive as the
number of possible supports is exponentially large. This is
the reason for approximation algorithms or pursuits, which
typically attempt to approximate the MAP estimate. Nonethe-
less, as noted in [15], the posterior probabilities P(S|y) have
an exponential nature — see Equation (2), and thus the sum
in Equation (3) is practically dominated by a much smaller

'In fact, this is the MAP of the support. We use it to avoid the probable
case where the recovered signal is the O vector as described in [18].

Algorithm 1 Prior-based SR algorithm

1: procedure PRIORBASED-SR(y, D, PursuitAlg, o, K)
2 S+ o

3 for k=1..K do

4: ny < SampleNoise(o,,)

5: &y, < PursuitAlg(y + ny, D)
6 Sy « Support(éy)
7 S« SU{S;}
8

9

end for omal

& Y ses Py|S)P(S)65* " (y)
_2ses PWIS)P(S)

10: return @

11: end procedure

number of terms. Put formally, this suggests that there exists
a subset of the supports, w C Q, |w| < [ such that
P(Suly) > P(So\w|y) where S, € w, S\, € 2\ w. If one
could obtain these most significant elements and their proper
weights, then an MMSE approximation would be attainable.
This is the rationale in earlier work on MMSE approximations
[14, 15], and the motivation behind our proposed approach.

IV. THE PROPOSED ALGORITHM

We now present the proposed approach in Algorithm 1. This
algorithm consists of K iterations, where in each a small
amount of noise my is added to the already noisy signal
y, and a (greedy or relaxation-based) pursuit algorithm is
employed. The final estimation is computed as a weighted
average over the obtained supports: For each recovered sup-
port, the corresponding oracle estimator is obtained w.r.t. the
original measurements y (i.e., without the influence of ny) and
weighed according to its un-normalized posterior probability.

As we show next, Algorithm 1 asymptotically converges to
the MMSE estimator. Before presenting this result, however,
we present in the following lemma an alternative expression
for the MMSE estimator that will prove useful later on.

Lemma 1. Ler Q = {S|P(S) > 0} be the set of all the
possible supports, then

éMMSE(,y) _ ZSGQ P(y\S)P(S)dg’“de(y)
>sea P(ylS)P(S)

Proof. From Bayes’ theorem and the law of total probability,
we can write

ylS)P(S) _ _ PylS)P(S)
P(y) Yosea P(ylS)P(S)
Combining this with Equation (3), we have:

_ Ysea PIS)P(S)ag " (y)
ZSGQ P(y|S)P(S)

P(sly) = L

dMMSE (y)

O

The result that we present below is general, in the sense
that it is applicable to any pursuit that provides a stable
approximation of &. For this reason, we now formalize this
in the following definition, followed by the statement of the
main theorem.



Definition 1. A pursuit method PM is a stable pur-
suit wrt. the prior Pg, P, and the dictionary D if
vV S € Q and a respective a € R™ such that
Support(a) = S, and Pag(ag) > 0, then Je > 0 such that
Vv € {v € R"|||v — Da||, < €} the pursuit method PM re-
covers the correct support, i.e. Support {PM (v)} = S.

Theorem 2. Let ny ~ N (0,0'%I) be a white Gaussian SR
noise, 0, > 0 and PM a stable pursuit method. Then, as
K — oo, Algorithm 1 asymptotically converges to the MMSE
estimator with probability 1.

Proof. Assume by contradiction that Algorithm 1 does not
converge to the MMSE. From Lemma 1 this means that
Q\ 8 # ®, where & are the gathered supports by Algo-
rithm 1. Let S; be a support such that S; € Q\ S,
and let «; € R™ be such that Support{c;} = S;
and P, (ag,) > 0. Since the pursuit method is stable,
Je > 0 such that Vv € {v € R"|||v — Da,ll2 < ¢} and
Support { PM (v)} = S;.

In each iteration, the algorithm sparse codes y + ny
and since my is Gaussian P(||ly +ny — Dalls <€) >0
for any a« € R™. Hence, as K — oo, dk; such that
lly + ni, — Dl < € and from the stability of the pursuit
Support { PM (y + ny,)} = S;. Therefore, at the k;-th it-
eration, the support S; is added to the accumulated set S,
contradicting the false assumption. O

A few remarks are in place. First, if K > |Q|, using
Algorithm 1 is clearly ineffective since one may simply
compute the MMSE from (3). Nevertheless, fast convergence
occurs when S contains the most likely supports, since their
weight is much larger than the weight of the other elements
[15]. Using the MAP estimator — or its approximation in terms
of pursuit algorithms — promotes highly likely supports more
often than less likely ones. The SR idea provides a way of
accumulating a set of highly probable supports by perturbing
the measurements before running the pursuit.

Second, the result above is somewhat limited as it does
not inform about how fast & converges to &™MMSE. Such
an analysis must depend on the energy of the added noise.
Indeed, when o, is too large, the SR measurements y + ny
significantly deviate from y, reducing the chances to retrieve
probable supports. On the other hand, when the added noise
is weak, the signal y 4 n, hardly varies, reducing the chances
to cover the set of supports quickly. The analysis of this
convergence rate is challenging, and we defer it to future work.
As we will extensively corroborate numerically, however, a
relatively low number of iterations K suffices to provide a
good approximation to the MMSE in practice.

To empirically examine the performance of Algorithm 1,
we performed the following experiments. We drew a random
dictionary D € R59%100 and normalized its columns. Then,
we generated sparse vectors containing a single non-zero ele-
ment at a random location, where its value was sampled from
the normal distribution A/(0, 1). Signals were then created by
multiplying the sparse vectors with the dictionary D. Finally,
we added a Gaussian noise v ~ N(0,02I), 0, = 0.2 to
the signals resulting with noisy measurements. We then used

MAP
MMSE
10 Iterations

25 Iterations
50 Iterations
100 Iterations

Fig. 1: PriorBased-SR for various K and o, values. Sparse
vector cardinality ||adjo = 1.

Algorithm 1 to estimate the clean signals and compared its
MSE to the MAP and the MMSE estimators for a varying
number of iterations K and standard deviation o,,. Note that
in this case, the OMP algorithm is also the MAP, and therefore
we used it as our pursuit method. The results averaged over
10, 000 realizations can be seen in Figure 1. Note that in this
experiment, the number of possible supports is |Q2] = 100.
When K = 100 and o,, =~ 0.5, the MSE of Algorithm 1 almost
reaches that of the MMSE estimator, suggesting that only a
few improbable supports are missing from the accumulated
set 8. That said, even when K is much smaller than 100,
for a reasonable amount of SR noise o,, =~ o,, the MSE of
Algorithm 1 is close to that of the MMSE estimator.

To further demonstrate the efficiency of this technique, we
repeat the same protocol, only this time the number of non-
zero elements in the sparse vector is 3, increasing the number
of possible supports to |2 = (1g0) = 161,700, all apriori
equally likely. The results can be seen in Figure 2. Note that
while the MAP and the MMSE estimators require iterating
through all the possible supports, Algorithm 1 efficiently
retrieve the most significant ones, leading to superior denoising
results over the standard OMP and the MAP estimator.

These results show that not only does the algorithm asymp-
totically converge to the MMSE, but also a significant im-
provement can be achieved over the MAP estimator (or
its approximation) even with a relatively small number of
iterations. A limitation of this approach, however, is that this
method requires full knowledge of the generative model and
its parameters, similar to the FBMP algorithm, thus limiting
its use in real settings. In the following sections we suggest a
practical variation of the presented algorithm that can be used
in more general cases.

V. A PRACTICAL VARIANT

We present the practical variant of Algorithm 1 in Algorithm
2. Note that we split the algorithm into two cases. In the
first we assume that even though we have no knowledge
regarding the probability mass function of the support P(S),
we do know the probability density function of the non-zero
elements given their indices and the measurements, making
the oracle estimator obtainable. The second case only assumes
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Fig. 2: PriorBased-SR for various K and o, values. Sparse
vector cardinality ||o|lo = 3.

Algorithm 2 General SR algorithm

1: procedure GENERAL-SR(y, D, PursuitAlg, o, K)
2 for k=1..K do

3 ny < SampleNoise(o,,)

4: &y, <+ PursuitAlg(y + ng, D)

5: Sy < Support(dy,)
6
7

8
9

if P(aly, S) is known then
élk — dg;acle(y>

else )
10: end if
11: end for
A1 K ~
12: =z Zk:l Qg
13: return &

14: end procedure

knowledge regarding the dictionary D, replacing the oracle
with a simple Least Squares (LS) operation.

Computing the MMSE estimator in Equation (3) requires a
complete knowledge regarding the generative model. There-
fore, in cases where the prior is only partially known, the
MMSE estimator cannot be obtained, and achieving its MSE
performance is generally not feasible. Nevertheless, as we
empirically show here and in the following sections, Algorithm
2 succeeds to effectively approximate the MMSE estimator.

Before we go through the analytic arguments and empirical
evidence provided in the coming sections, we present some
intuition behind the proposed method. Similar to the previous
method, the SR noise added will introduce a small perturbation
in the signal y + my in each iteration. Therefore, in each
iteration the pursuit will extract supports that are likely to
fit the original signal x. The final estimator is an arithmetic
mean of all the recovered supports, meaning that the supports
that have higher posterior probability will be retrieved more
often, making their weight greater than other, less probable
supports. If K is large enough and the occurrence of each
support resembles its un-normalized posterior probability, then
the averaged result coincides with the MMSE.

We propose the following experiments in order to demon-
strate Algorithm 2’s performance. As in the previous section,

we use a normalized random Gaussian dictionary, this time
of size 25 x 50, and generate random sparse vectors with 3
non-zero elements and Gaussian coefficients. We multiply the
sparse vectors by the dictionary and add a Gaussian noise
to the signals. To obtain clean estimates we use Algorithm
2, once with BP and once with OMP. Since we assume no
knowledge regarding the prior probability of the support of
the sparse vector, we use the bounded noise formulation of
the pursuit algorithms, i.e.

(OMP) min|lallp st |y— Dals <e,
[0 %

(BP)  min[laf; st [y—Dafy<e

where € is chosen to be optimal. We repeat the experiment
twice. Once we assume we know the distribution of ag|S,y
allowing us to use the oracle in Equation (1), and once using
the plain LS variant. We compare the results to those obtained
by Algorithm 1 with OMP used as a pursuit, as well as to the
MMSE and MAP estimators.

In a second experiment we further examine the effectiveness
of our method compared to standard pursuit algorithms for a
varying number non-zero elements. For this experiment, we
increased the dimensions of the dictionary to 50 x 100 to allow
for a large number of non-zero elements in c, while keeping it
sparse. In all the described experiments we use 300 iterations
for both algorithms and average over 10, 000 realizations. The
results can be seen in Figure 3 and 4 respectively.

Examining the results obtained in Figure 4, our LS variant
improves over standard pursuit algorithms for various cardi-
nality values. Furthermore, Figure 3 demonstrates that while
algorithm 2 in its LS and oracle variant improved both BP’s
and OMP’s MSE, the two perform differently. At first, the
oracle seems slightly favorable and indeed achieves better
results for the optimal o,. Surprisingly however, when too
much noise is added their difference diminishes. Comparing
Algorithm 1 to Algorithm 2, the former is much more robust
to the standard deviation of the SR noise. The source for this
difference is the averaging operator. While Algorithm 1 uses
the prior in order to weigh the solutions correctly, in Algorithm
2 each support is weighed by its probability to be chosen in the
SR process. In general, the weights given by the SR process
do not match the MMSE weights in Equation (3).

In the following sections we introduce additional assump-
tions in order to expand the theoretical and empirical analysis
presented. First we analyze the case in which the dictionary
consists of a unitary matrix and then we analyze the case of a
general normalized dictionary, while restricting the cardinality
of the sparse vector to be 1.

VI. GENERAL SR IN THE UNITARY CASE
A. The Unitary Sparse Estimators

When the dictionary is a unitary n X n matrix, we can
simplify the expressions associated with the oracle, MAP and
MMSE estimators as suggested in [18, 19]. Given a support
S, the oracle estimator is a constant shrinkage applied on the
projected measurements g = Dgy

dgracle<y) _ 02,35‘7
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of the sparse representation vector. o,, is optimal and obtained
empirically.

where ¢? = 02 /(02 + 02).

The MAP estimator is reduced to the element-wise hard
thresholding operator applied on the projected measurements
B = DTy, given by

. B if Bl = Amar,
QMAP (ﬂ) = HAZMAP (ﬁ) = {O otherwise )
where Ayap 2 @ log (p:i/%)’ and « and (8 are the

elements of the vectors a and 3.
The MMSE estimator in the unitary case is a simple
elementwise shrinkage operator of the following form:

2 )
A exp (—2‘;g 52) 15}31 V1 — 2 ,
anvmse =P(B8) = . o cp
1+ exp (Tfr,% ,82> s V1—¢?

Note that this shrinkage operator does not result in a sparse
vector, just as in the general case. The above scalar operators
are extended to act on vectors in an entry-wise manner.

B. The Unitary SR Estimator

We now analyze the estimator suggested in Algorithm 2,
under the unitary dictionary assumption.

Proposition 3. Let D be a unitary matrix and denote by
Q(:) the tail probability of the standard normal distribution®.
Suppose that we use Algorithm 2 with the MAP estimator H )
and white Gaussian SR noise ny, ~ N'(0,021) as a pursuit.

Then, asymptotically, & = [Q (M> +Q (%)} c2B.

On

Proof. When using the MAP estimator in Algorithm 2, the
thresholding operator is only used to recover the support itself.
Once the support is extracted, the final estimator computes the
oralce estimator w.r.t. the obtained supports before applying
an empirical mean. This process can be equivalently described
by the following elementwise subtractive hard thresholding
operator® H, (-):

)

2 : ~
ik (B,7x) = H™ (B, 7x) = { B 15+ k] 2 Aurap

0 otherwise

where n, = DTny. Clearly, since D is unitary,
fug, ~ N (0,021I). The final estimator is then achieved by an
empirical mean,

As K — oo, the described process asymptotically converges
to the expectation

B, [y (8.0 = [ #5 (w)p () di

() o5
On On

The full derivation can be found in Appendix A. O

Unfortunately, analytically bounding the MSE between (4)
and the MMSE estimator proves to be challenging. However,
as we will see shortly, Equation (4) numerically approximates
the MMSE very accurately. Note that there are two parameters
yet to be set: o, and A. The former tunes the magnitude
of the added noise, while the latter controls the value of
the thresholding operation. The original MAP threshold Ayvap
might be sub-optimal due to the addition of SR noise and
therefore, we leave \ as a free parameter. We will suggest a
method to set these parameters later in this section.

C. Unitary SR Estimation Results

In order to demonstrate the similarity of the proposed
estimator to the MMSE estimator, we compare their shrinkage
curves in Figure 5a. One can see that, while the curves do not
overlap completely, for the right choice of parameters (A and
on), the curves are indeed quite close to each other. In terms of
MSE, in Figure 5b we compare the performance of the general
SR method and the MMSE as a function of o,, (with X\ fixed
at the optimal value). Indeed, for the optimal parameters, the
two are almost identical. In Appendix B, the performance of
the general SR estimator is demonstrated as a function of both
A and o,.

2
2Q(-) is given by Q(x) = \/% I e T du.
3Notice that the written equation operates on the the vectors elementwise.
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We now discuss how to set the parameters in order to reach
these optimal results.

D. Finding the Optimal Parameters for the Unitary Case

To optimize the free parameters \ and o,,, we propose to use
Stein’s Unbiased Risk Estimate (SURE) [20] which measures
an estimator’s MSE up to a constant when the additive noise
is Gaussian. The SURE formulation of the expected MSE is
given by

M(,H)T (ﬂvgn)vﬂ) = H,H)T(ﬁvo'n)H% —2H; (ﬂvan)Tﬂ
+203VﬂHX (B, o).

In the unitary case this is further simplified to an element-wise
sum:

(M5 (B, 00), B) = Y u(H (Bir0n), Bi).
Expanding the estimator, one gets

WM (B,00),8) =Y Hy (Bi,00)” — 2H; (Bis00) s
+ QJEdiBi

and we wish to optimize for o,, and A:

Ony A= arg min M(H;(/Bvon)aﬁ)

On,

H}T(ﬁiaan)a (5)

This can be further simplified, as shown in Appendix B.
Also, this Appendix depicts the surface E,u for a specific

experiment. Interestingly, we observe that the empirically
obtained optimal A is quite close to the threshold suggested
by the MAP estimator.

Note that in this process, we obtain an MMSE approxima-
tion without explicitly knowing the prior distribution of each
element P;. Furthermore, if o, is not known, one can easily
estimate it as follows: The dictionary is unitary and therefore
the mean energy of the signal y is o2 + o2. Assuming we
know o, one can easily obtain o,,.

VII. GENERAL SR IN THE SINGLE ATOM CASE
A. Cardinality 1 Performance

While the unitary case is simpler to analyze, most ap-
plications rely on overcomplete dictionaries. In Section V,
we already showed that empirically, Algorithm 2 improves
the MSE performance of standard pursuit algorithms in the
general case. We now try to further analyze Algorithm 2 by
introducing a single atom assumption, i.e. assuming that the
cardinality of the sparse vectors is restricted to one. From
[14] we have that in this case, the MAP estimator described
in Section III boils down to the following form:

2 ; G 2
~MAP g, 1=15 T 2 Ta
YA (y) = e Be=dly, =T
7 ( ) {0, i 7£ S Y S S 0_3 + 0_12/7
where GMAP is the i-th index in the vector &MAP, d; is the ith
atom and S represents the chosen atom index:

S = argmin ||8sds — y||2 = arg max |d§y|
S S

Proposition 4. Let D be a dictionary with normalized atoms
and o a sparse representation vector such that ||alo = 1,
and suppose we use Algorithm 2 with the MAP estimator as
a pursuit algorithm. Then, asymptotically, one obtains & such
that its i-th index is é; = *dTy - P(S = i), where P(S = i)
is the probability of the SR process to retrieve the support S.

Proof. Following the subtractive hard thresholding concept

suggested in the previous section, we introduce the following
SR estimator:

6265 =
v, (Y, ng) = SR .
ks (1, ) {o, i # Ss

where this time the chosen index S’SR is affected by an additive
SR noise:

_ g7
9 ﬁSSR - dSSRy7

Ssr = afg;ﬂin 1d§(y +n) - (y+n)|3
:argmax|d£ (y+nk)| . (6)
s

Hence, asymptotically, Algorithm 2 converges to

En [6(y,n)] =Es [Eq s [6(y, n)|S]]
:Z]En‘s[dw:i]P (S:z)
8P (S - 1)

B, P (S - m)



as claimed. O

As before, the difference between the general MMSE esti-
mator (3) and Algorithm in Equation 2 in its oracle form is
in the weight assigned to each solution P(S’ ). We now further
analyze the weight obtained in the SR process under the single
atom assumption. As stated in (6), the chosen atom ¢ is the

most correlated one with the input SR noisy signal:
P(S=i)=P (!diT(y +n)| > max|d}(y + n)\)
J#FL
=P (Iﬁil > max Iﬁjl) , (7
J#i

where we defined 7 = D7 (y+mn). Choosing n ~
N (0,021) then 2 is Gaussian as well:

1
~N (D"y,02D" D). (8)
T,
Therefore, the probability of choosing the i-th atom is dis-
tributed as the probability of the maximum value of a random
Gaussian vector with correlated variables, since in the non-
unitary case, D7D is not a diagonal matrix. Facing this
difficulty, we propose to tackle it as follows:

1) Instead of adding the SR noise to y, we can add it to
the projected signal D7y, thus avoiding the variables
{n;};*, being correlated.

2) Add statistical assumptions regarding the dictionary D,
leading to average case conclusions.

3) Change the pursuit used. Intuitively, using the MAP
will produce the optimal results, since it retrieves the
most probable support for any given signal. However,
changing the pursuit might ease the analysis of the
asymptotic estimator. We leave the study of this option
for future work.

We now analyze the first two proposed alternatives.

B. Add Noise to the Representation Domain

Proposition 5. Let the same conditions as Proposition 4 hold.
Moreover, let n ~ N (07 U%I) be an SR noise added to the
representation domain. Then, the probability to retrieve the
i-th support is given by

. © 9 _(t+8:)? _(1=8)?
P(S=1i)= / e *n +4e 2%
0

V2ra,
t—B; t+ B8
AL (e(50) e (52)) o o

Proof. We continue from (7), only now the noise n; is white
and has the following properties:

A~ N (DTy,02Lnxm) .

Plugging this into (7):
P(S§=i)=P (‘dfy +ng| > max d]y + nj|>
JF1
=P (|77L1 > max ’fL]>
i

o0
:/ P<max|fzj|<t
0 J#i

:/ P (max|ﬁj| < t) P (|n;| = t) dt. (10)
0 J#i

For the first term, the elements of n are independent, and
therefore

P max|n;| <t) =||P(ny| <t
(1mariast <) =TT PGl <0

=11 - P, > ¢)]

J#i

2[1@(?)*@(%?))]’

where the last equality follows similar steps as in Appendix
A. The second term in (10) is simply the PDF of the absolute
value of a Gaussian variable, therefore

1 _(=s)? _(480)
P(n]=t)=—\|e %= +e 2= .
(Inil =) Nt

Putting the two terms back into (10) we obtained the claimed
relation in Equation (9). [

1734 t> P (|| = t)dt

The obtained expression cannot be solved analytically but
can be computed numerically. We now empirically examined
the properties of the derived estimator. We generated a random
dictionary of size 25 x 50 with iid Gaussian elements and
normalized the atoms. Then, we generated sparse vectors
with a single non-zero element with a Gaussian value ag ~
N (0,1). Noisy measurements were generated by multiply-
ing the dictionary with the sparse vectors and adding noise
v~N(0,I62), o, = 0.2. In Figure 6 we compare the
MSE of the MMSE and MAP estimators to Algorithm 2 when
the noise is added to the representation domain. Indeed, the
proposed method improves the MSE of the MAP estimator
and almost achieves the MMSE estimator’s performance for
the right choice of o,,.

In Figure 7 we show the probability of recovering the true
support Pyyceess as a function of o, both from (9) and from
iterating Algorithm 2 100 times, each time picking the most
correlated atom. We also compare it to the MMSE weight
from (2). The optimal o, in terms of MSE is drawn as a
vertical dashed line. Notice that for the optimal choice of o,
the probability of the true support to be chosen is similar to
that given in the MMSE solution. In other words, the optimal
oy, is the one that approximates the weight of the support to
the weight given by the MMSE expression. The trend in (9)
shows, unsurprisingly, that as we add noise, the probability of
successfully recovering the true support decreases. In the limit,
when o,, — oo the signal will be dominated by the noise and
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Fig. 7: Numerical integration of P(S = True Suport|y) and
the empirical weight achieved by 100 iterations of SR.

the success probability will be uniform among all the atoms,
i.e. equal to Pyyccess = %

Due to these findings, and since the optimal MSE is
comparable to that of the MMSE estimator, one might expect
a similar behavior for most of the other possible supports. To
examine this idea, we carried out the following experiment. We
randomized many representations ¢, all containing a non-zero
coefficient in the same index. Then, we ploted the histogram
of the average empirical probability of each element in the
vector ¢ to be non-zero (obtained by pursuit). Finally, we
compared these probabilities to the weights of the MMSE from
(2). This experiment was repeated for various o,, values and
for each such value we compared the entire support histogram.
We expect the two histograms (SR and MMSE) to fit for the
right choice of added noise parameter o,,. In Figure 8 we see
the results of the described experiment.

Analyzing the results obtained, we see that when no noise
is added (this is the average case of the MAP estimator),
apart from the true support, the elements have a much lower
weight than the MMSE. As noise is added, the true support’s
probability decreases and its weight is divided among the other
elements. At some point the two histograms almost match
each other completely. At that point, the SR MSE almost
equals that of the MMSE. As we add more noise, the true
support’s probability keeps decreasing and the other elements
keep increasing and the histograms are now farther apart from
each other. When we reach o,, — oo we obtain uniform
probability for all the supports.

To further demonstrate their similarity, the left axis in
Figure 9 is the Dy, distance (Kullback-Leibler divergence)
between the two histograms, and the right axis is the MSE.
As expected, when their K||L divergence is the smallest, the
MSE is minimal.

C. Statistical Assumptions on the Dictionary D

In this section we will try to simplify the expression in (7)
by assuming that the columns of the dictionary are statistically
uncorrelated. Formally, our assumption is that the atoms d; are
drawn from some random distribution that obeys the following
properties:

E[dfd] =0, i#j 1<ij<m, (11)
and that the atoms are normalized:
Idill2 =1, 1<i<m. (12)

Proposition 6. Let the same conditions as Proposition 4
hold and furthermore suppose that the dictionary’s atoms are
statistically uncorrelated. Then, when using Algorithm 2 with
the MAP estimator, adding white Gaussian SR noise to the
signal domain with standard deviation o, is equivalent to
adding white Gaussian SR noise to the representation domain
with the same standard deviation o,,.

Proof. From (8), we have n = D7T(y + n). Observe that
given the dictionary D, each of the elements in this vector is
a Gaussian random variable:

n

Aild; = df (y+mn) = dik(yr +ni) =
k=1

n n n
S digyr+ Y digni = pi+ Y dign.
k=1 k=1 k=1

Given the measurements and the dictionary, the first sum
Zzzl di kYx £ w; 1s some constant. The second term in the
expression is a weighted sum of n iid Gaussian random vari-
ables {ny}7_,, hence it is Gaussian. Clearly, its mean value is
0, and its standard deviation is o, hence 7i;|d; ~ N (d'y, 0,,)
for n — oo.

Now we turn to analyze the properties of the entire vector
n. From the previous analysis, given the dictionary D, n is a
random Gaussian vector with the mean vector ;| D = DTy,
Using the properties of the noise E [nn”] = 621, the auto-
correlation matrix of 72| D is by definition:

S|D =E [D"nn"D|D] = D"E [nn"| D = 0c2D" D.
Analyzing the average case, the mean vector is of the form:
pin =Ep [D"y],

and the auto-correlation matrix is simply diagonal:
3 =Ep[E|D] =E [¢2D" D] = 01,
where we used the assumptions in (11) and (12). O

From Proposition 6, the uncorrelated atoms assumption
leads m to have the same properties as in Proposition 5.
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Fig. 9: Subtractive SR MSE and Dy divergence between
the MMSE and SR weights. When the divergence is small so
is the MSE.

Therefore, the empirical analysis following Proposition 5 holds
for this case as well.

To demonstrate empirically that indeed the two are the
same, we performed the following experiment. We sampled
a random dictionary D and random sparse representations o
with cardinality of 1 as the generative model described earlier
suggests. In this experiment we used a dictionary D of size
200 x 400 and 2000 random sparse representations. Using
the generated vectors and dictionary we created signals y:
y = Da+v. To denoise the signals, we once used Algorithm
2 with noise nj, ~ N (0, 021, ) added to the signal vectors
y+ny, , and once with noise Nyep, ~ N(0, 021,51, ) added to
the representation domain DTy + Tep.. As before, we use the
MAP estimator as the chosen pursuit. In Figure 10 we see that
the MSE of the two cases result in an almost identical curve.

=== NSignal Domain

0.25 == == TNRepresentation Domain
€3]
w0
= 0.20 -

0.15
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Fig. 10: Noise location comparison. 500 iterations of Gen-
eral Oracle SR with MAP estimator as a pursuit method.
v ~ N(0,62I), o, = 02, [lall, = 1 and a, ~
N (0,1). The SR noises are Nsignal Domain ~ N (0, 0 Lnxcn ).
TURepresentation Domain ™~ N (07 UnImxm)'

Small differences exist due to the finite dimensions used in
the experiment.

Note that the noise energy added in the representation
domain is much larger than that of the noise added to the
signal, i.e. E||nw |3 = mo2 > no2 = E|ngg||3 but the
results remain the same due to the unit norm of the dictionary
ld;i]|2 = 1, and of course, the uncorrelated assumption.

To conclude this subsection, statistically uncorrelated atoms
provide a way to further our theoretical analysis. In this case,
adding noise in the signal domain converges to the analysis
addressed in the previous subsection, where noise is instead
added in the representation domain. As a result, similar results
and conclusions can be drawn.
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VIII. WHAT NOISE SHOULD BE USED?

Throughout this work we naturally used white Gaussian
noise by default. In this section we question this decision
and wonder whether we can use noise models with different
distributions and whether it affects the performance of the
stochastic resonance estimator.

Theorem 7. Let n be a random vector with iid elements
sampled from a distribution with finite mean and variance and
used as SR noise in Algorithm 2. Then, as the dimension of
the sparse representation grows asymptotically, the estimate
given by Algorithm 2 is not affected by n’s distribution.

. ~ A ..
Proof. Denoting 7o = D”'n, each element 7; is:
m
5= AT — o
n=d;n= E di ;.
P

Without loss of generality, we assume that the atoms are
normalized, i.e., ||d;|]a = 1. The above expression is a
weighted average of the variables {n;} . Since {n;}7., are
iid and have bounded mean and variance, then the central limit
theorem holds. Therefore, as m increases, n; is asymptotically
Gaussian regardless of the distribution of the original additive
noise n;. O

Following the previous statement, we experimented with a
different distribution for a random noise vector. We employed
an element-wise iid uniform noise with 0 mean ny ~ U[—r, r].
In order to be compatible with a Gaussian noise np ~
N(0,02) we chose r = v/30,, thus assuring the same standard
deviation for the two cases. In Figure 11 we compare the
random Gaussian noise with the uniform one as described,
and indeed, the curves overlap.

In Appendix C we further experiment with a different form
of SR noise, leading to similar performance in terms of MSE,
while reducing the computations performed.

IX. IMAGE DENOISING

In this section we demonstrate the benefits of using Al-
gorithm 2 in image denoising. We use the Trainlets [21]
dictionary trained on facial images from the Chinese Passport
dataset as described in [22]. In the dataset, each image is of
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(a) Noisy image.
PSNR=16.1 dB.

(b) Subspace Pursuit.
PSNR=26.88 dB.

(c) Stochastic Resonance.
PSNR=28.76 dB.

(d) Clean Image

Fig. 12: Denoising results comparison. o, = 40, L = 90.

size 100 x 100 pixels and contains a gray-scale aligned face.
The application we address is denoising, that is approximating
the following optimization problem:

& =argmin|[[Da —yll2 st [lalo= L.
(a3

Since this problem is intractable, an approximation is achieved
using the Subspace Pursuit (SP) algorithm [23], which pro-
vides a fast converging algorithm for a fixed number of non-
zeros L. The particular choice of using SP follows from the
prohibitive cardinality and dimensions for, rendering the OMP
as a highly non-efficient alternative.

In our experiment, we corrupt an unseen image from the
dataset with additive white Gaussian noise, using various
standard deviation o, values. Then, we denoise the image
using SP, where the number of non-zeros L is empirically
set to maximize the denoising performance. We then apply
Algorithm 2 in its LS form, using 200 iterations and the same
SP settings. Note that we do not seek state of the art denoising
results but rather to show that our method can be easily applied
to improve real image processing tasks.

In Figure 12 the results for o, = 40 can be seen. Impor-
tantly, the SR result yield a clearer image with much less
artifacts. Figure 13 presents the effectiveness of SR under
varying SR noise o,,. We see that a gain of almost 2 dB
is achieved by using SR with a proper o,, over the regular
pursuit. Figure 14 presents a comparison of the PSNR values
obtained by SP and Algorithm 2 with SP for varying values
of standard deviation o,. In all of the described experiments,
Algorithm 2 improved the denoising results. Generally we
observe that as the noise increases, the improvement becomes
more significant.
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Fig. 14: SP and SP + Algorithm 2: Comparison for varying
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X. CONCLUSION

In this work we suggested two algorithms leveraging the
idea of stochastic resonance under the context of sparse
coding. We analyzed their theoretical properties and showed
that they enable to efficiently deploy arbitrary pursuit algo-
rithms while boosting their performance with SR, providing
an approximation to the MMSE estimator. While the first
method we suggested is provably convergent to the MMSE, it
is not directly applicable in cases where the prior of the sparse
vectors is not known. This brought us to introduce a relaxed
and more practical alternative. We have analyzed the properties
of this second path in several cases and demonstrated its
superiority over standard pursuit algorithms in both synthetic
cases and on a natural image denoising task. In contrast to
previous MMSE approximation methods, the ones suggested
in this work have the ability to use any pursuit algorithm as a
“black box”, thus opening the door for MMSE approximation
in large dimension regimes for the first time.

APPENDIX A
UNITARY GENERAL SR ASYMPTOTIC ESTIMATOR

Placing the normal distribution function into (4), we obtain:

E, [H}

APPENDIX B
THE SURE SURFACE FOR THE UNITARY CASE

Plugging the subtractive hard thresholding #, into (5) leads
to the following expression:

=) = 3 (2o (*22) + o (*22)])
~yafe(5) ve(*20)]
°(%0)]

—&—220302 {Q <A+BZ>

2 2 -05) 1 _()?
+ Y 20.5¢°6; h ———e  *n .
; p \/27T0’n \V2mo,

In order to show that it is indeed easy to optimize A and
o on the SURE surface, we demonstrate it by the following
experiment. We generate sparse vectors with probability of
P; = 0.01 for any coefficient to be non-zero. The coefficients
of the non-zero entries are drawn from a Gaussian distribution
N (0,1). We then generate signals using a unitary dictionary
and add random Gaussian noise N (0, 0.22). We then compute
I (H;) for various A and o,, values. Figure 15 presents the
surface for these values, and Figure 16 shows the MSE results
respectively. We can see that the SURE surface behaves just
like the true MSE up to an additive constant and that it is
smooth and rather easy to optimize. In terms of MSE, we
see the superiority of the proposed estimator over the MAP
estimator, and that it is quite close to the MMSE.

APPENDIX C
MULTIPLICATIVE BERNOULLI SR NOISE

In this section we seek for an SR distribution from which
we can benefit more than others in terms of computational
efficiency. To do so, consider the following. Given the signal
y, we define the subsampling noise 7igypsample in the following

way:
1 wp.
n; = w.p. p
0 wp. 1—p
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Fig. 16: SURE and MSE values for the optimal A, extracted from SURE. SURE’s optimal o,, marked in e.

and the SR samples will now follow the following distribution:

y,.n.: yl
K2 (2 O

Therefore, for an input signal of size n, only pn samples will
remain on average. This distribution is interesting because
of the following reason. When zeroing out an element in
the vector y, the matching row in the dictionary D will
always be multiplied by the zero element when calculating
the correlations D7 ysg as done in most pursuits. This mul-
tiplication obviously has no contribution to the inner product
and we might as well omit the zero elements from ysg and the
corresponding rows from D, leading to a subsampled version
of the signal y and the dictionary D. In other words, in each
of the SR iterations we simply subsample random elements
with probability p from the signal y and the matching rows
from the dictionary DD, which leads t0 Ysupsample Of size pn x 1
(on average) and a dictionary Dgpsampte Of size pn x m (on
average). Finally we sparse code the subsampled vectors. Just
like in previous cases, we use the pursuit’s result only as a
support estimator in order to compute the oracle estimator.
Hence, we then revert to the full sized signal y and dictionary
D and compute either oracle or LS.

Note that when using the Bernoulli noise, each pursuit has
a computational benefit over the previously presented additive
SR noise due to the decreased size of the signal’s dimension. In
Figure 17 we show the results of the multiplicative Bernoulli
noise compared to Gaussian additive noise. In this figure the
x axis represents the probability p of the Bernoulli noise. We

w.p. p
wp. 1—p°

I
00040 - —: MAP E
0.0035 - i MMSE
—— Gaussian (Best op,)
% 0.0030 - = Bernoulli

Fig. 17: Multiplicative Bernoulli SR noise vs. additive
Gaussian SR noise with 100 iterations of Algorithm 1.
D € R9X100 p ~ N(0,021), 00, = 0.2, |laf|, = 1 and
Qg ~ N (0, 1).

see that the two noise distributions lead to similar MSE results
for the optimal choice of ¢,, and p, while using multiplicative
Bernoulli SR noise is computationally efficient compared to
additive Gaussian SR noise.
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