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Abstract The large-scale geometry of hyperbolic metric spaces exhibits
many distinctive features, such as the stability of quasi-geodesics (the Morse
Lemma), the visibility property, and the homeomorphism between visual
boundaries induced by a quasi-isometry. We prove a number of closely analo-
gous results for spaces of rank n ≥ 2 in an asymptotic sense, under some weak
assumptions reminiscent of nonpositive curvature. For this purpose we replace
quasi-geodesic lines with quasi-minimizing (locally finite) n-cycles of rn vol-
ume growth; prime examples include n-cycles associated with n-quasiflats.
Solving an asymptotic Plateau problem and producing unique tangent cones
at infinity for such cycles, we show in particular that every quasi-isometry
between two proper CAT(0) spaces of asymptotic rank n extends to a class of
(n − 1)-cycles in the Tits boundaries.
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1 Introduction

1.1 Overview

Since the appearance of Gromov’s seminal paper [40] more than thirty years
ago, hyperbolicity has played a central role in geometric group theory, and
inspired a number of generalizations and variations. These include, amongoth-
ers, relative hyperbolicity [17,31,35,40,71], various notions of “directional”
hyperbolicity inherent in stability/contraction properties of (quasi-)geodesics
[12,22,24,49,52,76,77] (this in fact goes back to the notion of rank one
geodesics [5,6] which predates hyperbolicity), acylindrical hyperbolicity
[11,16,26,72], and hierarchical hyperbolicity [9,10,44,67]. (The literature is
far richer than indicated here—we apologize for omissions.) These approaches
provide unified descriptions of certain hyperbolicity phenomena in a variety
of non-hyperbolic settings such as non-uniform lattices in rank one symmet-
ric spaces, mapping class groups, Teichmüller space, and some CAT(0) cube
complexes and three-manifold groups.

In this paper we develop a notion of higher rank hyperbolicity that comple-
ments, and partly overlaps with, the concepts mentioned above. We show that
for metric spaces of asymptotic rank n ≥ 2 satisfying certain weak convex-
ity assumptions (see Sect. 1.2 below), characteristics of hyperbolicity such as
slimness of (quasi-)geodesic triangles, stability of quasi-geodesics, and vis-
ibility remain valid when properly reformulated in terms of n-dimensional
(relative) cycles. In particular, our results hold for proper and cocompact
CAT(0) spaces of Euclidean rank n and in that case they confirm several
aspects of Gromov’s discussion in Section 6 of [42], and also the well-known
principle that in nonpositively curved spaces hyperbolic behavior should man-
ifest itself in dimensions above the maximal dimension of a flat. Our approach
also encompasses the stability properties of maximal quasiflats that were used
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Higher rank hyperbolicity 599

in the proofs of the quasi-isometric rigidity of higher rank symmetric spaces
in [34,54,70].

We show further that a quasi-isometry between two properCAT(0) spaces of
asymptotic rank n ≥ 2 naturally induces an isomorphism between the groups
of compactly supported integral (n − 1)-cycles — metric integral currents in
the sense of Ambrosio–Kirchheim [1]—in their Tits boundaries. We remind
the reader that in the (hyperbolic) rank one case, the usual visual boundaries
are homeomorphic, whereas for n ≥ 2 this can fail, even if the quasi-isometry
is equivariant with respect to geometric actions of some finitely generated
group [25]. The construction of the above isomorphism involves, on the one
hand, an existence result for area-minimizing n-dimensional varieties with
prescribed asymptotics. To our knowledge, this is the first general such result
in a setting of nonpositive (rather than strictly negative) curvature (compare
Section 1 in [41]). On the other hand, we show that n-dimensional (quasi-)
minimizers with rn volume growth possess unique tangent cones at infinity, a
phenomenon that occurs rather rarely (compare, for example, the discussion
in [23]).

1.2 Setup

For simplicity, we assume throughout the paper that the underlying metric
space X = (X, d) is proper (that is, bounded closed subsets are compact). For
a first set of results, described in Sect. 1.4 below, we assume that X satisfies
the following two conditions for some n ≥ 1:

(CIn) (Coning inequalities) There is a constant c such that any two points
x, x ′ in X can be joined by a curve of length ≤ c d(x, x ′), and for
k = 1, . . . , n, every k-cycle R in some r -ball bounds a (k + 1)-chain
S with mass

M(S) ≤ c r M(R).

Here, for a general proper metric space X , we use metric integral cur-
rents (see Sect. 2). However, if X is bi-Lipschitz homeomorphic to
a finite-dimensional simplicial complex with standard metrics on the
simplices, then (by a variant of the Federer–Fleming deformation the-
orem [37]) one may equivalently take simplicial chains or singular
Lipschitz chains (with integer coefficients).

(ARn) (Asymptotic rank≤ n) No asymptotic cone of X contains an isometric
copy of an (n+1)-dimensional normed space. Equivalently, asrk(X) ≤
n, where asrk(X) is defined as the supremal k for which there exist a
sequence ri → ∞ and subsets Yi ⊂ X such that the rescaled sets
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(Yi , r
−1
i d) converge in the Gromov–Hausdorff topology to the unit

ball in some k-dimensional normed space (see Sect. 4).

Condition (CIn) is reminiscent of nonpositive curvature: if X is a CAT(0)
or Busemann space [73], the required inequality holds for the geodesic cone
S from the center of the r -ball over R (see Sect. 2.7). Furthermore, any n-
connected simplicial complex as above with a properly discontinuous and
cocompact simplicial action of a combable group satisfies (CIn); see Sec-
tion 10.2 in [33]. Every combable group, in particular every automatic group,
admits such an action.

When X is a cocompact CAT(0) or Busemann space, the asymptotic
rank asrk(X) equals the maximal dimension of an isometrically embedded
Euclidean or normed space, respectively [53]. More generally, for spaces sat-
isfying (CIn), condition (ARn) is equivalent to a sub-Euclidean isoperimetric
inequality for n-cycles [82]; this result, restated in Theorem 4.4, plays a key
role in this paper. If X is a geodesic Gromov hyperbolic space, then every
asymptotic cone of X is an R-tree, thus asrk(X) ≤ 1. Conversely, a space sat-
isfying (CI1) and (AR1) is Gromov hyperbolic (compare Corollary 1.3 in [82]
and the special case n = 1 of Theorem 1.1 below).

We remark that the asymptotic rank is a quasi-isometry invariant for metric
spaces [82], whereas condition (CIn) is preserved, for instance, by quasi-
isometries between proper and cocompact, n-connected simplicial complexes
with standard metrics on the simplices.

The main results discussed in the second half of the paper, starting from
Sect. 7, involve actual convexity properties or the ideal boundary of X (rather
than condition (CIn)). For the outline of these results in Sects. 1.5 and 1.6,
we will therefore assume that X is CAT(0). In the body of the paper, we will
work with the weaker sufficient condition that X admits a convex bicombing
— this disposes with geodesic uniqueness but retains Busemann convexity
for a distinguished family of geodesics; see Definition 7.1 and the comments
thereafter.

1.3 Quasi-minimizers with controlled density

We now discuss the objects we use to exhibit higher rank hyperbolic behavior,
that is, n-dimensional replacements for quasi-geodesics.

One approach would be to study n-quasiflats, or more generally, images
of quasi-isometric embeddings W → X for suitable subsets W ⊂ R

n . (See
Sect. 2.1 for the standard definitions of quasi-isometric maps.) However, since
geodesics may be viewed either as isometric embeddings of intervals or as
length minimizing curves, an alternative approach is to consider (relative) n-
cycles which “quasi-minimize” area (compare [7,41], for example).We follow
the latter approach in this paper: it turns out that it is not only more general,
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Higher rank hyperbolicity 601

but it also leads to cleaner and sharper results. The quasi-minimality condition
will be used in conjunction with a polynomial growth bound of order n. We
now provide more details.

We will work with the chain complexes I∗,c(X) and I∗,loc(X) of metric
integral currents with compact support and locally integral currents intro-
duced in [1,59]. This enables us in particular to pass to limits and to produce
area-minimizers with sharp density and monotonicity properties. All relevant
concepts and results will be reviewed in detail in Sect. 2. Every singular Lip-
schitz n-chain in X with integer coefficients may be viewed as an element of
In,c(X) (and, conversely, every integral current inRN admits an approximation
by Lipschitz chains; see Theorem 5.8 in [37]). Similarly, In,loc(X) comprises
all locally finite Lipschitz n-chains. Associated with every S ∈ In,loc(X)

is a locally finite Borel measure ‖S‖ on X whose total mass is denoted
M(S) := ‖S‖(X), and the support spt(S) ⊂ X is the smallest closed set
supporting ‖S‖. We let Zn,c(X) and Zn,loc(X) denote the respective cycle
groups for n ≥ 1.

A local cycle S ∈ Zn,loc(X) will be called (large-scale) quasi-minimizing
if there exist constants Q ≥ 1 and a ≥ 0 such that, for every x ∈ spt(S) and
almost every r > a, the restriction S Bx (r) ∈ In,c(X) of S to the closed
r -ball centered at x satisfies

M(S Bx (r)) ≤ QM(T )

for allT ∈ In,c(X)with ∂T = ∂(S Bx (r)); then S is (Q, a)-quasi-minimizing.
A (1, 0)-quasi-minimizing local cycle is (area-)minimizing. Every quasiflat in
X may be viewed as a quasi-minimizer (see Propositions 3.6 and 3.7 for two
precise statements).

We say that S ∈ Zn,loc(X) has (large-scale) controlled density if there exist
constants C > 0 and a ≥ 0 such that

�p,r (S) := ‖S‖(Bp(r))

rn
≤ C

for all p ∈ X and r > a; then S has (C, a)-controlled density. A generally
weaker condition is that the asymptotic density

�∞(S) := lim sup
r→∞

�p,r (S)

of S be finite; here p is fixed, however the upper limit is independent of p.
Similarly, for Z ∈ Zn,loc(X) and any p ∈ X , we define the asymptotic filling
density

F∞(Z) := lim sup
r→∞

Fp,r (Z),
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where Fp,r (Z) denotes the infimum of M(V )/rn+1 over all V ∈ In+1,c(X)

with spt(Z − ∂V ) ∩ Bp(r) = ∅ (that is, V “fills Z in Bp(r)”). For S, S′ ∈
Zn,loc(X), the relation F∞(S − S′) = 0 will serve as an appropriate notion of
asymptoticity.

We now discuss the main results in the paper.

1.4 Slim simplices, Morse Lemma, and asymptote classes

We first recall that a geodesic metric space X is (Gromov) hyperbolic [40] if
there exists a constant δ ≥ 0 such that every geodesic triangle in X is δ-slim,
that is, each of its sides lies in the closed δ-neighborhood of the union of
the other two. According to the Morse Lemma (which for the real hyperbolic
plane goes back to [68]), every (L , a)-quasi-geodesic segment in X is then at
Hausdorff distance atmostb fromageodesic segment connecting its endpoints,
where the constant b depends only on L , a and δ. Thus any triangle composed
of three (L , a)-quasi-geodesic segments is still (δ + 2b)-slim.

We prove the following higher rank analog of this property.

Theorem 1.1 (slim simplices) Let X be a proper metric space satisfying
conditions (CIn) and (ARn) for some n ≥ 1. Let � be a Euclidean (n + 1)-
simplex, and let f : ∂� → X be a map such that for every facet W of �, the
restriction f |W is an (L , a)-quasi-isometric embedding. Then, for every facet
W , the image f (W ) is contained in the closed D-neighborhood of f

(
∂� \ W

)

for some constant D = D(X, n, L , a).

Here � is the convex hull of a set of n + 2 points in R
n+1 such that � has

non-empty interior, and a facet of � is the convex hull of n + 1 of them.
The proof of this result depends, on the one hand, on an iterated application

of the aforementioned sub-Euclidean isoperimetric inequality. For a cycle Z ∈
Zn,c(X)with controlled density, this provides an arbitrarily small upper bound
Fp,r (Z) < ε on the filling density in any ball Bp(r) of sufficiently large radius,
depending on ε (Proposition 4.5). On the other hand, if Z is “piecewise (Q, a)-
quasi-minimizing”, then Fx,r (Z) ≥ c = c(X, n, Q) > 0 for any ball Bx (r)
with r > 4a centered on one of the pieces and disjoint from the union of the
remaining ones (Lemma 3.4); thus x cannot be too far away from this union.
For an appropriately chosen cycle Z approximating the image of f : ∂� → X ,
this yields Theorem 1.1 (see Theorem 5.2).

In combination with the existence of area-minimizing integral currents with
prescribed boundary, a similar argument yields a higher rank analog of the
Morse Lemma stated above; see Theorem 5.4. We further establish the fol-
lowing asymptotic version of this result (see Theorem 5.7 for a generalization
including boundaries).
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Theorem 1.2 (asymptotic Morse Lemma) Let X be a proper metric space
satisfying conditions (CIn) and (ARn) for some n ≥ 1. Suppose that S ∈
Zn,loc(X) is (Q, a)-quasi-minimizing and has (C, a)-controlled density. Then
there exists an area-minimizing local cycle S̃ ∈ Zn,loc(X) such that F∞(S −
S̃) = 0, and every such S̃ satisfies�∞(S̃) ≤ �∞(S) and dH(spt(S), spt(S̃)) ≤
b for some constant b = b(X, n, Q,C, a).

This implies in particular the following analog of Morse’s Theorem 1 [68]
on the stability of geodesics in the hyperbolic plane. We remark that for a
Riemannian manifold X , metric locally integral currents in X can be identified
with the classical ones from [36].

Corollary 1.3 (persistence of minimizers) Let X = (X, g) be a Hadamard
manifold of asymptotic rank n ≥ 1, and suppose that S ∈ Zn,loc(X) is area-
minimizing and has controlled density. Then for every Riemannian metric g̃ on
X bi-Lipschitz equivalent to g there is an S̃ ∈ Zn,loc(X) that is area-minimizing
with respect to g̃ and whose support is at finite Hausdorff distance from spt(S).

Note that if d̃ is the distance function on X induced by g̃, then X = (X, d̃)

satisfies the assumptions of Theorem 1.2, and S is quasi-minimizing and has
controlled density with respect to d̃. Hence, the result follows. By regularity
theory, spt(S̃) is a smooth n-dimensional submanifold except for a closed
singular set of Hausdorff dimension at most n − 2 (see [27] for a guide to
the literature). For example, S could be the current associated to an oriented
n-flat in (X, g) (but see also Theorem 1.6 below). The primary instance of
Corollary 1.3 is when (X, g) is the universal covering of a compact manifold
of nonpositive sectional curvature such that (X, g) contains no (n + 1)-flat,
and g̃ is the lift of an arbitrary metric on the quotient.

Morse’s result was generalized in various directions to surfaces of arbitrary
dimension and codimension in spaces of negative curvature [7,41,55,56,58]
and to totally geodesic hyperplanes in some product spaces [57]. There is
a parallel development based on periodicity (rather than hyperbolicity) and
limited to codimension one, starting with the work of Hedlund [45] on the
two-dimensional torus and including the investigation of laminations of com-
pact Riemannian manifolds by minimal hypersurfaces; see [4,20,69] and the
references therein. Corollary 1.3 is now the first result in this area for higher
rank and arbitrary codimension.

The tools developed so far enable us further to introduce visual metrics on
sets of asymptote classes of local n-cycles, in analogy with the usual metriza-
tion of the visual boundary of a geodesic Gromov hyperbolic space. Let X be
a proper metric space satisfying condition (CIn) for n = asrk(X) ≥ 1. We
consider the group

Z∞
n,loc(X) := {S ∈ Zn,loc(X) : �∞(S) < ∞}
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and the quotient spaceZ X := Z∞
n,loc(X)/∼F of F-asymptote classes, where

S ∼F S′ if and only if F∞(S − S′) = 0. Making use of the existence of
area-minimizers in each class [S], we define an analog of the Gromov product
of two points at infinity and show that for any constants C > 0 and a ≥
0, the set ZC,a X of all classes represented by some element with (C, a)-
controlled density admits an analog ofGromov’s δ-inequality (Proposition 6.2)
and carries a family of visualmetrics, with respect towhichZC,a X is compact;
see Theorem 6.3.

1.5 Asymptotic geometry of local cycles

For the remainder of the introduction, we will be mainly concerned with
asymptotic properties of local n-cycles in spaces of asymptotic rank n ≥ 2, and
relations with the ideal boundary of X . For this reason we assume in Sects. 1.5
and 1.6 that X is a CAT(0) space, so that we may make use of the boundary at
infinity ∂∞X and the compactification X := X ∪ ∂∞X—both equipped with
the cone topology—as well as the Tits boundary ∂TX and the Tits cone CTX .
As mentioned earlier, all of the results discussed here hold more generally if X
is a proper metric space equipped with a convex bicombing, and the respective
statements will be given in the body of the paper.

A point in ∂∞X is an asymptote class of unit speed rays in X . The Tits cone
CTX may be defined as the set of asymptote classes of rays � : R+ → X of
arbitrary (constant) speed s ≥ 0, endowed with the metric dT, where

dT([�], [�′]) = lim
t→∞

1

t
d(�(t), �′(t))

is the asymptotic slope of the convex function t �→ d(�(t), �′(t)). For every
p ∈ X there is a canonical 1-Lipschitz map

canp : CTX → X

such that canp([�]) = �(1) for every ray � with �(0) = p. The Tits
boundary ∂TX is the unit sphere in CTX and agrees with ∂∞X as a set,
but is endowed with the finer topology induced by dT. With respect to
the (equivalent) angle metric 0 ≤ � T ≤ π characterized by the relation
2 sin(� T(u, v)/2) = dT(u, v), ∂TX is a CAT(1) space, and CTX agrees with
the Euclidean cone over (∂TX, � T) and is thus a CAT(0) space. If X is a sym-
metric space of non-compact type or a thick Euclidean building of rank n ≥ 2,
then (∂TX, � T) has the structure of a thick (n − 1)-dimensional spherical
building.
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For a local cycle S ∈ Zn,loc(X), we let

	(S) ⊂ ∂∞X

denote the limit set of spt(S), that is, the set of all points in ∂∞X belonging
to the closure of spt(S) in X . We say that S is conical with respect to some
point p ∈ X if S is invariant, for every λ ∈ (0, 1), under the λ-Lipschitz map
h p,λ : X → X that takes x to σpx (λ), where σpx : [0, 1] → X denotes the
geodesic from p to x .

The following result summarizes Theorem 7.3, Proposition 8.2, and Theo-
rem 9.4 for the case when X is CAT(0). It shows in particular that the group
Z X = Z∞

n,loc(X)/∼F of F-asymptote classes is canonically isomorphic to
the group of integral (n − 1)-cycles in ∂TX .

Theorem 1.4 (Tits boundary) Let X be a proper CAT(0) space with
asrk(X) = n ≥ 2. If S ∈ Z∞

n,loc(X), then for every p ∈ X there is a unique
representative Sp,0 ∈ [S] ∈ Z X that is conical with respect to p, and there
is a unique local cycle � ∈ Zn,loc(CTX) such that canp# � = Sp,0 for all
p ∈ X; furthermore, � is conical with respect to the cone vertex o, and the
spherical slice ∂(� Bo(1)) defines an element ∂TS = ∂T[S] ∈ Zn−1,c(∂TX).
This yields an isomorphism

∂T : Z X → Zn−1,c(∂TX).

For every p ∈ X, spt(∂TS) = 	(Sp,0) ⊂ 	(S), and if S is quasi-minimizing,
then 	(Sp,0) = 	(S).

We call ∂TS = ∂T[S] the Tits boundary of S or [S], respectively. Due to
the rank assumption, Im,c(∂TX) = {0} for m > n − 1, thus Zn−1,c(∂TX)

agrees with the homology groupHn−1,c(∂TX) of integral currents, which is in
turn isomorphic to the usual singular homology group Hn−1(∂TX) (see [74]).
Hence, Z X is isomorphic to Hn−1(∂TX).

Regarding the last assertion of Theorem 1.4, we will in fact show that
every quasi-minimizer S ∈ Z∞

n,loc(X) is asymptotically conical in that spt(S)

and spt(Sp,0) lie within “sublinear” distance from each other, in terms of the
distance to p; see (the proof of) Theorems 8.1 and 8.6. The following key result,
which is part of the first of these two theorems, may be viewed as an analog
of the visibility axiom for a Hadamard manifold X . This postulates that for all
p ∈ X and ε > 0 there is an r = r(p, ε) such that every geodesic segment
[x, y] ⊂ X at distance at least r from p subtends an angle � p(x, y) ≤ ε at p;
see Definition 4.2 and Remark 4.3 in [32] (compare pp. 294ff and 400 in [18]
for a discussion in the context of CAT(0) spaces).
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Theorem 1.5 (visibility property) Let X be a proper CAT(0) space with
asrk(X) = n ≥ 2. Suppose that S ∈ Zn,loc(X) is (Q, a)-quasi-minimizing
and satisfies �p,r (S) ≤ C for some p ∈ X and for all r > a. Then for
every ε > 0 there exists a constant rε = rε(X, Q,C, a) such that for every
x ∈ spt(S) with d(p, x) ≥ rε there exists a unit speed ray � emanating from p
and representing a point in 	(S) such that inf t≥0 d(x, �(t)) < ε d(p, x).

The next result solves an asymptotic Plateau problem (see alsoTheorems 8.3
and 9.5). This may be viewed as a higher rank analog of the property that any
pair of distinct points in the visual boundary ∂∞X can be joined by a geodesic
line in X .

Theorem 1.6 (minimizer with prescribed Tits data) Let X be a properCAT(0)
space with asrk(X) = n ≥ 2. Then for every cycle R ∈ Zn−1,c(∂TX) there
exists an area-minimizing local cycle S ∈ Z∞

n,loc(X) with ∂TS = R. Every
such S satisfies 	(S) = spt(R) and �p,r (S) ≤ �∞(S) = M(R)/n for all
p ∈ X and r > 0, in particular S has controlled density, and M(R)/n =
�∞(S) ≥ ωn whenever R �= 0.

Here ωn denotes the Lebesgue measure of the unit ball in Rn . The equality
�∞(S) = ωn clearly holds if S is the current associated with an oriented n-flat
in X .

For ambient spaces of strictly negative curvature, minimal varieties of
arbitrary dimension and codimension with prescribed limit sets were first con-
structed in [2,3]. We refer to [21,38,41,58] and the references therein for
some generalizations and variations of these results. In Section 8.3 of [39],
Gromov raised the question about the asymptotic behavior of minimal vari-
eties in spaces of nonpositive curvature and symmetric spaces in particular.
Theorem 1.6 addresses this for n-currents in spaces of rank n.

Theorems 1.4 and 1.6 show in particular that the three classes of conical,
minimizing, or quasi-minimizing elements of Z∞

n,loc(X) give rise to the same
collection of limit sets, which also agrees with {spt(R) : R ∈ Zn−1,c(∂TX)}.
We denote this canonical class of subsets of ∂∞X byL X . From Theorems 1.5
and 1.6wededuce the following result (seeTheorems 8.5, and [43] for a closely
related discussion).

Theorem 1.7 (dense orbit) Let X be a proper CAT(0) space of asymptotic
rank n ≥ 2, and suppose that � is a cocompact group of isometries of X.
Then, for every non-empty set 	 ∈ L X, the orbit of 	 under the action of
�, extended to X = X ∪ ∂∞X, is dense in ∂∞X (with respect to the cone
topology).
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1.6 Applications to quasi-isometries

We recall that every quasi-isometric embedding f : X → X̄ between two
geodesic Gromov hyperbolic spaces naturally induces a topological embed-
ding ∂∞ f : ∂∞X → ∂∞ X̄ of their visual boundaries. In fact, ∂∞ f is a power
quasi-symmetric (and hence bi-Hölder) embedding with respect to any pair of
visual metrics on ∂∞X and ∂∞ X̄ [15,19]. The proof is based on the Morse
Lemma.

We now consider a quasi-isometric embedding f : X → X̄ between two
proper CAT(0) spaces of asymptotic rank n ≥ 2. Theorems 1.4 and 1.6 show
that every (n − 1)-cycle in ∂TX corresponds to an F-asymptote class in X
which is represented by a minimizing local n-cycle with controlled density.
Furthermore, for any quasi-minimizer S ∈ Zn,loc(X) with controlled density,
there exists a Lipschitz map g : X → X̄ such that supx∈spt(S) d( f (x), g(x)) <

∞, and this map takes S to a local cycle g#S ∈ Zn,loc(X̄) that is again quasi-
minimizing and has controlled density (see Proposition 10.3). The ambiguity
in the choice of g disappears on the level of F-asymptote classes. In fact, there
is a unique monomorphism

Z f : Z X → Z X̄

such that Z f [S] = [g#S] whenever S ∈ Z∞
n,loc(X) and g is a Lipschitz map

as above; see Theorem 10.6. Since classes in Z X̄ are, in turn, in bijective
correspondence with (n − 1)-cycles in ∂T X̄ , this provides a canonical map
from Zn−1,c(∂TX) into Zn−1,c(∂T X̄) induced by f .

Theorem 1.8 (mapping Tits cycles) Let X, X̄ be two proper CAT(0) spaces
of asymptotic rank n ≥ 2, and suppose that f : X → X̄ is a quasi-isometric
embedding. Then there exists a unique monomorphism

fT : Zn−1,c(∂TX) → Zn−1,c(∂T X̄)

such that fT(∂TS) = ∂T(g#S) whenever S ∈ Z∞
n,loc(X) and g : X → X̄ is a

Lipschitz map with supx∈spt(S) d( f (x), g(x)) < ∞. If f is a quasi-isometry,
then fT is an isomorphism.

In particular, by the remark after Theorem 1.4, if X and X̄ are quasi-
isometric, then Hn−1(∂TX) are Hn−1(∂T X̄) are isomorphic.

The next result describes the effect of a quasi-isometry on intersection
patterns of limit sets. We let P(L X) denote the set, partially ordered by
inclusion, of all intersections

⋂k
i=1 	i such that 1 ≤ k < ∞ and 	i ∈ L X .

Recall thatL X = {spt(R) : R ∈ Zn−1,c(∂TX)}.
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Theorem 1.9 (mapping limit sets) Let f : X → X̄ be a quasi-isometry
between two proper CAT(0) spaces of asymptotic rank n ≥ 2. Then there
exists an isomorphism (order preserving bijection)

L f : P(L X) → P(L X̄)

such thatL f (spt(R)) = spt( fT(R)) for all R ∈ Zn−1,c(∂TX). Furthermore,
for every P ∈ P(L X) and P̄ := L f (P) there is a pointed L-bi-Lipschitz
homeomorphism between the cones R+P ⊂ CTX and R+ P̄ ⊂ CT X̄ , where
L is the multiplicative quasi-isometry constant of f .

This follows from Theorem 11.2. For a higher rank symmetric space X
of non-compact type, the partially ordered set P(L X) contains the simpli-
cial building structure of ∂TX . This structure is pivotal in the proofs of both
Mostow’s rigidity Theorem [69] and the general non-equivariant rigidity The-
orem [34,54] for such spaces. Indeed, the latter may be derived relatively
quickly from Theorem 1.9 in conjunction with Tits’ work [78] and the case
k = 1 of the following result.

Theorem 1.10 (structure of quasiflats) Let X be a proper CAT(0) space of
asymptotic rank n ≥ 2, and let f : Rn → X be an (L , a)-quasi-isometric
embedding with limit set 	 := ∂∞( f (Rn)). Then the coneR+	 ⊂ CTX is L-
bi-Lipschitz homeomorphic toRn. Suppose that 	 is contained in the union of
the limit sets of k n-flats in X with a common point p ∈ X, and let Cp(	) ⊂ X
denote the geodesic cone from p over	. Then f (Rn) is within distance at most
b from Cp(	) for some constant b depending only on X, L , a, k. In the case
k = 1, f (Rn) is at Hausdorff distance at most b from the flat Cp(	).

We refer to Theorem 11.3 and the comments thereafter for a more general
statement and some implications.

2 Preliminaries

2.1 Metric notions

Let X = (X, d) be a metric space. We write

Bp(r) := {x ∈ X : d(p, x) ≤ r}, Sp(r) := {x ∈ X : d(p, x) = r}
for the closed ball and sphere with radius r ≥ 0 and center p ∈ X .

A set N ⊂ X is called δ-separated, for a constant δ ≥ 0, if d(x, y) > δ for
every pair of distinct points x, y ∈ N . For A ⊂ X , we call a subset N ⊂ A a
δ-net in A if the family of all balls Bx (δ)with x ∈ N covers A. Every maximal
(with respect to inclusion) δ-separated subset of A is a δ-net in A.
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A map f : X → Y into another metric space Y = (Y, d) is L-Lipschitz,
for a constant L ≥ 0, if d( f (x), f (x ′)) ≤ L d(x, x ′) for all x, x ′ ∈ X . The
smallest such L is the Lipschitz constant Lip( f ) of f . The map f : X → Y is
an L-bi-Lipschitz embedding if L−1d(x, x ′) ≤ d( f (x), f (x ′)) ≤ L d(x, x ′)
for all x, x ′ ∈ X . For an L-Lipschitz function f : A → R defined on a set
A ⊂ X ,

f̄ (x) := sup{ f (a) − L d(a, x) : a ∈ A} (x ∈ X)

defines an L-Lipschitz extension f̄ : X → R of f . Every L-Lipschitz map
f : A → R

n , A ⊂ X , admits a
√
nL-Lipschitz extension f̄ : X → R

n .
A map f : X → Y between two metric spaces is called an (L , a)-quasi-

isometric embedding, for constants L ≥ 1 and a ≥ 0, if

L−1d(x, x ′) − a ≤ d( f (x), f (x ′)) ≤ L d(x, x ′) + a

for all x, x ′ ∈ X . A quasi-isometry f : X → Y has the additional property that
Y is within finite distance of the image of f . An (L , a)-quasi-geodesic segment
in X is the image of an (L , a)-quasi-isometric embedding of some compact
interval. An n-dimensional quasiflat in X is the image of a quasi-isometric
embedding of Rn .

2.2 Currents in metric spaces

Currents of finitemass in completemetric spaceswere introduced byAmbrosio
and Kirchheim in [1]. Here we will mainly work with the localized variant of
this theory for locally compact metric spaces, as described in [59]. However,
to avoid certain technicalities, we will assume throughout that the underlying
metric space X is proper, hence complete and separable.

For every integer n ≥ 0, let Dn(X) denote the set of all (n + 1)-
tuples (π0, . . . , πn) of real valued functions on X such that π0 is Lipschitz
with compact support spt(π0) and π1, . . . , πn are locally Lipschitz. (In the
case that X = R

N and the entries of (π0, . . . , πn) are smooth, this tuple
should be thought of as representing the compactly supported differential n-
form π0 dπ1 ∧ . . . ∧ dπn .) An n-dimensional current S in X is a function
S : Dn(X) → R satisfying the following three conditions:

(1) S is (n + 1)-linear;
(2) S(π0,k, . . . , πn,k) → S(π0, . . . , πn)whenever πi,k → πi pointwise on X

with supk Lip(πi,k |K ) < ∞ for every compact set K ⊂ X (i = 0, . . . , n)
and with

⋃
k spt(π0,k) ⊂ K for some such set;

(3) S(π0, . . . , πn) = 0 whenever one of the functions π1, . . . , πn is constant
on a neighborhood of spt(π0).
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610 B. Kleiner, U. Lang

We write Dn(X) for the vector space of all n-dimensional currents in X . The
defining conditions already imply that every S ∈ Dn(X) is alternating in the
last n arguments and satisfies a product derivation rule in each of these. The
definition is further motivated by the fact that every function w ∈ L1

loc(R
n)

induces a current �w� ∈ Dn(R
n) defined by

�w�(π0, . . . , πn) :=
∫

wπ0 det
[
∂ jπi

]n
i, j=1 dx

for all (π0, . . . , πn) ∈ Dn(Rn), where the partial derivatives ∂ jπi exist almost
everywhere according to Rademacher’s theorem. Note that this just corre-
sponds to the integration of the differential form π0 dπ1 ∧ . . . ∧ dπn over Rn ,
weighted by w. For the characteristic function χW of a Borel setW ⊂ R

n , we
put �W � := �χW �. (See Section 2 in [59] for details.)

2.3 Support, push-forward, and boundary

For every S ∈ Dn(X) there exists a smallest closed subset of X , the support
spt(S) of S, such that the value S(π0, . . . , πn) depends only on the restrictions
of π0, . . . , πn to this set. For a proper Lipschitz map f : X → Y into another
proper metric space Y , the push-forward f#S ∈ Dn(Y ) is defined simply by

( f#S)(π0, . . . , πn) := S(π0 ◦ f, . . . , πn ◦ f )

for all (π0, . . . , πn) ∈ Dn(Y ). This definition can be extended to proper
Lipschitz maps f : spt(S) → Y via appropriate extensions of the functions
πi ◦ f to X . In either case, spt( f#S) ⊂ f (spt(S)). For n ≥ 1, the boundary
∂S ∈ Dn−1(X) of S ∈ Dn(X) is defined by

(∂S)(π0, . . . , πn−1) := S(τ, π0, . . . , πn−1)

for all (π0, . . . , πn−1) ∈ Dn−1(X) and for any compactly supported Lipschitz
function τ that is identically 1 on some neighborhood of spt(π0). If τ̃ is another
such function, then π0 vanishes on a neighborhood of spt(τ − τ̃ ) and ∂S is
thus well-defined by (1) and (3). Similarly one can check that ∂ ◦ ∂ = 0. The
inclusion spt(∂S) ⊂ spt(S) holds, and f#(∂S) = ∂( f#S) for f : spt(S) → Y
as above. (See Section 3 in [59].)

2.4 Mass

Let S ∈ Dn(X). A tuple (π0, . . . , πn) ∈ Dn(X) will be called normalized
if the restrictions of π1, . . . , πn to the compact set spt(π0) are 1-Lipschitz.
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For an open set U ⊂ X , the mass ‖S‖(U ) ∈ [0, ∞] of S in U is then
defined as the supremum of

∑
j S(π0, j , . . . , πn, j ) over all finite families of

normalized tuples (π0, j , . . . , πn, j ) ∈ Dn(X) such that
⋃

j spt(π0, j ) ⊂ U
and

∑
j |π0, j | ≤ 1. Note that ‖S‖(U ) > 0 if and only if U ∩ spt(S) �= ∅.

This induces a regular Borel measure ‖S‖ on X , whose total mass ‖S‖(X) is
denoted byM(S). For Borel setsW, A ⊂ R

n , ‖�W �‖(A) equals the Lebesgue
measure of W ∩ A. If T ∈ Dn(X) is another n-current in X , then clearly

‖S + T ‖ ≤ ‖S‖ + ‖T ‖.

We will now assume that the measure ‖S‖ is locally finite (and hence finite on
bounded sets, as X is proper). Then it can be shown that

|S(π0, . . . , πn)| ≤
∫

X
|π0| d‖S‖

for every normalized tuple (π0, . . . , πn) ∈ Dn(X). This inequality allows to
define the restriction S A ∈ Dn(X) of S to a Borel set A ⊂ X by

(S A)(π0, . . . , πn) := lim
k→∞ S(τk, π1, . . . , πn)

for any sequence of compactly supported Lipschitz functions τk converging in
L1(‖S‖) to χAπ0. The measure ‖S A‖ equals the restriction ‖S‖ A of ‖S‖.
If f : spt(S) → Y is a proper L-Lipschitz map into a proper metric space Y
and B ⊂ Y is a Borel set, then ( f#S) B = f#(S f −1(B)) and

‖ f#S‖(B) ≤ Ln ‖S‖( f −1(B)).

(See Section 4 in [59].)

2.5 Integral currents

A current S ∈ Dn(X) is called locally integer rectifiable if the measure ‖S‖
is locally finite and concentrated on the union of countably many Lipschitz
images of compact subsets of Rn , and the following integer multiplicity con-
dition holds: for every Borel set A ⊂ X with compact closure and every
Lipschitz map φ : X → R

n , the current φ#(S A) ∈ Dn(R
n) is of the form

�w� for some integer valued w = wA,φ ∈ L1(Rn). Then ‖S‖ turns out to
be absolutely continuous with respect to n-dimensional Hausdorff measure.
Furthermore, push-forwards and restrictions to Borel sets of locally integer
rectifiable currents are again locally integer rectifiable.
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A current S ∈ Dn(X) is called a locally integral current if S is locally integer
rectifiable and, for n ≥ 1, ∂S satisfies the same condition. (Remarkably, this
is the case already when ‖∂S‖ is locally finite, provided S is locally integer
rectifiable; see Theorem 8.7 in [59].) This yields a chain complex of abelian
groups In,loc(X). We write In,c(X) for the respective subgroups of integral
currents with compact support. For example, if � ⊂ R

n is an n-simplex and
f : � → X is a Lipschitz map, then f#��� ∈ In,c(X). Thus every singular
Lipschitz chain in X with integer coefficients defines an element of In,c(X).
For X = R

N , there is a canonical chain isomorphism from I∗,c(R
N ) to the

chain complex of “classical” integral currents in RN originating from [37].
For n ≥ 1, we let Zn,loc(X) ⊂ In,loc(X) and Zn,c(X) ⊂ In,c(X) denote the

subgroups of currents with boundary zero. An element of I0,c(X) is an integral
linear combination of currents of the form �x�, where �x�(π0) = π0(x) for
all π0 ∈ D0(X). We let Z0,c(X) ⊂ I0,c(X) denote the subgroup of linear
combinations whose coefficients sum up to zero. The boundary of a current
in I1,c(X) belongs to Z0,c(X). Given Z ∈ Zn,c(X), for n ≥ 0, we will call
V ∈ In+1,c(X) a filling of Z if ∂V = Z .

2.6 Slicing

Let S ∈ In,loc(X) be a locally integral current of dimension n ≥ 1. Note that
both ‖S‖ and ‖∂S‖ are locally finite (that is, S is locally normal, see Section 5
in [59]). Let � : X → R be a Lipschitz function, and let Bs := {� ≤ s}
denote the closed sublevel set for s ∈ R. The corresponding slice of S is the
(n − 1)-dimensional current

〈S, �, s〉 := ∂(S Bs) − (∂S) Bs

with support in {� = s} ∩ spt(S). We will use this construction exclusively in
the case that Bs ∩ spt(S) is compact for all s (typically � will be the distance
function to a point in X ). Then, for almost every s, 〈S, �, s〉 ∈ In−1,c(X) and
hence S Bs ∈ In,c(X). Furthermore, for a < b, the coarea inequality

∫ b

a
M(〈S, �, s〉) ds ≤ Lip(�) ‖S‖({a < � < b})

holds. In particular, for every c ∈ (0, b− a], the set of all s ∈ (a, b) such that

M(〈S, �, s〉) ≤ c−1 Lip(�) ‖S‖({a < � < b})

has measure > b − a − c. (See Section 6 and Theorem 8.5 in [59].)
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2.7 Homotopies, cones, and isoperimetric inequality

Let �0, 1� ∈ I1,c([0, 1]) denote the current defined by

�0, 1�(π0, π1) :=
∫ 1

0
π0(t)π

′
1(t) dt.

Note that ∂�0, 1� = �1� − �0�. We endow [0, 1] × X with the usual l2 product
metric. There exists a canonical product construction

S ∈ In,c(X) � �0, 1� × S ∈ In+1,c([0, 1] × X)

for all n ≥ 0. Suppose now that Y is another proper metric space, h : [0, 1] ×
X → Y is a Lipschitz homotopy from f = h(0, ·) to g = h(1, ·), and
S ∈ In,c(X). Then h#(�0, 1� × S) is an element of In+1,c(Y ) with boundary

∂ h#(�0, 1� × S) = g#S − f#S − h#(�0, 1� × ∂S)

(for n = 0 the last term is zero). If h(t, ·) is L-Lipschitz for every t , and h(·, x)
is a geodesic of length at most D for every x ∈ spt(S), then

M(h#(�0, 1� × S)) ≤ (n + 1)LnDM(S).

(SeeSection2.3 in [79].)An important special case of this iswhen R ∈ Zn,c(X)

and h(·, x) = σpx is a geodesic from some fixed point p ∈ X to x for every
x ∈ spt(R). Then h#(�0, 1� × R) ∈ In+1,c(X) is the cone from p over R
determined by this family of geodesics, whose boundary is R. If the family of
geodesics satisfies the convexity condition

d(h(t, x), h(t, x ′)) = d(σpx (t), σpx ′(t)) ≤ t d(x, x ′)

for all x, x ′ ∈ spt(R) and t ∈ [0, 1], and if spt(R) ⊂ Bp(r), then

M(h#(�0, 1� × R)) ≤ r M(R).

Finally, if X is a CAT(0) space, then this inequality holds with r/(n + 1) in
place of r (see Theorem 4.1 in [81]).

Definition 2.1 (coning inequalities) For n ≥ 0, we say that X satisfies con-
dition (CIn) if for every k ∈ {0, . . . , n} there is a constant ck such that every
R ∈ Zk,c(X) with support in some r -ball possesses a filling S ∈ Ik+1,c(X)

with mass

M(S) ≤ ckr M(R).
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Condition (CI0) is satisfied if and only if X is quasi-convex, that is, there is
a constant c′

0 such that every pair of points x, x
′ in X can be joined by a curve

of length less than or equal to c′
0 d(x, x ′).

Coning inequalities are instrumental for isoperimetric filling inequalities.

Theorem 2.2 (isoperimetric inequality) Let n ≥ 2, and let X be a proper
metric space satisfying condition (CIn−1). Then every cycle R ∈ Zn−1,c(X)

possesses a filling T ∈ In,c(X) with mass

M(T ) ≤ γ M(R)n/(n−1)

for some constant γ > 0 depending only on the constants c1, . . . , cn−1 from
Definition 2.1.

(Here the condition (CI0) is actually not needed.) This was shown in more
general form for Ambrosio–Kirchheim currents in complete metric spaces
in [79]; see Theorem1.2 and the remark thereafter regarding compact supports.
For earlier results of this type, see Remark 6.2 in [37] and the comments after
Corollary 3.4.C in [39].

2.8 Convergence, compactness, and Plateau problem

A sequence (Si ) in In,loc(X) is said to converge weakly to a current S ∈
In,loc(X) if Si → S pointwise as functionals on Dn(X). Then

‖S‖(U ) ≤ lim inf
i→∞ ‖Si‖(U )

for every open set U ⊂ X . Furthermore, weak convergence commutes with
the boundary operator and with push-forwards.

Amoregeometric notionof convergence,with analogous properties, is given
as follows. A sequence (Si ) in In,loc(X) converges in the local flat topology to
a current S ∈ In,loc(X) if for every compact set K ⊂ X there exists a sequence
(Vi ) in In+1,loc(X) such that

(‖S − Si − ∂Vi‖ + ‖Vi‖)(K ) → 0.

This implies that Si → S weakly. The flat distance between two elements
S, S′ ∈ In,c(X) is defined by

F (S − S′) := inf{M(S − S′ − ∂V ) + M(V ) : V ∈ In+1,c(X)};

this yields a metric on In,c(X).
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We now state the compactness theorem for locally integral currents
and minimizing locally integral currents. An element S ∈ In,loc(X) is
(area-)minimizing if

M(S B) ≤ M(T )

whenever B ⊂ X is a Borel set such that S B ∈ In,c(X) and T ∈ In,c(X)

satisfies ∂T = ∂(S B).

Theorem 2.3 (compactness) Let X be a proper metric space, and let n ≥ 1.
Suppose that (Si ) is a sequence in In,loc(X) such that

sup
i

(‖Si‖ + ‖∂Si‖)(K ) < ∞

for every compact set K ⊂ X.

(1) There is a subsequence (Si j ) that converges weakly to a current S ∈
In,loc(X).

(2) Suppose, in addition, that X satisfies condition (CIn). Then there is a
subsequence (Si j ) that converges in the local flat topology to a current
S ∈ In,loc(X). If each Si is area-minimizing, then so is S.

For (2), a uniformly local version of condition (CIn) suffices; compare the
assumptions in [80].

Proof For (1), see Theorem 8.10 in [59].
For the proof of (2), pick a base point p ∈ X . By passing to a further sub-

sequence, denoted again by (Si j ), one can arrange that there exists a sequence
of radii 0 < rk ↑ ∞ such that for every Bk := Bp(rk), the restrictions Si j Bk
and S Bk are in In,c(X),

sup
j

(
M(Si j Bk) + M(∂(Si j Bk))

)
< ∞,

and Si j Bk → S Bk weakly, as j → ∞ (see the proof of Proposition 6.6
in [59]). Now, to show that Si j → S in the local flat topology, fix an index
k. Since X satisfies condition (CIn), it follows from Theorem 1.4 in [80] that
F ((S − Si j ) Bk) → 0. Hence, there exists a sequence (Vj ) in In+1,c(X)

such that, for Tj := (S − Si j ) Bk − ∂Vj ,

M(Tj ) + M(Vj ) → 0.

Since ‖S−Si j −∂Vj‖(Bk) ≤ ‖Tj‖(Bk)+‖(S−Si j ) (X \Bk)‖(Bk) ≤ M(Tj )

and ‖Vj‖(Bk) ≤ M(Vj ), this gives the result.
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Suppose now that each Si is minimizing. To prove that S is minimizing, it
suffices to show that for every fixed k,

M(S Bk) ≤ M(T )

for all T ∈ In,c(X) with ∂T = ∂(S Bk). Let Vj and Tj be given as above,
and note that then ∂(T − Tj ) = ∂(Si j Bk). By the minimality of Si j ,

M(Si j Bk) ≤ M(T − Tj ) ≤ M(T ) + M(Tj ).

Since Si j Bk → S Bk weakly andM(Tj ) → 0, it follows that

M(S Bk) ≤ lim inf
j→∞ M(Si j Bk) ≤ M(T ),

as desired. ��
From Theorem 2.2 and the first part of Theorem 2.3 one obtains a solu-

tion of the Plateau problem in spaces with coning inequalities (compare also
Theorem 10.6 in [1] and Theorem 1.6 in [79]).

Theorem 2.4 (minimizing filling) Let n ≥ 1, and let X be a proper metric
space satisfying condition (CIn−1). Then for every R ∈ Zn−1,c(X) there exists
a filling S ∈ In,c(X) of R with mass

M(S) = inf{M(S′) : S′ ∈ In,loc(X), ∂S′ = R}.

Furthermore, spt(S) is within distance at most (M(S)/δ)1/n from spt(R) for
some constant δ > 0 depending only on n and the constants c1, . . . , cn−1 from
Definition 2.1.

Proof Let S denote the set of all S′ ∈ In,loc(X) with ∂S′ = R. By condi-
tion (CIn−1), S is non-empty. Choose a sequence (Si ) inS such that

M(Si ) → μ := inf{M(S′) : S′ ∈ S } for i → ∞.

By Theorem 2.3, some subsequence (Si j ) converges weakly to a current S ∈
S , andM(S) ≤ lim inf j→∞ M(Si j ), thusM(S) = μ. It is well-known that an
isoperimetric inequality of Euclidean type as in Theorem 2.2 leads to a lower
density bound for minimizing n-currents: if x ∈ spt(S) and r > 0 are such
that Bx (r) ∩ spt(∂S) = ∅, then ‖S‖(Bx (r)) ≥ δrn , where δ := n−nγ 1−n for
n ≥ 2 and δ := 2 for n = 1 (see Theorem 9.13 in [37] and the special case
(Q, a) = (1, 0) of Lemma 3.3 below). This gives the desired distance bound
and shows in particular that spt(S) is compact. ��
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3 Quasi-minimizers

We now introduce the main objects of study and discuss some basic properties
and examples.

Definition 3.1 (quasi-minimizer) Suppose that X is a proper metric space,
n ≥ 1, and Q ≥ 1, a ≥ 0 are constants. For a closed set Y ⊂ X , a local cycle

S ∈ Zn,loc(X, Y ) := {S ∈ In,loc(X) : spt(∂S) ⊂ Y }

relative toY will be called (Q, a)-quasi-minimizingmodY if, for all x ∈ spt(S)

and almost all r > a such that Bx (r) ∩ Y = ∅, the inequality

M(S Bx (r)) ≤ QM(T )

holds whenever T ∈ In,c(X) and ∂T = ∂(S Bx (r)) (recall that S Bx (r) ∈
In,c(X) for almost all r > 0, see Sect. 2.6). A current S ∈ In,loc(X) is (Q, a)-
quasi-minimizing or a (Q, a)-quasi-minimizer if S is (Q, a)-quasi-minimizing
mod spt(∂S), and we say that S is quasi-minimizing or a quasi-minimizer if
this holds for some Q ≥ 1 and a ≥ 0.

Obviously every minimizing S ∈ In,loc(X) is (1, 0)-quasi-minimizing.

Definition 3.2 (density/filling density) Suppose that X is a proper metric
space, n ≥ 1, and S ∈ In,loc(X). For p ∈ X and r > 0, put

�p,r (S) := 1

rn
‖S‖(Bp(r)),

Fp,r (S) := 1

rn+1 inf{M(V ) : V ∈ In+1,c(X), spt(S − ∂V ) ∩ Bp(r) = ∅}

(where inf ∅ := ∞). Furthermore, for any p ∈ X , put

�∞(S) := lim sup
r→∞

�p,r (S),

F∞(S) := lim sup
r→∞

Fp,r (S);

the upper limits are clearly independent of the choice of p ∈ X . For constants
C > 0 and a ≥ 0, we say that S has (C, a)-controlled density if �p,r (S) ≤ C
for all p ∈ X and r > a, and S has controlled density if this holds for some
such constants.

Note that if spt(∂S) ∩ Bp(r) �= ∅, then there is no V ∈ In+1,c(X) with
spt(S − ∂V ) ∩ Bp(r) = ∅, thus Fp,r (S) = ∞. Note also that if S, S′ ∈
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In,loc(X), then

�p,r (S + S′) ≤ �p,r (S) + �p,r (S
′)

for all p ∈ X and r > 0, hence �∞(S + S′) ≤ �∞(S) + �∞(S′). Likewise,
Fp,r and F∞ satisfy the triangle inequality.
If S ∈ In,loc(X) has (C, a)-controlled density, then obviously �∞(S) ≤ C .

However, an S ∈ Zn,loc(X) with �∞(S) < ∞ need not have controlled
density. For example, it is not difficult to see that there exists a complete
Riemannianmetric onR2 with bounded curvature |K | ≤ 1 andwith arbitrarily
large disks of constant curvature −1 such that the associated current S =
�R2� ∈ Z2,loc(R

2) is of this type.

Lemma 3.3 (density) Let n ≥ 1, let X be a proper metric space satisfying
condition (CIn−1), and let Y ⊂ X be a closed set. If S ∈ Zn,loc(X, Y ) is
(Q, a)-quasi-minimizing mod Y , and if x ∈ spt(S) and r > 2a are such that
Bx (r) ∩ Y = ∅, then

�x,r (S) ≥ δ

for some constant δ > 0 depending only on n, the constants c1, . . . , cn−1 from
Definition 2.1, and Q.

Proof Let first n ≥ 2. Define μ : (0, r ] → R by μ(s) := ‖S‖(Bx (s)). Note
that μ is non-decreasing, and μ > 0 since x ∈ spt(S). For almost every
s ∈ (0, r), the derivative μ′(s) exists, and the slice Rs := ∂(S Bx (s)) is in
Zn−1,c(X) and satisfiesM(Rs) ≤ μ′(s). It follows from the quasi-minimality
of S and Theorem 2.2 (isoperimetric inequality) that for almost every s ∈
(a, r), there is a filling Ts ∈ In,c(X) of Rs such that

μ(s) = M(S Bx (s)) ≤ QM(Ts) ≤ Qγ M(Rs)
n/(n−1)

≤ Qγ μ′(s)n/(n−1)

and hence μ′(s)μ(s)(1−n)/n ≥ (Qγ )(1−n)/n . Now integration from a to r
yields μ(r) ≥ n−n(Qγ )1−n(r − a)n . Since r − a > r/2, this gives the result.

In the casen = 1, since S is (Q, a)-quasi-minimizingmodY and x ∈ spt(S),
the 0-dimensional slice Rs = ∂(S Bx (s)) is a non-zero integral boundary for
almost every s ∈ (a, r), so in factM(Rs) ≥ 2, and the coarea inequality gives
‖S‖(Bx (r)) ≥ 2(r − a) > r . ��

We show two direct consequences of this lemma.

Lemma 3.4 (filling density) Let n ≥ 1, let X be a proper metric space
satisfying condition (CIn−1), and let Y ⊂ X be a closed set. If S ∈ Zn,loc(X, Y )
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is (Q, a)-quasi-minimizing mod Y , and if x ∈ spt(S) and r > 4a are such
that Bx (r) ∩ Y = ∅, then

Fx,r (S) ≥ c

for some constant c > 0 depending only on n, the constant δ from Lemma 3.3,
and Q.

Proof Let V ∈ In+1,c(X) be such that spt(S − ∂V ) ∩ Bx (r) = ∅. For almost
every s ∈ (0, r), the slice Ts := ∂(V Bx (s)) − (∂V ) Bx (s) is in In,c(X),
and ∂Ts = −∂(S Bx (s)) because (∂V ) Bx (s) = S Bx (s). By the quasi-
minimality of S and Lemma 3.3, for almost every s ∈ (2a, r),

QM(Ts) ≥ M(S Bx (s)) = ‖S‖(Bx (s)) ≥ δsn.

SinceM(V ) ≥ ∫ r
2a M(Ts) ds and 2a < r/2, the result follows. ��

Recall that a subset A of a metric space X is doubling if there is a constant
M ≥ 1 such that every bounded subset B ⊂ A can be covered by at most M
sets of diameter less than or equal to diam(B)/2. The Assouad dimension of a
set A ⊂ X is the infimum of all α > 0 for which there exists L ≥ 1 such that
for all λ ∈ (0, 1), every bounded set B ⊂ A can be covered by no more than
Lλ−α sets of diameter ≤ λ diam(B). The set A has finite Assouad dimension
if and only if it is doubling. (See [46].)

Lemma 3.5 (doubling) Let n ≥ 1, and let X be a proper metric space satisfy-
ing condition (CIn−1). Suppose that S ∈ Zn,loc(X) is a (Q, a)-quasi-minimizer
with (C, a)-controlled density. Then every s-separated subset of spt(S) with
s ≥ 4a has Assouad dimension at most n and is thus doubling. The doubling
constant depends only on n, the constant δ from Lemma 3.3, and C.

Note that if a = 0, then spt(S) itself has Assouad dimension at most n.

Proof Let A ⊂ spt(S) be an s-separated set, where s ≥ 4a. Suppose that
B ⊂ A is a bounded set with D := diam(B) > 0. Let λ ∈ (0, 1), and let N ⊂
B be a (λD/2)-separated (λD/2)-net in B. Put r := max{s/2, λD/4}. The
balls Bx (r) in X with x ∈ N are pairwise disjoint, and the corresponding sets
Bx (2r)∩ B have diameter at most λD and cover B. Since r ≥ 2a, Lemma 3.3
shows that ‖S‖(Bx (r)) ≥ δrn for all these balls, and their unionU is contained
in Bp(D + r) for any p ∈ N . Note that D ≤ 4r/λ, thus ‖S‖(U ) ≤ C(5r/λ)n .
It follows that the covering has cardinality |N | ≤ 5nCδ−1λ−n . ��

The doubling property will be used in Sect. 10 in order to approximate
quasi-isometric embeddings by Lipschitz maps. We will then show that if S is
a quasi-minimizing local n-cycle with controlled density in a proper CAT(0)
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space (or a space with a convex bicombing) of asymptotic rank n ≥ 2, and
if g is a Lipschitz quasi-isometric embedding of spt(S) into another proper
metric space, then g#S is again quasi-minimizing and has controlled density
(see Proposition 10.3).

Here we first prove a simpler result for Lipschitz quasiflats, which also
allows for boundaries.

Proposition 3.6 (Lipschitz quasiflats) For all n, L ≥ 1 and a0 ≥ 0 there exist
Q ≥ 1, C > 0, and a ≥ 0 such that the following holds. Let W ⊂ R

n be any
closed set such that the associated current E := �W � is in Zn,loc(R

n, ∂W ).
Suppose that g : W → X is a map into a proper metric space X such that for
all x, y ∈ W,

L−1d(x, y) − a0 ≤ d(g(x), g(y)) ≤ L d(x, y).

Then S := g#E ∈ Zn,loc(X, g(∂W )) is (Q, a)-quasi-minimizing mod g(∂W )

and has (C, a)-controlled density, furthermore d(g(x), spt(S)) ≤ a for all
x ∈ W with d(x, ∂W ) ≥ a.

The condition onW is satisfied if and only ifW has locally finite perimeter
(that is, χW has locally bounded variation; see Theorem 7.2 in [59]). We will
use this result only for W equal to Rn or an n-simplex in Rn .

Proof If p ∈ X and r > a0, and if B := Bp(r) and x, y ∈ g−1(B), then
d(x, y) ≤ L(d(g(x), g(y)) + a0) ≤ 3Lr , thus

‖S‖(B) = ‖g#E‖(B) ≤ Ln ‖E‖(g−1(B)) ≤ Crn

for some constant C depending only on n and L . Hence S has (C, a0)-
controlled density.

Let N ⊂ W be a 2La0-separated 2La0-net in W . If x, y ∈ N are distinct,
then d(g(x), g(y)) ≥ L−1d(x, y)−a0 ≥ (2L)−1d(x, y), thus g|N is injective,
and (g|N )−1 : g(N ) → N admits an L̄-Lipschitz extension ḡ : X → R

n ,
where L̄ := 2

√
nL . Put h := ḡ ◦ g. For every x ∈ W there is a y ∈ N such

that d(x, y) ≤ 2La0. Then h(y) = y, thus

d(h(x), x) ≤ d(h(x), h(y)) + d(y, x) ≤ (L̄ L + 1) d(x, y) ≤ b

for b := 2(L̄ L + 1)La0.
Suppose now that x ∈ W and r > 2Lb are such that Bx̄ (r) ∩ g(∂W ) = ∅,

where x̄ := g(x). For almost every such r , both S′ := S Bx̄ (r) and E ′ :=
E g−1(Bx̄ (r)) are integral currents, and g#E ′ = S′. Since g−1(Bx̄ (r)) ∩
spt(∂E) = ∅, the support of ∂E ′ is in g−1(Sx̄ (r)) and thus at distance at least
r/L from x . Note that ∂(ḡ#S′) = h#(∂E ′). Using the geodesic homotopy from
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idW to h, we get a current R ∈ In,c(R
n) with boundary ∂R = ∂(ḡ#S′) − ∂E ′

and support within distance b from spt(∂E ′); in fact R = ḡ#S′ − E ′, because
Zn,c(R

n) = {0}. Since r/L − b > r/(2L), the support of R lies outside
Bx (r/(2L)). It follows that

M(ḡ#S
′) = M(E ′ + R) ≥ ‖E‖(Bx (r/(2L))) ≥ εrn

for some constant ε > 0 depending only on n and L .
Now if T ∈ In,c(X) is such that ∂T = ∂S′, then ḡ#T = ḡ#S′, and

M(S′) ≤ Crn ≤ Cε−1M(ḡ#T ) ≤ QM(T )

for Q := Cε−1 L̄n . Since spt(S) ⊂ g(W ), this shows that S is (Q, 2Lb)-quasi-
minimizing mod g(∂W ).

To prove the last assertion, choose any a > L(2Lb + a0) and let x ∈ W be
a point with d(x, ∂W ) ≥ a. Then d(g(x), g(∂W )) ≥ L−1a − a0 > 2Lb. For
a suitable r ∈ (2Lb, a], the above argument then shows that M(ḡ#S′) > 0,
thus S′ = S Bg(x)(r) �= 0, and this implies that d(g(x), spt(S)) ≤ r ≤ a. ��

The following variant of the above result applies to situations where quasi-
flats can possibly not be approximated by Lipschitz ones (see the proof of
Theorem 5.2). Here we call a compact set W ⊂ R

n triangulated if W has
the structure of a finite simplicial complex all of whose maximal cells are
Euclidean n-simplices (thus W is polyhedral). We denote by W 0 and (∂W )0

the set of vertices and boundary vertices of the triangulation, respectively.

Proposition 3.7 (triangulated quasiflats) Let n ≥ 1, and let X be a proper
metric space satisfying condition (CIn−1). Then for all C0, D0 > 0 and L , a0
there exist Q,C, a such that the following holds. Suppose that W ⊂ R

n is a
compact triangulated set with simplices of diameter at most D0, and such that
every r-ball in R

n with r ≥ D0 meets at most C0rn n-simplices. Let P∗(W )

denote the corresponding chain complex of simplicial integral currents. If
f : W → X is an (L , a0)-quasi-isometric embedding, then there exists a
chain map ι : P∗(W ) → I∗,c(X) such that

(1) ι maps every vertex �x0� ∈ P0(W ) to � f (x0)� and, for 1 ≤ k ≤ n, every
basic oriented simplex �x0, . . . , xk� ∈ Pk(W ) to a current with support
in Na( f ({x0, . . . , xk}));

(2) S := ι�W � ∈ In,c(X) is (Q, a)-quasi-minimizing mod Na( f ((∂W )0))

and has (C, a)-controlled density;
(3) d( f (x), spt(S)) ≤ a for all x ∈ W with d(x, ∂W ) ≥ a.

Here Na(·) stands for the closed a-neighborhood of a set. Note that by (1),
spt(S) ⊂ Na( f (W 0)) and spt(∂S) ⊂ Na( f ((∂W )0)). An analogous result for
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closed sets with locally finite triangulations and locally integral currents also
holds.

Proof Put S∗ := ⋃n
k=0Sk , where Sk denotes the set of all basic simplices

s = �x0, . . . , xk� ∈ Pk(W ) (compare p. 365 in [36] for the notation). Using
Theorem 2.4 (minimizing filling), we can inductively build a map ι : S∗ →
I∗,c(X) as follows. For every �x0� ∈ S0, ι�x0� := f#�x0� = � f (x0)�. Now
let k ≥ 1, and suppose that ι is defined on Sk−1. For every k-cell of W , we
pick an orientation s = �x0, . . . , xk� ∈ Sk , then we let ι(s) ∈ Ik,c(X) be a
minimizing filling of

k∑

i=0

(−1)i ι�x0, . . . , xi−1, xi+1, . . . , xk� ∈ Zk−1,c(X),

andwe put ι(−s) := −ι(s). The resultingmap onS∗ readily extends to a chain
map ι : P∗(W ) → I∗,c(X). It follows inductively from condition (CIk−1)
and the distance bound in Theorem 2.4 for k = 1, . . . , n that for all s =
�x0, . . . , xk� ∈ Sk ,

M(ι(s)) ≤ M

and spt(ι(s)) ⊂ Na′( f ({x0, . . . , xk})) for some constants M, a′ depending on
D0, L , a0 and the constants c0, . . . , cn−1 implicit in condition (CIn−1). In the
following we assume that a′ ≥ LD0 + a0.

Let nowS +
n ⊂ Sn be the set of all positively oriented n-simplices, whose

sum is �W �. Put S := ι�W �. To show that S has controlled density, let p ∈ X
and r > a′, and consider the set of all s ∈ S +

n forwhich spt(ι(s))∩Bp(r) �= ∅.
Every such s has a vertex xs with f (xs) ∈ Bp(r +a′), thus the set of all xs has
diameter at most L(2(r + a′) + a0) ≤ 5Lr . It follows that there are at most
C0(5Lr)n such simplices and that �p,r (S) ≤ C := C0(5L)nM for p ∈ X
and r > a′.

Similarly as in the proof of Proposition 3.6, there exists an L̄-Lipschitz map
f̄ : X → R

n such that h := f̄ ◦ f satisfies d(h(x), x) ≤ b′ for all x ∈ W ,
where L̄ := 2

√
nL and b′ depends on n, L , a0. Then

ῑ := f̄# ◦ ι : P∗(W ) → I∗,c(R
n)

is a chain map that sends every �x0� ∈ S0 to �h(x0)� and every �x0, . . . , xk� ∈
Sk to a current with support in NL̄a′+b′({x0, . . . , xk}). Note that ῑ(∂�W �) =
∂( f̄#S). Similarly as above, using geodesic cone fillings of cycles in R

n ,
we can inductively construct a chain homotopy between id#, ῑ : P∗(∂W ) →
I∗,c(R

n). This yields an R ∈ In,c(R
n) such that ∂R = ∂( f̄#S) − ∂�W � and
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spt(R) ⊂ Nb((∂W )0) for some constant b ≥ D0 depending on n, D0, L , a′.
Since Zn,c(R

n) = {0}, in fact R = f̄#S − �W �.
Note that spt(S) ∪ f (W ) ⊂ Na′( f (W 0)). Let now x̄ ∈ Na′( f (W 0)) and

r > 0 be such that Bx̄ (r) ∩ f ((∂W )0) = ∅ and S′ := S Bx̄ (r) ∈ In,c(X).
Pick an x ∈ W 0 with d( f (x), x̄) ≤ a′. For all y ∈ (∂W )0,

r < d(x̄, f (y)) ≤ d( f (x), f (y)) + a′ ≤ L d(x, y) + 2a′.

Assuming that r > 2Lb + 4a′, we get that d(x, y) > r/(2L) + b; hence

(spt(R) ∪ ∂W ) ∩ Bx (r/(2L)) = ∅.

Moreover, for every ȳ ∈ spt(S − S′) ⊂ spt(S) there exists a y ∈ W 0 such that
d( f (y), ȳ) ≤ a′ and r ≤ d(x̄, ȳ) ≤ d( f (x), f (y)) + 2a′ ≤ L d(x, y) + 3a′,
thus

d(x, f̄ (ȳ)) ≥ d(x, y) − d(y, h(y)) − d( f̄ ( f (y)), f̄ (ȳ))

≥ L−1(r − 3a′) − b′ − L̄a′.

By increasing b if necessary, so that r is large enough, we arrange that this last
expression is bigger than r/(2L). This then shows that

spt( f̄#(S − S′)) ∩ Bx (r/(2L)) = ∅.

Since f̄#S′ = �W � + R − f̄#(S − S′), it follows that

M( f̄#S
′) ≥ ‖�W �‖(Bx (r/(2L))) ≥ εrn

for some ε > 0 depending on n and L . The proof may now be completed as
for Proposition 3.6. For assertion (3), choose a > L(2Lb + 4a′ + a0). ��

4 Asymptotic rank

In this section we will first discuss the notion of asymptotic rank and the sub-
Euclidean isoperimetric inequality from [82]. Then we will derive a localized
version of this result as well as various characterizations of quasi-minimizing
local n-cycles in spaces of asymptotic rank at most n.

In [42], Section 6.B2, Gromov defined a number of different large-scale
notions of rank for spaces of nonpositive curvature. Many of the ensuing
questions were then answered in [53] (see the discussion in Section 9 therein).
Theorem D in that paper shows in particular the following.

123



624 B. Kleiner, U. Lang

Theorem 4.1 (rank conditions) Let X be a proper Busemann space with
cocompact isometry group. Then for every n ≥ 1 the following are equivalent:

(1) X contains an isometric copy of some n-dimensional normed space;
(2) there exists a quasi-isometric embedding of Rn into X;
(3) there exist a sequence of subsets Yi ⊂ X and a sequence 0 < ri → ∞

such that the rescaled sets (Yi , r
−1
i d) converge in the Gromov–Hausdorff

topology to the closed unit ball in some n-dimensional normed space.

Stronger conclusions hold if X is a proper and cocompact CAT(0) space.
Then any normed space isometrically embedded in X is necessarily Euclidean;
furthermore, the Euclidean rank of X , the maximal n for which X contains
an n-flat, is equal to the geometric dimension or the compact topological
dimension (that is, the supremum of the topological dimensions of compact
subsets) of the Tits cone CTX or of any asymptotic cone Xω and also agrees
with the maximal n for which Hn−1(∂TX) �= {0}, where ∂TX denotes the Tits
boundary. See Theorems A and C in [53].

Property (3) above suggests the following notion of asymptotic rank that
was investigated in [82].

Definition 4.2 (asymptotic subset, asymptotic rank) Let X = (X, d) be a
metric space. Any compact metric space (Y, dY ) that can be obtained as the
Gromov–Hausdorff limit of a sequence (Yi , r

−1
i d) as in (3) above will be

called an asymptotic subset of X . The asymptotic rank asrk(X) of X is the
supremum of all integers n ≥ 0 such that there exists an asymptotic subset of
X isometric to the unit ball in some n-dimensional normed space.

Remark 4.3 Alternatively, asrk(X) may be defined as the supremum of all
n such that X admits an asymptotic subset bi-Lipschitz homeomorphic to a
compact subset of Rn with positive Lebesgue measure. The equivalence of
the two definitions is shown by means of a metric differentiation argument
(see [82]).

We remark that every asymptotic subset of X embeds isometrically into
some asymptotic cone of X . Conversely, every compact subset Y ⊂ Xω of an
asymptotic cone is an asymptotic subset of X , and the respective sets Yi ⊂ X
may be chosen to be finite. If f : X → X̄ is a quasi-isometric embedding into
another metric space X̄ , then

asrk(X) ≤ asrk(X̄);

thus asrk is a quasi-isometry invariant for metric spaces (see Corollary 3.3 in
[82]).
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In a nonpositively curved symmetric space X , every n-cycle Z with n greater
than or equal to the rank of X admits a filling V with mass

M(V ) ≤ const ·M(Z)

(see p. 105 in [42], and [65]), whereas in smaller dimensions, the optimal
isoperimetric inequalities in X are ofEuclidean type, as inTheorem2.2. It is not
known whether the linear inequalities for n-cycles remain valid, for example,
in cocompact Hadamard manifolds containing no (n + 1)-flat. However, the
following key result due to Stefan Wenger provides a substitute for spaces of
asymptotic rank at most n.

Theorem 4.4 (sub-Euclidean isoperimetric inequality) Let X be a proper
metric space satisfying condition (CIn) for some n ≥ 1, and suppose that
asrk(X) ≤ n. Then for all C, ε > 0 there is a constant aε ≥ 0 (depending on
X, n,C, ε) such that if r > aε , then every cycle Z ∈ Zn,c(X) with M(Z) ≤
Crn and spt(Z) ⊂ Bp(r) for some p ∈ X possesses a filling V ∈ In+1,c(X)

with mass

M(V ) < εrn+1.

This is shown in a more general form, for complete metric spaces, and
without restrictions on spt(Z), in Theorem 1.2 in [82]. The stated version
suffices for our purposes, and the proof could be slightly simplified under
these assumptions.

The following result may be viewed as a localized version of Theorem 4.4
and will be used repeatedly throughout the paper. The main content is that if
a cycle Z ∈ Zn,c(X) satisfies ‖Z‖(Bp(r)) ≤ Crn for some p ∈ X and for
all r > a ≥ 0, then for every ε > 0 and every sufficiently large r > 0 there
exists a “partial filling” V ∈ In+1,c(X) such that spt(Z − ∂V ) ∩ Bp(r) = ∅
and M(V ) < εrn+1; that is, Fp,r (Z) < ε. We formulate this more generally
for local cycles of the form Z = S − S′ with F∞(Z) < ∞, where only
S ∈ In,loc(X) is required to satisfy a density bound with respect to p and
S′ ∈ In,loc(X) (possibly zero) is area-minimizing.

Proposition 4.5 (partial filling) Let X be a proper metric space satisfying
condition (CIn) for some n ≥ 1, and suppose that asrk(X) ≤ n. Then for all
C, ε > 0 and a ≥ 0 there is a constant a′

ε ≥ 0 such that the following holds.
Suppose that S ∈ In,loc(X) satisfies �p,r (S) ≤ C for some point p ∈ X
and for all r > a, and S′ ∈ In,loc(X) is minimizing with ∂S′ = ∂S and
F∞(S − S′) < ∞. Then

�p,r (S
′) < C + ε and Fp,r (S − S′) < ε
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for all r > a′
ε , in particular �∞(S′) ≤ C and F∞(S − S′) = 0.

This shows in particular the following dichotomy: if Z ∈ Zn,loc(X) and
�∞(Z) < ∞, then F∞(Z) is either 0 or ∞.

Proof We write Br := Bp(r) for r > 0. Choose a constant D > F∞(S − S′).
Then, for every sufficiently large r0 > 0, there is a V0 ∈ In+1,c(X) such that

M(V0) < Dr n+1
0

and spt(S − S′ − ∂V0) ∩ Br0 = ∅. We fix such r0 and V0 for the moment, and
we put ri := ηi r0 for some fixed η ∈ [1/2, 1) and every integer i ≥ 1.

There exists an s ∈ (r1, r0) such that both S′ Bs and the slice

Ts := ∂(V0 Bs) − (∂V0) Bs = ∂(V0 Bs) − (S − S′) Bs

belong to In,c(X), andM(Ts) ≤ M(V0)/(r0 − r1) ≤ (1−η)−1Dr n
0 . Note that

∂(S′ Bs) = ∂(S Bs + Ts). Using the minimality of S′ and assuming that
r1 > a, so that �p,s(S) ≤ C , we infer that

M(S′ Bs) ≤ M(S Bs) + M(Ts) ≤ Csn + (1 − η)−1Dr n
0 ≤ C̄r n

1

for C̄ := η−n(C + (1 − η)−1D). Thus �p,r1(S
′) ≤ C̄ , and the cycle Zs :=

(S− S′) Bs +Ts satisfiesM(Zs) ≤ 2C̄r n
1 and spt(Zs) ⊂ B2r1 . Let δ > 0. By

Theorem 4.4 there exists a constant āδ ≥ a, depending only on n, X, C̄, a, δ,
such that if r1 > āδ , then Zs possesses a filling V1 ∈ In+1,c(X) with mass

M(V1) < δr n+1
1 .

Note that the support of S − S′ − ∂V1 = S − S′ − Zs lies outside Br1 , thus
Fp,r1(S − S′) < δ. Note further that for δ ≤ D, V1 replicates the properties of
V0 at the next smaller scale r1.

Now, given any δ ∈ (0, D] and r > āδ , we can choose r0 initially such
that r = rk = ηkr0 for some k ≥ 1. In the case that k ≥ 2, we repeat the
slicing and filling procedure described in the preceding paragraph successively
for i = 2, . . . , k, with (ri , ri−1) and Vi−1 in place of (r1, r0) and V0. This
produces a sequence of partial fillings V1, . . . , Vk ∈ In+1,c(X) of S− S′, with
spt(S − S′ − ∂Vi ) ∩ Bri = ∅, such that �p,ri (S

′) ≤ C̄ and M(Vi ) < δr n+1
i .

For i = k, this shows that

�p,r (S
′) ≤ C̄ = η−n(C + (1 − η)−1D) and Fp,r (S − S′) < δ

whenever 0 < δ ≤ D and r > āδ .
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In particular, F∞(S − S′) = 0, and we may thus repeat the above argument
for arbitrarily small D > 0. Let ε > 0. Choosing η ∈ [1/2, 1) and D such that
C̄ < C + ε, and putting δ := min{ε, D}, we conclude that �p,r (S′) < C + ε

and Fp,r (S − S′) < ε whenever r > a′
ε := āδ . Note that a′

ε depends only on
n, X,C, a, ε. ��

The following result is included mainly for illustration. It shows that for
local n-cycles with controlled density in spaces satisfying the assumptions
of Theorem 4.4, quasi-minimality is equivalent to several other conditions,
among them the lower bound on the filling density obtained in Lemma 3.4.

Proposition 4.6 (characterizing quasi-minimizers) Let X be a proper metric
space satisfying condition (CIn) for some n ≥ 1, and suppose that asrk(X) ≤
n. For an S ∈ Zn,loc(X) with (C, a)-controlled density, the following are
equivalent:

(1) There exist Q ≥ 1 and a1 ≥ 0 such that S is (Q, a1)-quasi-minimizing.
(2) There exist c2 > 0 and a2 ≥ 0 such that if x ∈ spt(S), thenM(T ) ≥ c2rn

for almost every r > a2 and every T ∈ In,c(X) with ∂T = ∂(S Bx (r)).
(3) There exist c3 > 0 and a3 ≥ 0 such that if x ∈ spt(S), thenM(T ) ≥ c3rn

for almost every r > a3 and every T ∈ In,c(X) with ∂T = ∂(S Bx (r))
and spt(T ) ⊂ Sx (r).

(4) There exist c4 > 0 and a4 ≥ 0 such that Fx,r (S) ≥ c4 for all x ∈ spt(S)

and r > a4.

Notice that (3) is a divergence condition for S; compare, for example, the
definition of the divergence of a geodesic line in Section 3 of [51].

Proof The implications (1)⇒ (2) and (2)⇒ (1) follow easily fromLemma 3.3
(density) and the fact that S has controlled density, respectively. The implica-
tion (2) ⇒ (3) holds trivially, and (3) ⇒ (4) is shown by a simple integration
as in the proof of Lemma 3.4 (filling density).

To prove that (4) ⇒ (2), let x ∈ spt(S), r > a, and T ∈ In,c(X) be such
that S′ := S Bx (r) ∈ In,c(X) and ∂T = ∂S′. By Theorem 2.4 (minimizing
filling), we can assume that T is minimizing and spt(T ) is within distance
(M(T )/δ)1/n from spt(∂S′) for some constant δ = δ(n, X) > 0. Then the
cycle Z := S′−T ∈ Zn,c(X) hasmass atmost 2Crn . Now ifM(T ) < δ(r/2)n ,
say, then spt(Z) ⊂ Bx (3r/2) and spt(S − Z) ∩ Bx (r/2) = ∅, and it follows
fromTheorem4.4 that Fx,r/2(S) < c4, provided r is sufficiently large. Thus (4)
implies thatM(T ) ≥ δ(r/2)n for large enough r . ��
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5 Morse Lemmas

In this section we will prove some higher rank analogs of the Morse Lemma,
replacing quasi-geodesics with n-dimensional quasi-minimizers with con-
trolled density. Here we will also establish Theorem 1.1.

A first result follows very quickly from Lemma 3.4 (filling density) and
Proposition 4.5 (partial filling).

Theorem 5.1 (Morse Lemma I) Let X be a proper metric space satisfying
condition (CIn) for some n ≥ 1, and suppose that asrk(X) ≤ n. Then for all
Q ≥ 1, C > 0, and a ≥ 0 there is a constant b ≥ 0 such that the following
holds. Suppose that Z ∈ Zn,loc(X) has (C, a)-controlled density and satisfies
F∞(Z) < ∞. If Y ⊂ X is a closed set such that Z is (Q, a)-quasi-minimizing
mod Y , then spt(Z) lies within distance at most b from Y .

Note that if S, S′ ∈ In,loc(X) are two (Q, a)-quasi-minimizers with
(C/2, a)-controlled density and ∂S = ∂S′, then Z := S − S′ ∈ Zn,loc(X)

is (Q, a)-quasi-minimizing mod spt(S) as well as mod spt(S′) and has
(C, a)-controlled density. Theorem 5.1 then shows that the Hausdorff dis-
tance dH(spt(S), spt(S′)) is at most b, provided F∞(Z) < ∞ (which holds
trivially if S, S′ ∈ In,c(X)).

Proof Since Z is (Q, a)-quasi-minimizing mod Y , Lemma 3.4 shows that

Fx,r (Z) ≥ c = c(n, X, Q) > 0

whenever x ∈ spt(Z), r > 4a, and Bx (r) ∩ Y = ∅. On the other hand, since
Z has (C, a)-controlled density and satisfies F∞(Z) < ∞, we may apply
Proposition 4.5 with p = x and S = Z , S′ = 0. Taking ε = c, we infer that
there is a constant b ≥ 4a, depending only on n, X, Q,C, a, such that

Fx,r (Z) < c

for r > b. This shows that r ≤ b (in particular Y �= ∅). ��
As a first application, we deduce Theorem 1.1, which we restate for conve-

nience.

Theorem 5.2 (slim simplices) Let X be a proper metric space satisfying
condition (CIn) for some n ≥ 1, and suppose that asrk(X) ≤ n. Let � be
a Euclidean (n + 1)-simplex, and let f : ∂� → X be a map such that for
every facet W of �, the restriction f |W is an (L , a0)-quasi-isometric embed-
ding. Then, for every facet W , the image f (W ) is contained in the closed
D-neighborhood of f

(
∂� \ W

)
for some constant D ≥ 0 depending only on

X, n, L , a0.
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Proof Let W0, . . . ,Wn+1 be an enumeration of the facets of �, and write the
cycle ∂��� ∈ Zn,c(R

n+1) as
∑n+1

i=0 Ei for Ei := (∂���) Wi ∈ In,c(R
n+1).

Choose a triangulation of ∂� with simplices of diameter at most D0 such
that every r -ball in R

n+1 with r ≥ D0 meets at most C0rn n-simplices in
each Wi , for some constants C0, D0 > 0 depending only on n. Consider
the corresponding chain complexP∗(∂�) of simplicial integral currents and
proceed as in the proof of Proposition 3.7 (triangulated quasiflats) to get a
chain map ι : P∗(∂�) → I∗,c(X) such that the following properties hold for
every Si := ι(Ei ) ∈ In,c(X) and for some constants Q,C, a depending only
on X, n, L , a0:

(1) spt(Si ) ⊂ Na( f (Wi )) and spt(∂Si ) ⊂ Na( f (∂Wi ));
(2) Si is (Q, a)-quasi-minimizingmod Na( f (∂Wi )) andhas (C, a)-controlled

density;
(3) d( f (x), spt(Si )) ≤ a for all x ∈ Wi with d(x, ∂Wi ) ≥ a.

(Here Na stands again for the closed a-neighborhood, and ∂Wi denotes the
relative boundary of Wi .) Let Mi denote the union of all Wj with j �= i . The
cycle Z := ι(∂���) = ∑n+1

i=0 Si is (Q, a)-quasi-minimizing mod Na( f (Mi ))

for every i and has ((n + 2)C, a)-controlled density. It then follows from
Theorem 5.1 that the set spt(Si ) \ Na( f (Mi )) = spt(Z) \ Na( f (Mi )) lies
within distance at most b from Na( f (Mi )) for some constant b depending only
on X, n, L , a0. Hence, for x ∈ Wi , it follows from (3) that d( f (x), f (Mi )) is
less than or equal to 2a+b if d(x, ∂Wi ) ≥ a and less than La+a0 otherwise.

��
Remark 5.3 If, for f : ∂� → X as above, there exists a map g : ∂� → X
such that g|W is L ′-Lipschitz for every facetW and d( f (x), g(x)) ≤ b′ for all
x ∈ ∂�, for some constants L ′, b′ depending on n, L , a0, then one may use
Proposition 3.6 (Lipschitz quasiflats) instead of Proposition 3.7 in the above
argument. Such a map g exists if X is Lipschitz (n − 1)-connected (compare
Corollary 1.7 in [62]), in particular if X is CAT(0) or a space with a convex
bicombing.

We now prove an analog of theMorse Lemma for quasi-geodesic segments.

Theorem 5.4 (Morse Lemma II) Let X be a proper metric space satisfying
condition (CIn) for some n ≥ 1, and suppose that asrk(X) ≤ n. Then for all
Q ≥ 1, C > 0, and a ≥ 0 there is a constant b ≥ 0 such that the following
holds. If S ∈ In,c(X) is a (Q, a)-quasi-minimizer with (C, a)-controlled den-
sity, then there exists a minimizing S̃ ∈ In,c(X) such that ∂S = ∂ S̃, and every
such S̃ satisfies

dH(spt(S), spt(S̃)) ≤ b.
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Proof A minimizing S̃ ∈ In,c(X) with ∂ S̃ = ∂S exists by Theorem 2.4
(minimizing filling). Since S has (C, a)-controlled density, it follows from
Proposition 4.5 (partial filling) that every such S̃ has (C̃, ã)-controlled density
for some constants C̃ ≥ C and ã ≥ a depending only on n, X,C, a. Then the
cycle S − S̃ has (2C̃, ã)-controlled density and is (Q, a)-quasi-minimizing
mod spt(S̃) as well as mod spt(S); the result thus follows from Theorem 5.1.

��
Our next goal is to extend this last result to local chains.We state an auxiliary

lemma.

Lemma 5.5 (F-convergence) Let X be a proper metric space satisfying con-
dition (CIn) for some n ≥ 1. Then a sequence (Z j ) in Zn,loc(X) converges in
the local flat topology to 0 if and only if lim j→∞ Fp,r (Z j ) = 0 for all p ∈ X
and r > 0.

Proof Suppose that Z j → 0 in the local flat topology, and let p ∈ X and
r > 0. There is a sequence (Vj ) in In+1,loc(X) such that

(‖Z j − ∂Vj‖ + ‖Vj‖)(Bp(2r)) → 0.

Note that Z j − ∂Vj ∈ Zn,loc(X). Pick s ∈ (r, 2r) such that, for K := Bp(s),
the slice ∂((Z j − ∂Vj ) K ) is in Zn−1,c(X) for all j , and furthermore
Vj K ∈ In+1,c(X) for all j . By Theorem 2.4 (minimizing filling), there
exists a minimizing current Tj ∈ In,c(X) with ∂Tj = ∂((Z j − ∂Vj ) K ),
and since spt(∂Tj ) ⊂ Sp(s) and M(Tj ) ≤ M((Z j − ∂Vj ) K ) → 0, it
follows that spt(Tj ) ⊂ Bp(2r) \ Bp(r) for j sufficiently large. The cycles
(Z j − ∂Vj ) K − Tj converge to zero in mass, by condition (CIn) they thus
possess fillings Wj ∈ In+1,c(X) such that also M(Wj ) → 0. Now define
V ′
j := Vj K +Wj ∈ In+1,c(X). ThenM(V ′

j ) ≤ M(Vj K )+M(Wj ) → 0,
and the support of

Z j − ∂V ′
j = Z j − ∂(Vj K ) − (Z j − ∂Vj ) K + Tj

= Z j (X \ K ) − (
∂(Vj K ) − (∂Vj ) K

) + Tj

is disjoint from Bp(r) for all sufficiently large j . This shows that Fp,r (Z j ) ≤
M(V ′

j )/r
n+1 → 0.

The reverse implication is clear. ��
We now establish a basic existence theorem for minimizing local n-chains

in spaces of asymptotic rank at most n.

Theorem 5.6 (constructing minimizers) Let X be a proper metric space sat-
isfying condition (CIn) for some n ≥ 1, and suppose that asrk(X) ≤ n.
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Then for every S ∈ In,loc(X) with �∞(S) < ∞ there exists a minimizing
S̃ ∈ In,loc(X) such that ∂ S̃ = ∂S and F∞(S − S̃) = 0, and every such S̃
satisfies �∞(S̃) ≤ �∞(S).

Note that ∂Smaywell be zero; the assertion F∞(S− S̃) = 0 then guarantees
that S̃ is non-zero, provided F∞(S) �= 0. Conversely, if F∞(S) = 0, then
∂S = 0, and it follows from Lemma 3.4 (filling density) that there is no
minimizer S̃ �= 0 with ∂ S̃ = 0 and F∞(S̃) = 0.

Proof Fix a base point p ∈ X , and choose a sequence 0 < ri ↑ ∞ such
that Si := S Bp(ri ) ∈ In,c(X) for all i . Theorem 2.4 (minimizing filling)
provides a corresponding sequence of minimizing currents S̃i ∈ In,c(X) with
∂ S̃i = ∂Si . Since �∞(S) < ∞, there exist C > 0 and a ≥ 0 such that
�p,r (Si ) ≤ �p,r (S) ≤ C for all r > a. Proposition 4.5 (partial filling) shows
that for every ε > 0 there is a constant ãε ≥ 0 such that, for all i and r > ãε ,

‖S̃i‖(Bp(r)) < (C + ε)rn and Fp,r (Si − S̃i ) < ε.

Note also that if K ⊂ X is a compact set, then ‖∂ S̃i‖(K ) = ‖∂Si‖(K ) =
‖∂S‖(K ) for all but finitely many indices i . By Theorem 2.3 (compactness),
some subsequence (S̃i j ) converges in the local flat topology to a minimizing

current S̃ ∈ In,loc(X) with ∂ S̃ = ∂S.
To show that F∞(S − S̃) = 0, put Z j := S − Si j − (S̃ − S̃i j ) ∈ Zn,loc(X)

and note that Z j → 0 in the local flat topology. If ε > 0 and r > ãε , then

Fp,r (S − S̃) ≤ Fp,r (Z j ) + Fp,r (Si j − S̃i j ) < Fp,r (Z j ) + ε.

Hence, Fp,r (S − S̃) ≤ ε by Lemma 5.5.
Finally, a simple slicing argument shows that �∞(S̃) ≤ �∞(S) for every

minimizing S̃ ∈ In,loc(X) with ∂ S̃ = ∂S and F∞(S − S̃) = 0. (This also
follows from Proposition 4.5.) ��

The next result generalizes Theorem 5.4 to local currents. Theorem 1.2 in
the introduction corresponds to the case ∂S = 0.

Theorem 5.7 (Morse Lemma III) Let X be a proper metric space satisfying
condition (CIn) for some n ≥ 1, and suppose that asrk(X) ≤ n. Then for all
Q ≥ 1, C > 0, and a ≥ 0 there is a constant b ≥ 0 such that the following
holds. If S ∈ In,loc(X) is a (Q, a)-quasi-minimizer with (C, a)-controlled
density, then there exists a minimizing S̃ ∈ In,loc(X) such that ∂S = ∂ S̃ and
F∞(S − S̃) = 0, and every such S̃ satisfies �∞(S̃) ≤ �∞(S) and

dH(spt(S), spt(S̃)) ≤ b.
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632 B. Kleiner, U. Lang

Proof Since �∞(S) < ∞, Theorem 5.6 shows that there exists a minimizing
S̃ ∈ In,loc(X) with ∂S = ∂ S̃ and F∞(S − S̃) = 0, and every such S̃ satisfies
�∞(S̃) ≤ �∞(S). The rest of the proof is the same as for Theorem 5.4. ��

6 Asymptote classes and visual metrics

We now consider asymptote classes of local n-cycles in spaces of asymptotic
rank n.

Definition 6.1 (asymptote classes) Let X be a proper metric space that satis-
fies condition (CIn) for n = asrk(X) ≥ 1. We put

Z∞
n,loc(X) := {S ∈ Zn,loc(X) : �∞(S) < ∞}

and call two elements S, S′ of this group F-asymptotic if F∞(S − S′) = 0
(or, equivalently, F∞(S − S′) < ∞; see Proposition 4.5 (partial filling)). This
defines an equivalence relation∼F onZ∞

n,loc(X). We denote the quotient space
by

Z X := Z∞
n,loc(X)/∼F

(note that n = asrk(X) is implicit in X ) and the equivalence class of S by
[S] ∈ Z X . The addition [S] + [S′] := [S + S′] is clearly well-defined, thus
Z X is an abelian group.

As stated in Theorem 1.4, when X is a CAT(0) space, Z X turns out to be
canonically isomorphic to the group Zn−1,c(∂TX) of integral (n − 1)-cycles
in the Tits boundary of X . This will be discussed in Sect. 9.

Theorem 5.6 (constructing minimizers) shows that every class [S] ∈ Z X
contains an area-minimizing S̃ ∈ Z∞

n,loc(X), and furthermore every such S̃ has
minimal asymptotic density among all members of [S]. We will now show that
for any C > 0 and a ≥ 0, the set

ZC,a X := {[S] ∈ Z X : S has (C, a)-controlled density}
carries a family of metrics analogous to the visual metrics on ∂∞X in the
hyperbolic case. With the present hypotheses (X satisfies condition (CIn) for
n = asrk(X) ≥ 1), a class in Z X need not contain a representative with
controlled density; however, under the stronger assumptions of the subsequent
sections, in particular when X is CAT(0), every minimizer S̃ ∈ Z∞

n,loc(X)

has controlled density (see Proposition 7.4 and Remark 7.5). Note also that
every quasiflat f : Rn → X yields an S with controlled density (compare
Proposition 3.7).
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First, for any reference point p ∈ X and any [S] ∈ Z X , we put

〈[S]〉p := inf{d(p, spt(S̃)) : S̃ ∈ [S] is minimizing}.

Note that 〈[S]〉p = ∞ if and only if [S] = [0], that is, F∞(S) = 0 (see the
remark after Theorem 5.6). Clearly 〈[−S]〉p = 〈[S]〉p and

∣
∣〈[S]〉p − 〈[S]〉q

∣
∣ ≤ d(p, q).

If X is a geodesic δ-hyperbolic space (n = 1) and S corresponds to a geodesic
� : R → X connecting two points u, v ∈ ∂∞X , then 〈[S]〉p agrees, up to a
bounded additive error, with the Gromov product (u | v)p. The following result
mimics the δ-inequality

(u |w)p ≥ min{(u | v)p, (v |w)p} − δ

for the Gromov product of points at infinity (see p. 89 in [40] and Section 2.2
in [19]).

Proposition 6.2 (D-inequality) Let X be a proper metric space that satisfies
condition (CIn) for n = asrk(X) ≥ 1. Then for all C > 0 and a ≥ 0 there
exists D ≥ 0 such that

〈[S + S′]〉p ≥ min{〈[S]〉p, 〈[S′]〉p} − D

for all p ∈ X and [S], [S′] ∈ ZC,a X.

Proof Let ε > 0. Pick minimizers S̃ ∈ [S], S̃′ ∈ [S′], and Ŝ ∈ [S + S′] such
that

d(p, spt(Ŝ)) < 〈[S + S′]〉p + ε.

Note that [S+ S′] ∈ Z2C,a X . Applying Proposition 4.5 (partial filling) to each
of S̃, S̃′, Ŝ, we infer that Z := Ŝ − (S̃ + S̃′) has (C̃, ã)-controlled density for
some constants C̃, ã depending only on X,C, a. Note that F∞(Z) = 0. Since
Z is minimizing mod Y := spt(S̃) ∪ spt(S̃′), Theorem 5.1 (Morse Lemma I)
shows that spt(Ŝ) is within distance at most D from Y for some constant D
depending only on X,C, a. Hence,

d(p, Y ) ≤ d(p, spt(Ŝ)) + D < 〈[S + S′]〉p + ε + D.

Since min{〈[S]〉p, 〈[S′]〉p} ≤ d(p, Y ), this gives the result. ��
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We call a metric ν on ZC,a X visual if there are p ∈ X , b > 1 and c ≥ 1
such that

c−1b−〈[S−S′]〉p ≤ ν([S], [S′]) ≤ c b−〈[S−S′]〉p

for all [S], [S′] ∈ ZC,a X . It is easily seen that any two metrics that are visual
with respect to the same parameter b but different base points are bi-Lipschitz
equivalent, whereas any two visual metrics are snowflake equivalent (com-
pare Theorem 3.2.4 in [66]). In particular, all visual metrics induce the same
topology on ZC,a X .

Theorem 6.3 (visual metrics) Let X be a proper metric space that satisfies
condition (CIn) for n = asrk(X) ≥ 1, and let C > 0 and a ≥ 0. Then for
every p ∈ X and every sufficiently small b > 1 there exists a metric ν on
ZC,a X that is visual with respect to p and b. Furthermore,ZC,a X is compact
with respect to any visual metric.

Proof Let p ∈ X and b > 1, and put ν̃([S], [S′]) := b−〈[S−S′]〉p ; then

ν̃([S], [S′′]) ≤ κ max{ν̃([S], [S′]), ν̃([S′], [S′′])}
for all [S], [S′], [S′′] ∈ ZC,a X , where κ = bD and D is the constant
from Proposition 6.2 associated with the parameters 2C and a. Note that
ν̃([S], [S′]) = 0 if and only if [S] = [S′]. If κ ≤ 2, then a standard chain
construction yields a metric ν on ZC,a X such that

1

2κ
ν̃([S], [S′]) ≤ ν([S], [S′]) ≤ ν̃([S], [S′])

(see Lemma 2.2.5 in [19]). Thus ν is visual with respect to p and b.
To prove the compactness assertion, let (Si ) be a sequence inZ∞

n,loc(X) such
that each Si has (C, a)-controlled density. By Theorem 2.3 (compactness),
some subsequence (Si j ) converges in the local flat topology, hence alsoweakly,
to an S ∈ Zn,loc(X). For all p ∈ X and s > r > a,

‖S‖(Bp(r)) ≤ lim inf
j→∞ ‖Si j ‖(Bp(s)) ≤ Csn

by the lower semicontinuity of mass on open sets; thus S has (C, a)-controlled
density. Suppose now that ν is a visual metric on ZC,a X with respect to
p ∈ X , and note that ν([Si j ], [S]) → 0 if and only if 〈[Z j ]〉p → ∞, where

Z j := Si j − S. Consider a sequence of minimizers Z̃ j ∈ [Z j ], and let ε > 0.
Since �p,r (Z j ) ≤ 2C for all r > a, Proposition 4.5 (partial filling) shows
that if r is sufficiently large, then Fp,r (Z̃ j − Z j ) < ε/2 for all j . Furthermore,
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it follows from Lemma 5.5 (F-convergence) that Fp,r (Z j ) → 0 for every
r > 0. Hence, for every sufficiently large r > 0, there is an index j0 such that

Fp,r (Z̃ j ) ≤ Fp,r (Z̃ j − Z j ) + Fp,r (Z j ) < ε

for all j ≥ j0. Let Vj ∈ In+1,c(X) be such that spt(Z̃ j − ∂Vj ) ∩ Bp(r) =
∅ and M(Vj ) < εrn+1. For a point x ∈ spt(Z̃ j ) ∩ Bp(r/2), Lemma 3.4
(filling density) then shows that Fx,r/2(Z̃ j ) ≥ c = c(X) > 0, thus M(Vj ) ≥
c(r/2)n+1. Choosing ε = c/2n+1 we conclude that for every sufficiently large
r there is a j0 such that d(p, spt(Z̃ j )) > r/2 for all j ≥ j0. This shows that
〈[Z j ]〉p → ∞ as desired. ��

Visual metrics will be discussed further in Remarks 9.6 and 10.7.

7 Conical representatives

Our next goal is to relate F-asymptote classes to geodesic cones and to cycles
at infinity. For this purpose, we now impose a convexity condition on themetric
space X .

A curve � : I → X defined on some interval I ⊂ R is a geodesic if there
is a constant s ≥ 0, the speed of �, such that d(�(t), �(t ′)) = s|t − t ′| for all
t, t ′ ∈ I . A geodesic defined on I = R+ := [0, ∞) is called a ray.

Definition 7.1 (convex bicombing) By a convex bicombing σ on a metric
space X we mean a map σ : X × X × [0, 1] → X such that

(1) σxy := σ(x, y, ·) : [0, 1] → X is a geodesic from x to y for all x, y ∈ X ;
(2) t �→ d(σxy(t), σx ′y′(t)) is convex on [0, 1] for all x, y, x ′, y′ ∈ X ;
(3) im(σpq) ⊂ im(σxy) whenever x, y ∈ X and p, q ∈ im(σxy).

A geodesic � : I → X is then called a σ -geodesic if im(σxy) ⊂ im(�)

whenever x, y ∈ im(�). A convex bicombing σ on X is equivariant if
γ ◦ σxy = σγ (x)γ (y) for every isometry γ of X and for all x, y ∈ X .

Note that in (3), we do not specify the order of p and q with respect to
the parameter of σxy , in particular σyx (t) = σxy(1 − t). In the terminology
of [29], σ is a reversible and consistent convex geodesic bicombing on X . In
Section 10.1 of [53], metric spaces with such a structure σ are called often
convex. This class of spaces includes all CAT(0) and Busemann spaces as well
as (linearly) convex subsets of normed spaces; at the same time, it is closed
under various limit and product constructions such as ultralimits, (complete)
Gromov–Hausdorff limits, and l p products for p ∈ [1, ∞].

A large part of the theory of spaces of nonpositive curvature extends to this
more general setting, see [8,29,30]. Furthermore, as was shown in [29,60],
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every word hyperbolic group acts geometrically on a proper metric space of
finite topological dimension with an equivariant convex bicombing σ . In the
recent paper [28] it is shown that Theorem 4.1 (rank conditions) still holds for
every proper and cocompact metric space X with a convex bicombing. In fact,
Theorem 1.1 in that paper shows that if the unit ball of some n-dimensional
normed space V is an asymptotic subset of X , then V itself embeds isometri-
cally into X .

Let now X be a proper metric space with a convex bicombing σ . It follows
from Sect. 2.7 that X satisfies condition (CIn) for every n ≥ 1, thus all the
preceding results are still at our disposal. The boundary at infinity of (X, σ )

is defined in the usual way, as for CAT(0) spaces, except that only σ -rays
are taken into account. Specifically, we let Rσ X and Rσ

1 X denote the sets of
all σ -rays and σ -rays of speed one, respectively, in X . For every pair of rays
�, �′ ∈ Rσ X , the function t �→ d(�(t), �′(t)) is convex, and � and �′ are called
asymptotic if this function is bounded. This defines an equivalence relation ∼
on Rσ X as well as on Rσ

1 X . The boundary at infinity or visual boundary of
(X, σ ) is the set

∂∞X := Rσ
1 X/∼

(whereas Rσ X/∼ is the set underlying the Tits cone of X , see the end of
Sect. 8). Given � ∈ Rσ

1 X and p ∈ X , there is a unique ray �p ∈ Rσ
1 X

asymptotic to � with �p(0) = p. The set

X := X ∪ ∂∞X

carries a natural metrizable topology, analogous to the cone topology for
CAT(0) spaces. With this topology, X is a compact absolute retract, and ∂∞X
is a Z -set in X . See Section 5 in [29] for details, and [14] for more background.
For a subset A ⊂ X , the limit set ∂∞(A) is defined as the set of all points in
∂∞X that belong to the closure of A in X . For a point p ∈ X we define the
geodesic homotopy

h p : [0, 1] × X → X

by h p(λ, x) := h p,λ(x) := σpx (λ). Note that the map h p,λ : X → X is
λ-Lipschitz. For a set A ⊂ X ,

Cp(A) := h p([0, 1] × A)

denotes the geodesic cone from p ∈ X over A, and Cp(A) denotes its closure
in X . Similarly, if	 ⊂ ∂∞X , then Cp(	) ⊂ X denotes the union of the traces
of the rays emanating from p and representing points of 	.
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Let now S ∈ Zn,loc(X). We write

	(S) := ∂∞(spt(S)) ⊂ ∂∞X

for the limit set of (the support of) S, and we call S conical if there is a point
p ∈ X such that

h p,λ#S = S

for all λ ∈ (0, 1). The following lemma collects a number of basic properties.

Lemma 7.2 (conical) Let X be a proper metric space with a convex bicomb-
ing σ , and suppose that S ∈ Zn,loc(X) is conical with respect to some point
p ∈ X. Then

(1) S Bp(r) ∈ In,c(X) and h p,λ#(S Bp(r)) = S Bp(λr) for all r > 0
and λ ∈ (0, 1);

(2) the functions r �→ �p,r (S) and r �→ Fp,r (S) are non-decreasing on
(0, ∞);

(3) if S �= 0, then F∞(S) > 0 (possibly F∞(S) = ∞);
(4) spt(S) ⊂ Cp(	(S)).

Proof Put Br := Bp(r) for all r > 0. To see that S Br ∈ In,c(X) for every
r > 0, note that S Bs ∈ In,c(X) for almost every s > 0, pick such an s > r ,
and put λ := r/s. Now h p,λ#(S Bs) ∈ In,c(X), and since Bs = h −1

p,λ(Br ) and
h p,λ#S = S, it follows that

h p,λ#(S Bs) = (h p,λ#S) Br = S Br .

From this, the second assertion of (1) is also clear.
We show (2). For any s > r > 0,

‖S‖(Br ) = ‖h p,r/s#S‖(Br ) ≤ (r/s)n‖S‖(Bs),

thus �p,r (S) is non-decreasing in r . Similarly, if there exists V ∈ In+1,c(X)

such that spt(S − ∂V ) ∩ Bs = ∅, then M(h p,r/s#V ) ≤ (r/s)n+1M(V ), and
the support of S − ∂(h p,r/s#V ) = h p,r/s#(S − ∂V ) is disjoint from Br , thus
Fp,r (S) ≤ M(V )/sn+1. Taking the infimum over all such V , we get that
Fp,r (S) ≤ Fp,s(S) (where Fp,s(S) = ∞ if no such V exists).
As for (3), note that if S �= 0, there is an s > 0 such that spt(S) ∩ Bs �= ∅.

Then any V as above must be non-zero, thus Fp,s(S) ∈ (0, ∞], and F∞(S) ≥
Fp,s(S) by monotonicity.
Finally, observe that spt(S) = spt(h p,λ#S) ⊂ h p,λ(spt(S)) for all λ ∈

(0, 1]. Hence, for every x1 ∈ spt(S) there exist x2, x3, . . . ∈ spt(S) such that
h p,1/k(xk) = x1, and (4) follows. ��
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We now prove a first part of Theorem 1.4 stated in the introduction.

Theorem 7.3 (conical representative) Let X be a proper metric space with a
convex bicombing σ and with asrk(X) = n ≥ 2. Suppose that S ∈ Z∞

n,loc(X)

and p ∈ X. Then there exists a unique local cycle Sp,0 ∈ Z∞
n,loc(X) that is

conical with respect to p and F-asymptotic to S. Furthermore, �∞(Sp,0) ≤
�∞(S), 	(Sp,0) ⊂ 	(S), and spt(Sp,0) ⊂ Cp(	(S)).

Note that by uniqueness, Sp,0 = 0 if and only if F∞(S) = 0. For the proof
of Theorem 7.3, we consider the family of all

Sp,λ := h p,λ#S ∈ Zn,loc(X)

for λ ∈ (0, 1]. We show that, as λ → 0, this family converges in the local flat
topology to the desired local cycle Sp,0.

Proof Pick any C > �∞(S). Then there exists an a ≥ 0 such that �p,r (S) ≤
C for all r > a. We write again Br := Bp(r). Since h p,λ is λ-Lipschitz,

‖Sp,λ‖(Br ) ≤ λn‖S‖(Bλ−1r ) ≤ Crn

for all r > λa (see Sect. 2.4), thus �p,r (Sp,λ) ≤ C for all r > λa.
First we construct partial fillings of Sp,λ − S for a fixed λ ∈ (0, 1). Let

R′ > a/2. Then ‖S‖(B2R′) ≤ C(2R′)n , hence there exists an R ∈ (R′, 2R′)
such that S BR ∈ In,c(X),

M(∂(S BR)) ≤ 2nC(R′)n−1 ≤ 2nCRn−1,

and h p,λ#(S BR) = Sp,λ BλR ∈ In,c(X). The truncated geodesic cone
T := h p#

(
�λ, 1� × ∂(S BR)

) ∈ In,c(X) with boundary

∂T = ∂(S BR) − h p,λ#∂(S BR)

satisfies M(T ) ≤ RM(∂(S BR)) ≤ 2nCRn (see Sect. 2.7). It follows that
‖T ‖(Br ) ≤ 2nCrn for all r > 0. Hence,

Z := Sp,λ BλR − S BR + T

is a cycle satisfying �p,r (Z) ≤ C ′ for all r > a and for some constant
C ′ = C ′(C, n). Proposition 4.5 (partial filling) shows that for every ε > 0 there
is an a′

ε = a′
ε(X,C ′, a) ≥ 0 such that if r > a′

ε , there exists V ∈ In+1,c(X)

with spt(Z − ∂V ) ∩ Br = ∅ andM(V ) < εrn+1. If we choose R′ sufficiently
large, so that λR > r , then spt(T )∩ Br = ∅ and spt(Sp,λ − S−∂V )∩ Br = ∅.
This shows that Fp,r (Sp,λ − S) < ε whenever ε > 0 and r > a′

ε .
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Next, suppose that 0 < λ′ < λ ≤ 1. Let ε > 0 and r > λa′
ε . Since λ′/λ < 1

and r/λ > a′
ε , the above result yields that Fp,r/λ(Sp,λ′/λ − S) < ε. Since h p,λ

is λ-Lipschitz, it follows that Fp,r (Sp,λ′ − Sp,λ) < ε.
We can now conclude the proof. Since �p,r (Sp,λ) ≤ C for r > λa, The-

orem 2.3 (compactness) shows that for some sequence λi ↓ 0, the respective
Sp,λi converge in the local flat topology to a limit Sp,0 ∈ Zn,loc(X). By
Lemma 5.5 (F-convergence), Fp,r (Sp,0 − Sp,λi ) → 0 for every fixed r > 0.
Using the inequality

Fp,r (Sp,0 − Sp,λ) ≤ Fp,r (Sp,0 − Sp,λi ) + Fp,r (Sp,λi − Sp,λ),

we infer that Fp,r (Sp,0 − Sp,λ) ≤ ε whenever λ ∈ (0, 1], ε > 0, and r > λa′
ε .

This shows at once that F∞(Sp,0 − S) = 0 and that Sp,λ → Sp,0 in the local
flat topology, as λ → 0. To see that Sp,0 is conical with respect to p, note
that for any μ ∈ (0, 1), h p,μ#Sp,0 is the weak limit of h p,μ#Sp,λ = Sp,μλ for
λ → 0, which is again Sp,0.

Next we show that �∞(Sp,0) ≤ �∞(S). For all pairs s > r > 0,

‖Sp,0‖(Bp(r)) ≤ lim inf
λ→0

‖Sp,λ‖(Bp(s)) ≤ Csn

by the lower semicontinuity of mass with respect to weak convergence and
since �p,s(Sp,λ) ≤ C for s > λa. As C > �∞(S) was arbitrary, this gives
the result. In particular Sp,0 ∈ Z∞

n,loc(X).
If S′ ∈ Z∞

n,loc(X) is another local cycle that is conical with respect to p and
F-asymptotic to S, then S′ ∼F Sp,0 and so S′ = Sp,0 by Lemma 7.2.
By construction, spt(Sp,λ) ⊂ Cp(spt(S)) for all λ ∈ (0, 1). Therefore

spt(Sp,0) ⊂ Cp(spt(S)) and thus

	(Sp,0) ⊂ ∂∞(Cp(spt(S))) = 	(S).

Hence, by Lemma 7.2, spt(Sp,0) ⊂ Cp(	(Sp,0)) ⊂ Cp(	(S)). ��
A consequence of Theorem 7.3 (and Proposition 4.5) is the following uni-

form density bound.

Proposition 7.4 (controlled density) Let X be a proper metric space with a
convex bicombing σ and with asrk(X) = n ≥ 2. Then for all C, ε > 0 there is
a constant a ≥ 0 such that every minimizing S ∈ Z∞

n,loc(X) with �∞(S) ≤ C
has (C + ε, a)-controlled density.

Proof Let p ∈ X . Since F∞(S − Sp,0) = 0 and �p,r (Sp,0) ≤ �∞(Sp,0) ≤
�∞(S) ≤ C for all r > 0, Proposition 4.5 (partial filling) shows that for every
ε > 0 there is an a = a(X,C, ε) ≥ 0 such that�p,r (S) ≤ C+ε for all r > a.
As p was arbitrary, this yields the result. ��
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Remark 7.5 When X is a proper CAT(0) space, it follows more directly that
every minimizing S ∈ Z∞

n,loc(X) has (C, 0)-controlled density for C :=
�∞(S), regardless of the asymptotic rank of X . In fact, for every fixed p ∈ X ,
the function r �→ �p,r (S) is non-decreasing on (0, ∞). This monotonicity
property is shown by an argument very similar to the proof of Lemma 3.3
(density), using the sharp cone inequality M(Ts) ≤ (s/n)M(Rs) instead of
the Euclidean isoperimetric inequality M(Ts) ≤ γ M(Rs)

n/(n−1) (compare
Corollary 4.4 in [81]).

8 Visibility and applications

Theorem 7.3 (conical representative) shows in particular that for every S ∈
Z∞
n,loc(X) and p ∈ X there is an Sp,0 ∈ [S] with support in the geodesic

cone Cp(	(S)). We now assume in addition that S ∈ Z∞
n,loc(X) is quasi-

minimizing. If both S and Sp,0 had controlled density, we could conclude
directly from Theorem 5.1 (Morse Lemma I) that the support of S is within
uniformly bounded distance from spt(Sp,0) and hence from Cp(	(S)). The
following result, which subsumes Theorem 1.5, provides a sublinear bound
for the general case. As indicated in the introduction, this may be viewed as
an analog of the visibility axiom from [32].

Theorem 8.1 (visibility property) Let X be a proper metric space with a
convex bicombing σ and with asrk(X) = n ≥ 2. Then for all Q ≥ 1, C > 0,
a ≥ 0, and ε > 0 there exists rε > 0 such that the following holds. Suppose
that S ∈ Zn,loc(X) is (Q, a)-quasi-minimizing and satisfies �p,r (S) ≤ C for
some p ∈ X and for all r > a. If x ∈ spt(S) is a point with d(p, x) ≥ rε , then

(1) for every λ ∈ (0, 1) there is an xλ ∈ spt(S) such that d(x, h p,λ(xλ)) <

ε d(p, x);
(2) there exists a ray � ∈ Rσ

1 X with �(0) = p and [�] ∈ 	(S) such that
d(x, im(�)) < ε d(p, x).

We prove (1) and (2) in a unified way by bounding the distance of x from
spt(Sp,λ) = spt(h p,λ#S) for λ ∈ (0, 1) and from spt(Sp,0), respectively.

Proof Let λ ∈ [0, 1). We know from Theorem 7.3 (conical representative)
and its proof that F∞(S − Sp,λ) = 0 and �p,r (Sp,λ) ≤ C for all r > λa. In
particular, �p,r (S − Sp,λ) ≤ 2C for all r > a. Suppose now that x ∈ spt(S)

and s > 0 are such that Bx (s) ∩ spt(Sp,λ) = ∅, and put rx := d(p, x).
Proposition 4.5 (partial filling) shows that for every δ > 0 there is a constant
a′
δ = a′

δ(X,C, a) ≥ 0 such that if rx + s > a′
δ , there exists V ∈ In+1,c(X)

with spt(S − Sp,λ − ∂V ) ∩ Bp(rx + s) = ∅ and

M(V ) < δ(rx + s)n+1.

123



Higher rank hyperbolicity 641

Since Bx (s) is disjoint from spt(Sp,λ) and contained in Bp(rx + s), it follows
that spt(S − ∂V ) ∩ Bx (s) = ∅. Now Lemma 3.4 (filling density) shows that if
s > 4a, then

M(V ) ≥ csn+1

for some constant c > 0 depending only on X and Q. Hence,

s <
(
c−1δ

)1/(n+1)
(rx + s)

whenever rx = d(p, x) > a′
δ and 4a < s < d(x, spt(Sp,λ)). By choosing δ

sufficiently small, in dependence of n, c, a and ε > 0, we infer that

d(x, spt(Sp,λ)) < ε d(p, x)

for all x ∈ spt(S) with d(p, x) > a′
δ .

From this, (1) and (2) follow easily. Note first that if λ ∈ (0, 1), then
spt(Sp,λ) = spt(h p,λ#S) ⊂ h p,λ(spt(S)); it thus follows that there is a point
xλ ∈ spt(S) such that d(x, h p,λ(xλ)) < ε d(p, x). Similarly, if λ = 0,
then spt(Sp,0) ⊂ Cp(	(S)) by Theorem 7.3 (conical representative), thus
there exists a ray � ∈ Rσ

1 X emanating from p such that [�] ∈ 	(S) and
d(x, im(�)) < ε d(p, x). ��

As a by-product of this argument we obtain the following supplement to
Theorem 7.3 (conical representative).

Proposition 8.2 (equal limit sets) Let X be a proper metric space with a
convex bicombing σ and with asrk(X) = n ≥ 2. If S ∈ Z∞

n,loc(X) is quasi-
minimizing, then 	(Sp,0) = 	(S) for every p ∈ X.

Proof Let p ∈ X . We already know that 	(Sp,0) ⊂ 	(S). On the other hand,
given v ∈ 	(S), it follows from the proof of Theorem 8.1 that there exist
sequences of points xi ∈ spt(S) and yi ∈ spt(Sp,0) such that xi → v and
d(xi , yi ) < (1/ i) d(p, xi ). This implies that yi → v, thus v ∈ 	(Sp,0). ��

We now consider an asymptotic Plateau problem.

Theorem 8.3 (minimizer with prescribed asymptotics) Let X be a proper
metric space with a convex bicombing σ and with asrk(X) = n ≥ 2. Sup-
pose that S0 ∈ Z∞

n,loc(X) is conical with respect to some point p ∈ X. Then
there exists a minimizing S ∈ Z∞

n,loc(X) that is F-asymptotic to S0; thus
Sp,0 = S0. Every such S satisfies �∞(S) = �∞(S0) and 	(S) = 	(S0).
Furthermore, if S′ ∈ Z∞

n,loc(X) is another minimizer F-asymptotic to S0, then
dH(spt(S), spt(S′)) ≤ b for some constant b ≥ 0 depending only on X and
�∞(S0).
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Proof By Theorem 5.6 (constructing minimizers) there exists a minimizing
S ∈ Zn,loc(X) with F∞(S − S0) = 0, and every such S satisfies �∞(S) ≤
�∞(S0). Then Sp,0 = S0 by the uniqueness assertion of Theorem 7.3 (conical
representative), and since �∞(Sp,0) ≤ �∞(S), it follows that �∞(S) =
�∞(S0). By Proposition 8.2, 	(S) = 	(Sp,0) = 	(S0).

If S′ ∈ Z∞
n,loc(X) is another minimizer F-asymptotic to S0, then F∞(S −

S′) = 0, and by Proposition 7.4 (controlled density) S − S′ has (2C, a)-
controlled density for some constants C, a depending only on X and �∞(S0).
Since S − S′ is (1, 0)-quasi-minimizing mod spt(S) as well as mod spt(S′), it
follows from Theorem 5.1 (Morse Lemma I) that dH(spt(S), spt(S′)) ≤ b for
some constant b as claimed. ��

Proposition 8.2 and Theorem 8.3 show in particular that the following three
classes of compact subsets of ∂∞X agree.

Definition 8.4 (canonical class of limit sets) Let X be a proper metric space
with a convex bicombing σ and with asrk(X) = n ≥ 2. We put

L X := {	(S) : S ∈ Z∞
n,loc(X) is conical}

= {	(S) : S ∈ Z∞
n,loc(X) is minimizing}

= {	(S) : S ∈ Z∞
n,loc(X) is quasi-minimizing}.

We now prove Theorem 1.7, reformulated for spaces with a convex bicomb-
ing.

Theorem 8.5 (dense orbit) Let X be a proper metric space with a convex
bicombing σ and with asrk(X) = n ≥ 2, and suppose that � is a cocompact
group of isometries of X. Then, for every non-empty set 	 ∈ L X, the orbit of
	 under the action of �, extended to X = X ∪ ∂∞X, is dense in ∂∞X (with
respect to the cone topology).

Proof Suppose that 	 = 	(S), where S ∈ Z∞
n,loc(X) is minimizing. By

Proposition 7.4 (controlled density), S has (C, a)-controlled density for some
constantsC, a depending only on X and�∞(S). Let p ∈ X , and let �0 ∈ Rσ

1 X
be a ray emanating from p. Since � acts cocompactly, there is a constant
b > 0 such that for every t ≥ 0 there exist an isometry γt ∈ � and a point
xt ∈ γt (spt(S)) = spt(γt#S) such that d(�0(t), xt ) ≤ b. Note that γt#S is
minimizing, and �p,r (γt#S) = �

γ −1
t (p),r (S) ≤ C for all r > a. Hence, given

ε > 0, if t is sufficiently large, then byTheorem8.1 there is a ray� ∈ Rσ
1 X with

�(0) = p such that [�] ∈ 	(γt#S) and d(xt , im(�)) < ε d(p, xt ) ≤ ε(t + b).
Then

d(�0(t), im(�)) < b + ε(t + b).
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Note that [�] ∈ ∂∞(γt (spt(S))) = γ t (	) for the extension γ t of γt to X .
Since ε > 0 was arbitrary, this shows that every neighborhood of [�0] in ∂∞X
contains a point of the orbit of 	. ��

Theorem 8.1 shows that the support of a quasi-minimizer S ∈ Z∞
n,loc(X)

lies within sublinear distance from Cp(	(S)), in terms of the distance to p.
Next we show that, conversely, the entire cone Cp(spt(S)) is within sublinear
distance from spt(S); however, the estimate now depends on S and p rather
than just on the data of S. The proof relies on Theorem 8.1 and a ball packing
argument.

Theorem 8.6 (asymptotic conicality) Let X be a proper metric space with a
convex bicombing σ and with asrk(X) = n ≥ 2. Suppose that S ∈ Z∞

n,loc(X)

is quasi-minimizing, and p ∈ X. Then for all ε > 0 there exists r > 0 such
that

d(y, spt(S)) < ε d(p, y)

whenever y ∈ Cp(spt(S)) and d(p, y) ≥ r .

Proof We consider the family of the compact sets

Ks := spt(S) ∩ Bp(s)

for s > 0. Let μ > 0. It follows from Theorem 8.1 that there exists an r > 0
such that for all s ≥ r , x ∈ Ks , and λ ∈ (0, 1], there is a point x ′ ∈ spt(S)

such that

d(x, h p,λ(x
′)) < μs.

Then λ d(p, x ′) = d(p, h p,λ(x ′)) ≤ d(p, x) + μs ≤ (1 + μ)s. Hence, given
any t ≥ s, by choosing λ := min{1, (1 + μ)s/t} and x ′ := x in the case that
λ = 1, we get that d(p, x ′) ≤ t . Then

d(h p,λ(x
′), h p,s/t (x

′)) =
(
λ − s

t

)
d(p, x ′) ≤ λt − s ≤ μs.

We conclude that for every x ∈ Ks and every t ≥ s there exists an x ′ ∈ Kt
such that d(x, h p,s/t (x ′)) < 2μs. Furthermore, if (y, y′) ∈ Ks ×Kt is another
such pair with d(y, h p,s/t (y′)) < 2μs, then

1

t
d(x ′, y′) ≥ 1

s
d(h p,s/t (x

′), h p,s/t (y
′)) >

1

s
d(x, y) − 4μ

by convexity.
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Let now ε > 0. For δ > 0, denote byNδ,s the maximal possible cardinality
of a δs-separated set N ⊂ Ks (see Sect. 2.1). By the assumptions on S and
Lemma 3.3 (density), ¯Nδ := lim sups→∞ Nδ,s is finite. Using the monotonic-
ity of ¯Nδ ∈ Z in δ we nowfix δ, μ > 0 such that ¯Nδ+8μ = ¯Nδ and δ+2μ ≤ ε.
Thenwe choose r > 0 so large that the result of the first part of the proof holds,
Nδ+8μ,r = ¯Nδ+8μ, andNδ,t ≤ ¯Nδ for all t ≥ r . Let Nr ⊂ Kr be a (δ+8μ)r -
separated set with maximal cardinality |Nr | = Nδ+8μ,r = ¯Nδ+8μ = ¯Nδ . For
all t ≥ s ≥ r , it follows from the first part of the proof that there exists a bijec-
tion f from Nr to a (δ + 4μ)s-separated set Ns ⊂ Ks as well as a bijection g
from Ns to a δt-separated set Nt ⊂ Kt such that d(x, h p,s/t (x ′)) < 2μs for
all x ∈ Ns and x ′ := g(x) ∈ Nt . Now |Nt | ≤ Nδ,t ≤ ¯Nδ = |Nr | = |Nt |, thus
Nt is in fact maximal and forms a δt-net in Kt .
Finally, suppose that y is a point in Cp(spt(S)) with s := d(p, y) ≥ r .

Then y = h p,s/t (y′) for some y′ ∈ spt(S), where t := d(p, y′) ≥ s. As we
have just shown, there exist x ∈ Ks and x ′ ∈ Kt such that d(y′, x ′) ≤ δt and
d(h p,s/t (x ′), x) < 2μs, thus d(y, h p,s/t (x ′)) ≤ (s/t) d(y′, x ′) ≤ δs and

d(y, x) ≤ d(y, h p,s/t (x
′)) + d(h p,s/t (x

′), x) < (δ + 2μ)s ≤ εs.

Hence, d(y, spt(S)) < ε d(p, y). This yields the result. ��
We now turn to the Tits geometry. As a first application of Theorem 8.6 we

will show that the limit sets 	 ∈ L X are compact with respect to the Tits
topology.

For a proper metric space X with a convex bicombing σ , the Tits cone of
(X, σ ) is defined as the set

CTX := Rσ X/∼

(see Sect. 7), equipped with the metric given by

dT([�], [�′]) := lim
t→∞

1

t
d(�(t), �′(t)).

Note that t �→ d(�(t), �′(t)) is convex, thus t �→ d(�(t), �′(t))/t is non-
decreasing if �, �′ are chosen such that �(0) = �′(0). From this it is easily
seen that CTX is complete. On CTX , multiplication by a scalar λ ∈ R+ is
defined by λ[�( · )] := [�(λ · )]. This yields a homothety

hλ : CTX → CTX,

thus hλ(v) = λv and dT(hλ(v), hλ(v
′)) = λ dT(v, v′). The cone vertex o of

CTX is the class of the constant rays. For every base point p ∈ X there exists
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Higher rank hyperbolicity 645

a canonical 1-Lipschitz map

canp : CTX → X

such that canp([�]) = �(1) for all � ∈ Rσ X with �(0) = p. The Tits boundary
of (X, σ ) is the unit sphere

∂TX := So(1) = Rσ
1 X/∼

in CTX , endowed with the topology induced by dT. This topology is finer than
the cone topology on the visual boundary ∂∞X , which agrees with ∂TX as a
set. However, the following holds.

Proposition 8.7 (compact limit sets) Let X be a proper metric space with a
convex bicombing σ and with asrk(X) = n ≥ 2. Then every 	 ∈ L X is still
compact when viewed as a subset of ∂TX.

Proof Suppose that 	 = 	(S), where S ∈ Z∞
n,loc(X) is quasi-minimizing.

Fix p ∈ X , and let ε > 0. Let N ⊂ 	 be a finite 3ε-separated set; thus
dT(u, u′) > 3ε for distinct u, u′ ∈ N . For r > 0 sufficiently large, canp(r N ) is
3εr -separated, and every point in this set is at distance less than εr from spt(S)

by Theorem 8.6. This yields an εr -separated subset of spt(S) ∩ Bp(r + εr)
of the same cardinality as N . For r sufficiently large, it then follows from
Lemma 3.3 (density) that the cardinality of such sets is bounded from above
by a constant depending on ε but not on r . We conclude that 	 is totally
bounded. Since CTX is complete and 	 is closed in the Tits topology, this
gives the result. ��

9 Cycles at infinity

In this section we show that if S ∈ Z∞
n,loc(X) is conical with respect to p ∈ X ,

then the coneR+	 ⊂ CTX over the limit set 	 = 	(S) ∈ L X is the support
of a unique local n-cycle� inCTX satisfying canp# � = S. We then complete
the proofs of Theorems 1.4 and 1.6.

In general, Tits cones are not locally compact, therefore the theory of local
currents from [59], which depends on the supply of compactly supported Lips-
chitz functions, is not directly applicable toCTX . However, by Proposition 8.7
above,R+	 is proper, and� will be constructed as a current in its own support
spt(�) = R+	. Thus, we (re-)defineZn,loc(CTX) as the collection of all local
cycles � ∈ Zn,loc(K�) such that K� ⊂ CTX is proper and spt(�) = K�

(compare the discussion after Proposition 3.3 in [59]). The sum of two ele-
ments �, �′ ∈ Zn,loc(CTX) may be formed by viewing them temporarily as
currents in K� ∪ K�′ ; thus Zn,loc(CTX) is an abelian group. The complexes
I∗,loc(CTX), I∗,c(CTX) and I∗,c(∂TX) are understood similarly.
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646 B. Kleiner, U. Lang

We start with a basic fact.

Lemma 9.1 (uniform convergence) Let X be a proper metric space with a
convex bicombing σ . Suppose that K is a compact subset of CTX, and p ∈ X.
Then for every ε > 0 there is an rε > 0 such that

dT(u, v) − ε ≤ r−1d(canp(ru), canp(rv)) ≤ dT(u, v)

for all r ≥ rε and u, v ∈ K. In particular, K is an asymptotic subset of X as
defined in Definition 4.2.

Proof For every r > 0, the map u �→ canp(ru) is r -Lipschitz on CTX .
It follows that the function �r : (u, v) �→ r−1d(canp(ru), canp(rv)) is 1-
Lipschitz with respect to the l1 product metric on CTX × CTX . Moreover, as
r → ∞, �r → dT pointwise on CTX × CTX by the definition of dT. Hence
the convergence is uniform on K × K for every compact set K ⊂ CTX .

In particular, the rescaled sets (canp(r K ), r−1d) converge in the Gromov–
Hausdorff topology to K . ��
Remark 9.2 It follows from Lemma 9.1 and Remark 4.3 that if asrk(X) =
n and m > n, then CTX contains no set bi-Lipschitz homeomorphic to a
compact subset of Rm with positive Lebesgue measure, and this implies that
Im,loc(CTX) = {0} and Im−1,c(∂TX) = {0}.

As a consequence, if asrk(X) = n, then every local cycle � ∈ Zn,loc(CTX)

is conical with respect to the cone vertex o, that is, hλ#� = � for all λ > 0.
To see this, consider the radial homotopy H : (t, v) �→ (1− t + λt)v of CTX ;
then hλ#� −� equals the boundary of H#(�0, 1�×�) = 0 ∈ In+1,loc(CTX).

We now prove the following general result, which is independent of the
asymptotic rank. However, the assumption asrk(X) = n will guarantee that
	(S) ⊂ ∂TX is compact.

Theorem 9.3 (lifting cones) Let X be a proper metric space with a convex
bicombing σ . Suppose that S ∈ Z∞

n,loc(X) is conical with respect to some
point p ∈ X, and 	 := 	(S) is compact in the Tits topology. Then there
is a unique local cycle � ∈ Zn,loc(CTX) such that canp# � = S. Moreover,
� ∈ Zn,loc(CTX) is conical with respect to o, M(� Bo(1)) = �∞(S),
spt(�) = R+	, and spt(∂(� Bo(1))) = 	.

Note that since � ∈ Zn,loc(CTX) is conical, � Bo(λ) ∈ In,c(CTX) for all
λ > 0 (compare Lemma 7.2 (conical)).

To construct� we will consider the family of all Sr := S Bp(r) ∈ In,c(X)

for r > 0. First we embed each Sr by a map that dilates all distances by
the factor 1/r into a fixed compact metric space Y . The embedded family
converges, as r → ∞, to an integral current in Y with support in an isometric
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copy of the cone K := [0, 1]	 ⊂ CTX , and this yields � Bo(1). As regards
Y , we will use the following general fact. Given any compact metric space
(K , dK ) with diameter D, the set Y of all 1-Lipschitz functions y : K →
[0, D], endowed with the metric defined by

dY (y, y′) := sup
v∈K

|y(v) − y′(v)|,

is a compact convex subspace of l∞(K ), and the map u �→ dK (u, ·) is an
isometric embedding of K into Y . Furthermore, Y is an injective metric space;
that is, every 1-Lipschitz map � : A → Y defined on a subset A of a metric
space B extends to a 1-Lipschitz map �̄ : B → Y . In fact, such an extension
is given by

�̄(b)(v) := sup
a∈A

max{�(a)(v) − d(a, b), 0}

for all b ∈ B and v ∈ K .

Proof For s > r > 0, we put πr := canp ◦hr : CTX → X and πs,r :=
h p,r/s : X → X . Note that πr is r -Lipschitz, πs,r is (r/s)-Lipschitz, and
πr = πs,r ◦ πs .

Let first K ⊂ CTX be an arbitrary compact set, and put Kr := πr (K ).
Let (Y, dY ) be the compact convex subspace of l∞(K ) as described before the
proof, and let

f : K → Y, f (u) := dT(u, ·),
denote the canonical isometric embedding of K into Y . Similarly, since πr is
r -Lipschitz, there is a map

fr : Kr → Y, fr (x) := r−1d(x, πr (·)),
and since πr maps K onto Kr , it follows that

dY ( fr (x), fr (x
′)) = r−1 sup

v∈K
∣∣d(x, πr (v)) − d(x ′, πr (v))

∣∣ = r−1d(x, x ′)

for all x, x ′ ∈ Kr . Note also that fr (p) = f (o) =: y0 ∈ Y .
Let ε > 0. By Lemma 9.1 there is an rε > 0 such that if s > r ≥ rε , then

s−1d(πs(u), πs(v)) ≤ dT(u, v) ≤ r−1d(πr (u), πr (v)) + ε for all u, v ∈ K .
We infer that

dY ( fs(πs(u)), fr (πr (u)))

= sup
v∈K

∣∣s−1d(πs(u), πs(v)) − r−1d(πr (u), πr (v))
∣∣ ≤ ε
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648 B. Kleiner, U. Lang

for all u ∈ K and hence

dY ( fs(x), ( fr ◦ πs,r )(x)) ≤ ε

for all x ∈ Ks . Similarly,

dY ( f (u), ( fr ◦ πr )(u)) ≤ ε

for all u ∈ K . Thus fr (Kr ) lies within distance ε of f (K ).
We now apply this construction for the cone K := [0, 1]	 ⊂ CTX . Let

C := �∞(S). By Lemma 7.2 (conical), for all s > r > 0, Sr := S Bp(r) ∈
In,c(X), πs,r#Ss = Sr , M(Sr ) ≤ Crn , and spt(S) ⊂ Cp(	); thus spt(Sr ) ⊂
Kr = πr (K ). Since πs,r is r/s-Lipschitz and πs,r#(∂Ss) = ∂Sr , it follows that
sn−1M(∂Sr ) ≤ rn−1M(∂Ss), and integration over s yields

Rn − rn

n
M(∂Sr ) ≤ rn−1M(SR) ≤ Crn−1Rn

for all R > r ; thusM(∂Sr ) ≤ nCrn−1. Since fr : Kr → Y is (1/r)-Lipschitz,
we get the uniform bounds

M( fr#Sr ) ≤ C, M(∂( fr#Sr )) = M( fr#(∂Sr )) ≤ nC.

For ε > 0 and s > r ≥ rε , let H : [0, 1] × Ks → Y be the affine homotopy
from fs to fr ◦ πs,r in Y ⊂ l∞(K ). Then H(t, ·) is (1/s)-Lipschitz for every
t ∈ [0, 1], and H(·, x) is a segment of length at most ε for every x ∈ Ks . It
follows that the family ( fr#Sr )r>0 is Cauchy with respect to the flat distance
F on In,c(Y ) (see Sects. 2.7 and 2.8), and by Theorem 2.3 (compactness) there
exists a current �̄1 ∈ In,c(Y ) such that

lim
r→∞F ( fr#Sr − �̄1) = 0.

Note that M(�̄1) ≤ C and spt(�̄1) ⊂ f (K ), furthermore spt(∂�̄1) ⊂ Sy0(1)
because spt(∂( fr#Sr )) ⊂ fr (spt(∂Sr )) ⊂ Sy0(1) for all r > 0. Via the iso-
metric embedding f −1 : f (K ) → CTX we get a current �1 := ( f −1)#�̄1 ∈
In,c(CTX) with spt(�1) ⊂ K , spt(∂�1) ⊂ 	 ⊂ So(1), and M(�1) ≤ C =
�∞(S).

Next we show that for each r > 0, πr#�1 = Sr . We know that if ε > 0 and
s ≥ rε , then dY ( f (u), ( fs ◦πs)(u)) ≤ ε for all u ∈ K . Since f#�1 = �̄1, this
yields

lim
s→∞F ( fs#(πs#�1) − �̄1) = 0.
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Putting Ts := fs#(πs#�1 − Ss), we get that lims→∞ F (Ts) = 0. For every
s > r , the 1-Lipschitz map �s := fr ◦πs,r ◦ f −1

s : fs(Ks) → fr (Kr ) satisfies
�s#Ts = Tr and possesses a 1-Lipschitz extension �̄s : Y → Y . It follows that
F (Tr ) ≤ F (Ts) for all s > r , thus F (Tr ) = 0 and therefore Tr = 0. Hence,
πr#�1 − Sr = ( f −1

r )#Tr = 0, as claimed.
As a consequence, M(Sr ) ≤ rnM(�1) and spt(∂Sr ) ⊂ πr (spt(∂�1)) for

all r > 0, thus �∞(S) ≤ M(�1) and 	 ⊂ spt(∂�1). Hence, in view of the
relations shown above,M(�1) = �∞(S) and spt(∂�1) = 	.

Finally, consider the family {�λ}λ>0 in In,c(CTX) such that �λ = hλ#�1
for every λ > 0. Then πr#�λ = Sλr for all r > 0, and we claim that �λ is
the unique element of In,c(CTX) with this property. Let �′ be any non-zero
element of In,c(CTX). It suffices to show that πr#�

′ �= 0 for some r > 0. Put
K := spt(�′), Kr := πr (K ), and define Y , f , and fr as above. Then it follows
that limr→∞ F ( fr#(πr#�

′) − f#�′) = 0. Since f#�′ �= 0, this implies the
claim. Now if 0 < λ < λ′, then Bo(λ) = π−1

r (Bp(λr)) and hence

πr#(�λ′ Bo(λ)) = (πr#�λ′) Bp(λr) = Sλ′r Bp(λr) = Sλr

for all r > 0; therefore �λ′ Bo(λ) = �λ by uniqueness. It follows that
the family {�λ}λ>0 determines a local cycle � ∈ Zn,loc(CTX) such that
� Bo(λ) = �λ for all λ > 0, and it is easily verified that � has the desired
properties. Note that λ	 = spt(∂�λ) ⊂ spt(�) ⊂ R+	 for all λ > 0, thus
spt(�) = R+	. ��

From Theorem 9.3 we obtain the following result which, in conjunction
with Theorem 7.3 (conical representative) and Proposition 8.2 (equal limit
sets), establishes Theorem 1.4 stated in the introduction.

Theorem 9.4 (Tits boundary) Let X be a proper metric space with a convex
bicombing σ and with asrk(X) = n ≥ 2. Then for every S ∈ Z∞

n,loc(X) there
exists a unique local cycle � ∈ Zn,loc(CTX) such that canp# � = Sp,0 for all
p ∈ X; furthermore � is conical with respect to o, and the slice ∂(� Bo(1))
defines an element ∂TS = ∂T[S] ∈ Zn−1,c(∂TX) with spt(∂TS) = 	(Sp,0)
for all p ∈ X. This yields an isomorphism

∂T : Z X → Zn−1,c(∂TX).

Proof Let S ∈ Z∞
n,loc(X), and let p, p′ ∈ X . By Theorem 7.3, Sp,0 and Sp′,0

are the unique representatives of [S] that are conical with respect to p and p′,
respectively. Theorem 9.3 together with Proposition 8.7 (compact limit sets)
then shows that there exist unique elements �, �′ ∈ Zn,loc(CTX) such that
canp# � = Sp,0 and canp′# �′ = Sp′,0; furthermore �, �′ are conical with
respect to o, and spt(∂(� Bo(1))) = 	(Sp,0). Now canp# �′ ∈ Z∞

n,loc(X) is
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conical with respect to p, and using the σ -homotopy H : [0, 1] × CTX → X
from canp to canp′ one can easily check that canp# �′ is F-asymptotic to
Sp′,0 and hence to S. It follows from the above uniqueness assertions that
canp# �′ = Sp,0 and�′ = �. This shows that canp′# � = Sp′,0 for all p′ ∈ X .
In particular, � depends only on [S]. Viewing ∂(� Bo(1)) ∈ Zn−1,c(CTX)

as an element ∂TS = ∂T[S] ∈ Zn−1,c(∂TX), we get a map ∂T : Z X →
Zn−1,c(∂TX), and it is easily verified that this is an isomorphism. ��

Returning to the asymptotic Plateau problem, we may now reformulate
Theorem 8.3 as follows.

Theorem 9.5 (minimizer with prescribed Tits data) Let X be a proper metric
space with a convex bicombing σ and with asrk(X) = n ≥ 2. Then for
every cycle R ∈ Zn−1,c(∂TX) there exists an area-minimizing local cycle
S ∈ Z∞

n,loc(X) with ∂TS = R. Every such S satisfies 	(S) = spt(R) and
M(R)/n ≤ �∞(S) ≤ M(R).

Proof Let R ∈ Zn−1,c(∂TX). By Theorems 9.4 and 7.3 there is a conical local
cycle S0 ∈ Z∞

n,loc(X) with Tits boundary ∂TS0 = R, and 	(S0) = spt(R). By
Theorem 8.3 there exists a minimizing S ∈ [S0], and every such S satisfies
	(S) = 	(S0) = spt(R) and �∞(S) = �∞(S0). Note that S ∈ [S0] if and
only if ∂TS = R. By Theorem 9.3 and the coarea inequality,

�∞(S0) = M(� Bo(1)) ≥
∫ 1

0
λn−1M(R) dλ = M(R)/n,

and since � Bo(1) agrees with the cone over R,M(� Bo(1)) ≤ M(R).
��

When X is a CAT(0) space, the last inequality holds withM(R)/n in place
of M(R); then �∞(S) = M(R)/n for every minimizing S ∈ Z∞

n,loc(X) with
∂TS = R. Furthermore, �p,r (S) ≤ �∞(S) for all p ∈ X and r > 0 by
monotonicity (see Remark 7.5), and limr→0 �p,r (S) ≥ ωn for ‖S‖-almost
every p (see [81], (4.28)); thus �∞(S) ≥ ωn whenever R �= 0. This proves
Theorem 1.6.

Remark 9.6 By the above results, we may rephrase Theorem 6.3 (visual met-
rics) in terms of cycles at infinity. For a reference point p ∈ X and [S] ∈ Z X ,
we put 〈∂T[S]〉p := 〈[S]〉p, thus

〈R〉p = inf{d(p, spt(S̃)) : S̃ ∈ Z∞
n,loc(X) is minimizing, ∂T S̃ = R}

for all R ∈ Zn−1,c(∂TX). Let C > 0 and a ≥ 0. Then, for every sufficiently
small b > 1, there exist a constant c ≥ 1 and a metric ν on ∂T(ZC,a X) ⊂
Zn−1,c(∂TX) satisfying

c−1b−〈R−R′〉p ≤ ν(R, R′) ≤ c b−〈R−R′〉p
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for all R, R′ ∈ ∂T(ZC,a X); furthermore ∂T(ZC,a X) is compact with respect
to any such metric. Note that if [S] ∈ ZC,a X and S̃ ∈ [S] is minimizing, then
�∞(S̃) ≤ C by Theorem 5.6 (constructing minimizers) and thus

∂T(ZC,a X) ⊂ {R ∈ Zn−1,c(∂TX) : M(R) ≤ nC}
by Theorem 9.5. When X is CAT(0), these two sets agree for each a ≥ 0.

10 Quasi-isometries

We now turn to quasi-isometric embeddings of X into another proper metric
space X̄ with a convex bicombing.

The following auxiliary result will be used in conjunction with Lemma 3.5
(doubling).

Proposition 10.1 (Lipschitz extension) Suppose that X is a metric space, X̄
is a metric space with a convex bicombing σ̄ , and A ⊂ X is a non-empty
closed set that is doubling. Then there is a constant μ ≥ 1, depending only on
the doubling constant, such that for every L-Lipschitz map f : A → X̄ there
is a μL-Lipschitz map g : X → X̄ with g|A = f .

This follows from Theorem 1.6 in [62] since X̄ is Lipschitz k-connected for
all k ≥ 0 and doubling sets have finite Nagata dimension (in fact, according to
Theorem 1.1 in [64], the latter is less than or equal to the Assouad dimension).

Remark 10.2 The assumption in Proposition 10.1 that A be doubling can
be dropped if, for example, X̄ is a homogeneous Hadamard manifold or a
Euclidean building; the constantμ then depends (only) on X̄ . See Theorem 1.2
in [61]. It is still unknownwhether everyHadamardmanifold has this property.

By virtue of Lemma 3.5 and Proposition 10.1, given a quasi-isometric
embedding f : X → X̄ and a quasi-minimizer S ∈ Zn,loc(X) with con-
trolled density, one can easily produce a Lipschitz map g : X → X̄ with
supx∈spt(S) d( f (x), g(x)) < ∞ by extending f |A for a suitable separated net
A in spt(S).Wenowshow that then g#S ∈ Zn,loc(X̄) is again a quasi-minimizer
with controlled density.

Proposition 10.3 (quasi-isometry invariance) Let X be a proper metric space
with a convex bicombing σ and with asrk(X) = n ≥ 2. Then for all L , Q ≥ 1,
C > 0, and a ≥ 0 there exist Q̄ ≥ 1, C̄ > 0, and ā ≥ 0 such that the following
holds. Suppose that X̄ is another proper metric space, S ∈ Zn,loc(X) is a
(Q, a)-quasi-minimizer with (C, a)-controlled density, and g : spt(S) → X̄
is a map satisfying

L−1d(x, y) − a ≤ d(g(x), g(y)) ≤ L d(x, y)
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for all x, y ∈ spt(S). Then S̄ := g#S ∈ Zn,loc(X̄) is a (Q̄, ā)-quasi-minimizer
with (C̄, ā)-controlled density, and d(g(x), spt(S̄)) ≤ ā for all x ∈ spt(S).

Proof If x ∈ spt(S) and r > a, then g−1(Bg(x)(r)) ⊂ Bx (2Lr) and thus

‖S̄‖(Bg(x)(r)) ≤ Ln‖S‖(Bx (2Lr)) ≤ LnC1r
n

for C1 := (2L)nC . Hence, given any p̄ ∈ X̄ and r > a/2 such that Bp̄(r) ∩
spt(S̄) �= ∅, it follows that ‖S̄‖(Bp̄(r)) ≤ ‖S̄‖(Bg(x)(2r)) ≤ LnC1(2r)n for
some x ∈ spt(S). This shows that S̄ has ((2L)nC1, a/2)-controlled density.

Next we show that there is a Lipschitz map ḡ : X̄ → X such that h :=
ḡ ◦ g is at finite distance from the identity on spt(S). Let N ⊂ spt(S) be a
4La-separated 4La-net in spt(S). By Lemma 3.5 (doubling), N is doubling,
and g|N : N → g(N ) is (4L/3)-bi-Lipschitz, so g(N ) is doubling as well.
The doubling constant depends only on n, L ,C . Then, by Proposition 10.1,
(g|N )−1 admits an L̄-Lipschitz extension ḡ : X̄ → X for some constant L̄
depending on n, L ,C . For every x ∈ spt(S) there is a y ∈ N such that
d(x, y) ≤ 4La. Then h(y) = y, and

d(h(x), x) ≤ d(h(x), h(y)) + d(y, x) ≤ (L L̄ + 1) d(x, y) ≤ b

for b := 4(L L̄ + 1)La.
Let again x ∈ spt(S) and r > a, and put Br := Bg(x)(r). For almost

every such r , both S̄′ := S̄ Br and S′ := S g−1(Br ) are integral currents,
g#S′ = S̄′, and

M(S′) ≤ C1r
n, M(S̄′) ≤ LnC1r

n, M(h#S
′) ≤ (L L̄)nC1r

n.

Let H : [0, 1] × spt(S) → X denote the homotopy from idspt(S) to h given
by H(t, x) = σ(x, h(x), t). The deformation chain W := H#(�0, 1� × S′) ∈
In+1,c(X) satisfies

M(W ) ≤ C2r
n

for C2 := (n + 1)(L L̄)nb C1. Furthermore, the support of the cylinder R :=
H#(�0, 1� × ∂S′) = h#S′ − S′ − ∂W lies in the closed b-neighborhood of
spt(∂S′), and spt(∂S′) ⊂ spt(S− S′) is at distance at least r/L from x because
g is L-Lipschitz.

Suppose now that T̄ ∈ In,c(X̄) and ε > 0 are such that ∂ T̄ = ∂ S̄′ and

M(T̄ ) ≤ εrn.

Since M(ḡ# T̄ ) ≤ L̄nεrn and ∂(ḡ# T̄ ) = ḡ#(∂ S̄′) = h#(∂S′), Theorem 2.4
(minimizing filling) shows that there is a minimizing T ∈ In,c(X) with ∂T =

123



Higher rank hyperbolicity 653

h#(∂S′) and

M(T ) ≤ L̄nεrn,

and if ε is sufficiently small, then spt(T ) is within distance r/(3L), say, from
spt(h#(∂S′)). For r > 3Lb, it follows that r/L − b − r/(3L) > r/(3L)

and thus spt(T − R) ∩ Bx (r/(3L)) = ∅. Note that ∂(T − R) = ∂S′. By
Lemma 3.4 there is a constant c > 0 such that Fx,r/(3L)(S) > c for r > 12La.
Put Z := h#S′ − T ∈ Zn,c(X). It follows from Theorem 4.4 (sub-Euclidean
isoperimetric inequality) that there is a constant ā ≥ 3Lb ≥ 12La such that
if r > ā, then Z possesses a filling V ∈ In+1,c(X) with

M(V − W ) ≤ M(V ) + M(W ) < crn+1.

Since ∂(V − W ) = S′ − (T − R) and spt(T − R) ∩ Bx (r/(3L)) = ∅, this
contradicts the fact that Fx,r/(3L)(S) > c. Hence, there is an ε0 > 0 such that,
for almost all r > ā, M(T̄ ) ≥ ε0rn and thus

M(S̄′) ≤ LnC1r
n ≤ QM(T̄ )

for Q := LnC1/ε0. In the case that g(x) ∈ spt(S̄), this shows that S is (Q̄, ā)-
quasi-minimizing.

If g(x) /∈ spt(S̄), the same argument for T̄ := S̄′ = S̄ Bg(x)(r) shows that
‖S̄‖(Bg(x)(r)) ≥ ε0rn > 0 for almost all r > ā. Thus d(g(x), spt(S̄)) ≤ ā.

��

Our next goal is to prove Theorem 10.6 below. We need the following
auxiliary results.

Lemma 10.4 (mapping small fillings) Let (X, σ ) be a proper metric space
with a convex bicombing. Suppose that n ≥ 1, Z ∈ Zn,loc(X), p ∈ X, and
g : X → X̄ is an L-Lipschitz map into a proper metric space X̄ such that
d(g(p), g(z)) ≥ L−1d(p, z)−a for all z ∈ spt(Z), for some constants L ≥ 1
and a ≥ 0. If F∞(Z) = 0, then Z̄ := g#Z ∈ Zn,loc(X̄) satisfies F∞(Z̄) = 0.

Proof Let ε > 0. For every sufficiently large r > 0 there exists V ∈ In+1,c(X)

such that spt(Z − ∂V ) ∩ Bp(r) = ∅ and M(V ) < (εr)n+1. By Theorem 2.4
(minimizing filling) we can assume that V is minimizing and d(x, spt(∂V )) <

εcr for all x ∈ spt(V ), where c > 0 depends only on n. Assuming that
εc < 1/2, we find an s > r/2 such that W := V Bp(s) ∈ In+1,c(X),
spt(Z − ∂W )∩ Bp(r/2) = ∅, and d(x, spt(Z)) < εcr for all x ∈ spt(W ). Put
W̄ := g#W ∈ In+1,c(X̄). Then, for any x ∈ spt(Z − ∂W ) ⊂ spt(Z) ∪ spt(W )

123



654 B. Kleiner, U. Lang

and z ∈ spt(Z) with d(x, z) < εcr ,

d(g(p), g(x)) ≥ d(g(p), g(z)) − d(g(x), g(z))

≥ L−1(d(p, x) − d(x, z)) − a − L d(x, z)

> (2L)−1r − (L−1 + L)εcr − a =: r̄ .

If ε is sufficiently small and r is sufficiently large, so that r ≤ 3Lr̄ say, then
M(W̄ ) < (εLr)n+1 ≤ (3εL2r̄)n+1, and the support of Z̄−∂W̄ = g#(Z−∂W )

is disjoint from Bg(p)(r̄). This gives the result. ��
The next lemma states a simple general fact about Lipschitz maps.

Lemma 10.5 (combining Lipschitz maps) Let X be a proper metric space,
and let X̄ be ametric space with a convex bicombing σ̄ . Suppose that A1, A2 ⊂
X are two closed non-empty sets, L , a ≥ 0 are constants, and g1, g2 : X → X̄
are L-Lipschitz maps such that d(g1(x1), g2(x2)) ≤ L d(x1, x2) + a for all
(x1, x2) ∈ A1 × A2. Then there exists a 7L-Lipschitz map ĝ : X → X̄ such
that d(ĝ(x), gi (x)) ≤ a/2 for all x ∈ Ai , for i = 1, 2.

Proof Weassume thata > 0; the casea = 0 requires onlyminormodifications
(note that then g1 = g2 on A1 ∩ A2 by assumption).

For i = 1, 2, letui : X → Rbe the L-Lipschitz function definedbyui (x) :=
L d(x, Ai ) + a/4. Put w := u1 + u2, λ := u1/w, and define ĝ : X → X̄ by

ĝ(x) := σ̄ (g1(x), g2(x), λ(x)).

Let x, y ∈ X , and put z̄ := σ̄ (g1(x), g2(x), λ(y)). Then

d(ĝ(x), ĝ(y)) ≤ d(ĝ(x), z̄) + d(z̄, ĝ(y)),

d(z̄, ĝ(y)) ≤ (1 − λ(y)) d(g1(x), g1(y)) + λ(y) d(g2(x), g2(y))

≤ L d(x, y),

and d(ĝ(x), z̄) = |λ(x) − λ(y)| d(g1(x), g2(x)). Furthermore,

|λ(x) − λ(y)| ≤
∣
∣∣
∣λ(x) − u1(y)

w(x)

∣
∣∣
∣ +

∣
∣∣
∣
u1(y)

w(x)
− λ(y)

∣
∣∣
∣

≤ 1

w(x)
|u1(x) − u1(y)| + λ(y)

w(x)
|w(y) − w(x)|

≤ 3L

w(x)
d(x, y),
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and if x1 ∈ A1 and x2 ∈ A2 are such that d(x, xi ) = d(x, Ai ), then

d(g1(x), g2(x)) ≤ d(g1(x), g1(x1)) + d(g1(x1), g2(x2)) + d(g2(x2), g2(x))

≤ L d(x, x1) + (
L d(x1, x2) + a

) + L d(x2, x)

≤ 2L d(x, x1) + 2L d(x, x2) + a

= 2w(x).

It follows that ĝ is 7L-Lipschitz. If x ∈ A1, then λ(x) = a/(4w(x)), thus
d(g1(x), ĝ(x)) ≤ λ(x) d(g1(x), g2(x)) ≤ a/2. Similarly, d(ĝ(x), g2(x)) ≤
a/2 for all x ∈ A2. ��

We now consider again the group Z X of F-asymptote classes from Defi-
nition 6.1.

Theorem 10.6 (mapping asymptote classes) Let (X, σ ) and (X̄ , σ̄ ) be two
proper metric spaces with convex bicombings and with asrk(X) = asrk(X̄) =
n ≥ 2, and suppose that f : X → X̄ is a quasi-isometric embedding. Then
there exists a unique monomorphism

Z f : Z X → Z X̄

with the property that if S ∈ Z∞
n,loc(X) and g : X → X̄ is a Lipschitz map

such that supx∈spt(S) d( f (x), g(x)) < ∞, then Z f [S] = [g#S]. If f is a
quasi-isometry, then Z f is an isomorphism.

Note that if S and g are as in the theorem, then g#S ∈ Z∞
n,loc(X̄) by the

argument in the first paragraph of the proof of Proposition 10.3, thus the class
[g#S] ∈ Z X̄ is defined. Combining Theorem 10.6 with Theorem 9.4 (Tits
boundary), we get a monomorphism fT that makes the diagram

Zn−1,c(∂TX)
fT−−−→ Zn−1,c(∂T X̄)

∂T

�⏐
⏐

�⏐
⏐∂T

Z X −−−→
Z f

Z X̄

commutative. This yields Theorem 1.8 in the introduction.

Proof Due to Theorem 5.6 (constructing minimizers) and Proposition 7.4
(controlled density), every class in Z X is represented by a minimizer
S ∈ Z∞

n,loc(X) with controlled density. It then follows from Lemma 3.5
(doubling) and Proposition 10.1 that a Lipschitz map g : X → X̄ with
supx∈spt(S) d( f (x), g(x)) < ∞ exists. In particular, there is at most one map
Z f : Z X → Z X̄ with the property stated in the theorem.
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656 B. Kleiner, U. Lang

Suppose now that S1, S2 ∈ Z∞
n,loc(X) are arbitrary and g1, g2 : X → X̄ are

Lipschitz maps with supx∈spt(Si ) d( f (x), gi (x)) < ∞ for i = 1, 2. It follows
from Lemma 10.5 that there exists a Lipschitz map ĝ : X → X̄ such that
supspt(S1)∪spt(S2) d( f (x), ĝ(x)) < ∞. Using the σ̄ -homotopy from gi to ĝ one
can easily check that gi#Si ∼F ĝ#Si . In the case that S1 ∼F S2, Lemma 10.4
shows that ĝ#S1 ∼F ĝ#S2, thus g1#S1 ∼F g2#S2. This yields the existence
of a unique map Z f : Z X → Z X̄ with the property stated in the theorem.
Furthermore, since

Z f [S1] + Z f [S2] = [ĝ#S1] + [ĝ#S2] = [ĝ#(S1 + S2)] = Z f [S1 + S2]
= Z f ([S1] + [S2]),

Z f is a homomorphism. To show thatZ f is injective, suppose that [S] �= 0,
where S is a minimizer with controlled density. Then it follows from Propo-
sition 10.3 that g#S is quasi-minimizing and non-zero for any Lipschitz map
g : X → X̄ with supx∈spt(S) d( f (x), g(x)) < ∞. Lemma 3.4 (filling density)
then shows that F∞(g#S) �= 0, thus Z f [S] = [g#S] �= 0.

If f is a quasi-isometry, then there is a quasi-isometric embedding f̄ : X̄ →
X such that supx̄∈X̄ d(( f ◦ f̄ )(x̄), x̄) < ∞, and it is not difficult to show that
Z f ◦ Z f̄ is the identity on Z X̄ . ��
Remark 10.7 Resuming the discussion of visual metrics, we note that when
f : X → X̄ is an (L , a0)-quasi-isometric embedding, the monomorphism
Z f : Z X → Z X̄ maps each of the subsets ZC,a X ⊂ Z X into ZC̄,ā X̄ ,
where C̄, ā depend on X, L , a0,C, a. Furthermore, there is a constant D̄,
depending in addition on X̄ , such that if S, S′ ∈ ZC,a X and Z ∈ [S − S′],
Z̄ ∈ Z f [S− S′] are minimizing, then spt(Z̄) is at Hausdorff distance at most
D̄ from f (spt(Z)). As a consequence, for every p ∈ X ,

L−1〈[S − S′]〉p − a0 − D̄ ≤ 〈Z f [S − S′]〉 f (p) ≤ L 〈[S − S′]〉p + a0 + D̄.

It follows readily that both the restriction ofZ f toZC,a X and its inverse are
Hölder continuous with exponent 1/L for any pair of visual metrics onZC,a X
and ZC̄,ā X̄ with the same parameter b.

Higher rank visual metrics will be further discussed elsewhere.

11 Mapping limit sets

We will now describe the effect of a quasi-isometric embedding f : X → X̄ ,
or of the associated monomorphism Z f : Z X → Z X̄ , on the collection
of limit sets L X introduced in Definition 8.4. We associate to every class
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[S] ∈ Z X a limit set 	[S] ⊂ ∂∞X such that

	[S] = 	(S′)

for every S′ ∈ [S] that is quasi-minimizing or conical; in these cases the
invariance of 	(S′) is granted by Theorem 7.3 (conical representative) and
Proposition 8.2 (equal limit sets). Thus 	[S] ∈ L X . For any S ∈ Z∞

n,loc(X),
the set 	[S] also agrees with spt(∂TS); however, Theorems 9.3 (lifting cones)
and 9.4 (Tits boundary) are not needed for the proof of Theorem 11.2 below.

The following preliminary result relies onTheorems 8.1 (visibility property)
and 8.6 (asymptotic conicality).

Proposition 11.1 (mapping cones) Let (X, σ ) and (X̄ , σ̄ ) be two proper met-
ric spaces with convex bicombings and with asrk(X) = asrk(X̄) = n ≥ 2, and
let f : X → X̄ be a quasi-isometric embedding. Suppose that [S] ∈ Z X and
Z f [S] = [S̄] ∈ Z X̄ . Choose base points p ∈ X and p̄ ∈ X̄ , and consider
the geodesic cones K := Cp(	[S]) ⊂ X and K̄ := C p̄(	[S̄]) ⊂ X̄ . Then for
all ε > 0 there exists an r > 0 such that

d( f (x), K̄ ) < ε d(p, x)

for all x ∈ K with d(p, x) ≥ r and

d(x̄, f (K )) < ε d( p̄, x̄)

for all x̄ ∈ K̄ with d( p̄, x̄) ≥ r .

Proof Weassume that f is an (L , a)-quasi-isometric embedding, f (p) = p̄, S
is a quasi-minimizer with controlled density, and S̄ = g#S for some Lipschitz
map g : X → X̄ with b̄ := supx∈spt(S) d( f (x), g(x)) < ∞.

Let ε′ ∈ (0, 1). If r > 0 is sufficiently large, then it follows from Theo-
rem 8.6 that for every x ∈ K with d(p, x) ≥ r there is a y ∈ spt(S) such that
d(x, y) < ε′d(p, x), thus

d( f (x), f (y)) ≤ Lε′d(p, x) + a

and (1−ε′) d(p, x) ≤ d(p, y) ≤ (1+ε′) d(p, x). By Proposition 10.3 (quasi-
isometry invariance), S̄ is a quasi-minimizer with controlled density, and there
is a point ȳ ∈ spt(S̄) such that d(g(y), ȳ) ≤ ā for some constant ā ≥ 0, thus

d( f (y), ȳ) ≤ ā + b̄ =: c̄
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and d( p̄, ȳ) ≥ d( f (p), f (y)) − c̄ ≥ L−1(1 − ε′)r − a − c̄. Hence, if r is
sufficiently large, then by the second part of Theorem 8.1,

d(ȳ, K̄ ) < ε′ d( p̄, ȳ) ≤ 2Lε′d(p, x),

as d( p̄, ȳ) ≤ d( f (p), f (y)) + c̄ ≤ L(1 + ε′) d(p, x) + a + c̄ ≤ 2L d(p, x).
Combining these estimates we get the first assertion, and the second is proved
similarly. ��

We now prove that f induces an injective map L f : L X → L X̄ . If
L f (	) = 	̄, then the conesR+	 ⊂ CTX andR+	̄ ⊂ CT X̄ are bi-Lipschitz
homeomorphic.

Theorem 11.2 (mapping limit sets) Let (X, σ ) and (X̄ , σ̄ ) be two proper
metric spaces with convex bicombings and with asrk(X) = asrk(X̄) = n ≥ 2,
and suppose that f : X → X̄ is an (L , a)-quasi-isometric embedding. Then
there exists an injective map

L f : L X → L X̄

such thatL f (	[S]) = 	[S̄] wheneverZ f [S] = [S̄]. For every finite union
M := ⋃k

i=1 	i of sets	i ∈ L X and the corresponding union M̄ := ⋃k
i=1 	̄i

of the sets 	̄i := L f (	i ), there is a pointed L-bi-Lipschitz homeomorphism
� : R+M → R+M̄ such that �(R+	i ) = R+	̄i for i = 1, . . . , k. If f is a
quasi-isometry, then L f is a bijection.

Here� is said to be pointed if�(o) = ō, where o and ō are the cone vertices
of CTX and CT X̄ , respectively.

Proof Choose base points p ∈ X and p̄ := f (p) ∈ X̄ . Suppose that
Z f [S] = [S̄] andZ f [T ] = [T̄ ]. We use Proposition 11.1. If	[S] = 	[T ],
then for every ε ∈ (0, 1) and every x̄ ∈ C p̄(	[S̄]) with sufficiently large dis-
tance to p̄ there exists an x ∈ Cp(	[S]) = Cp(	[T ]) such that

d(x̄, f (x)) < ε d( p̄, x̄)

and (2L)−1d( p̄, x̄) ≤ d(p, x) ≤ 2L d( p̄, x̄); then there is also a point ȳ ∈
Cp̄(	[T̄ ]) such that

d( f (x), ȳ) < ε d(p, x) ≤ 2Lε d( p̄, x̄).

It follows that 	[S̄] ⊂ 	[T̄ ], and the reverse inclusion holds by symmetry.
Conversely, if 	[S̄] = 	[T̄ ], then a similar argument shows that 	[S] =
	[T ]. This yields the existence of an injective map L f : L X → L X̄ such
thatL f (	[S]) = 	[S̄] whenever Z f [S] = [S̄].
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Let now M and M̄ be given as in the theorem. By Proposition 8.7 (compact
limit sets), the conesR+M andR+M̄ are proper and thus separable. For r > 0,
let πr : CTX → X and π̄r : CT X̄ → X̄ denote the r -Lipschitz maps defined
by

πr (u) := canp(ru), π̄r (ū) := can p̄(r ū).

Let first N ⊂ R+M be a finite set containing o, and let ε > 0. It follows from
Proposition 11.1 that if we pick r > 0 sufficiently large, then for every u ∈ N
and i ∈ I (u) := {i : u ∈ R+	i } there is a point ūr,i ∈ R+	̄i such that

d( f (πr (u)), π̄r (ūr,i )) ≤ εr,

where ōr,i := ō for i = 1, . . . , k. Then, for all u, v ∈ N and i ∈ I (u),
j ∈ I (v),

L−1d(πr (u), πr (v)) − a − 2εr ≤ d(π̄r (ūr,i ), π̄r (v̄r, j ))

≤ L d(πr (u), πr (v)) + a + 2εr

and d( p̄, π̄r (ūr,i )) ≤ L d(p, πr (u))+a+ εr , thus dT(ō, ūr,i ) ≤ L dT(o, u)+
r−1a + ε. We infer from Lemma 9.1 (uniform convergence) that if r > a/ε is
sufficiently large, then

L−1dT(u, v) − 4ε ≤ dT(ūr,i , v̄r, j ) ≤ L dT(u, v) + 4ε.

For u = v, this also shows that the set {ūr,i : i ∈ I (u)} associated to u has
diameter at most 4ε. Let s ≥ 2ε. It follows again from Proposition 11.1 that if
r > a/ε is sufficiently large, then for every w̄ ∈ [ε, s]	̄i there is a w ∈ R+	i
such that

d( f (πr (w)), π̄r (w̄)) ≤ εr

and dT(o, w) ≤ L(dT(ō, w̄) + 2ε) ≤ 2Ls. Then, for u ∈ N ∩ R+	i , we can
conclude as above that dT(ūr,i , w̄) ≤ L dT(u, w) + 4ε, provided r is large
enough. Hence, if we assume that N ∩ [0, 2Ls]	i is an ε-net in [0, 2Ls]	i ,
then {ūr,i : u ∈ N ∩R+	i } forms an (L + 4)ε-net in [0, s]	̄i . Repeating this
construction for some sequences εl → 0 and sl → ∞ and a suitable sequence
N1 ⊂ N2 ⊂ . . . of subsets of R+M , we get the desired map � : R+M →
R+M̄ via a diagonal sequence argument.

Finally, if f is a quasi-isometry, thenZ f : Z X → Z X̄ is an isomorphism
by Theorem 10.6. Hence, for every 	̄ = 	[S̄] ∈ L X̄ there exists a 	 =
	[S] ∈ L X such that Z f [S] = [S̄] and thus L f (	) = 	̄. ��
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This result readily implies Theorem 1.9 in the introduction. Note that if
P = ⋂ j

i=1 	i , Q = ⋂k
i= j+1 	i , and P̄, Q̄ are the corresponding intersections

of the sets 	̄i := L f (	i ), then the existence of a map � as in Theorem 11.2
guarantees that P ⊂ Q if and only if P̄ ⊂ Q̄.

If X and X̄ are symmetric spaces of non-compact type and of rank n ≥ 2,
then their Tits boundaries have the structure of thick (n − 1)-dimensional
spherical buildings, and every Weyl chamber is the intersection of the limit
sets of two n-flats. It then follows from Theorem 1.9 that every quasi-isometry
f : X → X̄ induces an isomorphism (order preserving bijection) between the
two buildings, which must carry apartments to apartments. This shows that the
mapL f : L X → L X̄ takes limit sets of n-flats to limit sets of n-flats, and it
follows from the case k = 1 of Theorem 11.3 below or Theorem 1.10 that for
every n-flat F ⊂ X there is an n-flat F̄ ⊂ X̄ at uniformly bounded Hausdorff
distance from f (F). This constitutes a major step in the proof of the quasi-
isometric rigidity theorem for symmetric spaces of non-compact type without
rank one de Rham factors; compare Corollary 7.1.5 in [54] and Lemma 8.6
in [34]. The proof may then be completed along the lines in these papers, using
Tits’ work [78].

Theorem 11.3 (structure of quasiflats) Let X be a proper metric space with
a convex bicombing σ and with asrk(X) = n ≥ 2. Let f : Rn → X be an
(L , a0)-quasi-isometric embedding with limit set 	 := ∂∞( f (Rn)). Then the
cone K := R+	 ⊂ CTX is L-bi-Lipschitz equivalent toRn. Suppose that K is
the union of closed sets K1, . . . , Kk such that, for some point p ∈ X, canp |Ki

is a (1-Lipschitz) (L , a0)-quasi-isometric embedding for i = 1, . . . , k. Then
f (Rn) is within distance at most b from Cp(	) = canp(K ) for some constant
b depending only on X, L , a0 and k. In the case k = 1, f (Rn) is at Hausdorff
distance at most b from Cp(	).

Proof Let E := �Rn� ∈ Zn,loc(R
n). By Proposition 3.6 (Lipschitz quasi-

flats) there are constants Q,C, a, depending only on n, L , a0, such that
Z f [E] = [S] for some (Q, a)-quasi-minimizer S ∈ Zn,loc(X) with (C, a)-
controlled density and dH(spt(S), f (Rn)) ≤ a. Then 	 = 	(S) = 	[S],
and Theorem 11.2 shows that there exists an L-bi-Lipschitz homeomorphism
φ : Rn → K = R+	.

Suppose now that the additional assumption in the theorem holds for some
p ∈ X . By Theorem 7.3 (conical representative), spt(Sp,0) ⊂ Cp(	) and
�∞(Sp,0) ≤ �∞(S) ≤ C . Our aim is to show that Sp,0 has controlled density.
By Theorem 9.3 (lifting cones) there exists a local cycle � ∈ Zn,loc(K ) in K
such that canp# � = Sp,0 and �∞(�) ≤ C . Note, however, that if k = 1
and canp |K is bi-Lipschitz or even isometric (for example, if X is CAT(0)
and Cp(	) is a flat), then one can simply put � := (canp |−1

K )#Sp,0 and the
theorem is not needed. Now (φ−1)#� is an element of Zn,loc(R

n) and hence
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of the form mE for some constant integer multiplicity m. Since φ−1 is L-bi-
Lipschitz, it follows that |m| is bounded in terms of C and L (there is no need
to show that in fact |m| = 1). For i = 1, . . . , k, let ψi denote the restriction of
canp ◦φ to φ−1(Ki ). Note that ψi is L-Lipschitz and (L2, a0)-quasi-isometric
by the assumption on canp |Ki . Choose Borel sets Bi ⊂ Ki such that the union⋃k

i=1 Bi = K is disjoint. Since φ#(mE) = �,

ψi#(mE φ−1(Bi )) = canp#
(
φ#(mE φ−1(Bi ))

) = canp#(� Bi ).

If q ∈ X and r > a0, then ψ −1
i (Bq(r)) has diameter at most L2(2r + a0) ≤

3L2r , and it follows that

‖ canp#(� Bi )‖(Bq(r)) ≤ C0r
n

for some constantC0 depending only onm, n, L . Since
∑k

i=1 canp#(� Bi ) =
canp# � = Sp,0, we conclude that Sp,0 has (kC0, a0)-controlled density. Now
Theorem 5.1 (Morse Lemma I) yields the first conclusion of the theorem.

If k = 1, then ψ1 = canp ◦φ is a Lipschitz quasiflat, hence Sp,0 =
ψ1#(mE) is quasi-minimizing and spt(Sp,0) is at finite Hausdorff distance
from ψ1(R

n) = Cp(	) by Proposition 3.6 (which extends to higher multiples
of E = �Rn�). The desired estimate follows again from Theorem 5.1. ��

Theorem 1.10 stated in the introduction follows as a special case. In the case
k = 1, this applies in particular to CAT(0) spaces with isolated flats; compare
Lemma 3.1 in [75] (the case F = R) and Theorem 4.1.1 in [47]. Furthermore,
it follows easily that every n-dimensional quasiflat in a nonpositively curved
symmetric space of rank n ≥ 2 lies within uniformly bounded distance from
the union of a finite, uniformly bounded number of n-flats; compare Theo-
rem 1.2.5 in [54] and Theorem 1.1 in [34]. We also refer to [10,13,48,50,63]
for various similar statements.

References

1. Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185, 1–80 (2000)
2. Anderson, M.T.: Complete minimal varieties in hyperbolic space. Invent. Math. 69, 477–

494 (1982)
3. Anderson, M.T.: Complete minimal hypersurfaces in hyperbolic n-manifolds. Comment.

Math. Helv. 58, 264–290 (1983)
4. Auer, F., Bangert, V.: Differentiability of the stable norm in codimension one. Am. J. Math.

128, 215–238 (2006)
5. Ballmann, W.: Axial isometries of manifolds of nonpositive curvature. Math. Ann. 259,

131–144 (1982)
6. Ballmann, W., Brin, M., Eberlein, P.: Structure of manifolds of nonpositive curvature, I.

Ann. Math. 122, 171–203 (1985)

123



662 B. Kleiner, U. Lang

7. Bangert, V., Lang, U.: Trapping quasi-minimizing submanifolds in spaces of negative cur-
vature. Comment. Math. Helv. 71, 122–143 (1996)

8. Basso, G.: Fixed point theorems for metric spaces with a conical geodesic bicombing.
Ergod. Theory Dyn. Syst. 38, 1642–1657 (2018)

9. Behrstock, J., Hagen, M.F., Sisto, A.: Hierarchically hyperbolic spaces, I: curve complexes
for cubical groups. Geom. Topol. 21(3), 1731–1804 (2017)

10. Behrstock, J., Hagen, M.F., Sisto, A.: Quasiflats in hierarchically hyperbolic spaces,
arXiv:1704.04271 [math.GT]

11. Bestvina, M., Fujiwara, K.: Bounded cohomology of subgroups of mapping class groups.
Geom. Topol. 6, 69–89 (2002)

12. Bestvina,M., Fujiwara,K.:A characterization of higher rank symmetric spaces via bounded
cohomology. Geom. Funct. Anal. 19, 11–40 (2009)

13. Bestvina, M., Kleiner, B., Sageev, M.: Quasiflats in CAT(0) 2-complexes. Algebr. Geom.
Topol. 16, 2663–2676 (2016)

14. Bestvina, M., Mess, G.: The boundary of negatively curved groups. J. Am. Math. Soc. 4,
469–481 (1991)

15. Bonk, M., Schramm, O.: Embeddings of Gromov hyperbolic spaces. Geom. Funct. Anal.
10, 266–306 (2000)

16. Bowditch, B.H.: Tight geodesics in the curve complex. Invent. Math. 171, 281–300 (2008)
17. Bowditch, B.H.: Relatively hyperbolic groups. Int. J. Algebra Comput. 22(3), 1250016

(2012). 66 pp
18. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin

(1999)
19. Buyalo, S., Schroeder, V.: Elements of Asymptotic Geometry. European Mathematical

Society, Zurich (2007)
20. Caffarelli, L.A., De La Llave, R.: Planelike minimizers in periodic media. Commun. Pure

Appl. Math. 54, 1403–1441 (2001)
21. Casteras, J.-B., Holopainen, I., Ripoll, J.: Convexity at infinity in Cartan–Hadamard man-

ifolds and applications to the asymptotic Dirichlet and Plateau problems. Math. Z. 290,
221–250 (2018)

22. Charney, R., Sultan, H.: Contracting boundaries of CAT(0) spaces. J. Topol. 8, 93–117
(2015)

23. Colding, T.H., Minicozzi II, W.P.: On uniqueness of tangent cones for Einstein manifolds.
Invent. math. 196, 515–588 (2014)

24. Cordes, M.: Morse boundaries of proper geodesic metric spaces. Groups Geom. Dyn. 11,
1281–1306 (2017)

25. Croke, C., Kleiner, B.: Spaces with nonpositive curvature and their ideal boundaries. Topol-
ogy 39, 549–556 (2000)

26. Dahmani, F., Guirardel, V., Osin, D.: Hyperbolically embedded subgroups and rotating
families in groups acting on hyperbolic spaces. Mem. Am. Math. Soc. 245, 1156 (2017)

27. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents I: gradient L p estimates.
Geom. Funct. Anal. 24, 1831–1884 (2014)

28. Descombes, D.: Asymptotic rank of spaceswith bicombings.Math. Z. 284, 947–960 (2016)
29. Descombes, D., Lang, U.: Convex geodesic bicombings and hyperbolicity. Geom. Dedicata

177, 367–384 (2015)
30. Descombes, D., Lang, U.: Flats in spaces with convex geodesic bicombings. Anal. Geom.

Metr. Spaces 4, 68–84 (2016)
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