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Abstract The large-scale geometry of hyperbolic metric spaces exhibits
many distinctive features, such as the stability of quasi-geodesics (the Morse
Lemma), the visibility property, and the homeomorphism between visual
boundaries induced by a quasi-isometry. We prove a number of closely analo-
gous results for spaces of rank n > 2 in an asymptotic sense, under some weak
assumptions reminiscent of nonpositive curvature. For this purpose we replace
quasi-geodesic lines with quasi-minimizing (locally finite) n-cycles of 7" vol-
ume growth; prime examples include n-cycles associated with n-quasiflats.
Solving an asymptotic Plateau problem and producing unique tangent cones
at infinity for such cycles, we show in particular that every quasi-isometry
between two proper CAT(0) spaces of asymptotic rank n extends to a class of
(n — 1)-cycles in the Tits boundaries.
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1 Introduction
1.1 Overview

Since the appearance of Gromov’s seminal paper [40] more than thirty years
ago, hyperbolicity has played a central role in geometric group theory, and
inspired a number of generalizations and variations. These include, among oth-
ers, relative hyperbolicity [17,31,35,40,71], various notions of “directional”
hyperbolicity inherent in stability/contraction properties of (quasi-)geodesics
[12,22,24,49,52,76,77] (this in fact goes back to the notion of rank one
geodesics [5,6] which predates hyperbolicity), acylindrical hyperbolicity
[11,16,26,72], and hierarchical hyperbolicity [9,10,44,67]. (The literature is
far richer than indicated here—we apologize for omissions.) These approaches
provide unified descriptions of certain hyperbolicity phenomena in a variety
of non-hyperbolic settings such as non-uniform lattices in rank one symmet-
ric spaces, mapping class groups, Teichmiiller space, and some CAT(0) cube
complexes and three-manifold groups.

In this paper we develop a notion of higher rank hyperbolicity that comple-
ments, and partly overlaps with, the concepts mentioned above. We show that
for metric spaces of asymptotic rank n > 2 satisfying certain weak convex-
ity assumptions (see Sect. 1.2 below), characteristics of hyperbolicity such as
slimness of (quasi-)geodesic triangles, stability of quasi-geodesics, and vis-
ibility remain valid when properly reformulated in terms of n-dimensional
(relative) cycles. In particular, our results hold for proper and cocompact
CAT(0) spaces of Euclidean rank n and in that case they confirm several
aspects of Gromov’s discussion in Section 6 of [42], and also the well-known
principle that in nonpositively curved spaces hyperbolic behavior should man-
ifest itself in dimensions above the maximal dimension of a flat. Our approach
also encompasses the stability properties of maximal quasiflats that were used
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Higher rank hyperbolicity 599

in the proofs of the quasi-isometric rigidity of higher rank symmetric spaces
in [34,54,70].

We show further that a quasi-isometry between two proper CAT(0) spaces of
asymptotic rank n > 2 naturally induces an isomorphism between the groups
of compactly supported integral (n — 1)-cycles — metric integral currents in
the sense of Ambrosio—Kirchheim [1]—in their Tits boundaries. We remind
the reader that in the (hyperbolic) rank one case, the usual visual boundaries
are homeomorphic, whereas for n > 2 this can fail, even if the quasi-isometry
is equivariant with respect to geometric actions of some finitely generated
group [25]. The construction of the above isomorphism involves, on the one
hand, an existence result for area-minimizing n-dimensional varieties with
prescribed asymptotics. To our knowledge, this is the first general such result
in a setting of nonpositive (rather than strictly negative) curvature (compare
Section 1 in [41]). On the other hand, we show that n-dimensional (quasi-)
minimizers with " volume growth possess unique tangent cones at infinity, a
phenomenon that occurs rather rarely (compare, for example, the discussion
in [23]).

1.2 Setup

For simplicity, we assume throughout the paper that the underlying metric
space X = (X, d) is proper (that is, bounded closed subsets are compact). For
a first set of results, described in Sect. 1.4 below, we assume that X satisfies
the following two conditions for some n > 1:

(CI,) (Coning inequalities) There is a constant ¢ such that any two points
x,x" in X can be joined by a curve of length < cd(x, x’), and for
k=1,...,n,every k-cycle R in some r-ball bounds a (k + 1)-chain
S with mass

M(S) < cr M(R).

Here, for a general proper metric space X, we use metric integral cur-
rents (see Sect. 2). However, if X is bi-Lipschitz homeomorphic to
a finite-dimensional simplicial complex with standard metrics on the
simplices, then (by a variant of the Federer—Fleming deformation the-
orem [37]) one may equivalently take simplicial chains or singular
Lipschitz chains (with integer coefficients).

(AR;) (Asymptotic rank < n) No asymptotic cone of X contains an isometric
copy of an (n+1)-dimensional normed space. Equivalently, asrk (X) <
n, where asrk(X) is defined as the supremal k for which there exist a
sequence r; — oo and subsets ¥; C X such that the rescaled sets
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600 B. Kleiner, U. Lang

Y:, ri_ld) converge in the Gromov—Hausdorff topology to the unit
ball in some k-dimensional normed space (see Sect. 4).

Condition (CI,) is reminiscent of nonpositive curvature: if X is a CAT(0)
or Busemann space [73], the required inequality holds for the geodesic cone
S from the center of the r-ball over R (see Sect. 2.7). Furthermore, any n-
connected simplicial complex as above with a properly discontinuous and
cocompact simplicial action of a combable group satisfies (CI,); see Sec-
tion 10.2 in [33]. Every combable group, in particular every automatic group,
admits such an action.

When X is a cocompact CAT(0) or Busemann space, the asymptotic
rank asrk(X) equals the maximal dimension of an isometrically embedded
Euclidean or normed space, respectively [53]. More generally, for spaces sat-
isfying (CI,), condition (AR,) is equivalent to a sub-Euclidean isoperimetric
inequality for n-cycles [82]; this result, restated in Theorem 4.4, plays a key
role in this paper. If X is a geodesic Gromov hyperbolic space, then every
asymptotic cone of X is an R-tree, thus asrk(X) < 1. Conversely, a space sat-
isfying (CI;) and (AR7) is Gromov hyperbolic (compare Corollary 1.3 in [82]
and the special case n = 1 of Theorem 1.1 below).

We remark that the asymptotic rank is a quasi-isometry invariant for metric
spaces [82], whereas condition (CI,) is preserved, for instance, by quasi-
isometries between proper and cocompact, n-connected simplicial complexes
with standard metrics on the simplices.

The main results discussed in the second half of the paper, starting from
Sect. 7, involve actual convexity properties or the ideal boundary of X (rather
than condition (CI,)). For the outline of these results in Sects. 1.5 and 1.6,
we will therefore assume that X is CAT(0). In the body of the paper, we will
work with the weaker sufficient condition that X admits a convex bicombing
— this disposes with geodesic uniqueness but retains Busemann convexity
for a distinguished family of geodesics; see Definition 7.1 and the comments
thereafter.

1.3 Quasi-minimizers with controlled density

We now discuss the objects we use to exhibit higher rank hyperbolic behavior,
that is, n-dimensional replacements for quasi-geodesics.

One approach would be to study n-quasiflats, or more generally, images
of quasi-isometric embeddings W — X for suitable subsets W C R". (See
Sect. 2.1 for the standard definitions of quasi-isometric maps.) However, since
geodesics may be viewed either as isometric embeddings of intervals or as
length minimizing curves, an alternative approach is to consider (relative) n-
cycles which “quasi-minimize” area (compare [7,41], for example). We follow
the latter approach in this paper: it turns out that it is not only more general,

@ Springer



Higher rank hyperbolicity 601

but it also leads to cleaner and sharper results. The quasi-minimality condition
will be used in conjunction with a polynomial growth bound of order n. We
now provide more details.

We will work with the chain complexes L, ¢(X) and I joc(X) of metric
integral currents with compact support and locally integral currents intro-
duced in [1,59]. This enables us in particular to pass to limits and to produce
area-minimizers with sharp density and monotonicity properties. All relevant
concepts and results will be reviewed in detail in Sect. 2. Every singular Lip-
schitz n-chain in X with integer coefficients may be viewed as an element of
I,.c(X) (and, conversely, every integral current in R" admits an approximation
by Lipschitz chains; see Theorem 5.8 in [37]). Similarly, I, joc(X) comprises
all locally finite Lipschitz n-chains. Associated with every S € I, joc(X)
is a locally finite Borel measure ||S|| on X whose total mass is denoted
M(S) := |IS|I(X), and the support spt(S) C X is the smallest closed set
supporting ||S||. We let Z, .(X) and Z, 1oc(X) denote the respective cycle
groups forn > 1.

A local cycle S € Z, 10c(X) will be called (large-scale) quasi-minimizing
if there exist constants Q > 1 and @ > 0 such that, for every x € spt(S) and
almost every r > a, the restriction S L By (r) € I, c(X) of S to the closed
r-ball centered at x satisfies

M(SL B (r)) = QM(T)

forallT €I, «(X)withdT = 9(SLB,(r)); then Sis (Q, a)-quasi-minimizing.
A (1, 0)-quasi-minimizing local cycle is (area-)minimizing. Every quasiflat in
X may be viewed as a quasi-minimizer (see Propositions 3.6 and 3.7 for two
precise statements).

We say that S € Z, 1oc(X) has (large-scale) controlled density if there exist
constants C > 0 and a > 0 such that

0p(8) = L) < ¢

for all p € X and r > a; then S has (C, a)-controlled density. A generally
weaker condition is that the asymptotic density

O (S) :=limsup ®, - (S)

r—00

of S be finite; here p is fixed, however the upper limit is independent of p.
Similarly, for Z € Z, 1oc(X) and any p € X, we define the asymprotic filling
density

Foo(Z) :=limsup F), ,(Z),

r— 00
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602 B. Kleiner, U. Lang

where F), ,(Z) denotes the infimum of M(V)/r"*t! overall V e Lit1.c(X)
with spt(Z — V) N B,(r) = ¢ (that is, V “fills Z in B,(r)”). For S, §" €
Z, 10c(X), the relation Foo (S — S’) = 0 will serve as an appropriate notion of
asymptoticity.

We now discuss the main results in the paper.

1.4 Slim simplices, Morse Lemma, and asymptote classes

We first recall that a geodesic metric space X is (Gromov) hyperbolic [40] if
there exists a constant § > 0 such that every geodesic triangle in X is §-slim,
that is, each of its sides lies in the closed §-neighborhood of the union of
the other two. According to the Morse Lemma (which for the real hyperbolic
plane goes back to [68]), every (L, a)-quasi-geodesic segment in X is then at
Hausdorff distance at most b from a geodesic segment connecting its endpoints,
where the constant b depends only on L, a and §. Thus any triangle composed
of three (L, a)-quasi-geodesic segments is still (§ + 2b)-slim.

We prove the following higher rank analog of this property.

Theorem 1.1 (slim simplices) Let X be a proper metric space satisfying
conditions (Cl,) and (AR,,) for some n > 1. Let A be a Euclidean (n + 1)-
simplex, and let f: 0A — X be a map such that for every facet W of A, the
restriction f|w is an (L, a)-quasi-isometric embedding. Then, for every facet
W, the image f (W) is contained in the closed D-neighborhood of f (BA \ W)
for some constant D = D(X, n, L, a).

Here A is the convex hull of a set of n + 2 points in R”*! such that A has
non-empty interior, and a facet of A is the convex hull of n 4 1 of them.

The proof of this result depends, on the one hand, on an iterated application
of the aforementioned sub-Euclidean isoperimetric inequality. Foracycle Z €
Z,, .(X) with controlled density, this provides an arbitrarily small upper bound
Fp.r(Z) < € onthefilling density in any ball B),(r) of sufficiently large radius,
depending on € (Proposition 4.5). On the other hand, if Z is “piecewise (Q, a)-
quasi-minimizing”, then Fy ,(Z) > ¢ = ¢(X,n, Q) > 0 for any ball B, (r)
with r > 4a centered on one of the pieces and disjoint from the union of the
remaining ones (Lemma 3.4); thus x cannot be too far away from this union.
For an appropriately chosen cycle Z approximating the image of f: 0A — X,
this yields Theorem 1.1 (see Theorem 5.2).

In combination with the existence of area-minimizing integral currents with
prescribed boundary, a similar argument yields a higher rank analog of the
Morse Lemma stated above; see Theorem 5.4. We further establish the fol-
lowing asymptotic version of this result (see Theorem 5.7 for a generalization
including boundaries).

@ Springer



Higher rank hyperbolicity 603

Theorem 1.2 (asymptotic Morse Lemma) Let X be a proper metric space
satisfying conditions (Cl,) and (AR,) for some n > 1. Suppose that § €
Z, 10c(X) is (Q, a)-quasi-minimizing and has (C, a)-controlled density. Then
there exists an area-minimizing local cycle S e Z,, 10c(X) such that Foo (S —
S') = 0, and every such S satisfies @oo(S') < O (S) and dy (spt(S), spt(S')) <
b for some constant b = b(X, n, Q, C, a).

This implies in particular the following analog of Morse’s Theorem 1 [68]
on the stability of geodesics in the hyperbolic plane. We remark that for a
Riemannian manifold X, metric locally integral currents in X can be identified
with the classical ones from [36].

Corollary 1.3 (persistence of minimizers) Let X = (X, g) be a Hadamard
manifold of asymptotic rank n > 1, and suppose that S € Zy 10c.(X) is area-
minimizing and has controlled density. Then for every Riemannian metric g on
X bi-Lipschitz equivalent to g there is an Se Z,, 10c(X) thatis area-minimizing
with respect to g and whose support is at finite Hausdorff distance from spt(S).

Note that if d is the distance function on X induced by g, then X = (X, d)
satisfies the assumptions of Theorem 1.2, and S is quasi-minimizing and has
controlled density with respect to d. Hence, the result follows. By regularity
theory, spt(S’) is a smooth n-dimensional submanifold except for a closed
singular set of Hausdorff dimension at most n — 2 (see [27] for a guide to
the literature). For example, S could be the current associated to an oriented
n-flat in (X, g) (but see also Theorem 1.6 below). The primary instance of
Corollary 1.3 is when (X, g) is the universal covering of a compact manifold
of nonpositive sectional curvature such that (X, g) contains no (n + 1)-flat,
and g is the lift of an arbitrary metric on the quotient.

Morse’s result was generalized in various directions to surfaces of arbitrary
dimension and codimension in spaces of negative curvature [7,41,55,56,58]
and to totally geodesic hyperplanes in some product spaces [57]. There is
a parallel development based on periodicity (rather than hyperbolicity) and
limited to codimension one, starting with the work of Hedlund [45] on the
two-dimensional torus and including the investigation of laminations of com-
pact Riemannian manifolds by minimal hypersurfaces; see [4,20,69] and the
references therein. Corollary 1.3 is now the first result in this area for higher
rank and arbitrary codimension.

The tools developed so far enable us further to introduce visual metrics on
sets of asymptote classes of local n-cycles, in analogy with the usual metriza-
tion of the visual boundary of a geodesic Gromov hyperbolic space. Let X be
a proper metric space satisfying condition (CI,) for n = asrk(X) > 1. We
consider the group

nloc(X) = {8 € Zy 10c(X) : Oo(S) < 00}

n,loc
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604 B. Kleiner, U. Lang

and the quotient space Z'X := Z;?IOC(X )/~F of F-asymptote classes, where

S ~p S if and only if F5o(S — S’) = 0. Making use of the existence of
area-minimizers in each class [ S], we define an analog of the Gromov product
of two points at infinity and show that for any constants C > 0 and a >
0, the set Z¢ ,X of all classes represented by some element with (C, a)-
controlled density admits an analog of Gromov’s §-inequality (Proposition 6.2)
and carries a family of visual metrics, with respect to which Z¢ , X is compact;
see Theorem 6.3.

1.5 Asymptotic geometry of local cycles

For the remainder of the introduction, we will be mainly concerned with
asymptotic properties of local n-cycles in spaces of asymptotic rank n > 2, and
relations with the ideal boundary of X. For this reason we assume in Sects. 1.5
and 1.6 that X is a CAT(0) space, so that we may make use of the boundary at
infinity 95X and the compactification X := X U 9, X—both equipped with
the cone topology—as well as the Tits boundary dTX and the Tits cone 61X .
As mentioned earlier, all of the results discussed here hold more generally if X
is a proper metric space equipped with a convex bicombing, and the respective
statements will be given in the body of the paper.

A point in d X is an asymptote class of unit speed rays in X. The Tits cone
%1 X may be defined as the set of asymptote classes of rays o: Ry — X of
arbitrary (constant) speed s > 0, endowed with the metric dt, where

1
dr(lel, [0']) = Jim —d (o). o' (1))

is the asymptotic slope of the convex function ¢ — d(o(t), 0’(r)). For every
p € X there is a canonical 1-Lipschitz map

can,: 61X — X

such that can,([¢]) = (1) for every ray ¢ with ¢(0) = p. The Tits
boundary dTX is the unit sphere in 61X and agrees with d-o X as a set,
but is endowed with the finer topology induced by dt. With respect to
the (equivalent) angle metric 0 < /1 < m characterized by the relation
2sin(Zt(u, v)/2) = dr(u, v), dtX is a CAT(1) space, and 61X agrees with
the Euclidean cone over (31X, /1) and is thus a CAT(0) space. If X is a sym-
metric space of non-compact type or a thick Euclidean building of rank n > 2,
then (01X, ZT) has the structure of a thick (n — 1)-dimensional spherical
building.
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Higher rank hyperbolicity 605

For a local cycle S € Z, 10c(X), we let
A(S) C 000X

denote the limit set of spt(S), that is, the set of all points in do, X belonging
to the closure of spt(S) in X. We say that S is conical with respect to some
point p € X if S is invariant, for every A € (0, 1), under the A-Lipschitz map
hpy: X — X that takes x to o,y (A), where o : [0, 1] — X denotes the
geodesic from p to x.

The following result summarizes Theorem 7.3, Proposition 8.2, and Theo-
rem 9.4 for the case when X is CAT(0). It shows in particular that the group
X = Zfloc(X )/~F of F-asymptote classes is canonically isomorphic to

the group of integral (n — 1)-cycles in d1X.

Theorem 1.4 (Tits boundary) Let X be a proper CAT(0) space with
astk(X) =n > 2. If S € Z,‘;?IOC(X), then for every p € X there is a unique
representative S, o € [S] € Z° X that is conical with respect to p, and there
is a unique local cycle ¥ € Zy 1oc(61X) such that can,y ¥ = Sp o for all
p € X; furthermore, X is conical with respect to the cone vertex o, and the
spherical slice (2B, (1)) defines an element 01S = d1[S] € Z,,—1 c(31X).

This yields an isomorphism
or: ZX — Zn_1,.001X).

For every p € X, spt(d1S) = A(Sp,0) C A(S), and if S is quasi-minimizing,
then A(Sp0) = A(S).

We call a1S§ = aT[S] the Tits boundary of S or [S], respectively. Due to
the rank assumption, I, c(d7X) = {0} form > n — 1, thus Z,_1 c(d1X)
agrees with the homology group H,,_1 (d1X) of integral currents, which is in
turn isomorphic to the usual singular homology group H,_1(dTX) (see [74]).
Hence, 2°X is isomorphic to H,_1(d1X).

Regarding the last assertion of Theorem 1.4, we will in fact show that
every quasi-minimizer S € Z;f’loc(X ) is asymptotically conical in that spt(S)
and spt(S,, o) lie within “sublinear” distance from each other, in terms of the
distance to p; see (the proof of) Theorems 8.1 and 8.6. The following key result,
which is part of the first of these two theorems, may be viewed as an analog
of the visibility axiom for a Hadamard manifold X. This postulates that for all
p € X and € > 0 there is an r = r(p, €) such that every geodesic segment
[x, y] C X at distance at least r from p subtends an angle /,(x, y) < € at p;
see Definition 4.2 and Remark 4.3 in [32] (compare pp. 294ff and 400 in [18]
for a discussion in the context of CAT(0) spaces).
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Theorem 1.5 (visibility property) Let X be a proper CAT(0) space with
astk(X) = n > 2. Suppose that S € Zy 10c(X) is (Q, a)-quasi-minimizing
and satisfies ©), (S) < C for some p € X and for all r > a. Then for
every € > 0 there exists a constant r. = re(X, Q, C, a) such that for every
x € spt(S) withd(p, x) > re there exists a unit speed ray o emanating from p
and representing a point in A(S) such that inf;>0 d(x, 0(t)) < e€d(p, x).

The next result solves an asymptotic Plateau problem (see also Theorems 8.3
and 9.5). This may be viewed as a higher rank analog of the property that any
pair of distinct points in the visual boundary d X can be joined by a geodesic
line in X.

Theorem 1.6 (minimizer with prescribed Tits data) Let X be a proper CAT (0)
space with astk(X) = n > 2. Then for every cycle R € Z,,_1,c(01X) there
exists an area-minimizing local cycle S € Z%OC(X) with 1S = R. Every
such S satisfies A(S) = spt(R) and O ,(S) < Ox(S) = M(R)/n for all
p € X andr > 0, in particular S has controlled density, and M(R)/n =

O (S) > w, whenever R # 0.

Here w,, denotes the Lebesgue measure of the unit ball in R". The equality
O (S) = w, clearly holds if S is the current associated with an oriented n-flat
in X.

For ambient spaces of strictly negative curvature, minimal varieties of
arbitrary dimension and codimension with prescribed limit sets were first con-
structed in [2,3]. We refer to [21,38,41,58] and the references therein for
some generalizations and variations of these results. In Section 8.3 of [39],
Gromov raised the question about the asymptotic behavior of minimal vari-
eties in spaces of nonpositive curvature and symmetric spaces in particular.
Theorem 1.6 addresses this for n-currents in spaces of rank .

Theorems 1.4 and 1.6 show in particular that the three classes of conical,
minimizing, or quasi-minimizing elements of Z;* . (X) give rise to the same
collection of limit sets, which also agrees with {spt(R) : R € Z,_1 c(d1X)}.
We denote this canonical class of subsets of 05, X by .Z X. From Theorems 1.5
and 1.6 we deduce the following result (see Theorems 8.5, and [43] for a closely
related discussion).

Theorem 1.7 (dense orbit) Let X be a proper CAT(0) space of asymptotic
rank n > 2, and suppose that T" is a cocompact group of isometries of X.
Then, for every non-empty set A € £ X, the orbit of A under the action of
T, extended to X = X U 0soX, is dense in 900X (with respect to the cone

topology).
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1.6 Applications to quasi-isometries

We recall that every quasi-isometric embedding f: X — X between two
geodesic Gromov hyperbolic spaces naturally induces a topological embed-
ding 0o f 1 0o X —> 900 X of their visual boundaries. In fact, doo f is a power
quasi-symmetric (and hence bi-Holder) embedding with respect to any pair of
visual metrics on dso X and 90X [15,19]. The proof is based on the Morse
Lemma.

We now consider a quasi-isometric embedding f: X — X between two
proper CAT(0) spaces of asymptotic rank n > 2. Theorems 1.4 and 1.6 show
that every (n — 1)-cycle in d1X corresponds to an F-asymptote class in X
which is represented by a minimizing local n-cycle with controlled density.
Furthermore, for any quasi-minimizer S € Z, joc.(X) with controlled density,
there exists a Lipschitz map g: X — X such that sup, espt(s) 4(f (x), g(x)) <

oo, and this map takes S to a local cycle gzS € Zn,loc()_( ) that is again quasi-
minimizing and has controlled density (see Proposition 10.3). The ambiguity
in the choice of g disappears on the level of F-asymptote classes. In fact, there
is a unique monomorphism

ZfFX > FX

such that Z f [S] = [g#S] whenever S € Z°°

n,loc ’
as above; see Theorem 10.6. Since classes in Z°X are, in turn, in bijective
correspondence with (n — 1)-cycles in d1X, this provides a canonical map
from Z, 1 (d1X) into Z,,_1 (31 X) induced by f.

(X) and g is a Lipschitz map

Theorem 1.8 (mapping Tits cycles) Let X, X be two proper CAT(0) spaces
of asymptotic rank n > 2, and suppose that f: X — X is a quasi-isometric
embedding. Then there exists a unique monomorphism

friZn—1c1X) = Zy_1.(07X)

such that fr(01S) = 01(g#S) whenever S € 2,9 .(X) and g: X — Xisa

Lipschitz map with sup, oy sy d(f (x), g(x)) < 0. If f is a quasi-isometry,
then fr is an isomorphism.

In particular, by the remark after Theorem 1.4, if X and X are quasi-
isometric, then H,_1(d1X) are H,_;(31X) are isomorphic.

The next result describes the effect of a quasi-isometry on intersection
patterns of limit sets. We let Z2(ZX) denote the set, partially ordered by
inclusion, of all intersections ﬂle A;suchthat 1 <k <ooand A; € ZX.
Recall that X = {spt(R) : R € Z,_1 (01 X)}.
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Theorem 1.9 (mapping limit sets) Let f: X — X be a quasi-isometry
between two proper CAT(0) spaces of asymptotic rank n > 2. Then there
exists an isomorphism (order preserving bijection)

Lf: P(LX) > P(LX)

such that £ f (spt(R)) = spt(fr(R)) forall R € Z,_1 (01X). Furthermore,
for every P € (LX) and P := £ f(P) there is a pointed L-bi-Lipschitz
homeomorphism between the cones Ry P C €1 X and Ry P C €rX, where
L is the multiplicative quasi-isometry constant of f.

This follows from Theorem 11.2. For a higher rank symmetric space X
of non-compact type, the partially ordered set (£ X) contains the simpli-
cial building structure of d1X. This structure is pivotal in the proofs of both
Mostow’s rigidity Theorem [69] and the general non-equivariant rigidity The-
orem [34,54] for such spaces. Indeed, the latter may be derived relatively
quickly from Theorem 1.9 in conjunction with Tits’ work [78] and the case
k =1 of the following result.

Theorem 1.10 (structure of quasiflats) Let X be a proper CAT(0) space of
asymptotic rank n > 2, and let f: R" — X be an (L, a)-quasi-isometric
embedding with limit set A := 000 (f (R™)). Then the cone Ry A C 61X is L-
bi-Lipschitz homeomorphic to R". Suppose that A is contained in the union of
the limit sets of k n-flats in X with a common point p € X, and let C,(A) C X
denote the geodesic cone from p over A. Then f(R") is within distance at most
b from Cp,(A) for some constant b depending only on X, L, a, k. In the case
k =1, f(R") is at Hausdorff distance at most b from the flat C,(A).

We refer to Theorem 11.3 and the comments thereafter for a more general
statement and some implications.

2 Preliminaries
2.1 Metric notions
Let X = (X, d) be a metric space. We write
B,(r)y:={xeX:d(p,x) <r}, Spr)={xeX:d(p,x)=r}
for the closed ball and sphere with radius » > 0 and center p € X.
A set N C X is called §-separated, for a constant § > 0, if d(x, y) > § for
every pair of distinct points x,y € N. For A C X, wecallasubset N C A a

8-net in A if the family of all balls B, (6) withx € N covers A. Every maximal
(with respect to inclusion) §-separated subset of A is a §-net in A.
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A map f: X — Y into another metric space ¥ = (Y, d) is L-Lipschitz,
for a constant L > 0, if d(f(x), f(x")) < Ld(x,x’) for all x,x" € X. The
smallest such L is the Lipschitz constant Lip(f) of f. Themap f: X — Y is
an L-bi-Lipschitz embedding if L™'d(x, x") < d(f(x), f(x")) < Ld(x,x")
for all x, x" € X. For an L-Lipschitz function f: A — R defined on a set
ACX,

f(x) :=sup{f(a) —Ld(a,x):ac A} (xeX)

defines an L-Lipschitz extension f: X — R of f. Every L-Lipschitz map
f: A— R", A C X, admits a \/nL-Lipschitz extension f: X — R".

A map f: X — Y between two metric spaces is called an (L, a)-quasi-
isometric embedding, for constants L > 1 and a > 0, if

L7'd(x,xy—a<d(f(x), f(x) <Ld(x,x')+a

forall x, x’ € X. A quasi-isometry f: X — Y has the additional property that
Y is within finite distance of the image of f. An (L, a)-quasi-geodesic segment
in X is the image of an (L, a)-quasi-isometric embedding of some compact
interval. An n-dimensional qguasiflat in X is the image of a quasi-isometric
embedding of R".

2.2 Currents in metric spaces

Currents of finite mass in complete metric spaces were introduced by Ambrosio
and Kirchheim in [1]. Here we will mainly work with the localized variant of
this theory for locally compact metric spaces, as described in [59]. However,
to avoid certain technicalities, we will assume throughout that the underlying
metric space X is proper, hence complete and separable.

For every integer n > 0, let 2"(X) denote the set of all (n + 1)-

tuples (7o, ..., m,) of real valued functions on X such that mg is Lipschitz
with compact support spt(g) and 7y, ..., m, are locally Lipschitz. (In the
case that X = RY and the entries of (7o, ..., m,) are smooth, this tuple

should be thought of as representing the compactly supported differential -
form modmy A ... A dmy,.) An n-dimensional current S in X is a function
S: 2"(X) — R satisfying the following three conditions:

(1) Sis (n + 1)-linear;

2) Sok, ..., k) — S(mo, ..., m,) whenever mr; y — m; pointwise on X
with sup; Lip(7; x|x) < oo for every compactset K C X (i =0,...,n)
and with (J, spt(mo ) C K for some such set;

3) S(mo, ..., ,) = 0 whenever one of the functions 1, ..., 7, is constant
on a neighborhood of spt(ry).
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We write Z,,(X) for the vector space of all n-dimensional currents in X. The
defining conditions already imply that every S € Z,(X) is alternating in the
last n arguments and satisfies a product derivation rule in each of these. The
definition is further motivated by the fact that every function w € LllOC (R™)
induces a current [w] € %, (R") defined by

[w] (o, ..., m,) = / wo det[ajm]zj:ldx

for all (o, ..., m,) € Z"(R"), where the partial derivatives 0 ; exist almost
everywhere according to Rademacher’s theorem. Note that this just corre-
sponds to the integration of the differential form o dmy A ... A dm, over R,
weighted by w. For the characteristic function xw of a Borel set W C R”, we
put [W] := [xw]. (See Section 2 in [59] for details.)

2.3 Support, push-forward, and boundary

For every S € Z,(X) there exists a smallest closed subset of X, the support
spt(S) of S, such that the value S(m, ..., m,) depends only on the restrictions
of mo, ..., m, to this set. For a proper Lipschitz map f: X — Y into another
proper metric space Y, the push-forward f3S € Z,(Y) is defined simply by

(faS)(mo, ..., my) :=S@moo f,...,mp0 f)

for all (mg,...,m,) € Z"(Y). This definition can be extended to proper
Lipschitz maps f: spt(S) — Y via appropriate extensions of the functions
m; o f to X. In either case, spt(fxS) C f(spt(S)). For n > 1, the boundary
0S € Z,—1(X) of S € Z,(X) is defined by

(aS)(T[()v LA | T[I’l—l) = S(T’ 7-[07 e T[n—l)

forall (7g, . .., m,—1) € 2"~ (X) and for any compactly supported Lipschitz
function 7 thatis identically 1 on some neighborhood of spt(srg). If T is another
such function, then 7y vanishes on a neighborhood of spt(t — 7) and 9.5 is
thus well-defined by (1) and (3). Similarly one can check that 9 0 3 = 0. The
inclusion spt(d.S) C spt(S) holds, and f(9S) = 9(f#S) for f: spt(S) = Y
as above. (See Section 3 in [59].)

2.4 Mass

Let S € 2,(X). A tuple (g, ..., ) € 2"(X) will be called normalized
if the restrictions of my, ..., m, to the compact set spt(mrg) are 1-Lipschitz.
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For an open set U C X, the mass ||S||(U) € [0,00] of S in U is then
defined as the supremum of ) j S(mo,j, ..., my,j) over all finite families of
normalized tuples (g, j, ..., 7, ;) € Z"(X) such that Uj spt(mp, ;) C U
and ZJ- |o, ;| < 1. Note that ||S]|(U) > 0 if and only if U N spt(S) # ¢.
This induces a regular Borel measure || S|| on X, whose fotal mass || S| (X) is
denoted by M(S). For Borel sets W, A C R”, ||[[W]||(A) equals the Lebesgue
measure of WN A. If T € %,,(X) is another n-current in X, then clearly

IS+TI<ISI+ITI-

We will now assume that the measure || S|| is locally finite (and hence finite on
bounded sets, as X is proper). Then it can be shown that

IS (o, - .. 7)) S/XlﬂoldllSll

for every normalized tuple (g, ..., 7,) € 2" (X). This inequality allows to
define the restriction S1_ A € Z,(X) of S to a Borel set A C X by

SLA(Gr,...,m,) = lim S(t, w1, ..., 7,)
k—o00

for any sequence of compactly supported Lipschitz functions t; converging in
L'(JIS|) to xamo. The measure ||SL A|| equals the restriction || S||L A of || S||.
If f: spt(S) — Y is a proper L-Lipschitz map into a proper metric space Y
and B C Y is a Borel set, then (fsS)L B = fa(SL f‘l(B)) and

1f#SIB) < L™ ISII(f~"(B)).

(See Section 4 in [59].)

2.5 Integral currents

A current S € 2, (X) is called locally integer rectifiable if the measure || S||
is locally finite and concentrated on the union of countably many Lipschitz
images of compact subsets of R", and the following integer multiplicity con-
dition holds: for every Borel set A C X with compact closure and every
Lipschitz map ¢: X — R”", the current ¢4(S L A) € Z,(R") is of the form
[w] for some integer valued w = wy ¢ € LY(R™). Then ||S|| turns out to
be absolutely continuous with respect to n-dimensional Hausdorff measure.
Furthermore, push-forwards and restrictions to Borel sets of locally integer
rectifiable currents are again locally integer rectifiable.
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Acurrent S € Z,,(X)iscalledalocally integral current if S is locally integer
rectifiable and, for n > 1, 9. satisfies the same condition. (Remarkably, this
is the case already when ||0S|| is locally finite, provided S is locally integer
rectifiable; see Theorem 8.7 in [59].) This yields a chain complex of abelian
groups I, 10c(X). We write I, .(X) for the respective subgroups of integral
currents with compact support. For example, if A C R” is an n-simplex and
f+ A — X is a Lipschitz map, then fi[A] € I, (X). Thus every singular
Lipschitz chain in X with integer coefficients defines an element of I, .(X).
For X = RV, there is a canonical chain isomorphism from I*,C(RN ) to the
chain complex of “classical” integral currents in RV originating from [37].

Forn > 1, we let Z, 1oc(X) C I 10c(X) and Z,, (X) C I, c(X) denote the
subgroups of currents with boundary zero. An element of Iy ¢ (X) is an integral
linear combination of currents of the form [x], where [x](79) = mo(x) for
all my € 2°(X). We let Zy . (X) C Ipc(X) denote the subgroup of linear
combinations whose coefficients sum up to zero. The boundary of a current
in Iy ¢(X) belongs to Zg (X). Given Z € Z, (X), for n > 0, we will call
Velht1.c(X) afillingof Zif oV = Z.

2.6 Slicing

Let S € I, 10c(X) be a locally integral current of dimension n > 1. Note that
both || S|| and ||d S| are locally finite (that is, S is locally normal, see Section 5
in [59]). Let o: X — R be a Lipschitz function, and let By := {90 < s}

denote the closed sublevel set for s € R. The corresponding slice of S is the
(n — 1)-dimensional current

(S,0,8) :=09(SL By) —(0S)L By

with support in {o = s} N spt(S). We will use this construction exclusively in
the case that B; N spt(S) is compact for all s (typically o will be the distance
function to a point in X). Then, for almost every s, (S, 0, s) € I,_1,c(X) and
hence S By € I, ¢(X). Furthermore, for a < b, the coarea inequality

b
f M((S. 0. s))ds < Lip(o) [IS[(fa < ¢ < b})

holds. In particular, for every ¢ € (0, b — a], the set of all s € (a, b) such that

M((S, 0. 5)) < "' Lip(e) IS (fa < ¢ < b))
has measure > b — a — c. (See Section 6 and Theorem 8.5 in [59].)
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2.7 Homotopies, cones, and isoperimetric inequality

Let [0, 1] € I ¢([0, 1]) denote the current defined by

1
[0, 1] (ro, 7r1) :=f0 mo(t)m (1) dt.

Note that 4]0, 1] = [1] — [0]. We endow [0, 1] x X with the usual /5 product
metric. There exists a canonical product construction

S € Lo(X) ~ [0, 1] x S € Liy1.c([0, 1] x X)

for all n > 0. Suppose now that Y is another proper metric space, & : [0, 1] x
X — Y is a Lipschitz homotopy from f = h(0,-) to g = h(l,-), and
S € I,.c(X). Then hx([0, 1] x S) is an element of I, 4 (Y) with boundary

0 hy([0, 1] x 8) = g#S — fuS — hx([0, 1] x 35)

(for n = O the last term is zero). If 4(z, -) is L-Lipschitz for every ¢, and & (-, x)
is a geodesic of length at most D for every x € spt(S), then

M(h4([0, 1] x ) < (n + 1)L" D M(S).

(See Section2.31in[79].) Animportant special case of thisis when R € Z,, .(X)
and h(-, x) = o), is a geodesic from some fixed point p € X to x for every
x € spt(R). Then hy([0, 1] x R) € L,41.¢(X) is the cone from p over R
determined by this family of geodesics, whose boundary is R. If the family of
geodesics satisfies the convexity condition

d(h(t, x), h(t,x")) = d(opx (1), 0pp (1)) < td(x,x")
for all x, x" € spt(R) and ¢ € [0, 1], and if spt(R) C B,(r), then
M(hy([0, 1] x R)) < r M(R).

Finally, if X is a CAT(0) space, then this inequality holds with r/(n + 1) in
place of r (see Theorem 4.1 in [81]).

Definition 2.1 (coning inequalities) For n > 0, we say that X satisfies con-
dition (Cl,,) if for every k € {0, ..., n} there is a constant ¢ such that every
R € Zi (X) with support in some r-ball possesses a filling S € Iy ¢(X)
with mass

M(S) < cpr M(R).
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Condition (Clp) is satisfied if and only if X is quasi-convex, that is, there is
a constant ¢, such that every pair of points x, x” in X can be joined by a curve
of length less than or equal to ¢, d(x, x").

Coning inequalities are instrumental for isoperimetric filling inequalities.

Theorem 2.2 (isoperimetric inequality) Let n > 2, and let X be a proper
metric space satisfying condition (Cl,_1). Then every cycle R € Z,_1 ¢(X)
possesses a filling T € 1, (X) with mass

M(T) < y M(R)"/ =D

for some constant y > 0 depending only on the constants cy, ..., c,—1 from
Definition 2.1.

(Here the condition (Clp) is actually not needed.) This was shown in more
general form for Ambrosio—Kirchheim currents in complete metric spaces
in [79]; see Theorem 1.2 and the remark thereafter regarding compact supports.
For earlier results of this type, see Remark 6.2 in [37] and the comments after
Corollary 3.4.C in [39].

2.8 Convergence, compactness, and Plateau problem

A sequence (S;) in I, j0c(X) is said to converge weakly to a current S €
L 10c(X) if S; — S pointwise as functionals on " (X). Then

ISI@) < liminf |5 [|(U)

for every open set U C X. Furthermore, weak convergence commutes with
the boundary operator and with push-forwards.

A more geometric notion of convergence, with analogous properties, is given
as follows. A sequence (S;) in I, 1oc(X) converges in the local flat topology to
acurrent S € I, 1oc(X) if for every compact set K C X there exists a sequence
(Vi) in L1 41 10¢(X) such that

(IS =8 —aVill + IViID(K) — 0.

This implies that S; — S weakly. The flat distance between two elements
S, §" € 1,c(X) is defined by

F(S—8):=inf(M(S -8 —aV)+M(V):V €Lt1.(X)}
this yields a metric on I, ¢ (X).
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We now state the compactness theorem for locally integral currents
and minimizing locally integral currents. An element S € I, 10c(X) is
(area-)minimizing if

M(SL B) <M(T)

whenever B C X is a Borel set such that SL B € I, o(X) and T € I, o(X)
satisfies 07 = (S L B).

Theorem 2.3 (compactness) Let X be a proper metric space, and let n > 1.
Suppose that (S;) is a sequence in 1, 10c(X) such that

sup([|Si [l + 19S: [D(K) < 00
]

Jfor every compact set K C X.

(1) There is a subsequence (S; j) that converges weakly to a current S €
In,loc (X).

(2) Suppose, in addition, that X satisfies condition (Cl,)). Then there is a
subsequence (S;;) that converges in the local flat topology to a current
S € I, 10c(X). If each S; is area-minimizing, then so is S.

For (2), a uniformly local version of condition (CI,,) suffices; compare the
assumptions in [80].

Proof For (1), see Theorem 8.10 in [59].

For the proof of (2), pick a base point p € X. By passing to a further sub-
sequence, denoted again by (S;;), one can arrange that there exists a sequence
of radii 0 < rx 1 oo such that for every By := B, (ry), the restrictions S;; L Bk
and SL By are in I, c(X),

sup(M(S;, L Bi) +M(D(S;; L Bi))) < oo,
: |

and S;; L By — SL By weakly, as j — oo (see the proof of Proposition 6.6
in [59]) Now, to show that S;; — § in the local flat topology, fix an index
k. Since X satisfies condition (CI ), it follows from Theorem 1.4 in [80] that
F (S — Sj) L Bx) — 0. Hence, there exists a sequence (V;) in I, ¢(X)
such that, for 7} := (§ — Si;) L Bx —aVj,

M(Tj) +M(Vj) — 0.

Since [|S—=S;; —aV;l[(Br) < I T;lI(Bi)+ (S —Si; )L (X\ B)I(Bk) < M(T)
and || V|| (Br) < M(V;), this gives the result.
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Suppose now that each S; is minimizing. To prove that S is minimizing, it
suffices to show that for every fixed &,

M(SL Bi) = M(T)

forall T € I, (X) with 0T = 9(S L By). Let V; and T be given as above,
and note that then (T — T;) = 8(S,~j L_ Bi). By the minimality of Sij,

M(Si; L Bx) < M(T —T;) < M(T) + M(T}).
Since §;; L By — SL By weakly and M(T;) — 0, it follows that

M(S L By) < liminf M(S;; L Br) = M(T),
j—>00

as desired. O

From Theorem 2.2 and the first part of Theorem 2.3 one obtains a solu-
tion of the Plateau problem in spaces with coning inequalities (compare also
Theorem 10.6 in [1] and Theorem 1.6 in [79]).

Theorem 2.4 (minimizing filling) Let n > 1, and let X be a proper metric
space satisfying condition (Cl,_1). Then for every R € Z,_1 .(X) there exists
afilling S € 1, «(X) of R with mass

M(S) = inf(M(S) : S’ € I, 10c(X), 38" = R}.

Furthermore, spt(S) is within distance at most (M(S)/(S)l/” from spt(R) for
some constant § > 0 depending only on n and the constants c1, . .., cy—1 from
Definition 2.1.

Proof Let . denote the set of all " € I, joc(X) with 3" = R. By condi-
tion (CI,_1), - is non-empty. Choose a sequence (S;) in . such that

M(S;) — pu:=inf{(M(S) : S8 € .¥} fori — oo.

By Theorem 2.3, some subsequence (S;;) converges weakly to a current S €
&, and M(S) < liminf o M(S;;), thus M(S) = . Itis well-known that an
isoperimetric inequality of Euclidean type as in Theorem 2.2 leads to a lower
density bound for minimizing n-currents: if x € spt(S) and r > 0 are such
that B, (r) N spt(dS) = @, then || S||(B.(r)) = 8r", where § := n~"y =" for
n > 2and § := 2 forn = 1 (see Theorem 9.13 in [37] and the special case
(Q,a) = (1,0) of Lemma 3.3 below). This gives the desired distance bound
and shows in particular that spt(.S) is compact. m|
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3 Quasi-minimizers

We now introduce the main objects of study and discuss some basic properties
and examples.

Definition 3.1 (quasi-minimizer) Suppose that X is a proper metric space,
n>1,and Q > 1,a > 0 are constants. For a closed set Y C X, alocal cycle

S e Zn,loc(X’ Y) = {S € In,loc(X) : Spt(aS) - Y}

relative to Y will be called (Q, a)-quasi-minimizing mod Y if,forall x € spt(S)
and almost all » > a such that By (r) N Y = @, the inequality

M(SL B, (r)) = QM(T)

holds whenever T' € I, o(X) and 07 = 9(SL By (r)) (recall that SL By (r) €
I, . (X) for almost all r > 0, see Sect. 2.6). A current § € I, 1oc(X) is (Q, a)-
quasi-minimizing ora (Q, a)-quasi-minimizerif S is (Q, a)-quasi-minimizing
mod spt(9S), and we say that S is quasi-minimizing or a quasi-minimizer if
this holds for some Q > 1 and a > 0.

Obviously every minimizing S € I, 1oc(X) is (1, 0)-quasi-minimizing.

Definition 3.2 (density/filling density) Suppose that X is a proper metric
space,n > 1,and S € I, 1oc(X). For p € X and r > 0, put

1
Op.r(8) := S ISI(Bp (),
1
Fpr(8) = —=7 f{M(V) : V € Li1,c(X), spt(S —aV) N B,(r) = 0}
r
(where inf J := o0). Furthermore, for any p € X, put

O (S) :=limsup O ,(S),

r—00

Foo(S) :=limsup F), ,(S);

r—00

the upper limits are clearly independent of the choice of p € X. For constants
C > 0anda > 0, we say that S has (C, a)-controlled density if ®, ,(S) < C
for all p € X and r > a, and S has controlled density if this holds for some
such constants.

Note that if spt(dS) N B, (r) # @, then there isno V € I,y (X) with
spt(§ — V) N By(r) = @, thus F, ,(S) = oo. Note also that if S, S e
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In,]OC(X)v then
Opr(S+8)<0,,(8+0,,()

forall p € X and r > 0, hence O (S + 5') < Ouo(S) + O (S'). Likewise,
Fp » and F satisfy the triangle inequality.

If S € I 10c(X) has (C, a)-controlled density, then obviously O (S5) < C.
However, an S € Zj; 1oc(X) with ©®4(S) < oo need not have controlled
density. For example, it is not difficult to see that there exists a complete
Riemannian metric on R? with bounded curvature | K| < 1 and with arbitrarily
large disks of constant curvature —1 such that the associated current S =
[[]Rz]] € 7 10c (R?) is of this type.

Lemma 3.3 (density) Let n > 1, let X be a proper metric space satisfying
condition (Cl,—1), and let Y C X be a closed set. If S € Zy1oc(X,Y) is
(Q, a)-quasi-minimizing mod Y, and if x € spt(S) and r > 2a are such that
B.(r)yNY =, then

O,r(S) =8

for some constant 5 > 0 depending only on n, the constants cy, . .., c,—1 from
Definition 2.1, and Q.

Proof Let first n > 2. Define p: (0, 7] — R by w(s) := ||S||(Bx(s)). Note
that © is non-decreasing, and & > 0 since x € spt(S). For almost every
s € (0, r), the derivative u'(s) exists, and the slice Ry := (S L B,(s)) is in
Z,_1 (X) and satisfies M(Ry) < 1/(s). It follows from the quasi-minimality
of § and Theorem 2.2 (isoperimetric inequality) that for almost every s €
(a, r), there is a filling 7y € I, c(X) of R such that

j(s) = M(SL By(s)) < QM(Ty) < Qy M(R,)"/ "~V
< Qy p/(s)" "D
and hence 1/ (s)p(s)1=/" > (Qy)1="/" Now integration from a to r
yields u(r) = n™"(Qy)' ™" (r — a)". Since r — a > r/2, this gives the result.
Inthecasen = 1,since Sis (Q, a)-quasi-minimizingmod Y and x € spt(S),
the O-dimensional slice Ry = d(SL By (s)) is a non-zero integral boundary for

almost every s € (a, ), so in fact M(R;) > 2, and the coarea inequality gives
ISII(Bx(r)) = 2(r —a) > r. o

We show two direct consequences of this lemma.

Lemma 3.4 (filling density) Let n > 1, let X be a proper metric space
satisfying condition (Cl,_1), andletY C X beaclosedset. If S € Zy 10c(X, Y)
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is (Q, a)-quasi-minimizing mod Y, and if x € spt(S) and r > 4a are such
that By(r)NY =0, then

Fx,r(S) =>c

for some constant ¢ > 0 depending only on n, the constant § from Lemma 3.3,

and Q.

Proof Let V € I,,41,c(X) be such that spt(S — dV) N B, (r) = @. For almost
every s € (0,r), the slice Ts := 9(V L By(s)) — (V) L By(s) is in I, ¢ (X),
and 07y = —0(SL By(s)) because (0V) L By(s) = SL By(s). By the quasi-
minimality of S and Lemma 3.3, for almost every s € (2a, r),

OM(T;) = M(SL Bi(s)) = [ISI(Bx(s)) = 8s".

Since M(V) > fzra M(T;) ds and 2a < r/2, the result follows. O

Recall that a subset A of a metric space X is doubling if there is a constant
M > 1 such that every bounded subset B C A can be covered by at most M
sets of diameter less than or equal to diam(B)/2. The Assouad dimension of a
set A C X is the infimum of all « > 0 for which there exists L > 1 such that
forall A € (0, 1), every bounded set B C A can be covered by no more than
L)% sets of diameter < A diam(B). The set A has finite Assouad dimension
if and only if it is doubling. (See [46].)

Lemma 3.5 (doubling) Letn > 1, and let X be a proper metric space satisfy-
ing condition (Cl,,—1). Supposethat S € Zy, 10c(X) isa (Q, a)-quasi-minimizer
with (C, a)-controlled density. Then every s-separated subset of spt(S) with
s > 4a has Assouad dimension at most n and is thus doubling. The doubling
constant depends only on n, the constant § from Lemma 3.3, and C.

Note that if @ = 0, then spt(S) itself has Assouad dimension at most 7.

Proof Let A C spt(S) be an s-separated set, where s > 4a. Suppose that
B C Aisabounded set with D := diam(B) > 0.Let L € (0, 1), andlet N C
B be a (AD/2)-separated (AD/2)-net in B. Put r := max{s/2, AD/4}. The
balls B, (r) in X with x € N are pairwise disjoint, and the corresponding sets
B, (2r) N B have diameter at most A D and cover B. Since r > 2a, Lemma 3.3
shows that || S||(Bx(r)) > 8r" for all these balls, and their union U is contained
in B,(D +r) forany p € N.Note that D < 4r/A, thus || S||(U) < C(5r/0)".
It follows that the covering has cardinality |N| < 5"C8~'A7". O

The doubling property will be used in Sect. 10 in order to approximate
quasi-isometric embeddings by Lipschitz maps. We will then show that if S is
a quasi-minimizing local n-cycle with controlled density in a proper CAT (0)
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space (or a space with a convex bicombing) of asymptotic rank n > 2, and
if g is a Lipschitz quasi-isometric embedding of spt(S) into another proper
metric space, then giS is again quasi-minimizing and has controlled density
(see Proposition 10.3).

Here we first prove a simpler result for Lipschitz quasiflats, which also
allows for boundaries.

Proposition 3.6 (Lipschitz quasiflats) Foralln, L > 1 and ay > O there exist
0 >1,C > 0,and a > 0 such that the following holds. Let W C R" be any
closed set such that the associated current E := [W] is in Zy 10c(R", 9W).
Suppose that g: W — X is a map into a proper metric space X such that for
allx,y e W,

L7'd(x,y) —ap < d(g(x), g(») < Ld(x, y).

Then S := g4E € Z,10¢(X, g(OW)) is (Q, a)-quasi-minimizing mod g(OW)
and has (C, a)-controlled density, furthermore d(g(x), spt(S)) < a for all
x € Wwithd(x,dW) > a.

The condition on W is satisfied if and only if W has locally finite perimeter
(that is, xw has locally bounded variation; see Theorem 7.2 in [59]). We will
use this result only for W equal to R” or an n-simplex in R".

Proof If p € X and r > ap, and if B := B,(r) and x,y € g~!(B), then
d(x,y) < L(d(g(x),8(y)) +ao) < 3Lr, thus

ISI(B) = lg#E(B) < L" | El(g~"(B)) < Cr"

for some constant C depending only on n and L. Hence § has (C, ap)-
controlled density.

Let N C W be a2Lag-separated 2Lap-net in W. If x, y € N are distinct,
thend(g(x), g(y)) = L™'d(x, y)—ap = (2L)"'d(x, y), thus g|y is injective,
and (g|y)~': g(N) — N admits an L-Lipschitz extension g: X — R”,
where L := 2./nL.Puth := g o g. For every x € W thereisay € N such
thatd(x, y) <2Lag. Then h(y) = y, thus

d(h(x), x) < d(h(x), h(y)) +d(y, x) < (LL+1)d(x,y) < b

for b := 2(LL + 1)Lay.

Suppose now that x € W and r > 2Lb are such that Bz(r) N g(dW) = 0,
where X := g(x). For almost every such r, both §’ := S Bz(r) and E' :=
E L g~ '(B;(r)) are integral currents, and gsE’ = §’. Since g~ (Bz(r)) N
spt(dE) = @, the support of d E’ is in g~!(S;(r)) and thus at distance at least
r/L from x. Note that 9(g4S’) = h4(dE’). Using the geodesic homotopy from
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idw to h, we get a current R € I, (R") with boundary dR = 9(gyS’) — 0E’
and support within distance b from spt(dE’); in fact R = gS’ — E’, because
Z, .(R") = {0}. Since r/L — b > r/(2L), the support of R lies outside
By (r/(2L)). It follows that

M(g#S") = M(E' + R) > | E|(B:(r/(2L))) > er"

for some constant € > 0 depending only on n and L.
Now if T € I, (X) is such that 3T = 95, then g4 T = g4S’, and

M(S') < Cr" < Ce "M(gsT) < QM(T)

for Q := Ce~'L". Since spt(S) C g(W), this shows that S is (Q, 2Lb)-quasi-
minimizing mod g(a W).

To prove the last assertion, choose any a > L(2Lb 4 ap) and let x € W be
a point with d(x, dW) > a. Then d(g(x), g(dW)) > L~ 'a —ay > 2Lb. For
a suitable r € (2Lb, a], the above argument then shows that M(gsS") > 0,
thus §' = SL Bg(x)(r) # 0, and this implies that d(g(x), spt(S)) <r <a.O

The following variant of the above result applies to situations where quasi-
flats can possibly not be approximated by Lipschitz ones (see the proof of
Theorem 5.2). Here we call a compact set W C R” triangulated if W has
the structure of a finite simplicial complex all of whose maximal cells are
Euclidean n-simplices (thus W is polyhedral). We denote by W9 and (9W)°
the set of vertices and boundary vertices of the triangulation, respectively.

Proposition 3.7 (triangulated quasiflats) Let n > 1, and let X be a proper
metric space satisfying condition (Cl,,_1). Then for all Cy, Do > 0 and L, ag
there exist Q, C, a such that the following holds. Suppose that W C R" is a
compact triangulated set with simplices of diameter at most Dg, and such that
every r-ball in R" with r > Dgy meets at most Cor"* n-simplices. Let (W)
denote the corresponding chain complex of simplicial integral currents. If
f: W — X is an (L, ap)-quasi-isometric embedding, then there exists a
chain map v: (W) — L o(X) such that

(1) ¢t maps every vertex [xo] € Po(W) to [ f (x0)] and, for 1 < k < n, every
basic oriented simplex [xq, ..., x¢]] € Px(W) to a current with support
in No(f({x0, ..., xk});

(2) S := 1[W] € L,.o(X) is (Q, a)-quasi-minimizing mod N,(f((dW)°))
and has (C, a)-controlled density;

(3) d(f(x),spt(S)) <aforallx € Wwithd(x, W) > a.

Here N, (-) stands for the closed a-neighborhood of a set. Note that by (1),
spt(S) C Ny (f (W) and spt(3S) € Na(f((dW)?)). An analogous result for
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closed sets with locally finite triangulations and locally integral currents also
holds.

Proof Put .7, := | J{_y %, where .7} denotes the set of all basic simplices
s = [x0, ..., xx] € Px(W) (compare p. 365 in [36] for the notation). Using
Theorem 2.4 (minimizing filling), we can inductively build a map ¢: ., —
L. . (X) as follows. For every [xo] € S, t[x0] := fa[xo] = [f(x0)]. Now
let k > 1, and suppose that ¢ is defined on .%%_;. For every k-cell of W, we
pick an orientation s = [xo, ..., xt] € -7, then we let ¢(s) € I ¢(X) be a
minimizing filling of

k
Z(—l)l xo, oy Xiet, Xigty ooy Xk] € Zi—1,c(X),
i—0

and we put ((—s) := —t(s). The resulting map on .7 readily extends to a chain
map t: P (W) — L (X). It follows inductively from condition (ClI;_)
and the distance bound in Theorem 2.4 for k = 1,...,n that for all s =
[[xo, ey xk]] S yk,

M(u(s)) = M

and spt(t(s)) C Ny (f({xo, ..., xr})) for some constants M, a’ depending on
Dy, L, ag and the constants co, . .., ¢,—1 implicit in condition (CI,_1). In the
following we assume that a’ > LD + ay.

Let now ., C ., be the set of all positively oriented n-simplices, whose
sum is [W]. Put S := ([W]. To show that S has controlled density, let p € X
andr > a’,and consider the setofall s € ,7,;“ for which spt(¢(s))N B, (r) # 0.
Every such s has a vertex x* with f(x*) € B, (r +a’), thus the set of all x* has
diameter at most L(2(r + a’) + ag) < 5Lr. It follows that there are at most
Co(5Lr)" such simplices and that ®, ,(S) < C := Co(SL)"M for p € X
andr > a’.

Similarly as in the proof of Proposition 3.6, there exists an L-Lipschitz map
f: X — R"suchthat h := f o f satisfies d(h(x),x) < b forallx € W,
where L := 2./nL and b’ depends on n, L, ag. Then

L= faor: Pe(W) = L (R")

is a chain map that sends every [xo] € . to [h(x¢)] and every [xo, ..., x¢] €
¥ to a current with support in N7,/ . ({xo, ..., xx}). Note that {(d[W]) =
d(f¢S). Similarly as above, using geodesic cone fillings of cycles in R”,
we can inductively construct a chain homotopy between idy, i: P (0W) —
L. .(R"). This yields an R € I, .(R") such that 3R = 3(fxS) — d[W] and
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spt(R) C Np((d W)%) for some constant b > Dy depending on n, Dy, L, d’.
Since Z, (R") = {0}, in fact R = fuS — [W].

Note that spt(S) U f(W) C Ny (f(W?). Let now ¥ € Ny (f(W?)) and
r > 0 be such that Bz(r) N f((E)W)O) =@ and S’ := SL Bz(r) € I, «(X).
Pick an x € WO withd(f(x),x) <a’.Forall y € (3W)?,

r<d@X f(y) <d(fx), f()) +a <Ld(x,y)+2d
Assuming that » > 2Lb + 4a’, we get that d(x, y) > r/(2L) + b; hence
(spt(R) UaW) N By(r/(2L)) = .
Moreover, for every y € spt(S — S’) C spt(S) there existsa y € WY such that

d(f(y),y) <d andr <d(x,y) <d(f(x), f(y))+2a" < Ld(x,y)+3d,
thus

dx, f() = d(x,y) —d(y, h(y)) —d(f(f(), FG)
> L_l(r —3d)—b' —Ld.

By increasing b if necessary, so that r is large enough, we arrange that this last
expression is bigger than r/(2L). This then shows that

spt(fu(S — 8)) N B (r/(2L)) = @.
Since fuS' = [W] + R — fu(S — "), it follows that
M(f#S") = IIW]II(B:(r/(2L))) = er”

for some € > 0 depending on n and L. The proof may now be completed as
for Proposition 3.6. For assertion (3), choose a > L(2Lb + 4a’ + ag). O

4 Asymptotic rank

In this section we will first discuss the notion of asymptotic rank and the sub-
Euclidean isoperimetric inequality from [82]. Then we will derive a localized
version of this result as well as various characterizations of quasi-minimizing
local n-cycles in spaces of asymptotic rank at most 7.

In [42], Section 6.B,, Gromov defined a number of different large-scale
notions of rank for spaces of nonpositive curvature. Many of the ensuing
questions were then answered in [53] (see the discussion in Section 9 therein).
Theorem D in that paper shows in particular the following.
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Theorem 4.1 (rank conditions) Let X be a proper Busemann space with
cocompact isometry group. Then for everyn > 1 the following are equivalent:

(1) X contains an isometric copy of some n-dimensional normed space;

(2) there exists a quasi-isometric embedding of R" into X;

(3) there exist a sequence of subsets Y; C X and a sequence 0 < r; — 00
such that the rescaled sets (Y, ri_ld) converge in the Gromov—Hausdorff
topology to the closed unit ball in some n-dimensional normed space.

Stronger conclusions hold if X is a proper and cocompact CAT(0) space.
Then any normed space isometrically embedded in X is necessarily Euclidean;
furthermore, the Euclidean rank of X, the maximal n for which X contains
an n-flat, is equal to the geometric dimension or the compact topological
dimension (that is, the supremum of the topological dimensions of compact
subsets) of the Tits cone 471X or of any asymptotic cone X, and also agrees
with the maximal n for which H,,_1(d1X) # {0}, where d1X denotes the Tits
boundary. See Theorems A and C in [53].

Property (3) above suggests the following notion of asymptotic rank that
was investigated in [82].

Definition 4.2 (asymptotic subset, asymptotic rank) Let X = (X, d) be a
metric space. Any compact metric space (Y, dy) that can be obtained as the
Gromov—Hausdorff limit of a sequence (Y7, rifld) as in (3) above will be
called an asymptotic subset of X. The asymptotic rank asrk(X) of X is the
supremum of all integers n > 0 such that there exists an asymptotic subset of
X isometric to the unit ball in some n-dimensional normed space.

Remark 4.3 Alternatively, asrk(X) may be defined as the supremum of all
n such that X admits an asymptotic subset bi-Lipschitz homeomorphic to a
compact subset of R” with positive Lebesgue measure. The equivalence of
the two definitions is shown by means of a metric differentiation argument
(see [82]).

We remark that every asymptotic subset of X embeds isometrically into
some asymptotic cone of X. Conversely, every compact subset ¥ C X, of an
asymptotic cone is an asymptotic subset of X, and the respective sets ¥; C X
may be chosen to be finite. If f: X — X is a quasi-isometric embedding into
another metric space X, then

astk(X) < asrk(X);

thus asrk is a quasi-isometry invariant for metric spaces (see Corollary 3.3 in
[82]).
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In anonpositively curved symmetric space X, every n-cycle Z with n greater
than or equal to the rank of X admits a filling V with mass

M(V) < const-M(Z)

(see p. 105 in [42], and [65]), whereas in smaller dimensions, the optimal
isoperimetric inequalities in X are of Euclidean type, asin Theorem 2.2. Itis not
known whether the linear inequalities for n-cycles remain valid, for example,
in cocompact Hadamard manifolds containing no (n + 1)-flat. However, the
following key result due to Stefan Wenger provides a substitute for spaces of
asymptotic rank at most .

Theorem 4.4 (sub-Euclidean isoperimetric inequality) Let X be a proper
metric space satisfying condition (Cl,) for some n > 1, and suppose that
astk(X) < n. Then for all C, € > 0 there is a constant a. > 0 (depending on
X,n,C,€) such that if r > ae, then every cycle Z € Z, (X) with M(Z) <
Cr" and spt(Z) C By(r) for some p € X possesses a filling V € I,41,c(X)
with mass

M(V) < er"T1

This is shown in a more general form, for complete metric spaces, and
without restrictions on spt(Z), in Theorem 1.2 in [82]. The stated version
suffices for our purposes, and the proof could be slightly simplified under
these assumptions.

The following result may be viewed as a localized version of Theorem 4.4
and will be used repeatedly throughout the paper. The main content is that if
acycle Z € Z, (X) satisfies || Z||(B,(r)) < Cr" for some p € X and for
all r > a > 0, then for every € > 0 and every sufficiently large » > 0 there
exists a “partial filling” V' € 1,41 ¢(X) such that spt(Z — dV) N B,(r) =9
and M(V) < er"t!; that is, Fp (Z) < €. We formulate this more generally
for local cycles of the form Z = § — §’ with Fx(Z) < oo, where only
S € I, 10c(X) is required to satisfy a density bound with respect to p and
S" € I;.10¢(X) (possibly zero) is area-minimizing.

Proposition 4.5 (partial filling) Let X be a proper metric space satisfying
condition (Cl,)) for some n > 1, and suppose that astk(X) < n. Then for all
C,e > 0anda > 0 there is a constant a; > 0 such that the following holds.
Suppose that S € I 10c(X) satisfies ®) (S) < C for some point p € X
and for all r > a, and S’ € 1, 10c(X) is minimizing with 39S’ = 93S and
Fyo(S — S) < 00. Then

0, (S)<C+e and Fp,(S—5)<e
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forallr > a., in particular ©x(S’) < C and Fso(S — §') = 0.

This shows in particular the following dichotomy: if Z € Z, 1o.(X) and
O (Z) < 00, then Foo(Z) is either O or co.

Proof We write B, := B, (r) for r > 0. Choose a constant D > Fuo (S — §').
Then, for every sufficiently large ro > 0, there isa Vjy € I,,11,c(X) such that

M(Vy) < Dr{t!

and spt(S — §’ — Vo) N By, = Y. We fix such rg and Vp for the moment, and
we put r; := n'ro for some fixed n € [1/2, 1) and every integer i > 1.
There exists an s € (r1, ro) such that both S’ L B, and the slice

Ty :=9(VoL By) — (0Vo) L By = d(VoL By) — (S — S") L By

belong to I, ¢ (X), and M(T5) < M(Vp)/(ro—r1) < (1 — n)_lDrO”. Note that
d(S" L By) = d(SL By + Ty). Using the minimality of S” and assuming that
r1 > a, so that ®, ((S) < C, we infer that

M(S'L By) < M(SL By) + M(Ty) < Cs" + (1 =)' Drg < Crf'

for C := n~"(C + (1 — n)~'D). Thus ©,,,(5") < C, and the cycle Z, :=
(S — S L B + T satisfies M(Z;) < 2C_‘r1” and spt(Zs) C By,,.Leté > 0. By
Theorem 4.4 there exists a constant as > a, depending only on n, X, C,a,s,
such that if r; > ag, then Z; possesses a filling V; € I,41.c(X) with mass

M(Vy) < 8r"tH.

Note that the support of S — §' — 3V = § — 8" — Z; lies outside B,,, thus
Fp (S —S8") < 8. Note further that for § < D, V; replicates the properties of
Vo at the next smaller scale r.

Now, given any § € (0, D] and r > as, we can choose r¢ initially such
that r = r;, = nkro for some k > 1. In the case that k > 2, we repeat the
slicing and filling procedure described in the preceding paragraph successively
fori = 2,...,k, with (r;, r;_1) and V;_1 in place of (r1, rg) and Vj. This
produces a sequence of partial fillings Vi, ..., Vx € I,11¢(X) of S — §', with
spt(S — S’ — Vi) N By, = @, such that ® , ,,(S") < C and M(V;) < &r" ™!,
For i = k, this shows that

O, S)<C=n"(C+(1—-n)"'D) and F,,(S—S) <3
whenever 0 < § < D and r > as.
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In particular, Foo (S — S’) = 0, and we may thus repeat the above argument
for arbitrarily small D > 0. Lete > 0. Choosing n € [1/2, 1) and D such that
C < C + ¢, and putting § := min{e, D}, we conclude that O, r(8) <C+e
and F, (S — §") < € whenever r > a, := as. Note that a_ depends only on
n,X,C,a,ce. O

The following result is included mainly for illustration. It shows that for
local n-cycles with controlled density in spaces satisfying the assumptions
of Theorem 4.4, quasi-minimality is equivalent to several other conditions,
among them the lower bound on the filling density obtained in Lemma 3.4.

Proposition 4.6 (characterizing quasi-minimizers) Let X be a proper metric
space satisfying condition (Cl,) for some n > 1, and suppose that astk(X) <
n. For an § € Zy 10c(X) with (C, a)-controlled density, the following are
equivalent:

(1) There exist Q > 1 and a1 > 0 such that S is (Q, ay)-quasi-minimizing.

(2) There exist co > 0 and ay > 0 such that if x € spt(S), then M(T) > cor"
for almost everyr > ap and every T € 1,, o(X) with 0T = 9(SL By (r)).

(3) There exist c3 > 0 and a3 > 0 such that if x € spt(S), then M(T) > c3r"
for almost every r > az and every T € 1,, o(X) with 0T = 9(SL By(r))
and spt(T) C Sy (r).

(4) There exist c4 > 0 and as > 0 such that Fy ,(S) > c4 for all x € spt(S)
andr > ag.

Notice that (3) is a divergence condition for §; compare, for example, the
definition of the divergence of a geodesic line in Section 3 of [51].

Proof The implications (1) = (2) and (2) = (1) follow easily from Lemma 3.3
(density) and the fact that S has controlled density, respectively. The implica-
tion (2) = (3) holds trivially, and (3) = (4) is shown by a simple integration
as in the proof of Lemma 3.4 (filling density).

To prove that (4) = (2), let x € spt(S),r > a,and T € I,, (X) be such
that 8" := SL Bx(r) € I,.c(X) and 7 = 9S’. By Theorem 2.4 (minimizing
filling), we can assume that 7' is minimizing and spt(7) is within distance
(M(T)/(S)l/" from spt(dS’) for some constant § = &§(n, X) > 0. Then the
cycleZ := §'—T € Z, (X) hasmass atmost 2Cr". Now it M(T') < §(r/2)",
say, then spt(Z) C By (3r/2) and spt(S — Z) N Bx(r/2) = @, and it follows
from Theorem 4.4 that Fy ,/2(S) < c4, provided r is sufficiently large. Thus (4)
implies that M(T) > §(r/2)" for large enough r. O
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5 Morse Lemmas

In this section we will prove some higher rank analogs of the Morse Lemma,
replacing quasi-geodesics with n-dimensional quasi-minimizers with con-
trolled density. Here we will also establish Theorem 1.1.

A first result follows very quickly from Lemma 3.4 (filling density) and
Proposition 4.5 (partial filling).

Theorem 5.1 (Morse Lemma I) Let X be a proper metric space satisfying
condition (Cl,)) for some n > 1, and suppose that astk(X) < n. Then for all
0 >1,C >0, anda > 0 there is a constant b > 0 such that the following
holds. Suppose that Z € Z,, 1oc(X) has (C, a)-controlled density and satisfies
Foo(Z) < 00 IfY C X isaclosed set such that Z is (Q, a)-quasi-minimizing
mod Y, then spt(Z) lies within distance at most b from Y.

Note that if S,S8" € I,10c(X) are two (Q, a)-quasi-minimizers with
(C/2, a)-controlled density and 9S = 9S’, then Z := § — 8" € Zy 10c(X)
is (Q, a)-quasi-minimizing mod spt(S) as well as mod spt(S’) and has
(C, a)-controlled density. Theorem 5.1 then shows that the Hausdorff dis-
tance dy(spt(S), spt(S”)) is at most b, provided Fo(Z) < oo (which holds
trivially if S, " € I, ¢(X)).

Proof Since Z is (Q, a)-quasi-minimizing mod Y, Lemma 3.4 shows that
For(Z) zc=c, X, Q) >0

whenever x € spt(Z), r > 4a, and B, (r) N Y = (. On the other hand, since
Z has (C, a)-controlled density and satisfies Fo(Z) < 00, we may apply
Proposition 4.5 with p = x and § = Z, §’ = 0. Taking € = ¢, we infer that
there is a constant b > 4a, depending only on n, X, Q, C, a, such that

F.,(2)<c

for r > b. This shows that r < b (in particular Y # (). |

As afirst application, we deduce Theorem 1.1, which we restate for conve-
nience.

Theorem 5.2 (slim simplices) Let X be a proper metric space satisfying
condition (Cl,)) for some n > 1, and suppose that astk(X) < n. Let A be
a Euclidean (n + 1)-simplex, and let f: 0A — X be a map such that for
every facet W of A, the restriction f|w is an (L, ag)-quasi-isometric embed-
ding. Then, for every facet W, the image f (W) is contained in the closed
D-neighborhood of f (BA \ W) for some constant D > 0 depending only on
X,n, L,ap.
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Proof Let Wy, ..., W, be an enumeration of the facets of A, and write the
cycle d[A] € Z,, (R™H1) as Z:’;LOI E; for E; := Q[A]L W; € I, (R,
Choose a triangulation of d A with simplices of diameter at most Do such
that every r-ball in R"*! with » > Dy meets at most Cor” n-simplices in
each W;, for some constants Cp, Dgp > 0 depending only on n. Consider
the corresponding chain complex &, (dA) of simplicial integral currents and
proceed as in the proof of Proposition 3.7 (triangulated quasiflats) to get a
chain map ¢: Z,(0A) — L (X) such that the following properties hold for
every S; := ((E;) € I, ¢(X) and for some constants Q, C, a depending only
on X, n, L, agp:

(1) spt(Sy) C Na(f (W) and spt(3S;) C Nu(f (@W:));

(2) S;is(Q, a)-quasi-minimizing mod N, ( f (dW;)) and has (C, a)-controlled
density;

(3) d(f(x),spt(S;)) <aforall x € W; withd(x, dW;) > a.

(Here N, stands again for the closed a-neighborhood, and d W; denotes the
relative boundary of W;.) Let M; denote the union of all W; with j # i. The
cycle Z := ((d[A]) = Z:liol S; is (Q, a)-quasi-minimizing mod N, (f (M;))
for every i and has ((n + 2)C, a)-controlled density. It then follows from
Theorem 5.1 that the set spt(S;) \ N,(f(M;)) = spt(Z) \ Nu(f(M;)) lies
within distance at most b from N, ( f (M;)) for some constant b depending only
on X, n, L, ag. Hence, for x € W;, it follows from (3) that d( f (x), f(M;)) is
less than or equal to 2a 4 b if d(x, 0W;) > a and less than La + ag otherwise.

O

Remark 5.3 If, for f: dA — X as above, there exists a map g: 0A — X
such that g|w is L’-Lipschitz for every facet W and d( f (x), g(x)) < b’ for all
x € dA, for some constants L', b’ depending on n, L, ag, then one may use
Proposition 3.6 (Lipschitz quasiflats) instead of Proposition 3.7 in the above
argument. Such a map g exists if X is Lipschitz (n — 1)-connected (compare
Corollary 1.7 in [62]), in particular if X is CAT(0) or a space with a convex
bicombing.

We now prove an analog of the Morse Lemma for quasi-geodesic segments.

Theorem 5.4 (Morse Lemma II) Let X be a proper metric space satisfying
condition (Cl,)) for some n > 1, and suppose that astk(X) < n. Then for all
Q>1,C >0, and a = 0 there is a constant b > 0 such that the following
holds. If S € 1, o(X) is a (Q, a)-quasi-minimizer with (C, a)-controlled den-
sity, then there exists a minimizing Se L, o (X) such that 39S = S, and every
such § satisfies

du (spt(S), spt(S)) < b.
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Proof A minimizing S € I, .(X) with 8§ = 3§ exists by Theorem 2.4
(minimizing filling). Since S has (C, a)-controlled density, it follows from
Proposition 4.5 (partial filling) that every such S has (C, @)-controlled density
for some constants C > C and @ > a depending only on n, X, C, a. Then the
cycle S — S has (2C, @)-controlled density and is (Q, a)-quasi-minimizing
mod spt(S“) as well as mod spt(S); the result thus follows from Theorem 5.1.

0

Our next goal is to extend this last result to local chains. We state an auxiliary
lemma.

Lemma 5.5 (F-convergence) Let X be a proper metric space satisfying con-
dition (Cl,) for some n > 1. Then a sequence (Z;) in Z; 1oc(X) converges in
the local flat topology to 0 if and only if lim; o F), ,(Zj) = 0 forall p € X
andr > 0.

Proof Suppose that Z; — 0 in the local flat topology, and let p € X and
r > 0. There is a sequence (V) in I, 11 10c(X) such that

(1Z; = Vil + Vi ID(Bp(2r)) — 0.

Note that Z; — 0V} € Z, 10c(X). Pick s € (r, 2r) such that, for K := B (s),
the slice 3((Z; — dV;) L K) is in Z,_1 (X) for all j, and furthermore
ViL K € Iy1,c(X) for all j. By Theorem 2.4 (minimizing filling), there
exists a minimizing current 7; € I, (X) with 07; = 9((Z; — dV;) L K),
and since spt(dT;) C S,(s) and M(T;) < M((Z; —dV;)L K) — 0, it
follows that spt(7;) C B,(2r) \ By(r) for j sufficiently large. The cycles
(Z; — V)L K — T converge to zero in mass, by condition (CI,) they thus
possess fillings W; € I,41,¢(X) such that also M(W;) — 0. Now define
ij =V;LK+W; €I,41,(X). Then M(ij) <M(V;LK)+M(W;) - 0,
and the support of

Zj—3Vi=2Z;—3(V;LK)—(Z; —dV)) LK + T,
=Z;L(X\K)—(0(V;LK)—@Vj))LK)+T;j

is disjoint from B, (r) for all sufficiently large j. This shows that F), ,(Z;) <
M(V;)/r"+1 — 0.
The reverse implication is clear. O

We now establish a basic existence theorem for minimizing local n-chains
in spaces of asymptotic rank at most .

Theorem 5.6 (constructing minimizers) Let X be a proper metric space sat-
isfying condition (Cl,) for some n > 1, and suppose that astk(X) < n.

@ Springer



Higher rank hyperbolicity 631

Then for every S € I, 10c(X) with ©x(S) < 00 there exists a minimizing
S € Ingoc(X) such that 0S = 90S and Foo(S — S) = 0, and every such S
satisfies Qo (S) < O (S).

Note that 3.5 may well be zero; the assertion Fio (S — S‘) = 0 then guarantees
that S is non-zero, provided Foo(S) # 0. Conversely, if Foo(S) = 0, then
S = 0, and it follows from Lemma 3.4 (filling density) that there is no
minimizer § # 0 with 35 = 0 and Fao(S) = 0.

Proof Fix a base point p € X, and choose a sequence 0 < r; 1 oo such
that S§; := SL By(r;) € I, c(X) for all i. Theorem 2.4 (minimizing filling)
provides a corresponding sequence of minimizing currents S; € L, . (X) with
85‘,' = 95;. Since Oy (S) < oo, there exist C > 0 and a > 0 such that
Opr(8) < 0Op(S) < Cforall r > a. Proposition 4.5 (partial filling) shows
that for every € > 0 there is a constant @, > 0 such that, for all i and r > a,

ISill(By(r)) < (C +e)r™ and F,,(S;—S;) <e.

Note also that if K C X is a compact set, then 105 1(K) = 18S: I(K) =
10S]|(K) for all but finitely many indices i. By Theorem 2.3 (compactness),
some subsequence (S‘ij) converges in the local flat topology to a minimizing
current S € I, joc (X) with 85 = 35.

To show that Fso (S — S) = 0, put Zj:=8-3§; — (-5, i) € Zp 10c(X)
and note that Z; — 0 in the local flat topology. If 6 > 0 andr > de, then

Fp,r(S - 51) = Fp,r(Zj) + Fp,r(Sij - Sij) < Fp,r(Zj) + €.

Hence, F), (S — 5‘) < € by Lemma 5.5.

Finally, a simple slicing argument shows that O (S) < Ouo(S) for every
minimizing S e L, 10c(X) with 38 = 9S and Foo(S — ) = 0. (This also
follows from Proposition 4.5.) O

The next result generalizes Theorem 5.4 to local currents. Theorem 1.2 in
the introduction corresponds to the case 9.5 = 0.

Theorem 5.7 (Morse Lemma IIl) Let X be a proper metric space satisfying

condition (Cl,)) for some n > 1, and suppose that astk(X) < n. Then for all

0 >1,C > 0,anda > 0 there is a constant b > 0 such that the following

holds. If S € 1, 10c(X) is a (Q, a)- quasz minimizer with (C, a)-controlled

density, then there exists a mzmmzzmg S e I, 10C(X ) such that 0S = 98 and
Foo(S — S) = 0, and every such S satisfies @oo(S) < Ox(S) and

du (spt(S), spt(S)) < b.
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Proof Since O (S) < 00, Theorem 5.6 shows that there exists a mlmmlzmg
S e I,1 Joc(X) with 9§ = 9S and Foo(S — S) = 0, and every such S satisfies
@oo(S) < O (S). The rest of the proof is the same as for Theorem 5.4. O

6 Asymptote classes and visual metrics

We now consider asymptote classes of local n-cycles in spaces of asymptotic
rank 7.

Definition 6.1 (asymprote classes) Let X be a proper metric space that satis-
fies condition (CI,) for n = asrk(X) > 1. We put

nloc(X) i = {8 € Zy 106(X) : B0 (S) < 00}
and call two elements S, S’ of this group F-asymptotic if Foo(S — S') = 0
(or, equivalently, Fno (S — S”) < 00; see Proposition 4.5 (partial filling)). This

defines an equivalence relation ~r on Zzolo -(X). We denote the quotient space
by

ZX = Zn loc(X)/NF

(note that n = asrk(X) is implicit in X) and the equivalence class of S by
[S] € ZX. The addition [S] + [S] := [S + §’] is clearly well-defined, thus
ZX is an abelian group.

As stated in Theorem 1.4, when X is a CAT(0) space, Z°X turns out to be
canonically isomorphic to the group Z,_1 ¢(dTX) of integral (n — 1)-cycles
in the Tits boundary of X. This will be discussed in Sect. 9.

Theorem 5.6 (constructing minimizers) shows that every class [S] € Z°X
contains an area-minimizing S € Zn loc (X), and furthermore every such S has
minimal asymptotic density among all members of [S]. We will now show that
for any C > 0 and a > 0, the set

ZcaX :={[S]1 € ZX : Shas (C, a)-controlled density}

carries a family of metrics analogous to the visual metrics on d.cX in the
hyperbolic case. With the present hypotheses (X satisfies condition (CI,,) for
n = asrk(X) > 1), a class in Z°X need not contain a representative with
controlled density; however, under the stronger assumptions of the subsequent
sections, in particular when X is CAT(0), every minimizer S e Zn loe (X)
has controlled density (see Proposition 7.4 and Remark 7.5). Note also that
every quasiflat f: R” — X yields an § with controlled density (compare
Proposition 3.7).
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First, for any reference point p € X and any [S] € Z° X, we put
(IS1) := inf{d(p, spt(S)) : S € [S] is minimizing}.

Note that ([S]), = oo if and only if [S] = [0], that is, Fo(S) = O (see the
remark after Theorem 5.6). Clearly ([—S1), = ([S]), and

[IST), — ([S)g| < d(p. @).

If X is a geodesic §-hyperbolic space (n = 1) and S corresponds to a geodesic
0: R — X connecting two points u, v € dx X, then ([S]), agrees, up to a
bounded additive error, with the Gromov product (u | v) ,. The following result
mimics the é-inequality

(u|w)p = minf(u | v)p, (V]w)p} =8

for the Gromov product of points at infinity (see p. 89 in [40] and Section 2.2
in [19]).

Proposition 6.2 (D-inequality) Let X be a proper metric space that satisfies

condition (Cl,,) for n = astk(X) > 1. Then for all C > 0 and a > O there
exists D > 0 such that

([S+ 8N, = min{([S]), ([SDp} — D
forall p € X and [S],[S'] € Zc.oX

Proof Let € > 0. Pick minimizers S e [S], = [S’], and Se [S + S’] such
that

d(p,spt(S)) < ([S+81), +¢

Note that [S +S51 e Zc.aX. Applymg Proposmon 4.5 (partial filling) to each
of S, S, S we infer that Z := § — (S + 8 ) has (C a)-controlled density for
some constants C, @ depending only on X, C, a. Note that Foo(Z) = 0. Since
Z is minimizing mod Y := spt(S) U spt(S’), Theorem 5.1 (Morse Lemma I)
shows that spt(S) is within distance at most D from Y for some constant D
depending only on X, C, a. Hence,

d(p.Y) <d(p,spt(8)) + D < ([S+S')), + €+ D.
Since min{([S]),, ([S/])p} <d(p,Y), this gives the result. ]
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We call a metric v on Z¢ X visual if there are p € X, b > 1 and ¢ > 1
such that

om0 < (81, [8]) < e =155

for all [S], [S'] € Z¢ X . Itis easily seen that any two metrics that are visual
with respect to the same parameter b but different base points are bi-Lipschitz
equivalent, whereas any two visual metrics are snowflake equivalent (com-
pare Theorem 3.2.4 in [66]). In particular, all visual metrics induce the same
topology on Z¢ X

Theorem 6.3 (visual metrics) Let X be a proper metric space that satisfies
condition (Cl,) for n = astk(X) > 1, and let C > 0 and a > 0. Then for
every p € X and every sufficiently small b > 1 there exists a metric v on
Zc .o X that is visual with respect to p and b. Furthermore, Z¢ ,X is compact
with respect to any visual metric.

Proof Let p € X and b > 1, and put v([S], [S']) := —([S=5") ?; then
D([S1, [S"D) < k max{D([S], [S']), D([S], [S"D}

for all [S],[S'],[S"] € Zc.uX, where k = bP and D is the constant
from Proposition 6.2 associated with the parameters 2C and a. Note that
D([S], [8']) = 0 if and only if [S] = [S']. If « < 2, then a standard chain
construction yields a metric v on Z¢ ,X such that

1
o D(SL [SD < v(IS1, [S'D < B(ASL [S'D

(see Lemma 2.2.5 in [19]). Thus v is visual with respect to p and b.

To prove the compactness assertion, let (S;) be a sequence in Zn loc (X) such
that each S; has (C, a)-controlled density. By Theorem 2.3 (compactness),
some subsequence (S; ;) converges in the local flat topology, hence also weakly,
toan S € Z, joc(X). Forall p e X and s > r > a,

ISI(Bp(r)) < hjrglogf I15i, 1(Bp(s)) < Cs"

by the lower semicontinuity of mass on open sets; thus S has (C, a)-controlled
density. Suppose now that v is a visual metric on Z¢ ,X with respect to
p € X, and note that v([S; ] [S]) — O if and only if ([Z,]), — oo, where

Zj:=Si; — S. Consider a sequence of minimizers ZjelZj]l,and lete > 0.
Since ®, ,(Z;) < 2C for all r > a, Proposition 4.5 (partial filling) shows
that if r is sufficiently large, then F), , ¥4 j—Zj) < €/2forall j.Furthermore,
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it follows from Lemma 5.5 (F-convergence) that F, ,(Z;) — 0 for every
r > 0. Hence, for every sufficiently large » > 0, there is an index jo such that

FP,r(Zj) = Fp,r(Zj —Zj)+Fp,(Z)) <€

for all j > jo. Let V; € I, 41 c(X) be such that spt(Zj —adVj)) N By(r) =
@ and M(V;) < er™1. For a point x € spt(Z,-) N B,(r/2), Lemma 3.4
(filling density) then shows that var/z(zj) > ¢ =c(X) > 0, thus M(V;) >
c(r/2)"*!. Choosing € = ¢/2"*! we conclude that for every sufficiently large
r there is a jo such that d(p, spt(Zj)) > r/2 for all j > jo. This shows that
([Zj])p — oo as desired. |

Visual metrics will be discussed further in Remarks 9.6 and 10.7.

7 Conical representatives

Our next goal is to relate F-asymptote classes to geodesic cones and to cycles
atinfinity. For this purpose, we now impose a convexity condition on the metric
space X.

A curve o: I — X defined on some interval / C R is a geodesic if there
is a constant s > 0, the speed of o, such that d(o(t), o(t')) = s|t — t'| for all
t,1" € I. A geodesic defined on I = Ry := [0, 00) is called a ray.

Definition 7.1 (convex bicombing) By a convex bicombing o on a metric
space X wemeanamap o: X x X x [0, 1] — X such that

(1) oxy :==0(x,y,-): [0, 1] — X is a geodesic from x to y forall x, y € X;
(2) t > d(oxy(t), oy (1)) is convex on [0, 1] for all x, y, x", y" € X;
(3) im(op,) C im(oyy) whenever x, y € X and p, g € im(0yy).

A geodesic ¢: I — X is then called a o-geodesic if im(oyy) C im(o)
whenever x,y € im(p). A convex bicombing o on X is equivariant if
Y 0 0xy = Oy(x)y(y) for every isometry y of X and forall x, y € X.

Note that in (3), we do not specify the order of p and ¢ with respect to
the parameter of oy, in particular oy, () = oyy(1 — 1). In the terminology
of [29], o is a reversible and consistent convex geodesic bicombing on X. In
Section 10.1 of [53], metric spaces with such a structure o are called often
convex. This class of spaces includes all CAT (0) and Busemann spaces as well
as (linearly) convex subsets of normed spaces; at the same time, it is closed
under various limit and product constructions such as ultralimits, (complete)
Gromov—Hausdorff limits, and /,, products for p € [1, oo].

A large part of the theory of spaces of nonpositive curvature extends to this
more general setting, see [8,29,30]. Furthermore, as was shown in [29,60],
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every word hyperbolic group acts geometrically on a proper metric space of
finite topological dimension with an equivariant convex bicombing o. In the
recent paper [28] it is shown that Theorem 4.1 (rank conditions) still holds for
every proper and cocompact metric space X with a convex bicombing. In fact,
Theorem 1.1 in that paper shows that if the unit ball of some n-dimensional
normed space V is an asymptotic subset of X, then V itself embeds isometri-
cally into X.

Let now X be a proper metric space with a convex bicombing o. It follows
from Sect. 2.7 that X satisfies condition (CI,,) for every n > 1, thus all the
preceding results are still at our disposal. The boundary at infinity of (X, o)
is defined in the usual way, as for CAT(0) spaces, except that only o-rays
are taken into account. Specifically, we let R? X and R{ X denote the sets of
all o-rays and o-rays of speed one, respectively, in X. For every pair of rays
0, 0’ € R? X, the function ¢ — d(o(1), ¢'(t)) is convex, and o and o’ are called
asymptotic if this function is bounded. This defines an equivalence relation ~
on R?X as well as on R{ X. The boundary at infinity or visual boundary of
(X, o) is the set

oo X :=RIX/~

(whereas R? X/~ is the set underlying the Tits cone of X, see the end of
Sect. 8). Given ¢ € R{X and p € X, there is a unique ray ¢, € R7X
asymptotic to ¢ with 0,,(0) = p. The set

X = XUdsuX

carries a natural metrizable topology, analogous to the cone topology for
CAT(0) spaces. With this topology, X is a compact absolute retract, and 9o, X
isa Z-setin X. See Section 5 in [29] for details, and [ 14] for more background.
For a subset A C X, the limit set 0o, (A) is defined as the set of all points in
dso X that belong to the closure of A in X. For a point p € X we define the
geodesic homotopy

hp:[0,1] x X - X

by hp(A,x) = hp(x) := opx(X). Note that the map ), ;: X — X is
A-Lipschitz. Foraset A C X,

Cp(A) :=hp([0,1] x A)
denotes the geodesic cone from p € X over A, and Ep (A) denotes its closure

in X. Similarly, if A C 95X, then C,(A) C X denotes the union of the traces
of the rays emanating from p and representing points of A.
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Let now S € Zj, 10c(X). We write
A(S) := 000 (spt(S)) C 900X

for the limit set of (the support of) S, and we call S conical if there is a point
p € X such that

hpsS=S$

for all A € (0, 1). The following lemma collects a number of basic properties.

Lemma 7.2 (conical) Let X be a proper metric space with a convex bicomb-
ing o, and suppose that S € Z, 10c(X) is conical with respect to some point
p € X. Then

(1) SLBy(r) € I o(X) and hp 34(SL By(r)) = SL By(Ar) forallr > 0
and A € (0, 1);

(2) the functions r +— O, (S) and r — Fy (S) are non-decreasing on
(0, 00);

(3) if S £ 0, then Foo(S) > 0 (possibly Fso(S) = 00);

(4) spt(S) C Cp(A(S)).

Proof Put B, := Bj(r) for all r > 0. To see that S _ B, € I, c(X) for every
r > 0, note that SL By € I, (X) for almost every s > 0, pick such an s > r,
andput A :=r/s. Now hp ;#(SL By) € I, (X), and since By = h;A(Br) and
hp S = S, it follows that

hp’k#(SLBs) = (hp,k#S)LBr =SL B,.

From this, the second assertion of (1) is also clear.
We show (2). Forany s > r > 0,

ISII(B;) = ||hp,r/s#S||(Br) = (I’/S)nHSH(BS),

thus ®, ,(§) is non-decreasing in r. Similarly, if there exists V € I, ¢(X)
such that spt(S — dV) N By = @, then M(h ), ,/54V) < (r/s)”“M(V), and
the support of S — d(hp ,/s4#V) = hp r/su(S — dV) is disjoint from B,, thus
Fpr(S) < M(V)/s”“. Taking the infimum over all such V, we get that
Fy - (S) < Fp 5(S) (where F), ;(S) = o0 if no such V exists).

As for (3), note that if S #~ 0, there is an s > 0 such that spt(S) N By # @.
Then any V' as above must be non-zero, thus F), ;(S) € (0, 00], and Fo(S) >
Fy 5(S) by monotonicity.

Finally, observe that spt(S) = spt(hp;#S) C hp ;. (spt(S)) for all A €
(0, 1]. Hence, for every x; € spt(S) there exist x, x3, ... € spt(S) such that
hp1/k(xx) = x1, and (4) follows. ]
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We now prove a first part of Theorem 1.4 stated in the introduction.

Theorem 7.3 (conical representative) Let X be a proper metric space with a
convex bicombing o and with astk(X) = n > 2. Suppose that S € Z;’floc (X)
and p € X. Then there exists a unique local cycle S, o € Z,° .(X) that is

n,loc
conical with respect to p and F-asymptotic to S. Furthermore, ®(Sp.0) <

Ooo(S), A(Sp.0) C A(S), and spt(S,.0) C Cp(A(S)).

Note that by uniqueness, S, o = 0 if and only if Foo(S) = 0. For the proof
of Theorem 7.3, we consider the family of all

Sp,k = hp,X#S € Zn,lOC(X)

for A € (0, 1]. We show that, as A — 0, this family converges in the local flat
topology to the desired local cycle S, o.

Proof Pick any C > ©x(S). Then there exists an a > 0 such that ®, ,(S) <
C for all r > a. We write again B, := B, (r). Since h, ; is A-Lipschitz,

1Sp, 2 1(Br) < A"[ISI(By-1,) < Cr"

for all » > Aa (see Sect. 2.4), thus ®, (S, ,) < C forall r > Aa.

First we construct partial fillings of S, ; — § for a fixed A € (0, 1). Let
R’ > a/2. Then ||S||(Bag’) < C(2R’)", hence there exists an R € (R’,2R’)
such that SL Br € I, ((X),

M(@3(SL Bg)) <2"C(R)Y" ! <2"CcRr" !,

and hp;4(S L Br) = SpaL Bug € I, c(X). The truncated geodesic cone
T := hpy([*, 1] x 8(SL Bg)) € I,,¢(X) with boundary

0T = 9(SL Bg) — hp’)h#a(SI_BR)

satisfies M(T) < RM(9(SL Br)) < 2"CR" (see Sect. 2.7). It follows that
IT|(B,) <2"Cr" forall r > 0. Hence,

Z = Sp’)kl_B)\R—SI_BR—i-T

is a cycle satisfying ®, ,(Z) < C’ for all »r > a and for some constant
C’ = C'(C, n).Proposition 4.5 (partial filling) shows that for every € > 0 there
isana, = al(X,C’,a) > 0 such that if r > a, there exists V € I, ¢(X)
with spt(Z —dV) N B, = P and M(V) < er™+! If we choose R’ sufficiently
large, so that AR > r, then spt(T)N B, = Jand spt(Sy »—S—090V)NB, = (.
This shows that F), (S, 1 — S) < € whenever € > 0 and r > a.
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Next, suppose that0 < A" < A < 1.Lete > Oandr > Aa,. Since /A < 1
and r/A > a_, the above result yields that Fpr/an(Sp s —S8) < e.Since hp
is A-Lipschitz, it follows that F, (S, 2 — Sp.3) < €.

We can now conclude the proof. Since ©, ,(S,,,) < C for r > Aa, The-
orem 2.3 (compactness) shows that for some sequence A; | 0, the respective
Sp,»; converge in the local flat topology to a limit S, 0 € Zjy joc(X). By
Lemma 5.5 (F-convergence), Fp, ,(Sp0 — Sp,a;) — O for every fixed r > 0.
Using the inequality

Fp,r(Sp,O - Sp,k) = Fp,r(Sp,O - Sp,Ai) + FP,F(SP,M - Sp,k),

we infer that F, ,(Sp,0 — Sp,5) < € whenever A € (0, 1],€ > 0,and r > Aaé.
This shows at once that Fio (S0 — §) = 0 and that S, ;, — §) o in the local
flat topology, as A — 0. To see that §), o is conical with respect to p, note
that for any u € (0, 1), hp ,#S),0 is the weak limit of &, 4S5y 5 = Sp i for
A — 0, which is again S, o.

Next we show that ®(Sp,0) < O (S). For all pairs s > r > 0,

1Sp.0ll(Bp(r)) < liminf S5 [1(Bp(s)) = Cs"

by the lower semicontinuity of mass with respect to weak convergence and
since O (Sp ) < C fors > da. As C > Oy (S) was arbitrary, this gives
the result. In particular S, o € Z;’lf’IOC(X ).

IfS" e Zfloe (X) is another local cycle that is conical with respect to p and
F-asymptotic to S, then S" ~f S, 0 and so S’ = §, o by Lemma 7.2.

By construction, spt(S, ) C C,(spt(S)) for all A € (0, 1). Therefore

spt(Sp,0) C Cp(spt(S)) and thus
A(Sp.0) C 300 (Cp(spt(S))) = A(S).

Hence, by Lemma 7.2, spt(S,.0) C C,(A(Sp,0)) C Cp(A(S)). O

A consequence of Theorem 7.3 (and Proposition 4.5) is the following uni-
form density bound.

Proposition 7.4 (controlled density) Let X be a proper metric space with a
convex bicombing o and with astk(X) = n > 2. Then for all C, € > O there is
a constant a > 0 such that every minimizing S € sz’loc(X) with ©4(S) < C
has (C + €, a)-controlled density.

Proof Let p € X. Since Foo(S — Sp0) = 0and ©p ,(Sp.0) < Oxc(Sp0) <
Ouo(S) < Cforall r > 0, Proposition 4.5 (partial filling) shows that for every
€ > Othereisana = a(X, C,€) > Osuchthat®, ,(S) < C+eforallr > a.
As p was arbitrary, this yields the result. m|
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Remark 7.5 When X is a proper CAT(0) space, it follows more directly that
every minimizing S € szloc(X) has (C, 0)-controlled density for C :=
O (S), regardless of the asymptotic rank of X. In fact, for every fixed p € X,
the function r +— ), ,(S) is non-decreasing on (0, c0). This monotonicity
property is shown by an argument very similar to the proof of Lemma 3.3
(density), using the sharp cone inequality M(7y) < (s/n) M(R;) instead of
the Euclidean isoperimetric inequality M(7;) < y M(R,)" =D (compare
Corollary 4.4 in [81]).

8 Visibility and applications

Theorem 7.3 (conical representative) shows in particular that for every § €
ZflOC(X) and p € X there is an S, ¢ € [S] with support in the geodesic
cone C,(A(S)). We now assume in addition that § € Z;’floc(X) is quasi-
minimizing. If both § and §, ¢ had controlled density, we could conclude
directly from Theorem 5.1 (Morse Lemma I) that the support of S is within
uniformly bounded distance from spt(S, o) and hence from C,(A(S)). The
following result, which subsumes Theorem 1.5, provides a sublinear bound
for the general case. As indicated in the introduction, this may be viewed as

an analog of the visibility axiom from [32].

Theorem 8.1 (visibility property) Let X be a proper metric space with a
convex bicombing o and with astk(X) =n > 2. Then forall Q > 1, C > 0,
a >0, and € > 0 there exists re > 0 such that the following holds. Suppose
that S € Zy 1oc(X) is (Q, a)-quasi-minimizing and satisfies © , (S) < C for
some p € X and forallr > a. If x € spt(S) is a point withd(p, x) > re, then

(1) for every A € (0, 1) there is an x; € spt(S) such that d(x, hp ;(x;)) <
ed(p,x);

(2) there exists a ray ¢ € R{X with 0(0) = p and [o] € A(S) such that
d(x,im(Q)) < ed(p, x).

We prove (1) and (2) in a unified way by bounding the distance of x from
spt(Sp.n) = spt(hp S) for A € (0, 1) and from spt(S), o), respectively.

Proof Let A € [0, 1). We know from Theorem 7.3 (conical representative)
and its proof that Fiio (S — S 2) = 0and ©, ,(Sp2) < C forall r > Aa.In
particular, ®, (S — S, ;) < 2C for all > a. Suppose now that x € spt(S)
and s > O are such that B,(s) N spt(S,;) = ¥, and put r, := d(p, x).
Proposition 4.5 (partial filling) shows that for every § > 0O there is a constant
ag = ag(X, C,a) = 0 such that if r, +5 > aj, there exists V € I,4 ¢(X)
with spt(§ — S, 5 —dV) N B,(ry +5) = ¥ and

M(V) < 8(ry +5)" 1.

@ Springer



Higher rank hyperbolicity 641

Since By (s) is disjoint from spt(S), ;) and contained in B, (r, + s), it follows
that spt(S — 0V) N By (s) = . Now Lemma 3.4 (filling density) shows that if
s > 4a, then

M(V) > cs"H!

for some constant ¢ > 0 depending only on X and Q. Hence,

s < (c_18)1/(n+1)(rx +5)
whenever r, = d(p, x) > ag and 4a < s < d(x,spt(Sp,)). By choosing §
sufficiently small, in dependence of n, ¢, a and € > 0, we infer that

d(x,spt(Sp.n) < ed(p,x)

for all x € spt(S) withd(p, x) > aj.

From this, (1) and (2) follow easily. Note first that if A € (0, 1), then
spt(Sp,x) = spt(hp;#S) C hp;(spt(S)); it thus follows that there is a point
x, € spt(S) such that d(x, hp;(x3)) < ed(p,x). Similarly, if A = 0,
then spt(Sp,0) C C,(A(S)) by Theorem 7.3 (conical representative), thus
there exists a ray ¢ € R{ X emanating from p such that [¢] € A(S) and
d(x,im(p)) < ed(p, x). O

As a by-product of this argument we obtain the following supplement to
Theorem 7.3 (conical representative).

Proposition 8.2 (equal limit sets) Let X be a proper metric space with a
convex bicombing o and with astk(X) =n > 2. If S € ZZ?IOC(X) is quasi-
minimizing, then A(S, 0) = A(S) for every p € X.

Proof Let p € X. We already know that A(S, 0) C A(S). On the other hand,
given v € A(S), it follows from the proof of Theorem 8.1 that there exist
sequences of points x; € spt(S) and y; € spt(S, o) such that x; — v and
d(x;, yi) < (1/i)d(p, x;). This implies that y; — v, thus v € A(S),0). O

We now consider an asymptotic Plateau problem.

Theorem 8.3 (minimizer with prescribed asymptotics) Let X be a proper
metric space with a convex bicombing o and with astk(X) = n > 2. Sup-

pose that Sy € L5 .(X) is conical with respect to some point p € X. Then

there exists a minimizing S € Z.° (X) that is F-asymptotic to So; thus

Sp.0 = So. Every such S satisfies O (S) = Oxo(So) and A(S) = A(Sp).

Furthermore, if S" € 129 (X) is another minimizer F-asymptotic to Sy, then

dy(spt(S), spt(S")) < b for some constant b > 0 depending only on X and
B0 (S0).
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Proof By Theorem 5.6 (constructing minimizers) there exists a minimizing
S € Zy10c(X) with Fso (S — Sp) = 0, and every such § satisfies s (S) <
B0 (So). Then S, o = Sp by the uniqueness assertion of Theorem 7.3 (conical
representative), and since O (S,0) < O (S), it follows that O (S) =
B0 (So). By Proposition 8.2, A(S) = A(Sp,0) = A(So).

IfsS ¢ Z;floc (X) is another minimizer F-asymptotic to Sp, then Foo(S —
§’) = 0, and by Proposition 7.4 (controlled density) S — S’ has (2C, a)-
controlled density for some constants C, a depending only on X and ®..(Sp).
Since § — 8’ is (1, 0)-quasi-minimizing mod spt(S) as well as mod spt(S’), it
follows from Theorem 5.1 (Morse Lemma I) that dy (spt(S), spt(S’)) < b for
some constant b as claimed. O

Proposition 8.2 and Theorem 8.3 show in particular that the following three
classes of compact subsets of d, X agree.

Definition 8.4 (canonical class of limit sets) Let X be a proper metric space
with a convex bicombing ¢ and with asrtk(X) = n > 2. We put

LX = {AS): S € ZC,
={A(S): S € Z°,.(X) is minimizing}

n,loc

(X) is conical}

= {A(S) : § € Z,.(X) is quasi-minimizing]}.
We now prove Theorem 1.7, reformulated for spaces with a convex bicomb-
ing.

Theorem 8.5 (dense orbit) Let X be a proper metric space with a convex
bicombing o and with astk(X) = n > 2, and suppose that U is a cocompact
group of isometries of X. Then, for every non-empty set A € £ X, the orbit of
A under the action of T, extended to X=XU 000X, is dense in 0o X (With
respect to the cone topology).

Proof Suppose that A = A(S), where S € foloc(X) is minimizing. By
Proposition 7.4 (controlled density), S has (C, a)-controlled density for some
constants C, a depending only on X and ®(S).Let p € X, andletgp € R{ X
be a ray emanating from p. Since I' acts cocompactly, there is a constant
b > 0 such that for every ¢+ > 0 there exist an isometry y; € I' and a point
X € y:(spt(S)) = spt(y#S) such that d(oo(t), x;) < b. Note that y;4#S is
minimizing, and ©, , (y;#S) = ®yt_1(p),r(S) < C forall r > a. Hence, given
€ > 0,ifris sufficiently large, then by Theorem 8.1 thereisaray o € R{ X with
0(0) = p such that [p] € A(y4S) and d (x;, im(0)) < €d(p, x;) < €(t + D).
Then

d(0o(1),im(g)) < b+ €(r + D).
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Note that [0] € 90 (y:(spt(S))) = ¥,(A) for the extension y, of y; to X.
Since € > 0 was arbitrary, this shows that every neighborhood of [0g] in 0sc X
contains a point of the orbit of A. O

Theorem 8.1 shows that the support of a quasi-minimizer S € Z?l?loc (X)
lies within sublinear distance from C,(A(S)), in terms of the distance to p.
Next we show that, conversely, the entire cone Ep (spt(S)) is within sublinear
distance from spt(S); however, the estimate now depends on S and p rather
than just on the data of S. The proof relies on Theorem 8.1 and a ball packing

argument.

Theorem 8.6 (asymptotic conicality) Let X be a proper metric space with a
convex bicombing o and with astk(X) = n > 2. Suppose that S € Z°°_.(X)

n,loc
is quasi-minimizing, and p € X. Then for all € > 0 there exists r > 0 such

that

d(y,spt(S)) < ed(p,y)

whenever y € Ep (spt(S)) and d(p,y) >r.
Proof We consider the family of the compact sets
K = spt(S) N B, (s)
fors > 0. Let u > 0. It follows from Theorem 8.1 that there exists an » > 0

such that for all s > r, x € K, and A € (0, 1], there is a point x” € spt(S)
such that

d(x, hp,x(x/)) < LS.

Then A d(p,x") =d(p, hp;(x") <d(p,x)+ us < (1 4+ p)s. Hence, given
any f > s, by choosing A := min{l, (1 4+ x)s/t} and x" := x in the case that
A =1, we get that d(p, x") < t. Then

N
Ay () sy ) = (A= =) d(p.x') < 2t = < ws.

We conclude that for every x € K, and every r > s there exists an x’ € K,
such thatd(x, hp s/ (x")) < 2us. Furthermore, if (y, y') € K, x K; is another
such pair with d(y, hp s/:(y")) < 2us, then

1 1 1
" d(x',y') = " d(hp,s/t (X)), hp s/ (3)) > Fd@.y) —4u
by convexity.

@ Springer



644 B. Kleiner, U. Lang

Letnow € > 0. For § > 0, denote by .45 ; the maximal possible cardinality
of a §s-separated set N C K (see Sect. 2.1). By the assumptions on § and
Lemma 3.3 (density), .45 := lim sup_, ., .45 s is finite. Using the monotonic-
ity of A5 € Zin§ wenow fix 8, 4 > Osuchthat 45,8, = A5and5+2u < €.
Then we choose r > 0 so large that the result of the first part of the proof holds,
Ns48u,r = Nsqgu,and A5, < Asforallt > r.Let N, C K, bea (6+8u)r-
separated set with maximal cardinality |N,| = A58, = :H—SM = JV:;. For
allt > s > r, it follows from the first part of the proof that there exists a bijec-
tion f from N, to a (§ + 4 )s-separated set Ny C K as well as a bijection g
from N; to a dz-separated set Ny C K; such that d(x, hp’s/,(x/)) < 2us for
all x € Nyand x” := g(x) € N;. Now |Ny| < A5, < JVZ; = |N,| = |N¢|, thus
N; is in fact maximal and forms a §z-net in K;.

Finally, suppose that y is a point in C,(spt(S)) with s := d(p,y) > r.
Then y = hy 5/:(y’) for some y" € spt(S), where r := d(p,y’) > 5. As we
have just shown, there exist x € K and x” € K; such that d(y’, x) < 8t and
d(hps/i(x), x) <2pus, thus d(y, hp s/ (x") < (s/H)d(y’, x") < 8s and

d(y,x) =d(y, hps/i (X)) +d(hps/(x), x) < (8 +21)s < es.

Hence, d(y, spt(S)) < e d(p, y). This yields the result. |

We now turn to the Tits geometry. As a first application of Theorem 8.6 we
will show that the limit sets A € Z X are compact with respect to the Tits
topology.

For a proper metric space X with a convex bicombing o, the Tits cone of
(X, o) is defined as the set

%X :=ROX/~

(see Sect. 7), equipped with the metric given by

1
dr([ol, [0']) == Jim —d (o). o' (1)).

Note that ¢ — d(o(t), 0'(t)) is convex, thus ¢ +—> d(o(t), 0'(t))/t is non-
decreasing if g, o’ are chosen such that o(0) = ©’(0). From this it is easily
seen that 61X is complete. On 61X, multiplication by a scalar A € Ry is
defined by Alo(-)] := [o(A -)]. This yields a homothety

h;: 61X — 61X,

thus &; (v) = Av and dr(h; (v), h) (V")) = Adt(v, V). The cone vertex o of
%rX is the class of the constant rays. For every base point p € X there exists
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a canonical 1-Lipschitz map
can,: 61X — X

such that can, ([¢]) = ¢(1) forall o € R? X with 9(0) = p. The Tits boundary
of (X, o) is the unit sphere

d1X = S,(1) = R X/~

in ¢1X, endowed with the topology induced by dr. This topology is finer than
the cone topology on the visual boundary 0., X, which agrees with d1X as a
set. However, the following holds.

Proposition 8.7 (compact limit sets) Let X be a proper metric space with a
convex bicombing o and with astk(X) = n > 2. Then every A € £X is still
compact when viewed as a subset of 01X.

Proof Suppose that A = A(S), where S € ZZ?IOC(X ) is quasi-minimizing.
Fix p € X, and let ¢ > 0. Let N C A be a finite 3e-separated set; thus
dr(u,u’) > 3efordistinctu, u’” € N.Forr > 0 sufficiently large, can, (r N) is
3er-separated, and every point in this set is at distance less than er from spt(S)
by Theorem 8.6. This yields an er-separated subset of spt(S) N B, (r + €r)
of the same cardinality as N. For r sufficiently large, it then follows from
Lemma 3.3 (density) that the cardinality of such sets is bounded from above
by a constant depending on € but not on . We conclude that A is totally
bounded. Since 61X is complete and A is closed in the Tits topology, this

gives the result. o

9 Cycles at infinity

In this section we show thatif § € Z>9_ (X) is conical with respectto p € X,

then the cone R A C 471X over the limit set A = A(S) € Z X is the support
of aunique local n-cycle X in 61X satisfying can,4 ¥ = S. We then complete
the proofs of Theorems 1.4 and 1.6.

In general, Tits cones are not locally compact, therefore the theory of local
currents from [59], which depends on the supply of compactly supported Lips-
chitz functions, is not directly applicable to 4T X . However, by Proposition 8.7
above, R A is proper, and X will be constructed as a current in its own support
spt(X) = Ry A. Thus, we (re-)define Z, 1o (471 X) as the collection of all local
cycles ¥ € Zj, 1oc(Kx) such that Ky C 47X is proper and spt(¥X) = Kx
(compare the discussion after Proposition 3.3 in [59]). The sum of two ele-
ments X, £’ € Zy j10c(%rX) may be formed by viewing them temporarily as
currents in Ky U Ky/; thus Zj, joc(¢71X) is an abelian group. The complexes
Lijoc (61X), L o (67X) and L, (7 X) are understood similarly.
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We start with a basic fact.

Lemma 9.1 (uniform convergence) Let X be a proper metric space with a
convex bicombing o . Suppose that K is a compact subset of 61X, and p € X.
Then for every € > O there is an re > 0 such that

dr(u,v) —e < r_ld(canp(ru), cany,(rv)) < dy(u, v)

forallr > rc and u,v € K. In particular, K is an asymptotic subset of X as
defined in Definition 4.2.

Proof For every r > 0, the map u +> can,(ru) is r-Lipschitz on ¢7X.
It follows that the function o, : (4, v) — r‘ld(canp(ru), cany,(rv)) is 1-
Lipschitz with respect to the /; product metric on 61X x é1X. Moreover, as
r — 00, o — dr pointwise on 61X x 61X by the definition of dt. Hence
the convergence is uniform on K x K for every compact set K C 61X.

In particular, the rescaled sets (can, (rK), r=d) converge in the Gromov—
Hausdorff topology to K. m|

Remark 9.2 1t follows from Lemma 9.1 and Remark 4.3 that if asrk(X) =
n and m > n, then 41X contains no set bi-Lipschitz homeomorphic to a
compact subset of R with positive Lebesgue measure, and this implies that
Im,loc(CgTX) = {O} and Im—l,c(aTX) = {0}

As a consequence, if asrk(X) = n, then every local cycle £ € Zj, joc(¢1X)
is conical with respect to the cone vertex o, that is, h;3> = X for all A > 0.
To see this, consider the radial homotopy H : (¢, v) — (1 —t + At)v of 61X
then 1,4 X — X equals the boundary of Hy([0, 1] x ) =0 € L4 10c(¢7X).

We now prove the following general result, which is independent of the
asymptotic rank. However, the assumption asrk(X) = n will guarantee that
A(S) C 91X is compact.

Theorem 9.3 (lifting cones) Let X be a proper metric space with a convex
bicombing o. Suppose that S € ij‘joc(X) is conical with respect to some
point p € X, and A := A(S) is compact in the Tits topology. Then there
is a unique local cycle ¥ € Z, 10c(¢1X) such that canpy ¥ = S. Moreover,
Y € Znioc(61X) is conical with respect to o, M(Z L By(1)) = Ox(S),

spt(X) = R A, and spt(d(X L B,(1))) = A.

Note that since ¥ € Z, 1oc(47X) is conical, XL B,(A) € I, ((41X) for all
A > 0 (compare Lemma 7.2 (conical)).

To construct £ we will consider the family of all S, := SL B, (r) € I, c(X)
for r > 0. First we embed each S, by a map that dilates all distances by
the factor 1/r into a fixed compact metric space Y. The embedded family
converges, as ¥ — 00, to an integral current in Y with support in an isometric
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copy of the cone K := [0, 1]A C %X, and this yields X L_ B,(1). As regards
Y, we will use the following general fact. Given any compact metric space
(K, dg) with diameter D, the set Y of all 1-Lipschitz functions y: K —
[0, D], endowed with the metric defined by

dy(y,y") := sup |y(v) — y'(v)l,
vekK
is a compact convex subspace of /o (K), and the map u +— dg(u, -) is an
isometric embedding of K into Y. Furthermore, Y is an injective metric space;
that is, every 1-Lipschitz map o: A — Y defined on a subset A of a metric
space B extends to a 1-Lipschitz map o: B — Y. In fact, such an extension
is given by

0(b)(v) := sup max{g(a)(v) —d(a, b), 0}

acA

forallb e Bandv € K.
Proof For s > r > 0, we put m, := can,oh,: ¢1X — X and m,, =
hprs: X — X. Note that 7, is r-Lipschitz, my, is (r/s)-Lipschitz, and
Ty = Ts,y O TTs.

Let first K C 41X be an arbitrary compact set, and put K, := 7,(K).
Let (Y, dy) be the compact convex subspace of [, (K) as described before the
proof, and let

i K=Y, fQ):=dru,"),

denote the canonical isometric embedding of K into Y. Similarly, since 7, is
r-Lipschitz, there is a map

friKe =Y, fr(x) i=r"ld (),
and since 7, maps K onto K, it follows that

dy (fr(x), f(x)) = r~sup|d(x, 7, (v)) — d(x', 7, ()| = r~'d(x, x')
vek

for all x, x” € K,. Note also that f,(p) = f(0) =: yo € Y.

Let e > 0. By Lemma 9.1 there is an . > 0 such thatif s > r > r, then
sl (), T, (v)) < dru, v) < r=Yd(,(u), 7,(v)) + € forall u, v € K.
We infer that

dy (fs(mws (), fr(mr(u)))

= sup|s ' d(ry (), 75 () = r~d (), w1, (0)| < €
vekK
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for all u € K and hence

dY(fs(x)’ (fr o ns,r)(x)) <€

for all x € K. Similarly,

dy (f(), (fr omr)(u)) <€

for all u € K. Thus f,(K,) lies within distance € of f(K).

We now apply this construction for the cone K := [0, 1]A C %é1X. Let
C := O (S). By Lemma 7.2 (conical), forall s > r > 0, S, :=SL B,(r) €
Lo (X), w5 4S8 = Sp, M(S,) < Cr", and spt(S) C C,(A); thus spt(S,) C
K, = m,(K). Since 7y , is r /s-Lipschitz and 5 -4(9Ss) = 9, it follows that
s""IM(3S,) < r"~'M(85;), and integration over s yields

R" — "
n—1 n—1 pn
M(@3S,) < " 'M(Sg) < Cr" 'R

forall R > r;thus M(dS,) < nCr"!. Since fr: K, — Y is (1/r)-Lipschitz,
we get the uniform bounds

M(fr4Sr) = C, M@O(fr#Sr)) = M(f4(35;)) < nC.

Fore > 0ands > r > re, let H: [0, 1] x K; — Y be the affine homotopy
from fy to f, oms, inY C [5(K). Then H (¢, -) is (1/s)-Lipschitz for every
t € [0, 1], and H(-, x) is a segment of length at most € for every x € K. It
follows that the family ( f;4S;),>0 is Cauchy with respect to the flat distance
Z onl, o(Y) (see Sects. 2.7 and 2.8), and by Theorem 2.3 (compactness) there
exists a current £ € I, (Y) such that

lim Z(f4S. — 21) =0.
r—>00

Note that M(Z) < C and spt(Z;) C f(K), furthermore spt(dZ1) C Sy, (1)
because spt(d(fr#S,)) C fr(spt(dS;)) C Sy, (1) for all r > 0. Via the iso-
metric embedding f_lz f(K) — %1X we getacurrent X| := (f_l)#fll €
L, c(é1X) with spt(21) C K, spt(dX;) C A C Sp(1), and M(X;) < C =
O (S).

Next we show that for each r > 0, m,4%1 = S,. We know that if ¢ > 0 and
s > re, thendy (f(u), (fyomg)(u)) <eforallu € K. Since faX| = ¥, this
yields

lim 7 (fi (1) — 1) =0.
§—>00
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Putting Ty := fou(meaX — Sy), we get that lim;_, o .% (T;) = 0. For every
s > r, the 1-Lipschitz map o5 := f; o 75, ofs_l: fs(Ks) = fr(K,) satisfies
os#Ts = T, and possesses a 1-Lipschitz extension g5 : ¥ — Y. It follows that
F(T,) < F(Ty) forall s > r, thus .Z (T,) = 0 and therefore 7, = 0. Hence,
T2 — S, = (fr_l)#T, =0, as claimed.

As a consequence, M(S,) < r"M(Z1) and spt(dS,) C m,(spt(d%;)) for
all » > 0, thus O (S) < M(X;) and A C spt(dX). Hence, in view of the
relations shown above, M(X1) = Oy (S) and spt(dX;) = A.

Finally, consider the family {X;},-¢ in I, ¢(41X) such that ) = hsX
for every A > 0. Then m,4%, = Sy, for all » > 0, and we claim that X, is
the unique element of I, (471 X) with this property. Let ¥’ be any non-zero
element of I, . (41 X). It suffices to show that 77,4 %" # 0 for some r > 0. Put
K :=spt(¥X’), K, := 7, (K), and define Y, f, and f, as above. Then it follows
that lim, oo Z (fra(m4X") — fuX’) = 0. Since fzX’ # 0, this implies the
claim. Now if 0 < A < A/, then B,(1) = 71,‘1 (Bp(Ar)) and hence

(X L Bo(L)) = (X)) LBp()\r) = Syr LBp()‘r) = Sir

for all » > O0; therefore X, L B,(A) = X, by uniqueness. It follows that
the family {X,},-0 determines a local cycle ¥ € Zj, joc(¢1X) such that
YL By,(A) = X, forall A > 0, and it is easily verified that ¥ has the desired
properties. Note that AA = spt(9%;) C spt(X) C Ry A forall A > 0, thus
spt(X) = R A. |

From Theorem 9.3 we obtain the following result which, in conjunction
with Theorem 7.3 (conical representative) and Proposition 8.2 (equal limit
sets), establishes Theorem 1.4 stated in the introduction.

Theorem 9.4 (Tits boundary) Let X be a proper metric space with a convex
bicombing o and with astk(X) = n > 2. Then for every S € Z}(floc (X) there
exists a unique local cycle & € Zy 1oc(61X) such that can,y ¥ = S o for all
p € X; furthermore X is conical with respect to o, and the slice (X L B, (1))
defines an element 015 = 07[S] € Z;—1,c(31X) with spt(d1S) = A(Sp,0)

forall p € X. This yields an isomorphism
ot: ZX - ZLp_1,01X).

Proof Let S € Z7.(X), and let p, p" € X. By Theorem 7.3, S, o and S} o
are the unique representatives of [S] that are conical with respect to p and p’,
respectively. Theorem 9.3 together with Proposition 8.7 (compact limit sets)
then shows that there exist unique elements X, X' € Z, joc(41X) such that
canpy X = Sp 0 and can,y X' = S, o; furthermore X, ¥’ are conical with

respect to 0, and spt(d(X L B,(1))) = A(Sp,0). Now can Y eZ® (X)is

n,loc
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conical with respect to p, and using the o-homotopy H: [0, 1] x 67X — X
from can, to can, one can easily check that can,4 X’ is F-asymptotic to
Sy .0 and hence to §. It follows from the above uniqueness assertions that
canpg X' = S, pand X’ = X. This shows thatcan 4 ¥ = S,y o forall p’ € X.
In particular, ¥ depends only on [S]. Viewing d(X L B,(1)) € Z,,—1 (¢1X)
as an element a1S§ = 01[S] € Z,—1(01X), we get a map dt: ZX —
Z,_ .(01X), and it is easily verified that this is an isomorphism. O

Returning to the asymptotic Plateau problem, we may now reformulate
Theorem 8.3 as follows.

Theorem 9.5 (minimizer with prescribed Tits data) Let X be a proper metric
space with a convex bicombing o and with astk(X) = n > 2. Then for
every cycle R € Z,_1c(01X) there exists an area-minimizing local cycle
S € ZZ,QIOC(X) with 0TS = R. Every such S satisfies A(S) = spt(R) and
M(R)/n = ©0(S) = M(R).

Proof LetR € Z,—1 (07X). By Theorems 9.4 and 7.3 there is a conical local
cycle Sp € Z;’?]OC(X) with Tits boundary d1S¢p = R, and A(Sp) = spt(R). By
Theorem 8.3 there exists a minimizing S € [Sp], and every such § satisfies
A(S) = A(So) = spt(R) and O, (S) = O (So). Note that S € [So] if and
only if 1S = R. By Theorem 9.3 and the coarea inequality,

1
O (S0) = M(X L B,y(1)) = / W'IM(R) di = M(R)/n,
0

and since ¥ L B, (1) agrees with the cone over R, M(Z L B,(1)) < M(R).
O

When X is a CAT(0) space, the last inequality holds with M(R)/n in place
of M(R); then O (S) = M(R)/n for every minimizing S € Z;?IOC(X) with
d1S = R. Furthermore, ©® ,(S) < Oy (S) forall p € X and r > 0O by
monotonicity (see Remark 7.5), and lim, . ®, ,(S) > w, for ||S-almost
every p (see [81], (4.28)); thus ®x(S) > w, whenever R # 0. This proves

Theorem 1.6.

Remark 9.6 By the above results, we may rephrase Theorem 6.3 (visual met-
rics) in terms of cycles at infinity. For a reference point p € X and [S] € Z°X,
we put (d1[S]), := ([S])p, thus

(R), = inf{d(p, spt(S)) : § € Z2,.(X) is minimizing, d15 = R}

n,loc

forall R € Z,,_1 (d1X). Let C > 0 and a > 0. Then, for every sufficiently
small b > 1, there exist a constant ¢ > 1 and a metric v on d1(Z¢ X)) C
Z,_ (01X) satistying

BT < (R, R = b RRD
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forall R, R’ € d1(Z¢ 4X); furthermore d1(Z¢ ,X) is compact with respect
to any such metric. Note that if [S] € Z¢ ,X and S € [S] is minimizing, then
O (S) < C by Theorem 5.6 (constructing minimizers) and thus

IT(Zc,aX) C{R € Zy—1,(07X) : M(R) < nC}

by Theorem 9.5. When X is CAT(0), these two sets agree for each a > 0.

10 Quasi-isometries

We now turn to quasi-isometric embeddings of X into another proper metric
space X with a convex bicombing.

The following auxiliary result will be used in conjunction with Lemma 3.5
(doubling).

Proposition 10.1 (Lipschitz extension) Suppose that X is a metric space, X
is a metric space with a convex bicombing o, and A C X is a non-empty
closed set that is doubling. Then there is a constant > 1, depending only on
the doubling constant, such that for every L-Lipschitz map f: A — X there
is a wL-Lipschitzmap g: X — X with gla = f.

This follows from Theorem 1.6 in [62] since X is Lipschitz k-connected for
all £ > 0 and doubling sets have finite Nagata dimension (in fact, according to
Theorem 1.1 in [64], the latter is less than or equal to the Assouad dimension).

Remark 10.2 The assumption in Proposition 10.1 that A be doubling can
be dropped if, for example, X is a homogeneous Hadamard manifold or a
Euclidean building; the constant x then depends (only) on X. See Theorem 1.2
in [61]. Itis still unknown whether every Hadamard manifold has this property.

By virtue of Lemma 3.5 and Proposition 10.1, given a quasi-isometric
embedding f: X — X and a quasi-minimizer S € Z, 10c(X) with con-
trolled density, one can easily produce a Lipschitz map g: X — X with
SUP,cpi(s) 4 (f (x), g(x)) < oo by extending f|4 for a suitable separated net
Ainspt(S). We now show thatthen g4 S € Zn,loc(X ) is again a quasi-minimizer
with controlled density.

Proposition 10.3 (quasi-isometry invariance) Let X be a proper metric space
with a convex bicombing o and with astk(X) =n > 2. Then forall L, Q > 1,
C > 0,and a > 0 there exist Q > 1, C>0,anda > 0 such that the following
holds. Suppose that X is another proper metric space, S € Z,10c(X) is a
(Q, a)-quasi-minimizer with (C, a)-controlled density, and g: spt(S) — X
is a map satisfying

L7'd(x,y) —a < d(g(x),g(») < Ld(x,y)
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Jorall x,y € spt(S). Then S = gsS € Z, 1OC(X) isa (Q a)-quasi-minimizer
with (C, a)-controlled density, and d(g(x), spt(S)) < a forall x € spt(S).

Proof If x € spt(S) and r > a, then g~! (Bg(x)(r)) C By(2Lr) and thus
ISI(Bgy (1) < L"ISI(Bx(2Lr)) < L"Cyr"

for Cy := (2L)"C. Hence, given any p € X and r > a/2 such that Bj(r)ynN
spt(S) # @, it follows that ||S||(B5(r)) < [IS|I(Bg(x)(2r)) < L"Cy(2r)" for
some x € spt(S). This shows that S has ((2L)"Cy, a /2)-controlled density.

Next we show that there is a Lipschitz map g: X — X such that & :=
g o g is at finite distance from the identity on spt(S). Let N C spt(S) be a
4La-separated 4La-net in spt(S). By Lemma 3.5 (doubling), N is doubling,
and g|y: N — g(N) is (4L /3)-bi-Lipschitz, so g(N) is doubling as well.
The doubling constant depends only on n, L, C. Then, by Proposition 10.1,
(gly)~! admits an L-Lipschitz extension g: X — X for some constant L
depending on n, L, C. For every x € spt(S) there is a y € N such that
d(x,y) <4La. Then h(y) = y, and

d(h(x), x) <d(h(x), h(y)) +d(y,x) < (LL+ 1)d(x,y) < b

forb :=4(LL + 1)La.

Let again x € spt(S) and r > a, and put B, := Bg(y)(r). For almost
every such r, both S =SLB,and §' :=SL g*I(Br) are integral currents,
g#S' =8, and

M(S) < Cir", M(S) < L"Cir"*, M(hgS') < (LL)"Cyr".

Let H: [0, 1] x spt(S) — X denote the homotopy from idgp(s) to & given
by H(t, x) = o(x, h(x), t). The deformation chain W := Hy([0, 1] x §’) €
L,+1,c(X) satisfies

MW) < Cor"

for C, := (n + 1)(LL)"b C,. Furthermore, the support of the cylinder R :=
Hy([0,1] x 3S") = hyS" — S" — dW lies in the closed b-neighborhood of
spt(3S”), and spt(dS’) C spt(S — §’) is at distance at least r/ L from x because
g is L-Lipschitz.

Suppose now that T e I,,,C()_() and € > 0 are such that 37 = 95’ and

M(T) < er".

Since M(gsT) < L"er" and 8(gsT) = g#(dS") = hy(dS’), Theorem 2.4
(minimizing filling) shows that there is a minimizing 7' € I, .(X) with 9T =
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hy4(0S’) and
M(T) < L"er",

and if € is sufficiently small, then spt(7') is within distance »/(3L), say, from
spt(hy(9S")). For r > 3Lb, it follows that r/L — b — r/(3L) > r/(3L)
and thus spt(T — R) N B,(r/(3L)) = @. Note that 3(T — R) = 3S’. By
Lemma 3.4 there is a constant ¢ > 0 such that F ,/31)(S) > cforr > 12La.
Put Z := hyS' — T € Z, (X). It follows from Theorem 4.4 (sub-Euclidean
isoperimetric inequality) that there is a constant a > 3Lb > 12La such that
if r > a, then Z possesses a filling V € I,,+1 ¢(X) with

MV — W) < M(V) + M(W) < cr™tL,

Since 3(V — W) = 8 — (T — R) and spt(T — R) N By (r/(3L)) = @, this
contradicts the fact that Fy ,,3.)(S) > c. Hence, there is an €y > 0 such that,
for almost all » > a, M(T) > eor” and thus

M(§) < L"Cir" < QM(T)

for Q := L"Cy/¢€g. In the case that g(x) € spt(S'), this shows that S is (Q, a)-
quasi-minimizing.
Ifg(x) ¢ spt(S‘), the same argument for T:=§ = S'I_Bg(x)(r) shows that
||S’||(Bg(x)(r)) > €or™ > 0 for almost all » > a. Thus d(g(x), spt(S)) < a.
O

Our next goal is to prove Theorem 10.6 below. We need the following
auxiliary results.

Lemma 10.4 (mapping small fillings) Let (X, o) be a proper metric space
with a convex bicombing. Suppose thatn > 1, Z € Z, 1oc(X), p € X, and
g: X — X is an L-Lipschitz map into a proper metric space X such that
d(g(p), g(z)) = L™Yd(p, z) —a forall z € spt(Z), for some constants L > 1
anda > 0. If Foo(Z) =0, then Z := gaZ € Ty, 10c(X) satisfies Foo(Z) = 0.

Proof Lete > 0. Forevery sufficiently large r > O there exists V € I, 41 ¢(X)
such that spt(Z — aV) N B,(r) = ¥ and M(V) < (er)"*!. By Theorem 2.4
(minimizing filling) we can assume that V' is minimizing and d (x, spt(dV)) <
ecr for all x € spt(V), where ¢ > 0 depends only on n. Assuming that
€c < 1/2, we find an s > r/2 such that W := V L B,(s) € I41,(X),
spt(Z —dW)N B, (r/2) =¥, and d(x, spt(Z)) < ecr forall x € spt(W). Put
W= gsW € In+1,c()_(). Then, for any x € spt(Z —adW) C spt(Z) Uspt(W)

@ Springer



654 B. Kleiner, U. Lang

and z € spt(Z) with d(x, z) < ecr,

d(g(p), g(x)) > d(g(p), g(z)) —d(g(x), g(2)
> L Y d(p,x)—d(x,2)) —a—Ld(x,z)
> (2L)_1r — (L_1 + L)ecr —a =:r.

If € is sufficiently small and r is sufficiently large, so that » < 3Lr say, then
M(W) < (eLr)"*t! < (3¢L%7)"*!, and the supportof Z—dW = gs(Z—9W)
is disjoint from Bg(p) (7). This gives the result. |

The next lemma states a simple general fact about Lipschitz maps.

Lemma 10.5 (combining Lipschitz maps) Let X be a proper metric space,
and let X be a metric space with a convex bicombing &. Suppose that Ay, Ay C
X are two closed non-empty sets, L, a > 0 are constants, and g1, g2: X — X
are L-Lipschitz maps such that d(g1(x1), g2(x2)) < Ld(x1, x3) + a for all
(x1,x2) € Ay x Ay. Then there exists a 7L-Lipschitz map g: X — X such
that d(g(x), gi(x)) < a/2 forall x € A;, fori =1,2.

Proof Weassumethata > 0;the case a = Orequires only minor modifications
(note that then g1 = g> on A; N A, by assumption).

Fori =1, 2,letu; : X — Rbethe L-Lipschitz functiondefined by u; (x) :=
Ld(x,A;))+a/4. Put w:=u; 4+ us, » :=u;/w, and define §: X — X by

g(x) =0 (g1(x), g2(x), A(x)).
Letx,y € X, and put z := 5 (g1(x), g2(x), A(¥)). Then

d(§(x),8(y)) =d(8(x),2) +d(z, 8(»)),
d(z,8(»)) = (1 = A(y)d(g1(x), g1(y) + A (y) d(g2(x), g2(3))
= Ld(x,y),

and d(g(x),2) = |A(x) — A(¥)|d(g1(x), g2(x)). Furthermore,

@) — 2] < ‘k(x)—b;lg)) + L;j((y)) —k(y)‘
A(y)

=G )Iul(X) —u1(y)| + le(y) —w(x)|

3L
= md(x» y),
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and if x; € Ay and xp € Aj are such that d(x, x;) = d(x, A;), then

d(g1(x), g2(x)) < d(gi1(x), g1(x1)) +d(g1(x1), g2(x2)) + d(g2(x2), g2(x))
< Ld(x,x))+ (Ld(x1,x2) +a) + Ld(x2, x)
<2Ld(x,x1)+2Ld(x,x2)+a
=2w(x).

It follows that g is 7L-Lipschitz. If x € Ay, then A(x) = a/(4w(x)), thus

d(g1(x), g(x)) < A(x)d(g1(x), g2(x)) < a/2. Similarly, d(g(x), g2(x)) <
a/2 forall x € A». O

We now consider again the group Z°X of F-asymptote classes from Defi-
nition 6.1.

Theorem 10.6 (mapping asymptote classes) Let (X, o) and (X, &) be two
proper metric spaces with convex bicombings and with astk (X) = asrk(X) =
n > 2, and suppose that f: X — X is a quasi-isometric embedding. Then
there exists a unique monomorphism

ZfFX > FX

with the property that if S € Z,‘Z?IOC(X) and g: X — X is a Lipschitz map

such that supxespt(s)d(f(x), g(x)) < oo, then Z f[S] = [g#S1. If f is a
quasi-isometry, then % f is an isomorphism.

Note that if S and g are as in the theorem, then g4S € Z;‘floc()}' ) by the
argument in the first paragraph of the proof of Proposition 10.3, thus the class
[g#S] € ZX is defined. Combining Theorem 10.6 with Theorem 9.4 (Tits

boundary), we get a monomorphism ft that makes the diagram

f -
Zn 1c01X) —— Z,_1(d7X)

aTT TaT

X — X
Zf

commutative. This yields Theorem 1.8 in the introduction.

Proof Due to Theorem 5.6 (constructing minimizers) and Proposition 7.4
(controlled density), every class in Z°X is represented by a minimizer
S € Z% (X) with controlled density. It then follows from Lemma 3.5

n,loc N
(doubling) and Proposition 10.1 that a Lipschitz map g: X — X with
SUP, cpi(S) d(f(x), g(x)) < oo exists. In particular, there is at most one map

Zf: X — ZX with the property stated in the theorem.
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Suppose now that S, Sy € Z° (X) are arbitrary and g1, g2: X — X are

n,loc

Lipschitz maps with sup, cqy(s,) d(f (%), gi(x)) < oo fori = 1, 2. It follows

from Lemma 10.5 that there exists a Lipschitz map §: X — X such that
SUPgpi(s;)Uspt(sa) @ (f (X), §(x)) < oo. Using the 6-homotopy from g; to g one
can easily check that g;S; ~f g4S;. In the case that S| ~f S», Lemma 10.4
shows that g4S| ~F guSs, thus g14S1 ~F g2#S5>. This yields the existence
of a unique map 2 f: ZX — 2 X with the property stated in the theorem.
Furthermore, since

ZfIS11+ Zf1820=184S11+ (84521 = [84(S1 + S2)1 = Zf [S1 + S2]
=ZfAS1]+ 52D,

% f is ahomomorphism. To show that & f is injective, suppose that [S] # 0,
where S is a minimizer with controlled density. Then it follows from Propo-
sition 10.3 that g#S is quasi-minimizing and non-zero for any Lipschitz map
g: X — X with SUP . cspi(s) 4 (f (X), g(x)) < oo. Lemma 3.4 (filling density)
then shows that Foo (guS) # 0, thus Z f [S] = [g4#S] # 0.

If f is a quasi-isometry, then there is a quasi-isometric embedding f: X —
X such that sup; ¢ d((f o f) (x), xX) < 00, and it is not difficult to show that
Z f o Z f is the identity on 2 X. O

Remark 10.7 Resuming the discussion of visual metrics, we note that when
f: X — X is an (L, ap)-quasi-isometric embedding, the monomorphism
Zf: X — ZX maps each of the subsets ZcaX C ZX into Q‘”@va)_(,
where C, a depend on X, L, ag, C, a. Furthermore, there is a constant D,
depending in addition on X, such that if S, S’ € ZcaXand Z € [S — 5],
Ze¥ f[S — S'] are minimizing, then spt(Z) is at Hausdorff distance at most
D from f(spt(Z)). As a consequence, for every p € X,

LS =S8, —ao— D <(ZfIS— SN < LS — Sy +ao+ D.
It follows readily that both the restriction of 2 f to Z¢ ,X and its inverse are
Holder continuous with exponent 1/L for any pair of visual metrics on Z¢ , X

and Z¢ a}_( with the same parameter b.
Higher rank visual metrics will be further discussed elsewhere.

11 Mapping limit sets
We will now describe the effect of a quasi-isometric embedding f: X — X,

or of the associated monomorphism 2 f: ZX — 22X, on the collection
of limit sets . X introduced in Definition 8.4. We associate to every class
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[S] € ZX alimit set A[S] C 050X such that
A[S] = A(S)

for every S’ € [S] that is quasi-minimizing or conical; in these cases the
invariance of A(S’) is granted by Theorem 7.3 (conical representative) and
Proposition 8.2 (equal limit sets). Thus A[S] € £ X. For any S € Zn 1o (X)s
the set A[S] also agrees with spt(dT.S); however, Theorems 9.3 (hftmg cones)
and 9.4 (Tits boundary) are not needed for the proof of Theorem 11.2 below.

The following preliminary result relies on Theorems 8.1 (visibility property)
and 8.6 (asymptotic conicality).

Proposition 11.1 (mapping cones) Let (X, o) and (X, &) be two proper met-
ric spaces with convex bicombings and with astk(X) = astk(X) = n > 2, and
let f: X — X be a quasi-isometric embedding. Suppose that [S] € Z°X and
Zf 18] =1[S] € ZX. Choose base points p € X and p € X, and consider
the geodesic cones K := C,(A[S]) C X and K :=C; p(ALS S)) C X. Then for
all € > 0 there exists an r > 0 such that

d(f(x),K) < ed(p,x)

forall x € K withd(p, x) > r and
d(x, f(K)) <ed(p,X)
forall x € K withd(p, %) > r.
Proof We assume that f isan (L, a)-quasi-isometric embedding, f (p) = p, S
is a quasi-minimizer with controlled density, and S = g#S for some Lipschitz
map g: X — X with b := supxespt(s)d(f(x) g(x)) < oo.
Let €/ € (0, 1). If » > 0 is sufficiently large, then it follows from Theo-

rem 8.6 that for every x € K with d(p, x) > r there is a y € spt(S) such that
d(x,y) < €d(p, x), thus

d(f(x), f(y)) < Le'd(p,x) +a
and (1—-€')d(p,x) <d(p,y) < (1+€')d(p, x). By Proposition 10.3 (quasi-

isometry invariance), S is a quasi-minimizer with controlled density, and there
is a point y € spt(S) such that d(g(y), y) < a for some constant a > 0, thus

d(f(y),y) <a+b=:¢
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and d(p,y) = d(f(p), f(y)) —¢ = L™'(1 — €')r —a — ¢ Hence, if r is
sufficiently large, then by the second part of Theorem 8.1,

d(y,K) <€ d(p,y) <2Le'd(p, x),

asd(p,y) <d(f(p), f(y)) +¢ <L +e€)d(p,x)+a+c <2Ld(p,x).
Combining these estimates we get the first assertion, and the second is proved
similarly. O

We now prove that f induces an injective map £ f: £X — &£ X.If
Z f(A) = A,thenthecones R A C 41X and R A C 41X are bi-Lipschitz
homeomorphic.

Theorem 11.2 (mapping limit sets) Let (X, o) and (X, &) be two proper
metric spaces with convex bicombings and with asrk(X) = astk(X) =n > 2,
and suppose that f: X — X is an (L, a)-quasi-isometric embedding. Then
there exists an injective map

Lf LX - ZLX

such that £ f (A[S]) = A[S] whenever AN [S]. For every finite union
M = Ule A; of sets A; € L X and the corresponding union M := Ule A,
of the sets A; == L f(A}), there is a pointed L-bi-Lipschitz homeomorphism
&: Ry M — Ry M such that ®(RyA;) = Ry A fori =1,....k.If fisa
quasi-isometry, then £ f is a bijection.

Here @ is said to be pointed if ®(0) = 0, where 0 and 0 are the cone vertices
of 61X and 61X, respectively.

Proof Choose base points p € X and p := f(p) € X. Suppose that
Zf[S]1=[Sland Z f [T] = [T]. We use Proposition 11.1.If A[S] = A[T],
then for every € € (0, 1) and every x € C; (A[S]) with sufficiently large dis-
tance to p there exists an x € C,(A[S]) = C,(A[T]) such that

d(x, f(x)) <ed(p,x)

and (2[1)_1d(]3,i) < d(p,x) < 2Ld(p, x); then there is also a point y €
C5(A[T]) such that

d(f(x),y) <ed(p,x) <2Led(p,X).

It follows that A[@ ] C A[T_], and the reverse inclusion holds by symmetry.
Conversely, if A[S] = A[T], then a similar argument shows that AlS] =
A[T]. This yields the existence of an injective map .2 f: X — £ X such

that .Z f (A[S]) = A[S] whenever Z f [S] = [S].
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Let now M and M be given as in the theorem. By Proposition 8.7 (compact
limit sets), the cones R M and R M are proper and thus separable. Forr > 0,
let w,: 41X — X and 7, : 41X — X denote the r-Lipschitz maps defined
by

- (u) == cany(ru), 7w, (u) = canp(ri).

Let first N C R M be a finite set containing o, and let € > 0. It follows from
Proposition 11.1 that if we pick r > 0 sufficiently large, then for every u € N
andi € I'(u) :={i : u € Ry A;} thereis a point &, ; € R A; such that

d(f (), 7w (ur;)) < er,

where 0,; := o fori = 1,...,k. Then, for all u,v € N andi € I(u),
J € 1),

L7l d (), 7, (v) — a — 2er < d(@,(iir.i), 7 (0, j))
< Ld(m,(n), 7, (v)) + a + 2er

andd(p, 70, (uyi)) < Ld(p, w,(u)) +a+er, thus dr(o, ur;) < Ldr(o, u)+
r~la 4 €. We infer from Lemma 9.1 (uniform convergence) that if r > a /€ is
sufficiently large, then

L™ 'dr(u, v) — 4€ < dr(iir;, Or.;) < Ldr(u, v) + 4e.

For u = v, this also shows that the set {u,; : i € I(u)} associated to u has
diameter at most 4¢€. Let s > 2¢. It follows again from Proposition 11.1 that if
r > a/e is sufficiently large, then for every w € [e, s]A; thereisaw € Ry A;
such that

d(f (- (w)), mr(w)) < er

and dt(o, w) < L(dt(0, w) + 2¢) < 2Ls. Then, foru € N N R A;, we can
conclude as above that dr(u,;, w) < Ldt(u, w) + 4e, provided r is large
enough. Hence, if we assume that N N [0, 2Ls]A; is an €-net in [0, 2Ls]A;
then {u,; : u € NNR_A;} forms an (L +4)e-netin [0, s1A;. Repeating this
construction for some sequences €, — 0 and s; — oo and a suitable sequence
N1y C Ny C ... of subsets of R M, we get the desired map ®: Ry M —
R M via a diagonal sequence argument.

Finally, if f is a quasi-isometry, then 2 f : 2°X — 2 X is an isomorphism
by Theorem 10.6. Hence, for every A = A[S] € X there exists a A =

A[S] € ZX such that Z f [S] = [S] and thus .Z f(A) = O
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This result readily implies Theorem 1.9 in the introduction. Note that if
P = ﬂ{zl A, Q= mf=j+1 A;,and P, Q are the corresponding intersections
of the sets A; := .Z f(A;), then the existence of a map ® as in Theorem 11.2
guarantees that P C Q if and only if P C Q.

If X and X are symmetric spaces of non-compact type and of rank n > 2,
then their Tits boundaries have the structure of thick (n — 1)-dimensional
spherical buildings, and every Weyl chamber is the intersection of the limit
sets of two n-flats. It then follows from Theorem 1.9 that every quasi-isometry
f: X — X induces an isomorphism (order preserving bijection) between the
two buildings, which must carry apartments to apartments. This shows that the
map L f: LX — X takes limit sets of n-flats to limit sets of n-flats, and it
follows from the case k = 1 of Theorem 11.3 below or Theorem 1.10 that for
every n-flat F C X there is an n-flat F C X at uniformly bounded Hausdorff
distance from f(F). This constitutes a major step in the proof of the quasi-
isometric rigidity theorem for symmetric spaces of non-compact type without
rank one de Rham factors; compare Corollary 7.1.5 in [54] and Lemma 8.6
in [34]. The proof may then be completed along the lines in these papers, using
Tits’ work [78].

Theorem 11.3 (structure of quasiflats) Let X be a proper metric space with
a convex bicombing o and with astk(X) = n > 2. Let f: R" — X be an
(L, ap)-quasi-isometric embedding with limit set A := doo(f (R")). Then the
cone K := R A C 61X is L-bi-Lipschitz equivalent to R". Suppose that K is
the union of closed sets K1, . .., Ky such that, for some point p € X, can, |g;
is a (1-Lipschitz) (L, ap)-quasi-isometric embedding fori = 1, ..., k. Then
f(R") is within distance at most b from C,,(A) = can, (K) for some constant
b depending only on X, L, ag and k. In the case k = 1, f(R") is at Hausdorff
distance at most b from C,(A).

Proof Let E := [R"] € Z, 10c(R"). By Proposition 3.6 (Lipschitz quasi-
flats) there are constants Q, C, a, depending only on n, L, ag, such that
Z f [E] = [S] for some (Q, a)-quasi-minimizer S € Zj, joc(X) with (C, a)-
controlled density and dy(spt(S), f(R")) < a. Then A = A(S) = A[S],
and Theorem 11.2 shows that there exists an L-bi-Lipschitz homeomorphism
¢:R" - K =R,A.

Suppose now that the additional assumption in the theorem holds for some
p € X. By Theorem 7.3 (conical representative), spt(S,0) C Cp(A) and
O (Sp,0) < Ox(S) < C.Ouraimis to show that S, ¢ has controlled density.
By Theorem 9.3 (lifting cones) there exists a local cycle ¥ € Z,, 1oc(K) in K
such that can,y X = §) 0 and O (X) < C. Note, however, that if k = 1
and can,, | is bi-Lipschitz or even isometric (for example, if X is CAT(0)
and C,(A) is a flat), then one can simply put ¥ := (can, |;1)#Sp,0 and the
theorem is not needed. Now (qb_])#E is an element of Z, joc(R") and hence
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of the form m E for some constant integer multiplicity . Since ¢! is L-bi-
Lipschitz, it follows that |m| is bounded in terms of C and L (there is no need
to show thatin fact |m| = 1). Fori = 1, ..., k, let ¥; denote the restriction of
can, o¢ to ¢~ 1(K;). Note that ; is L-Lipschitz and (L?, ag)-quasi-isometric
by the assumption on can,, |g;. Choose Borel sets B; C K; such that the union
UL, Bi = K is disjoint. Since ¢¢(mE) = %,

Yis(mE L ¢~ (B;)) = canpy(¢s(mE L ¢~ (B)))) = canpu(Z L By).

If g € X and r > ag, then wi_l (B4(r)) has diameter at most L*Q2r + ag) <
3L%r, and it follows that

[l can 4 (L B)II(By(r)) < Cor”

for some constant Cy depending only onm, n, L. Since Zle canp#(XLB;) =
canps X = §) o, we conclude that S, o has (kCo, ag)-controlled density. Now
Theorem 5.1 (Morse Lemma I) yields the first conclusion of the theorem.

If kK = 1, then ¥y = canj,o¢ is a Lipschitz quasifiat, hence S, =
Y1#(mE) is quasi-minimizing and spt(S) o) is at finite Hausdorff distance
from ¢ (R") = C,(A) by Proposition 3.6 (which extends to higher multiples
of E = [R"]). The desired estimate follows again from Theorem 5.1. O

Theorem 1.10 stated in the introduction follows as a special case. In the case
k = 1, this applies in particular to CAT (0) spaces with isolated flats; compare
Lemma 3.1 in [75] (the case F = R) and Theorem 4.1.1 in [47]. Furthermore,
it follows easily that every n-dimensional quasiflat in a nonpositively curved
symmetric space of rank n > 2 lies within uniformly bounded distance from
the union of a finite, uniformly bounded number of n-flats; compare Theo-
rem 1.2.5 in [54] and Theorem 1.1 in [34]. We also refer to [10,13,48,50,63]
for various similar statements.
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