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ABSTRACT
We explore the survival of cool clouds in multiphase circumgalactic media. We revisit the
‘cloud-crushing problem’ in a large survey of simulations including radiative cooling, self-
shielding, self-gravity, magnetic fields, and anisotropic Braginskii conduction and viscosity
(with saturation). We explore a wide range of parameters including cloud size, velocity, ambient
temperature and density, and a variety of magnetic field configurations and cloud turbulence.
We find that realistic magnetic fields and turbulence have weaker effects on cloud survival;
the most important physics is radiative cooling and conduction. Self-gravity and self-shielding
are important for clouds that are initially Jeans-unstable, but largely irrelevant otherwise.
Non-self-gravitating, realistically magnetized clouds separate into four regimes: (1) at low
column densities, clouds evaporate rapidly via conduction; (2) a ‘failed pressure confinement’
regime, where the ambient hot gas cools too rapidly to provide pressure confinement for the
cloud; (3) an ‘infinitely long-lived’ regime, in which the cloud lifetime becomes longer than
the cooling time of gas swept up in the leading bow shock, so the cloud begins to accrete and
grow; and (4) a ‘classical cloud destruction’ regime, where clouds are eventually destroyed by
instabilities. In the final regime, the cloud lifetime can exceed the naive cloud-crushing time
owing to conduction-induced compression. However, small and/or slow-moving clouds can
also evaporate more rapidly than the cloud-crushing time. We develop simple analytic models
that explain the simulated cloud destruction times in this regime.

Key words: ISM: clouds – ISM: structure – galaxies: evolution – galaxies: haloes – galaxies:
kinematics and dynamics.

1 IN T RO D U C T I O N

The circumgalactic medium (CGM) is the diffuse, multiphase gas
surrounding a galaxy inside its virial radius and outside its disc
and interstellar medium (ISM). In recent years, observations and
simulations have revealed that CGM plays a significant role in
galaxy evolution, in the sense that it both supplies gas for the
galaxy’s star formation and recycles the energy and metals produced
by stellar and active galactic nucleus (AGN) feedback (Tumlinson,
Peeples & Werk 2017).

Over the past 20 yr, direct observations have revealed the complex
multiphase structure in the CGM, in its ionization structure and
dynamics. It is customary to classify the CGM gas into three
components in different physical states (Cen 2013), namely (a) the
cool gas phase (T < 105 K), mainly composed of neutral hydrogen
and low ionization potential ions like Mg II, Si II, and C II (e.g.
Churchill, Steidel & Vogt 1996; Chen et al. 1998; Steidel et al.
2010; Prochaska, Lau & Hennawi 2014; Johnson et al. 2017); (b)
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the warm–hot gas phase (T ∼ 105–106 K), specifically the high
ionization potential ions like C III, C IV, O VI, and Ne VIII (e.g. Stocke
et al. 2006; Savage, Lehner & Narayanan 2011; Werk et al. 2014);
and (c) the hot gas phase (T > 106 K), consisting even more highly
ionized species, like O VII and O VIII (e.g. Richter, Paerels & Kaastra
2008; Yao et al. 2010). Different ions in different physical states
also display varied kinematics, resulting in a variety of absorption
line profiles (Werk et al. 2016).

The existence of multiphase gas raises fundamental questions
about how the ‘cool’ phases can be maintained. While the CGM can
be thermally unstable, it is well known from ideal hydrodynamic
simulations that a cool cloud moving through a hot medium at
any appreciable velocity will be rapidly ‘shredded’ and destroyed
(mixed into the hot medium) by a combination of shocks, Rayleigh–
Taylor (RT), Kelvin–Helmholtz (KH), and related instabilities
(McKee & Cowie 1975). If clouds are ‘ejected’ from the galaxy
directly in a cool phase of galactic outflows, or form ‘in situ’
in outflow cooling shocks/shells, they are expected to have large
(supersonic) relative velocities to the ambient medium (Thompson
et al. 2016). Even if they form in situ in a thermally unstable
hydrostatic CGM ‘halo’ of hot gas around the galaxy, they are
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buoyantly unstable and will ‘sink’ at transonic velocities (McCourt
et al. 2018).

The simple formulation of this problem – namely the survival
of a cold cloud moving through a hot ambient medium – is the
classical ‘cloud-crushing’ problem, and has been studied for several
decades in the context of the ISM, particularly for the case of
giant molecular clouds (GMCs) being hit by supernova shocks (e.g.
Cowie & McKee 1977; McKee & Cowie 1977; Klein, McKee &
Colella 1994). However, in the CGM, the dominant physics and
their effects are expected to be very different from those in the ISM.
For example, GMCs are marginally self-gravitating, highly super-
sonically turbulent (turbulent Mach numbers ∼10–100), molecular,
and self-shielding1 (temperatures ∼ 10–1000 K, column densities
� 100 M� pc−2 ∼ 1022 cm−2), with ratios of thermal-to-magnetic
pressure much less than one (plasma β � 1) and extremely short
ion/electron mean free paths (negligible conduction/viscosity).
CGM clouds, on the other hand, are generally not self-gravitating
or Jeans-unstable, are ionized or atomic (non-molecular, non-self-
shielded, with temperatures � 104 K), exhibit weakly subsonic
or (at most) transonic turbulence (turbulent Mach numbers �1),
and have dynamically negligible magnetic field strengths (β � 1).
Further, given their lower densities and higher temperatures, such
clouds can be comparable in size to the mean free paths of hot
electrons in the ambient medium, meaning that conduction and
viscosity could be extremely important. Moreover, those conduc-
tion/viscosity effects will be very anisotropic, given the small ratio
of the particles’ gyro radii to the system size, and could easily be in
regimes where standard classical results break down.

All of this means that it is unclear how much, if any, intuition
can be ‘borrowed’ from the historical cloud-crushing studies in
the ISM. As a result, there has been a recent resurgence of work
on this idealized cloud-crushing problem but in the CGM context
(e.g. Scannapieco & Brüggen 2015; Brüggen & Scannapieco 2016;
Liang, Kravtsov & Agertz 2016; Armillotta et al. 2017; Gronke &
Oh 2018, 2019; Liang & Remming 2018; Sparre, Pfrommer &
Vogelsberger 2019). However, given the more recent nature of these
studies and the computational expense of simulations including
all of the physics above, this work has generally been limited in
one of two ways: either (1) neglecting key physics (e.g. ignoring
radiative cooling, magnetic fields, anisotropic conduction/viscosity,
saturation effects, or considering only two-dimensional cases) or
(2) considering only a very limited parameter space (i.e. a couple
of example clouds). In this paper, we therefore seek to build an
analytical picture on the insights of these recent works by surveying
a large parameter space of relevance to CGM clouds (e.g. of
cloud sizes, column densities, and velocities, as well as ambient
temperatures, densities, and magnetic field properties). We include
radiative cooling, magnetic fields, and fully anisotropic conduction
and viscosity, as well as self-shielding and self-gravity, in three-
dimensional high-resolution numerical simulations.

The structure of this paper is as follows. We describe the relevant
physics equations, the simulation code and initial conditions, and
the range of parameters surveyed in Section 2. Using our suite of
simulations and analytic scalings, we then isolate various parameter
regimes that give rise to qualitatively different behaviours in
Section 3. We focus on the ‘classical cloud destruction’ regime
in Section 3.5: there we parametrize the dependence of the cloud

1By ‘self-shielding’, we mean the cloud column density is high enough
to absorb all the incoming ionizing photons from the metagalactic UV
background and shield the inner neutral gas from being ionized.

lifetime on the different physical parameters described above, and
discuss the effects of different physics. We summarize and conclude
in Section 4.

2 ME T H O D S

2.1 Overview and equations solved

We wish to study the problem of a cloud moving through the ambient
CGM. Within the cloud (ignoring, for now, the boundary and shock
layer with the hot medium), ideal magnetohydrodynamic (MHD)
should be a good approximation but the cooling times are short
compared to other macroscopic time-scales (tcool ∼ 6 × 10−5 Myr),
so we expect clouds to be approximately isothermal at ∼ 104 K (if
they are not self-shielding, in which case they might be colder).
In the hot medium, on the other hand, radiative cooling is usually
negligible over the time-scales we consider, as is self-gravity, but
the deflection lengths (mean free paths) of the electrons and ions
are not negligible. Because the electron and ion gyro radii are
vastly smaller than all other scales in the system, the system can
be reasonably described by including appropriate, anisotropic con-
ductive and viscous diffusion coefficients (‘Braginskii’ conduction
and viscosity; Braginskii 1965), which can provide a reasonable
description of the kinetic physics at play (see e.g. discussion in
Squire et al. 2019). Indeed, for the regimes considered, transport
coefficients perpendicular to the magnetic field are suppressed by
factors of ∼10−8 compared to the parallel coefficients. Given the
large ionization fractions – fion ∼ 0.01–1 inside the cloud and fion

≈ 1 outside it – we can safely neglect the effect of ambipolar
diffusion, the Hall effect, and ohmic resistivity on the evolution of
the magnetic field.

The system of fluid equations we solve is therefore given by

∂ρ

∂t
+ ∇ · (ρ v) = 0, (1)

∂v
∂t

+ (v · ∇) v = 1

ρ
∇ · S − ∇�, (2)

∂e

∂t
+ ∇ · (e v) = ∇ · (S · v + K · ∇T ) − ρ v · ∇� − n2 �, (3)

∂B
∂t

= ∇ × (v × B) , (4)

∇2� = 4π G ρ, (5)

S ≡
(

P + B · B
2

)
I − B ⊗ B − �, (6)

e ≡ 1

(γ − 1)
P + 1

2
ρ v · v + B · B

2
. (7)

These are the usual continuity, momentum, energy, induction,
Poisson (self-gravity) equations, for the gas mass density ρ, velocity
v, energy e, gravitational potential φ, and magnetic field B.2 Here
S is the stress tensor, with P = n kB T the usual isotropic (thermal)
pressure (T the temperature and n = ρ/μ the particle number
density, with local adiabatic index γ = 5/3). The conductivity (K)
and the viscous part of the stress tensor (�) are given by Spitzer &

2To maintain ∇ · B = 0, we adopt the divergence cleaning scheme proposed
in Dedner et al. (2002) and the constrained gradient scheme in Hopkins
(2016).
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Cloud survival in the CGM 1843

Table 1. Definitions of variables used in this paper.

xh Value of quantity x in the hot, ambient medium
xcl Value of quantity x in the cool cloud
tcool Cooling time = (3/2) kB T /n�

� Cooling function
κcond Conduction coefficient (see equation 9)
νvisc Viscosity coefficient (see equation 11)
ln �D Coulomb logarithm (�D ∼ neλ

3
D)

ne Electron number density
β Plasma β ≡ Ptherm/PB

Ptherm Thermal pressure = n kB T

PB Magnetic pressure =|B|2/8π

χ Density contrast ncl/nh (=Th/Tcl, in equilibrium)
cs Thermal sound speed
Mh Initial Mach number of the hot medium ≡ vcl/cs, h

tcc Classical cloud-crushing time ≡ χ1/2 Rcl/vcl

tlife, pred Predicted cloud lifetime from power-law fit
tlife, sim Simulated cloud lifetime
Pram Ram pressure of the ambient medium

= μ mp nh v2
cl

Härm (1953) and Braginskii (1965) as

K ≡ κcond B̂ ⊗ B̂, (8)

κcond = 0.96 fi (kBT )5/2 kB

m
1/2
e e4 ln �D

(1 + 4.2 �e/�T)−1 , (9)

� ≡ 3 νvisc

(
B̂ ⊗ B̂ − 1

3
Î
)[(

B̂ ⊗ B̂ − 1

3
Î
)

: (∇ ⊗ v)

]
, (10)

νvisc = 0.406 fi m
1/2
i (kBT )5/2

(Zi e)4 ln �D
(1 + 4.2 �i/�v)−1 , (11)

where ⊗ denotes the outer product; I is the identity matrix; ‘:’
denotes the double-dot product (A : B ≡ Trace(A · B)); ln �D

≈ 37.8 from Sarazin (1988); me, e, mi, Zi e = e are the electron
mass and charge and ion mass and charge; fi the ionized frac-
tion (calculated self-consistently in our cooling routines); kB the
Boltzmann constant; �e ≈ 0.73 (kBT )2/(ne e4 ln �D) is the electron
mean free path and �T = T/|∇T| the temperature gradient scale
length (�i and �v = |v|/||∇⊗v|| are the ion mean free path and
velocity gradient scale length, respectively). These additional terms
account for saturation of κ or ν, although, due to the current
uncertainty in the relevant physics, they neglect the effect of plasma
‘microinstabilities’, which can act to limit the flux further in the
high-β regime (e.g. Kunz, Schekochihin & Stone 2014; Komarov
et al. 2016). At a sharp discontinuity – for example, the contact
discontinuity at the edge of the cloud – the form of equation (9)
ensures the conductive flux takes the saturated form from Cowie &
McKee (1977): qsat ≈ 0.4 (2 kB T /π me)1/2 ne kB T cos θ B̂ (where
θ is the angle between B and ∇T). Note, however, that by solving
a single set of fluid equations we are assuming that ions and
electrons maintain similar temperatures, despite the species having
different conductive heat fluxes. Finally, � = �(T , n, Z, Iν, ...)
represents cooling and heating (so it can have either sign) via
additional processes such as radiation, cosmic rays, dust collisions,
and photoelectric processes, etc. (details below). The definitions of
all the relevant variables are listed in Table1.

2.2 Simulation code

We solve the equations (1)–(11) in the code GIZMO (Hopkins 2015),3

which uses a Lagrangian mesh-free finite-volume Godunov method,
in its meshless finite-volume (finite-element) ‘MFV’ mode. We
have also compared simulations using GIZMO with its meshless
finite-mass, or fixed-grid finite-volume solvers, to verify that the
choice of hydrodynamic solver in GIZMO has only small effects on
our results. Hopkins (2015, 2016, 2017) and Hopkins & Raives
(2016) present details of these methods and extensive tests of
their accuracy and convergence in good agreement with state-of-
the-art grid codes (e.g. ATHENA). In particular, the MFV method
is manifestly conservative of mass, momentum, and energy, with
sharp shock capturing and accurate treatment of fluid-mixing
instabilities (e.g. KH and RT instabilities), and correctly cap-
tures MHD phenomena including the magnetorotational instability
(MRI), magnetic jet launching in discs, magnetic fluid-mixing
instabilities, and subsonic and supersonic MHD turbulent dynamos.
In Hopkins (2017), we show that the numerical implementation
of the anisotropic diffusion operators (K and �) is accurate, able
to handle arbitrarily large anisotropies, converges comparably to
higher order fixed-grid codes, and is able to correctly capture
complicated non-linear instabilities sourced by anisotropic diffusion
such as the magnetothermal and heat-flux buoyancy instabilities;
this has also been tested in fully non-linear simulations of galaxy
and star formation (Su et al. 2017). GIZMO also includes full self-
gravity (φ) using an improved version of the Tree-PM solver from
GADGET-3 (Springel 2005), with fully adaptive and conservative
gravitational force softenings (so hydrodynamic and gravitational
force resolution is self-consistently matched) following Price &
Monaghan (2007). Finally, GIZMO includes a detailed, fully implicit
solver for radiative heating and cooling (�). We use the cooling
physics from the cosmological FIRE galaxy simulations, with all
details given in appendix B of Hopkins et al. (2018): cooling
is tracked self-consistently from 10–1010 K, including free–free,
photoionization/recombination, Compton, photoelectric and dust
collisional, cosmic ray, molecular, and metal-line and fine-structure
processes (tabulated from CLOUDY; Ferland et al. 1998) from each
of 11 species, accounting for photoheating by a metagalactic ultra-
violet (UV) background (using the z = 0 value from Faucher-
Giguère et al. 2009), with self-shielding (as in Rahmati et al.
2013) and optically thick cooling. Additional details are provided
in Hopkins et al. (2018); the cooling physics have been used
extensively in simulations of star and galaxy formation in the FIRE
project. Ionization states are calculated self-consistently accounting
for both collisional and photoionization.

2.3 Initial conditions and ‘default’ problem set-up

Our simulations follow a standard ‘cloud-crushing’ problem set-
up, always in three dimensions. For simplicity, a spherical cloud of
radius Rcl and mean density ncl ≡ Mcl/(4π/3 R3

cl mp) is initialized at
an equilibrium temperature Tcl ∼ 104 K (with heating and cooling
from the metagalactic UV background), in pressure equilibrium
with a homogeneous box filled with gas at electron density ne =
nh, temperature Th, and relative velocity v = vcl ŷ to the cloud (we
relax the cloud before turning on velocities to ensure equilibrium

3A public version of this code is available at http://www.tapir.caltech.ed
u/ phopkins/Site/GIZMO.html.
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Table 2. Parameters varied.

Name Description Values considered

Lcl Initial cloud diameter (= 2Rcl) 0.01, 0.1, 1, 10, 100, 1000 pc
vcl Initial cloud velocity 10, 100, 1000 km s−1

Th Ambient temperature 105, 106, 107 K
nh Ambient density 10−4, 10−3, 10−2, 10−1 cm−3

Note. The description and parameter space of the main physical parameters
varied in this paper.

temperature and pressure).4 The system is contained in a periodic
box with size length 10 Rcl in the x̂ and ẑ directions and 20 Rcl in the
ŷ direction, with an inflow boundary on the ‘upwind’ ŷ side such that
the upwind portion of the box is always filled with gas at the initial
ambient properties (with outflow out of the opposite ŷ side). The
box moves with the cloud meaning that we can follow the system
over long evolution times,5 as long as the cloud does not become
sufficiently elongated that it exceeds the box size. We have run
simulations with box sizes up to ∼ 100 Rcl in length to verify that this
does not affect our conclusions. One advantage of our Lagrangian
code is that it makes no difference (to machine precision) whether
we assign the velocity to the cloud or ambient medium.

In our ‘default’ simulations, the box is populated with
equal-mass resolution elements with mi ≈ 10−6 Mcl. Because
the method is Lagrangian, our mass resolution is fixed
but spatial resolution is automatically adaptive with �xi ≈
0.01 Rcl (n/ncl)−1/3 (mi/10−6 Mcl)1/3. In some of the simulations
below, we disable self-shielding6 and self-gravity: without self-
shielding there is effectively a temperature floor of ∼ 104 K set
by the UV background, while with self-shielding gas can cool to
∼ 10 K in principle. The default simulations initialize an inten-
tionally weak uniform magnetic field with β ≡ Ptherm/PB = 106,
oriented perpendicular to the cloud velocity vector, but we vary this
below. A small subset of our simulations consider ‘turbulent’ initial
conditions, as described below. In Appendix A, we show the effects
of changing resolution (mi ∼ 10−7–10−3 Mcl) and verify that the
predicted cloud lifetimes are robust to the choice of resolution.

Table 2 lists the key physical parameters that we vary between
simulations. We survey a wide range of parameters, including Lcl

from 0.01 to 1000 pc, vcl from 10 to 1000 km s−1, Th from 105 to
107 K, and nh from 10−4 to 10−1 cm−3.

2.4 Definition of cloud ‘destruction’ and ‘lifetime’

Although it is often obvious ‘by eye’ when a cloud is being
‘destroyed’ or ‘mixed’, there is no obvious rigorous definition.
Following one common convention in the literature, we simply
define the ‘cloud mass’ as the mass above some density threshold
relative to the background. Since we consider a range of clouds
with different initial density contrasts, we specifically define the
mass variable mcl, x as the mass in the box with density logρ >

logρ0
h + (x/100) (logρ0

cl − logρ0
h ), where ρ0

h and ρ0
cl are the initial

4We confirm that the cloud expansion during the relaxation process is
negligible and does not affect the subsequent cloud evolution.
5Every time when the cloud material gets too close to the boundary of the
box, we shift the entire box to accommodate the cloud again.
6We account for self-shielding following Faucher-Giguère et al. (2015) by
locally attenuating the UV background. So to disable self-shielding, we
simply unattenuate the UV background.

Figure 1. Time evolution of the normalized cloud masses, fcl(t), for four
clouds with initial conditions of Th = 106 K, vcl = 100 km s−1, nh = 10−3

cm−3, and Lcl = 0.1–100 pc. Here fcl(t) is defined as mcl, 50(t)/mcl, 50(t =
0), where mcl, 50 is the cloud mass with density ρ > (ρ0

clρ
0
h )1/2, i.e. the

geometric mean of the initial cloud and ambient medium densities. These
clouds ‘disrupt’ in a well-defined manner in our simulations. We therefore
define a cloud ‘lifetime’, tlife, as the time when the cloud mass falls below
10 per cent of its initial value for the first time, i.e. fcl(t = tlife) ≤ 0.1.

ambient and cloud mean densities. So mcl, 50 is the mass above a
density threshold equal to (ρ0

clρ
0
h )1/2, i.e. the geometric mean of the

initial cloud and ambient medium densities. We have experimented
with different values of x from ∼5 to 95, as well as different
functional forms for a density threshold and combined density–
temperature thresholds. We find that mcl, 50 defined in this manner
gives the most robust estimate of the visually identified ‘cloud’
material, so we will adopt this by default throughout.

Fig. 1 shows several examples of the cloud mass estimator,
fcl(t) ≡ mcl, 50(t)/mcl, 50(t = 0) (cloud mass normalized to the ini-
tial cloud mass at time t = 0), as a function of time. We see in
many of the cases discussed below that the cloud mass (mass
remaining at high densities) declines steadily with time. In these
cases, it is convenient to define a ‘lifetime’ tlife of the cloud, although
this is again somewhat arbitrary. We define this as the time when
fcl(t = tlife) ≤ 0.1 for the first time – i.e. when the cloud mass as
defined above falls below 10 per cent of its initial value. We find
this is more stable than fitting, e.g. an exponential or power-law
decay time-scale, because exponential or power-law decay is often
not a good approximation to the simulation results. The choice
of ∼ 10 per cent of the initial mass is arbitrary, but our results
are qualitatively identical for choices in the range ∼ 1–50 per cent
(above ∼ 50 per cent, we find we often underestimate the lifetimes
of clouds, as they partially disrupt or evaporate but retain a long-
lived ‘core’, and below ∼ 1–2 per cent, resolution concerns begin
to dominate).

Not all clouds decay in mass: as we will show below, some grow.
For these, we can define a growth time-scale as the approximate
e-folding time.

3 D I FFERENT REGI MES O F D OMI NANT
PHYSI CS

Guided by our simulation parameter survey, plus some basic
analytic considerations, we now define different regimes of cloud
behaviour in the CGM and the most relevant physics in each.
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Cloud survival in the CGM 1845

3.1 The smallest clouds: where conduction breaks down

The thermal conductivity of the hot medium is defined by the
transport of hot electrons, with κ/kB nh ∼ λe, h cs, e, h where

λe, h ≡ 3 m1/2
e (kB Te)3/2 cs, e, h/(4

√
2π ni e

4 ln �D)

≈ 0.1 pc
T 2

6

nh, 0.01
(12)

(using ln �D ≈ 26 for Th ∼ 105 − 106 K) is the electron Coulomb
deflection length (along the magnetic field) and cs, e, h is the electron
isothermal sound speed (≡ √

kB Th/me) defined in the hot medium.
When the hot electrons encounter a cold cloud, they are able to
penetrate to a skin depth λskin = λe, h (nh/ncl) = λe, h (Tcl/Th). If
λskin � Rcl, then our description of heat transport (conduction) via
equation (3) breaks down (regardless of the accounting for saturated
versus unsaturated conduction). Using the values above, this occurs
when

NH � N
mfp
H ∼ 1016 cm−2 T 2

6 , (13)

where T6 ≡ Th/106 K, and NH ≡ Rcl 〈ncl〉 is the column density
through the cloud.7

We therefore intentionally avoid simulating systems below this
scale. However, we can estimate what will occur. In this limit, the
free e− in the hot medium effectively do not ‘see’ the cloud: the
cloud will effectively be immersed in a sea of hot e− with number
density equal to the ambient hot e− density, which contribute a
uniform volumetric Coulomb heating rate. If the cloud is ionized,
this is just ė = 0.34 ne, h (cs, e, h/λskin) kB Th (Brüggen & Scanna-
pieco 2016), and if T

3/2
6 �cl,−23 � 0.14, then the volumetric heating

rate from hot e− is larger than the cooling rate of gas in the cloud,
and they should evaporate on a time-scale short compared to their
sound-crossing times. This process is analysed in detail in Balbus &
McKee (1982).

3.2 Self-gravity and self-shielding

At the other extreme, consider very large clouds. If a cloud is initially
self-gravitating/Jeans-unstable, i.e. has λJ ≡ cs, cl/

√
G ρcl � Rcl, or

Rcl � 1 kpc (nh, 0.01 T6)−1/2, or

NH � N
grav
H ∼ 0.5 × 1022 cm−2 (nh, 0.01 T6)1/2

∼ 1022 cm−2 P
1/2
−12, (14)

where P−12 ≡ Ph/10−12 erg cm−3, then (a) the gravitational force
per unit area is larger than the external (confining/stripping) pres-
sure, and (b) its collapse/free-fall time is shorter than its sound-
crossing time, itself shorter than the cloud destruction time (in the
absence of gravity). Fig. 2 shows that in our simulations with self-
gravity on, we confirm that clouds which are initially Jeans-unstable
(NH > N

grav
H ; equation 14) indeed fragment/collapse rapidly,8 while

7It is sometimes stated that the ‘fluid approximation’ breaks down on small
scales compared to λskin or even the (much larger) λe, h, but this is not
necessarily correct. So long as the gyro radii of the particles remain small
compared to the relevant scales, equations with a similar form to the fluid
MHD equations (the ‘kinetic MHD’ equations of Kulsrud 1983) remain
valid. However, our descriptions of parallel heat and momentum transport
clearly become problematic below λskin, as does the assumption that the
electrons and ions remain at the same temperature.
8Since we do not include star formation, we eventually stop the simulations
when most of the gas in the initial cloud has collapsed to densities >105

times larger than its initial mean density.

Figure 2. Time evolution of the maximum density (nmax) in a cloud for
two representative cases. Upper: If NH � N

grav
H (equation 14), i.e. the cloud

is initially Jeans-stable, then turning on or off self-gravity or self-shielding
makes little difference. Lower: If NH � N

grav
H (the cloud is initially Jeans-

unstable), turning on self-gravity leads to cloud collapse (nmax runs away)
in a free-fall time, as expected.

clouds which are initially Jeans-stable (NH < N
grav
H ) behave es-

sentially identically whether or not self-gravity is included. Thus,
self-gravity is very much a ‘threshold’ effect: it dominates in Jeans-
unstable clouds, and is irrelevant in Jeans-stable clouds (at least on
the spatial-/time-scales we simulate). There is only a very narrow,
fine-tuned, and dynamically unstable parameter space where clouds
are ‘just barely’ Jeans-stable initially and can have subregions
‘pushed into’ Jeans instability by their interactions with the ambient
medium (we find just one such example in our entire parameter
survey, with initial NH ∼ 0.8 N

grav
H ).9 This should not be surprising:

the same behaviour has been repeatedly demonstrated for clouds in

9This is expected: 1D compression (e.g. the initial ‘pancaking’ of the
cloud as it shocks) does not strongly enhance Jeans instability. Consider
an initially Jeans-stable, isothermal cloud with (pre-shock) Jeans length
λ0

J > R0 (radius R = R0), compressed or ‘pancaked’ to width H � R0

along the short axis (retaining R = R0 along the long axis). Fragmen-
tation along the short axis requires a Jeans-like criterion λnew

J < H , but
λnew

J = cs/
√

G ρnew ∼ H (λ0
J /R0) (R0/H )1/2 � H . Along the long axis,

fragmentation must be treated two-dimensionally, and requires λ2D
J < R0

where λ2D
J ≡ c2

s /(π G�cloud) ∼ R0 (λ0
J /R0)2 � R0. So an initially Jeans-

stable cloud remains stable.
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the ISM (see e.g. Mouschovias 1976a, b; Li, Frank & Blackman
2014; Federrath & Banerjee 2015; Körtgen, Federrath & Banerjee
2019).

Likewise, if the cloud can initially self-shield to molecular or
fine-structure metal-line cooling to temperatures T ∼ 10–100 K �
104 K, it will cool to those temperatures very quickly, which will
remove its internal pressure support and render it immediately
Jeans-unstable (even more so, given the rapid compression by the
ambient medium which would follow). This is well studied in the
ISM context and requires a surface density � 10 M� pc−2 (Z�/Z)
(see Robertson & Kravtsov 2008; Krumholz & Gnedin 2011, for
extended discussion), or a column density

NH � N shield
H ∼ 1.5 × 1022 cm−2 Z−1

0.1 (15)

where Z0.1 ≡ Z/0.1 Z�. Like with self-gravity, we find this is
a sharp ‘threshold’ effect, not surprising since the self-shielding
attenuation (∝ e−τ ) is an extremely strong function of the NH,
which can vary by orders of magnitude. Usually, self-shielded
clouds (NH > N shield

H ; equation 15) are already self-gravitating, but
it is largely irrelevant which occurs ‘first’. A self-shielded (but
initially Jeans-stable) cloud rapidly becomes Jeans-unstable, while
a Jeans-unstable (but non-shielded) cloud collapses isothermally
(at ∼ 104 K) until it becomes self-shielded, then collapses more
rapidly (see Robertson & Kravtsov 2008; Orr et al. 2018). Because
the criterion here is a simple column-density threshold, it is also
obvious that 1D compression of the cloud does not strongly alter its
self-shielding. For the sake of completeness and testing our theory
of cloud destruction, we have rerun all our simulations without self-
gravity and self-shielding, so we can see whether and ‘how fast’
they would be destroyed in the absence of these physics in our
analysis below, but we stress that this is purely a counter-factual
exercise.

3.3 Rapid cooling of the hot medium: failure of pressure
confinement

If the hot gas cools faster than the time it takes to cross/envelop the
cloud, it cannot maintain meaningful pressure confinement. Even if
we add some global (spatially uniform) heating rate per unit volume
or heat conduction in the hot medium, such that the ambient gas
equilibrium temperature remains fixed at the ‘target’ temperature, in
this limit the hot gas is still thermally unstable and it cannot respond
to perturbations of the cloud shape or expansion of the cloud, so the
cloud will behave as if it is in an essentially pressure-free medium.
This occurs when tcool, h � tcross ∼ Rcl/vcl (or Rcl/cs, cl if vcl � cs, cl),
giving

NH � N confine
H ∼ 0.5 × 1022 cm−2 T 2

6 v100 �−1
h,−23, (16)

where v100 ≡ vcl/100 km s−1 and �h, x ≡
�(nh, Th, Zh)/10x erg cm3. For Th � 106 K, this requires larger
column densities than would already be self-gravitating or self-
shielding, so this parameter regime becomes irrelevant. However,
when the hot medium is cooler than ∼ 106 K, cooling becomes
much more efficient, and the required NH for this regime drops
rapidly (to � 1018 cm−2 at Th ∼ 105 K). In the CGM, this naturally
coincides with the virial temperatures below which ‘hot haloes’
that can maintain a stable virial shock and quasi-hydrostatic
pressure-supported gas halo cease to exist.

In Figs 3 and 4, we confirm in our simulations that clouds with
NH � N confine

H (equation 16) indeed behave as if there is negligible
confining pressure. As shown in the lower right panel of Fig. 4, they
expand into the ambient, low-pressure medium, which does cause

Figure 3. Simulation tests of the criteria for separating different cloud
behaviours discussed in Sections 3.3 and 3.4. Upper: Cooling time of
ambient hot gas (tcool, h) versus crossing time of that gas over the cloud
(tcross). When cooling is faster than cloud velocity-/sound-crossing times,
the clouds cannot be meaningfully pressure confined and simply expand
(neglecting self-gravity). The green triangles denote simulations used to
check this directly, which confirm the validity of the simple analytic criteria
for this behaviour in equation (16). Lower: Same, but comparing tcool, h

to the cloud ‘destruction time’ in the limit where cooling is not important
(tlife, pred, given in Section 3.5, equation 19). When cooling of the hot gas in
the cloud front is faster than cloud disruption, the cloud accretes and grows:
simulations confirm the simple analytic criterion derived in equation (17).

the cloud density to decrease, but ambient gas cooling/accretion
also causes the cloud mass to grow, so this is clearly distinct
from classical cloud ‘destruction’. If equation (16) is satisfied,
the failure of pressure confinement occurs with or without the
addition of an artificial spatially uniform heating rate Q (such
that the heating + cooling rate per unit volume is ė = Q − n2 �),
with Q chosen so the hot gas evolved in isolation (no cold cloud)
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Cloud survival in the CGM 1847

Figure 4. Upper: Sliced density maps of two clouds in the ‘classical cloud
destruction’ regime with initial conditions of Th = 106 K, vcl = 100 km s−1,
nh = 10−3 cm−3, Lcl = 1 and 100 pc, respectively. Lower left: Sliced
density map of a ‘growing’ cloud (NH � N

grow
H , with Th = 106 K, vcl

= 100 km s−1, nh = 10−3 cm−3, Lcl = 1000 pc). Lower right: Sliced density
map of a ‘pressure unconfined’ cloud (NH � N confine

H , with Th = 105 K, vcl

= 100 km s−1, nh = 10−1 cm−3, Lcl = 100 pc).

remains exactly at its initial temperature. While not surprising, this is
important for application of our conclusions in the CGM, especially
around dwarf galaxies, which are in the ‘cold mode’ of accretion
without ‘hot haloes’ (Kereš & Hernquist 2009). In that regime, cold
clouds from e.g. galactic winds may well have NH � N confine

H , and
thus could behave as if they are expanding into vacuum.

3.4 Clouds grow: accreting ambient hot gas

As discussed in recent work by e.g. Gronke & Oh (2018) and
Gronke & Oh (2019), if clouds avoid destruction for a time longer
than the cooling time of swept-up material, the front of the hot
material entrained by the cloud (and mixing with the denser, cooler,
cloud material) cools rapidly and effectively gets ‘accreted’ on to
the cloud. We can crudely estimate when this occurs by comparing
our estimated cloud destruction time via ‘shredding’ (in the absence
of cooling), tlife, pred ∼ 10 tcc f̃ (defined in Section 3.5) to the cooling
time of the hot medium, tcool, h. This gives

NH � N
grow
H ∼ 2 × 1020 cm−2 T

3/2
6 v100 f̃ −1 �−1

h,−23. (17)

(The material in the front has been heated modestly by compression
and/or shocks, but also increased in density, and rapid conduction
suppresses temperature variations; thus for the conditions simulated

here the cooling time of the front material is order unity similar to
the cooling time in the ambient gas). For the range of parameters
of interest in the CGM, this almost always occurs at lower NH

compared to the ‘failure of pressure confinement’ above. So if
a cloud ‘begins’ life in-between (Ngrow

H � NH � N confine
H ), it will

grow until it reaches that larger NH threshold, at which point it
will continue to ‘sweep up’ any gas in its path, but also expand
in the ‘backward’ direction as the gas cools around it. Note that,
however, if the cloud increases its NH (mass) by an order-unity
factor, momentum conservation requires it decelerate by a similar
factor. So the cloud will slow down and stop, which in turn decreases
v100, making it even more above threshold to survive. So we end up
with essentially static, long-lived clouds in this limit.

Note that Gronke & Oh (2019) derive a criterion for ‘cloud
growth’ that is slightly different from ours. They start from the same
principle, comparing cloud lifetimes and cooling time in the mixing
layer/front, but assume the cloud lifetime is tcc and the cooling time
of the ambient hot gas is tcool, h/χ (this arises from assuming the
‘near-cloud’ hot gas has geometric-mean temperature and density
between cloud and ambient medium, and neglecting the dependence
of � on T). Accounting for both efficient conduction and rapid
‘sweeping’ of the hot gas past the cloud, we find that simply using
tcool, h for the ambient gas, together with our more accurate cloud
lifetime estimates, provides a more accurate and robust criterion
for distinguishing between ‘growing’ and ‘destroyed’ cloud cases.
This is especially true at high ambient temperatures (Th � 106 K),
as can be seen in the lower panel of Fig. 3. One possible explanation
is that efficient conduction heats up the gas in the front and makes
it difficult for a mixing layer at intermediate temperature to exist.
This effect is shown in the density maps we present in Section 3.5.3,
where the cloud with conduction has sharper edges, indicating a
sharper density and temperature contrast. Understanding the cause
of this discrepancy in more detail will be left to future work.

3.5 In-between: classical cloud ‘destruction’ (shredding)

If we exclude all of the regimes above, i.e. consider only clouds
with

N
mfp
H � NH � min

{
N

grow
H , N confine

H , N shield
H , N

grav
H

}
, (18)

then we find that all the clouds we simulate are eventually de-
stroyed/dissolved. The boundaries of this parameter space (where
clouds are destroyed) are illustrated in a simple ‘contour’ form
in Fig. 5. We find that all clouds in this regime can be at
least order of magnitude described by traditional cloud-crushing
arguments (Klein et al. 1994). This conclusion holds regardless
of the specific physics included in a given simulation (e.g. con-
duction or self-gravity), with the classical cloud-crushing estimate
tcc ∼ χ1/2 Rcl/vcl providing a reasonable qualitative starting point
to understand the actual cloud destruction times in the simulations.
The majority of this section is dedicated to explaining why this is
the case.

Before discussing physics, it is helpful to analyse our full
simulation set to understand how the cloud lifetime varies with
different parameters. Given the non-scale-free nature of the physical
effects we include, there is not an obvious set of dimensionless
parameters with which to fit the data, so we opt to simply use the
physical parameters Lcl, nh, Th, and vcl. Fig. 6 shows that how the
cloud lifetimes, normalized by classical cloud destruction time tcc,
scale with each of these four parameters. We perform a multivariable
log-linear fitting to these four parameters, and find that predicted
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1848 Z. Li et al.

Figure 5. The cloud column density (NH, cl) versus the temperature of the
ambient medium (Th). Different regimes of dominant physics are shown:
(1) The ‘conduction description fails’ regime (Section 3.1, equation 13,
shown in yellow); (2) The ‘self-shielding and self-gravity dominate’ regime
(Section 3.2, equations 14 and 15, shown in green and orange, respectively);
(3) The ‘CGM pressure confinement fails’ regime (Section 3.3, equation 16,
shown in pink); (4) The ‘cloud grows’ regime (Section 3.4, equation 17,
shown in blue); (5) The ‘classical cloud destruction’ regime (Section 3.5,
equation 18, shown in white). Typical values of certain parameters have
been adopted (vcl = 100 km s−1, nh = 10−2 cm−3, f̃ = 1).

lifetime scales as approximately

tlife, pred ≈ 10 tccf̃

f̃ ≡ (0.9 ± 0.1) L0.3
1 n0.3

0.01 T 0.0
6 v0.6

100, (19)

where L1 ≡ Lcl/1 pc and n0.01 ≡ nh/0.01 cm−3. The 1σ values of
the power-law dependences on [Lcl, nh, Th, vcl] are [0.3 ± 0.1,
0.3 ± 0.1, 0.0 ± 0.1, 0.6 ± 0.1]. This fit is plotted in Fig. 7. For
clouds with vh > 10 km s−1, and for clouds in a cooler ambient
medium with Th = 105 K, the dependence of tlife, pred/tcc on vh is
much weaker. This is discussed further in Section 3.5.3.

Given the complex and non-scale-free physics involved in our
default simulations, the fit (equation 19) is remarkably universal. In
particular, it is rather surprising that by simply assuming a separable
power law in each variable, we have almost directly reproduced the
classical cloud-crushing time, aside from the small correction factor
f̃ . We now discuss the reason for this universality by discussing in
turn the effects that different physics have on the cloud-crushing
process. These effects are shown graphically in Fig. 8, showing
a cloud in the process of being crushed, as we successively add
physics to the pure hydrodynamical simulation (far left) in the form
of (from left to right) cooling, magnetic fields, conduction, viscosity,
self-shielding, and self-gravity.

3.5.1 Effect of radiative cooling

Radiative cooling has a modestly significant effect on cloud lifetime,
as discussed in previous works (see e.g. section 5.3 of Klein
et al. 1994). The basic effect of cooling on gas is to soften its

equation of state (lower γ ), which effectively renders the cloud
more compressible (Scannapieco & Brüggen 2015). This makes
the cloud more strongly crushed in the direction transverse to the
flow, forming a thinner, denser filament with a smaller cross-section.
Although KH instabilities can grow more violently on this thinner
cloud than for an adiabatic cloud because it moves faster with
respect to the hot medium (due to its smaller drag), the net effect is
for the cloud to survive modestly longer than an equivalent cloud
with no cooling due to its higher density. This behaviour is nicely
illustrated by the comparison of the black and blue curves in Fig. 9.
Moreover, as shown in the left two panels of Fig. 8, cooling can
also enhance the formation of smaller, denser cloudlets in the wake
(McCourt et al. 2018). This effect, however, can be suppressed by
magnetic fields (Fig. 8, see also Grønnow, Tepper-Garcı́a & Bland-
Hawthorn 2018). Detailed analyses of the cloudlet properties have
been carried out in several recent works (e.g. Sparre et al. 2019).

3.5.2 Effect of magnetic fields

Magnetic fields can modify cloud destruction in two qualitatively
distinct ways: (1) dynamically (via magnetic pressure or tension)
or (2) by suppressing conduction/viscosity.

Regarding (1), the magnetized ‘cloud-crushing’ problem without
cooling, conduction, or viscosity is well studied (see Mac Low et al.
1994; Jones, Ryu & Tregillis 1996; Shin, Stone & Snyder 2008, and
references therein); for very strong fields within or surrounding the
cloud such that magnetic pressure is comparable to ram pressure
(i.e. PB � Pram ∼ ρ v2

cl, or β � M−2
h ), cloud destruction is strongly

suppressed. While β � 1 is common in very cold (e.g. molecular)
gas in the ISM, in the warm and hot CGM realistic estimates of β

range from ∼102 to 109 (see Su et al. 2017; Martin-Alvarez et al.
2018; Hopkins et al. 2019), viz., the direct dynamical effects of
the fields are negligible. Alternatively, it has been proposed that a
strong field could build up via ‘magnetic draping’ (Markevitch &
Vikhlinin 2007), wherein the cloud ‘sweeps up’ field lines oriented
perpendicular to vcl, compressing the field leading the cloud and
increasing |B|. Miniati, Jones & Ryu (1999) define the ‘draping
time’,10 which we can turn into the equivalent length

Ldrape ∼ π Rclχ
2/3

50

(
Pram + Ptherm

PB

)2/3

≈ 3 kpc Rpc (β1000 T6 v2
100)2/3. (20)

Ldrape is the path-length that a cloud must travel for the ac-
cumulated field to appreciably alter its destruction (assuming
Ptherm � Pram for supersonic clouds). However, Ldrape is much
longer than the length-scale over which clouds are destroyed,
Lcc ≈ tcc vcl ≈ 9 pc Rpcv100M−1

cl . In other words, CGM magnetic
fields are nowhere near sufficiently strong to dynamically suppress
cloud destruction. This can be seen visually by comparing the
second and third panels of Fig. 8 (or the relevant lines in Fig. 9),
which shows how MHD and hydrodynamic simulations remain very
similar without the effects of conduction. We have also confirmed
this conclusion by rerunning a subset of our simulations with plasma
β multiplied or divided by a factor of ∼1000, which makes no

10We emphasize that the context in which draping was originally proposed
referred to much larger structures, namely ‘bubbles’ and jets emanating
from AGN in the CGM of massive haloes/clusters, which have physical size
scales ∼ 10–100 kpc and travel � 100 kpc, vastly different from what we
model here.
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Cloud survival in the CGM 1849

Figure 6. Simulated cloud ‘lifetimes’, tlife, sim (in units of 10 cloud-crushing time, 10 tcc) versus different initial conditions: cloud size Lcl, ambient density
nh, ambient temperature Th, and cloud velocity vcl. Dotted lines connect simulations that have one varying parameter but otherwise identical initial conditions.
In units of tcc, the cloud lifetime has a weak dependence on Th, modestly increases with Lcl and nh (i.e. cloud NH), and a slightly stronger dependence on vcl.
These dependences are captured in the scaling of tlife, pred with f̃ in equation 19. Note that we factor out tcc because it is the dominant effect here: our most
extreme cases differ by factors of ∼108 in their absolute lifetimes or values of tcc (see e.g. Fig. 3); the ‘residuals’ here, while still large (∼ 1 dex), are much
smaller.

difference to the measured lifetimes (as expected, since they remain
in the weak-field limit).

However, regarding (2), even a very weak field is sufficient to
suppress perpendicular conduction, viscosity (typically the per-
pendicular transport coefficients are suppressed by ∼ λe,gyro/λe, h

∼10−8) and hydrodynamic instabilities (Dursi & Pfrommer 2008;
Banda-Barragán et al. 2016, 2018). In this case, the field geometry
is what matters, while the field strength is irrelevant. In Fig. 10, we
therefore explore a series of simulations of one of our typical cloud
destruction cases, varying the initial field geometry. In general,

the magnetic field configuration does not have a strong effect on
the evolution of cloud mass. This is not surprising, as draping
can rearrange the geometry of the magnetic field around the cloud
to similar configurations and yield similar amount of suppression
of conduction, viscosity, and instabilities, regardless of the initial
field geometry (note that the arguments of Section 3.5.3 suggest
that conduction plays only a secondary role anyway). However, in
several extreme cases, such as when the magnetic field is aligned
with the relative velocity (B ‖ vcl), we do see a more rapid decrease
in the cloud mass as there is essentially no draping. In contrast,
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1850 Z. Li et al.

Figure 7. Cloud lifetimes measured in simulations (tlife, sim) versus the
‘predicted’ lifetimes (tlife, pred) from a simple multivariable power-law fit to
tlife versus Lcl, nh, Th, and vcl, given in equation (19). Given a dynamic range
∼108 in absolute cloud lifetimes, the simulations can be remarkably well fit
by a power law of the form tlife, pred ≈ 10 tcc f̃ with f̃ ∼ L0.3

1 n0.3
0.01 v0.6

100 (so
f̃ encompasses all deviations from the cloud-crushing scaling).

with an azimuthal field configuration (looped magnetic fields inside
the cloud plus B ⊥ vcl outside the cloud), the cloud mass decreases
most slowly, indicating that the field can shield the cloud particularly
efficiently in this case11 (see also Li et al. 2013; Banda-Barragán
et al. 2016; Grønnow et al. 2017).

3.5.3 Effect of conduction

The influence of conduction on isolated, undisturbed clouds (i.e.
those without an impinging wind) has been studied by Cowie &
McKee (1977), McKee & Cowie (1977), and Balbus & McKee
(1982). For the range of temperatures relevant to our study (105 K �
Th � 107 K), the conclusion of these papers is that cloud evapora-
tion/condensation is controlled by the saturation parameter12

σ0 ≈ 3.2
λe, h

Rcl
≈ 0.4

T 3
6

〈ncl〉Rpc
≈ T 3

6

(
NH

1.2 × 1018 cm−2

)−1

. (21)

For small values of σ 0 � 0.01 (large clouds), the cooling of the hot
material on to the cloud is sufficiently rapid that the cloud condenses.
The necessary size of such clouds (NH � 1.2 × 1020 T 3

6 cm−2)
corresponds, within an order of magnitude, to the ‘growing-cloud’

11Note that in the ‘cloud growing’ regime, transverse magnetic fields can
shield the cloud via draping, reduce both mixing and warm gas mass
loading and prevent condensation (see Grønnow et al. 2018). Also note
that self-contained magnetic fields can enhance clumping and reduce cloud
destruction (Li, Frank & Blackman 2013; McCourt et al. 2015; Banda-
Barragán et al. 2018). We defer a detailed study of these effects to future
work.
12We define σ 0 to match the numerical value given of σ 0 in McKee & Cowie
(1977), which leads to a slightly different definition in terms of λe, h/Rcl

compared to Cowie & McKee (1977) because of a different definition
of λe, h.

regimes discussed in Sections 3.2–3.4 (the cloud sizes required for
growth in the crushed problem are slightly larger, which intuitively
makes sense given they are being actively ripped apart by the wind).
On the other side, large values of σ 0 � χ correspond to the smallest
clouds discussed in Section 3.1, which are immediately evaporated
by hot electrons penetrating throughout the entire cloud (Balbus &
McKee 1982). Thus, effectively all of our clouds in the ‘classical
cloud destruction’ regime lie in the range 0.01 � σ 0 � χ , which, in
the absence of the hot wind would slowly evaporate into the ambient
medium. As shown by McKee & Cowie (1977), the conductive heat
flux that evaporates the cloud is in the unsaturated regime for clouds
with σ 0 � 1, while the heat flux is saturated for σ 0 � 1.

To make further progress, let us compare the cloud evaporation
time-scale to the cloud-crushing time. In the σ 0 � 1 regime,
Cowie & McKee (1977) compute the mass-loss rate by solving
the hydrodynamic equations in spherical geometry, deriving the
evaporation time of the cloud as (setting ln �D = 30)

tevap ≈ 30 Myr n0.01R
2
pcT

−5/2
6 . (22)

In the σ 0 � 1 regime, where the heat flux is saturated, one can
derive the evaporation time by comparing the rate at which energy
is transferred to the cold cloud due to the saturated heat flux

Ė = 4πR2
cl qsat ≈ 4παR2

cl nh cs, e, hkB Th (23)

(here α ≈ 0.3 is chosen to match equation 9), to the total energy
required to evaporate the cloud by heating it up to the hot-medium
temperature

E ≈ 4

3
πR3

cl ncl kB Th. (24)

(A more complicated approach in Cowie & McKee 1977 gives a
similar estimate; see their equation 64). Because the heat flux is
effectively given by the minimum of the unsaturated and saturated
values (see equation 9), the time for the cloud to evaporate is the
maximum of the unsaturated and saturated estimates, or

tevap

tcc
≈ max

{
2MhnclLpcT

−5/2
6 , 0.3MhT

1/2
6

}
. (25)

Note that the saturated (right-hand) expression is simply ≈
vcl/(300 km s−1).

We see that across the range of parameters surveyed, tevap/tcc

ranges from much larger than 1 for large clouds in fast winds, to
somewhat less than 1 for smaller clouds. What will be the effect of
this evaporation on the cloud-crushing process? For tevap/tcc � 1,
we expect the cloud to behave effectively as it would in the absence
of a wind, evaporating rapidly into the hot medium. On the other
hand, when tevap/tcc � 1 the evaporation has only a minor effect
on the cloud lifetime, because it is crushed by the wind before the
heat flux has much of an effect (the static approach of Cowie &
McKee 1977 also becomes highly questionable in such a strongly
perturbed cloud). There does, however, seem to be a reasonably
significant effect on the cloud morphology, which is evident in the
change between the third and fourth panels of Fig. 8 (see also
Brüggen & Scannapieco 2016). This type of behaviour, which
occurs at tevap/tcc ∼ 1, seems to be related to the fast creation of
a conductive boundary layer, which causes an inwards pressure on
the cloud due to the outflow of hot material from its outer edges. This
compresses the cloud and increases its density, which sometimes
has the effect of modestly increasing the cloud lifetime. Indeed, if
we make the gross approximation that the mass is lost from the
cloud with an outflow velocity that is approximately the ion sound
speed (since the ions will be heated by the impinging hot electrons
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Cloud survival in the CGM 1851

Figure 8. Sliced density maps for a cloud in the ‘classical cloud destruction’ regime (Th = 106 K, vcl = 100 km s−1, nh = 10−3 cm−3, Lcl = 1 pc), with
each panel from left to right showing a simulation that includes additional physical effects (at the same physical time, 0.3 Myr). From left to right we show:
Hydro = ideal hydrodynamics; Hydro + Cooling = ideal hydrodynamics + radiative cooling, etc. Our default physics set is MHD + Cooling + Conduction
+ Viscosity. The cloud mass evolution curves for the same set of simulations are shown in Fig. 9.

Figure 9. Evolution of the normalized cloud mass, fcl (defined in Fig. 1) ver-
sus time, for the simulations shown in Fig. 8 (Th = 106 K, vcl = 100 km s−1,
nh = 10−3 cm−3, Lcl = 1 pc) with different physics included (labelled as in
Fig. 8). The cloud mass versus time is remarkably similar across these runs,
given the different physics and morphologies in Fig. 8.

to approximately Th), one finds that the ratio of the inwards pressure
due to the outflow (Pevap ≈ ṁ vout/(4πR2) ≈ mvout/(4πR2tevap)) to
the thermal pressure of the cloud (Pcl) is approximately

Pevap

Pcl
≈ min

{
2

T 3
6

nclRpc
, 10

}
, (26)

where the left-hand expression is that of the unsaturated (σ 0 � 1)
regime and the right-hand expression is that of the saturated (σ 0 � 1)
regime. We thus see that for smaller clouds, the pressure from
evaporative outflow is modestly large compared to that of the cloud,
and should thus be able to cause some compression, as seen in Fig. 8.

The broad ideas of the previous paragraphs are confirmed in
Fig. 11, which plots tlife/tcc versus σ 0 for our full suite of simulations,
with each point coloured by tevap/tcc from equation (25). We see
that, as expected, only those simulations with tevap/tcc � 1 are
destroyed significantly faster than tcc (these are all low-velocity
clouds). The lifetime of simulations with tevap/tcc � 1 is mostly
independent of σ 0, aside from a possible slight increase in lifetime
for σ 0 � 1, which may be indicative of cloud compression due to the
evaporative outflow. Finally, we note that this general framework

Figure 10. Evolution of the normalized cloud mass, fcl (defined in Fig. 1)
versus time, for otherwise identical initial conditions (Th = 106 K, vcl

= 100 km s−1, nh = 10−2 cm−3, Lcl = 1 pc) with different magnetic field
configurations. We can see that when the magnetic field is aligned with
the relative velocity (B ‖ vcl), the cloud mass decreases most rapidly.
For the azimuthal configuration (looped magnetic fields inside the cloud
plus B ⊥ vcl outside the cloud, which produces maximal shielding to
conduction), the cloud mass decreases most slowly. In all other cases,
the magnetic field configuration does not have a large effect on the mass
evolution: the lifetimes are identical to within a factor of <2.

explains our measured empirical scaling of tlife/tcc with a positive
power of vcl (see equation 19), because the lowest velocity clouds
are quickly destroyed by saturated conduction, i.e. their tlife ∼
tevap ∝ tccvcl (equation 25), while those with higher velocities can
live somewhat longer than tcc due to the evaporative compression
to higher densities. Meanwhile, for example Th = 105 K, all clouds
fall into the σ 0 � 1 regime (see equation 21), where tevap/tcc > 1
and the evaporative pressure (equation 26) is unimportant, so we
simply obtain tlife ∝ tcc.

3.5.4 Effect of viscosity

The effect of viscosity is in general subdominant to conduction.
This is not surprising because conduction is controlled by the
thermal velocity of hot electrons, while viscosity is controlled
by the thermal velocity of ions, and the ratio of these thermal
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Figure 11. The simulated cloud lifetimes in units of the cloud-crushing
time, tlife/tcc, versus the saturation parameter, σ 0 (equation 21 in Sec-
tion 3.5.3, which quantifies the strength of conduction) for clouds in the
‘classical destruction’ regime. The simulations are colour coded from light
yellow to dark blue with decreasing tevap/tcc, where tevap is the cloud
evaporation time for a non-moving cloud in a conducting medium (equa-
tion 25). Simulations with tevap � tcc are evaporated before cloud crushing,
explaining why tlife � tcc. These clouds almost exclusively have σ 0 � 1, i.e.
are in the regime of saturated conduction, where tevap ∝ tccvcl, explaining
the strong dependence of f̃ on vcl. While for simulations with tevap � tcc,
clouds are only weakly influenced by conduction, and therefore tlife ∝ tcc.

velocities (and thus the strength of conductivity and viscosity) is
(mi/me)1/2 ∼ 40, assuming each has the same temperature. None the
less, viscosity does provide some non-zero insulating effects as a
viscous ‘boundary layer’ that forms around the cloud, which drags
the comoving boundary layer and can slightly increase the cloud
lifetime for some clouds. This minor effect can be seen through the
comparison of the fourth and fifth panels in Fig. 8.

3.5.5 Effect of turbulence in the cloud or ambient medium

Some historical studies have argued that clouds which have initial
‘turbulence’ (large density and velocity fluctuations) like GMCs
in the ISM (e.g. Schneider & Robertson 2015, and references
therein) might be much more rapidly disrupted. However, most
of these studies have considered clouds with large internal turbulent
Mach numbers Mturb

cl ≡ |δvturb|/cs, cl ∼ 10–100, akin to GMCs (see
Section 1), e.g. Schneider & Robertson (2015) consider an internal
3D Mach number Mturb

cl ∼ 9 (or equivalently, 1D Mach number
Mturb

cl ∼ 5), which produces nearly ∼ 1 dex initial rms density
fluctuations.

However, for realistic turbulent Mach numbers in the CGM,
turbulence should produce much weaker effects. This is because the
initial cloud temperature is 104 K (cs, cl = 10 km s−1), as compared
to ∼ 10 K in GMCs, and the density and temperature fluctuations
only become very large for large turbulent Mach numbers (Mturb

cl �
1), which are highly unrealistic in the CGM (e.g. clouds do not
have internal velocity dispersions of ∼ 100 km s−1). The turbulent
Mach numbers should be even lower in the hot medium. Moreover,

Mturb
cl � 1 is not a self-consistent ‘cloud’ under the conditions we

consider, because it necessarily implies a turbulent ram pressure
much larger than the confining gas pressure (the ‘cloud’ would
simply fly apart as soon as the simulation begins): in GMCs this
is resolved by confinement via self-gravity, but we have already
excluded this regime.

We therefore have considered a subset of simulations using
initial conditions drawn from driven periodic box simulations
of turbulence (taken from Colbrook et al. 2017), for the cloud
itself, the ambient hot medium, or both, with Mach numbers in
each medium of ∼ 0.1, 0.5, 1. Not surprisingly, these have little
effect on the supersonic cloud-crushing process (consistent with
Banda-Barragán et al. 2018, 2019). For example, for Mcl ∼ 0.1,
the initial density and pressure fluctuations are only of the order
of ∼1 per cent, much smaller than those introduced almost
immediately by the cloud–wind interaction. We therefore do not
discuss these cases in more detail.

4 C O N C L U S I O N S

In this paper, we have systematically explored the survival of
cool clouds travelling through hot gas – the so-called cloud-
crushing problem – for parameters relevant to the CGM. We
present a comprehensive parameter survey, with cloud diameters
from ∼ 0.01–1000 pc, relative velocities ∼ 10–1000 km s−1, am-
bient temperatures ∼ 105–107 K, and ambient densities ∼ 10−4 −
10−1 cm−3. We study the effects of a range of physics, including
radiative cooling, anisotropic conduction and viscosity, magnetic
fields, self-shielding, and self-gravity. We identify several unique
regimes, which give rise to qualitatively different behaviours,
including collapse, growth, expansion, shredding, and evaporation.
For mid-sized clouds, those in the ‘classical cloud destruction’
regime, we also quantify the cloud lifetime as a function of
parameters across the broad range of initial conditions. We reach a
number of important conclusions, including:

(i) Clouds which are initially self-gravitating/Jeans-unstable,
or self-shielding to molecular/low-temperature metal-line fine-
structure cooling and thus able to cool to temperatures T � 1000 K,
will fragment and form stars before they are disrupted. For clouds
that are initially Jeans-stable and non-shielding, these effects can
be neglected. This transition occurs when the cloud exceeds large,
DLA-like column densities (equations 14 and 15).

(ii) In an ambient medium where the ‘diffuse’ gas cooling time
is shorter than the time for diffuse gas to cross the cloud (∼Rcl/vcl),
pressure confinement of the cloud cannot effectively operate and the
cloud-crushing problem is ill-posed. In hotter medium (Th � 106 K)
this only occurs at high enough column densities such that the
cloud would already be self-gravitating; while in cooler ambient
haloes (Th < 106 K), which are generally not able to sustain a
‘hot halo’ in quasi-hydrostatic equilibrium, even clouds with more
modest column densities NH � 1018 cm−2 can reach this regime
(see equation 16).

(iii) If the expected destruction time of a cloud through shocks
and fluid mixing (cloud crushing) is longer than the cooling time
of the swept-up material in the shock front leading the cloud, the
cloud can grow in time, rather than disrupt (Gronke & Oh 2018).
The cooling of the shock front material adds to the cloud mass
(with the growth time simply being the time-scale to ‘sweep up’
new mass), faster than instabilities can disrupt the cloud, and the
cloud acts more like a seed for the thermal instability. This can occur
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at column densities well below the self-gravity/shielding/ambient
medium rapid cooling thresholds above (see equation 17).

(iv) If we restrict to clouds below the sizes/column densities of
the above thresholds, and above the size/column density where
they become smaller than the penetration length of hot electrons
into the cloud (NH � 1016 cm−2 T 2

6 ; equation 13), then we find
that the clouds are indeed disrupted and mixed by a combination
of instabilities, shocks, and conduction. Remarkably, the cloud
lifetimes can be well fit by a single power law similar to the classical
‘cloud-crushing’ scaling for the pure hydrodynamic problem, albeit
with a larger normalization and a secondary dependence on the
ambient temperature and velocity, which is introduced by the
combination of cooling and conduction. We develop simple analytic
scalings to understand how this modification to the scaling arises.

(v) Braginskii viscosity, turbulent density/velocity fluctuations in
the cloud, and magnetic field geometry and strength have relatively
weak effects on cloud lifetimes and do not qualitatively alter our
conclusions. Viscous effects tend to be subdominant to conduction
because of the relative scaling of ion and electron mean free
paths in the CGM (although we caution that our model assumes
equal ion and electron temperatures). Turbulent effects are weak
for realistic initial cloud turbulence, because CGM clouds, unlike
GMCs in the ISM, cannot be highly supersonic (this would require
internal turbulent Mach numbers in the cloud � 1). This implies
that the initial density fluctuations in the cloud are quite small.
Magnetic field strength has little effect because the CGM plasma
has β � 1 (i.e. magnetic pressure is much weaker than thermal
pressure, which is yet smaller than the ram pressure) and the distance
clouds would have to travel to acquire dynamically important fields
via ‘draping’ is much longer than the length over which they are
destroyed. Field geometry has some effect, by suppressing thermal
conduction in the directions perpendicular to the field. However,
we show the net effect of the field geometry is minor for most
plausible geometries (∼ 10 per cent in tlife) and even the most
extreme favourable/unfavourable field geometries produce only a
factor of ∼2 systematic change in cloud lifetimes.

We caution that there are still a number of caveats to this study.
There remain a number of simplifications in the physics included
in our model (equations 2–7), which may be important for some
regimes. The most important of these is likely the assumption of
equal electron and ion temperatures, even in the presence of strong
conduction and cooling on scales approaching the electron mean
free path. Indeed, because the time-scale for ions to collisionally
equilibrate with electrons is ∼mi/me times the electron–electron col-
lision time-scale, regions with large (saturated) electron heat fluxes
may also have Te � Ti or Ti � Te. Unfortunately, tackling this issue
in detail is difficult and computationally demanding even in simpli-
fied set-ups (see e.g. Kawazura, Barnes & Schekochihin 2019), and
is well beyond current computational capabilities for a highly inho-
mogeneous problem such as cloud crushing. On fluid scales, there
are also significant uncertainties that arise from our basic numerical
set-up, which we have intentionally restricted to be rather idealized.
Potential complications that might be relevant and interesting to
study in future work include lack of pressure equilibrium in the
cool gas (as could arise from, e.g. supersonic turbulence, Banda-
Barragán et al. 2018), the effect of stratification of the ambient
medium, and the interaction with scales that are not resolved in our
simulations here (see e.g. McCourt et al. 2018). However, in view of
the simple physical arguments that have supplemented most of the
main conclusions of this paper (see above), it seems unlikely that

these effects would cause significant qualitative changes to our main
results.
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Rahmati A., Pawlik A. H., Raičević M., Schaye J., 2013, MNRAS, 430,

2427
Richter P., Paerels F. B. S., Kaastra J. S., 2008, Space Sci. Rev., 134,

25
Robertson B. E., Kravtsov A. V., 2008, ApJ, 680, 1083
Sarazin C. L., 1988, X-ray Emission from Clusters of Galaxies, Cambridge

Univ. Press, Cambridge
Savage B. D., Lehner N., Narayanan A., 2011, ApJ, 743, 180
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APPENDI X A : C ONVERGENCE TESTS

We have verified that our results are robust to numerical resolution
(mi ∼ 10−7–10−3 Mcl, or equivalently, ∼ 134 – 6 cells per Rcl) via
a variety of tests. For at least one cloud in every ‘regime’ shown in
Fig. 5, we have rerun the same initial conditions at three resolution
levels (our default, and one and two orders of magnitude lower
resolution). In all cases, we confirm that the measured cloud lifetime
is robust to better than a factor of ∼2 (although the cloud lifetimes do
become systematically shorter at low resolution, as expected owing
to numerical mixing). We have also randomly selected 10 clouds in
the ‘classical cloud destruction’ regime to simulate at both lower
and higher resolutions (a factor of ∼8 change): we find the lifetimes
change by a factor of <1.5 in these cases. In Fig. A1, we show one
fiducial cloud, for which we simulate at seven different resolution
levels. The agreement in cloud lifetime is excellent at order-of-
magnitude higher and lower resolutions, compared to our default
choice in the main text, which lends confidence to our conclusion
that our key results are not strongly sensitive to numerical resolution.

Figure A1. Evolution of the normalized cloud mass, fcl (defined in Fig. 1)
versus time, for one representative initial condition in the ‘classical cloud
destruction’ regime (Th = 106 K, vcl = 100 km s−1, nh = 10−3 cm−3, Lcl

= 1 pc) with our default physics set simulated at seven different mass
resolution (mi) levels, as labelled. The resulting cloud lifetime is remarkably
robust to resolution, changing by < 10 per cent from mi/Mcl ∼ 10−5–10−7

and by a factor of <2 (<3) even at resolutions mi/Mcl ∼ 10−4 (∼10−3).
Recall our default resolution in the main text is mi/Mcl ∼ 10−6. The small
change in behaviour at early times and high resolution (with a longer ‘delay’
until destruction begins) owes to better tracking of small, high-density
‘features’ (e.g. KH whorls), which remain locally high density even as
mixing begins.
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