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ABSTRACT

There is an increasing need for spatial and temporal schedule tai-
lored to the requests and preferences of electric vehicles (EVs) in a
network of charging stations. From the perspective of a charging
network operator, this paper considers an online decision-making
problem that recommends charging stations and the corresponding
energy prices to sequential EV arrivals, and schedules the charging
allocation to maximize the expected total revenue. To address the
uncertainties from future EV arrivals and EVs’ choices with respec-
tive to recommendations, we propose an Online Recommendation
and Charging schedule algorithm (ORC) that is parameterized by
a value function for customized designs. Under the competitive
analysis framework, we provide a sufficient condition on the value
function that can guarantee ORC to be online competitive. More-
over, we design a customized value function based on the sufficient
conditions in an asymptotic case, and then rigorously prove the
competitive ratio of ORC in the general case. Through extensive
experiments, we show that ORC achieves significant increase of
revenues compared to benchmark online algorithms.
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1 INTRODUCTION

Mobility and energy management of a population of electric ve-
hicles (EVs) have drawn great attention from both industry and
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academy with the increasing penetration of EVs in both public
(e.g., EV buses/taxis) and private transportation [10, 13, 20, 25]. For
a charging network operator (CNO) who manages multiple pub-
licly accessible charging stations, two types of decisions need to
be made upon the arrival of each EV: (i). A spatial schedule that
decides which station the EV should be assigned/recommended to
and (ii). A temporal schedule that determines when the EV should be
charged at the station decided by the spatial schedule. The follow-
ing three practical issues arise for a CNO to solve this sequential
decision-making problem.

e Uncertainty, it is challenging to predict the charging de-
mand (such as energy to be delivered and its deadline) of
each EV since it varies with time, location, and the state of
each individual EV (e.g., state-of-charge and battery capac-
ity) [1, 19, 24]. A CNO needs to design an online algorithm
that makes spatial and temporal schedules without knowing
the information of future arrivals.

¢ Discretion, unlike managing an EV fleet owned by a private
operator, a CNO cannot assign the EVs to charging stations
by mandatory orders [10, 13]. One promising solution is
to strategically devise a charging offer, which contains a
recommended charging station and a corresponding energy
price, for each EV to choose by itself. EVs can choose to
accept this offer, or reject it and leave for alternative charging
facilities.

o Commitment, the charging demand is time-varying and
geographically unbalanced. As a result, the states of charg-
ing stations (e.g., number of idle chargers) at the time when
a CNO recommends stations may differ from when an EV ar-
rives at the station for charging. Consequently, the demands
of EVs may not be satisfied. To guarantee the quality of ser-
vice, when making spatial schedules, a CNO needs to make
on-arrival commitment [1], by reserving enough charging
capacity for future temporal schedules.

In consideration of the three issues above, the key challenge of
designing and analyzing an online algorithm lies in making deci-
sions with two types of uncertainties. Type I uncertainty includes
the charging demands and contextual information (e.g., location,
time, EV brand, etc.) of all future EVs. Type II uncertainty is the
randomness that EVs may or may not accept the recommendations
provided by a CNO. Note that EVs may choose to reject all recom-
mendations and no revenues can be achieved by both online and
offline algorithms. Therefore, instead of focusing on the worst-case
scenario for both Type I and II uncertainties, it is desirable to have a
less conservative online algorithm that maximizes the expected to-
tal revenue averaging over all Type II realizations in the worse-case
realization of Type I uncertainty.
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Contributions. In this paper, based on a recommender system
formed by a CNO and a network of charging stations, we design
an Online algorithm that decides Recommendations and Charging
schedules with on-arrival commitment (ORC) for sequential EV
arrivals. In more detail, an EV initiates a charging session inquiry,
which includes its energy demand and charging deadline, to a CNO
through an online platform. Upon receiving the inquiry, an ORC
offers that EV a station-price pair, which indicates the energy price
if the EV charges at this station. This offer can also be set as an
empty entry if no charging station is available. The EV then decides
whether to accept it or not. If the recommendation is accepted, the
EV will arrive at the recommended station and pay for the charging
service with the fixed price in the offer. If the EV rejects the offer,
it can either leave for alternative charging facilities, or adjust its
charging demand (by reducing its energy demand or extending its
departure time) and submit a new inquiry, which may be offered a
more satisfactory recommendation. For each accepted offer, an ORC
manages to schedule charging that satisfies the EV’s demand, i.e.,
to deliver the required energy by the deadline at the recommended
charging station. The objective of an ORC is to maximize the total
revenue collected from all EVs.

Value functions (see Definition 3.1) that evaluate the marginal
cost for charging an EV at a given charging station are used to
parameterize the ORC. As our next result, in Theorem 4.2, we
provide a sufficient condition on value functions for ensuring that
the ORC has a constant (expected) competitive ratio. Furthermore,
based on the sufficient condition, we propose a systematic way for
generating an explicit value function with a provable competitive
ratio summarized in Theorem 4.4.

To demonstrate the effectiveness of the ORC, we provide a case-
study based on geographical data in Hong Kong in Section 6. The
(empirical) competitive ratios in our experiments outperform other
three online benchmarks.

Related work. A rich literature on online management of EVs
has emerged in recent years and the work can be broadly divided
into two branches. In the sequel, we overview a collection of the
representative results.

Temporal scheduling of EVs. The key idea in temporal scheduling
of EVs is treating the EVs as deferrable loads and schedule the
charging based on their demands. Along the lines of this idea,
previous work has been focusing on coordinating the charging
process of a fleet of EVs by temporal load shifting (i.e., temporal
schedules) to mitigate their negative impacts on power systems [6,
7] or gain profits [19, 21]. Online algorithms have been considered
in [1-3,9, 9, 19, 23], which aim to achieve a bounded competitive
ratio. Some recent work [15, 17, 24] developed auction-based or
posted price mechanisms to handle the EVs’ choices but the main
focus there is temporal scheduling for a single charging station.
The authors of [1] reported an impossibility result that there is no
competitive online algorithm for on-arrival commitment charging
schedule in the general setting. However, this paper will show
that our proposed online algorithm ORC can achieve a bounded
competitive ratio if more information (e.g., the set of possible prices
and the choice probabilities of EVs) is given for decision-making.

Spatial scheduling of EVs. More recent studies [4, 20, 25] indicate
that it is also of great importance to recognize EVs as mobile loads,
which can be scheduled to be served at different locations (i.e.,
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spatial schedules) to balance the location-dependent EV charging
demands. The literature on the spatial scheduling of EVs mainly
considers evaluating the system-level benefits of the spatial sched-
uling. For example, the authors of [4] designed a pricing strategy for
routing EVs to charging stations that optimizes the charging loads
of different nodes in a transmission network and simultaneously
mitigates the congestion of a transportation network. The authors
of [25] used a game-theoretic approach to devise a spatial-temporal
scheduling for multiple groups of public EVs competing for capacity-
limited charging stations. Further investigations on pricing mecha-
nisms for private EVs that charge at public EV charging stations can
be found in [13]. Although geographical information is considered,
most existing works on spatial scheduling model EV arrivals as a
stationary distribution that is known a priori. In contrast to this, re-
alistic EV arrival patterns depend on times and locations and are in
general hard to forecast [1, 19, 24]. Designing an online algorithm
for spatial scheduling with sequential EV arrivals is therefore still
an open and challenging task. There is a theory-to-application gap
between existing online algorithms mainly designed for temporal
scheduling and practical situations wherein EVs are spatial loads
and have their own freedom to make decisions. The main goal of
this paper is to close this gap by proposing an online competitive
algorithm for joint spatial and temporal scheduling.

2 PROBLEM STATEMENT

This section first presents the online spatial-temporal scheduling
problem that an ORC solves. Next, we formally define the expected
competitive ratio, as an offline benchmark and then an auxiliary
optimization is given whose optimal value bounds the expected
competitive ratio from above, based on which the ORC is designed
and analyzed.

2.1 Online spatial-temporal scheduling

The CNO manages a set M = {1,..., M} of geographically dis-
tributed charging stations. Each charging station m € M is equipped
with by, chargers, each of which can be used for on/off charging
control with a fixed charging rate Ry,. Due to varying electricity
prices, each station m € M is allowed to set their energy prices
for charging sessions from a set of price levels Ry, := {r™J Yiegms
where J™ :={1,...,J™} is the index set of price levels. Without
loss of generality, the price levels are sorted in an ascending order,
ie,0<rml <. < pmJ”

Aset N :={1,...,N} of EVs sequentially submit charging ses-
sions to the CNO. Consider a time-slotted system! indexed by
t €7 :={1,...,T} with a fixed slot length AT. Let ap, e,, and d,
denote the submission time, energy demand, and deadline of charg-
ing session n, respectively. To model EVs’ preferences for stations
and prices, we define the following matrix of probabilies.

Choice probabilities. Based on the charging requests and con-
textual information, we assume each EV has a fixed choice proba-
bility over the recommended station-price pairs. The choice prob-
ability of EV n is denoted by p,, = {p,"’ YmeM,jegm Where el
indicates the preference of an EV n for charging at station m with

!Charging sessions can be submitted and processed in real time but the charging
schedule has to be done over discrete time steps.
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the price r™/. It must satisfy that (i) 0 < py,*) < 1, and (ii) it is mono-
tonically non-increasing with respect to price, i.e., pn =~ < pn’ ' for
all j/ < jand m e M.

Upon the submission of an EV n € N, the CNO has access to the
following information:

e Charging requirements of an EV n in different charging
stations {enm, Tn,m Yme m> Where epm = [en/(RmAT)] is
the required number of time slots to charge EV n at station
mand Tnm = {an + tum, ..., dn} is the set of feasible time
slots for charging EV n at station m, where t, ,, denotes the
estimated traveling time for EV n to reach station m.

o The matrix of probabilities p,,.

The CNO then performs spatial scheduling (i.e, deciding a station-
price recommendation) based on the above information and tempo-
ral scheduling (i.e, allocating charging time slots) for each charging
session. In the following, we introduce more decision variables that
the CNO can optimize over to maximize its revenue.

Recommendation decisions. The recommendation variable
yn! € {0,1} is one if a station-price pair (m, j) is recommended
to an EV n and zero otherwise. No recommendation will be made
ifyp” =0forallm e Mand j € ™. For the simplicity of pre-
sentation and analysis, we assume each EV n only received one
recommendation and our proposed scheme can be easily extended
to the cases when multiple recommendations are given to each EV.

Charging decisions. Another binary variable x:f ;j € {0,1} is
the charging variable that determines whether to charge an EV n at
station m € M at time t € 7y, . Again, for the ease of presentation,
we restrict the charging levels to be two-states—on and off.

Maximization objective. Given a recommended station-price
pair (m, j), if an EV n accepts this offer, it pays e,r™/ to the CNO
and drives to station m for charging. The CNO guarantees to deliver
en energy to this EV before its deadline d,, at station m. The objective
of the CNO is to maximize the total revenue collected from all EVs.

After receiving the recommendation pair, the EV n accepts it
with probability pj,.

Remark 2.1. When choice probabilities are all ones, the spatial
decision of the online problem reduces to an assignment problem
as EVs will accept any recommendation for sure.

Remark 2.2. (An example of estimating choice probabilities) We
can model the preference of EV n over station-price pair (m, j) as

Fo(m, sy, = ¥ (1) + yn(2) /tam + ya(3)/(r™))2,

which is inversely proportional to the driving time to station m and
the energy price r'™/. Yn = [yn(1), yn(2), yn(3)] customizes the
preference of each EV n and can be estimated from historical data
by regression. The choice probability of EV n for the station-price
pair (m, j) can be estimated by a softmax function:

o exp (fu(m, j;y,))
" Zmem Zjegmexp (fa(m jiy,))

An instance of the online spatial-temporal schedule problem
contains three types of information:

1

o Setup information S := {M, {bm}mepts {Rm}bmem b
e Arrival information 7 := {0, }, ¢ n, where the arrival infor-
mation of EV nis 6, = {{enm, Tn,m}me M> Pn )
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e Choice information ‘W := {wn},cn, where the choice in-
formation of EV n is wy = {w)"’/ }meM,jegm, in which

wn) € {0,1} is EV n’s choice on the recommendation (rm, j)

m,j

where wy,  is a realization of the Bernoulli random variable

wy' " with success probability p;n’j .

The setup information S is fixed and known by the CNO a priori
while the arrival information and choice information are revealed
sequentially, and especially, the choice information depends on pre-
vious decisions. Given a setup S, the goal in this paper is to design
an online algorithm operated by the CNO that generates station-
price recommendations for each EV n and schedules charging based
on the arrival information 04, ..., 0, and the choice information
w1, ...,Wn—1. We encode the information available at an online
CNO for providing a recommendation for an EV n by

Fn =4S, 01,.. 2)

Let ALG(Z ;W) denote the revenue collected from an online al-
gorithm for an arrival instance 7. ALG(Z; W) is a random vari-
able with respective to ‘W, the random choices from EVs . The
goal of the online algorithm is to maximize the expected revenue
Eq [ALG(Z, W)].

Next we define an offline benchmark for the online algorithm.
Let O, = F, U {041, ..., 0N} denote the offline information for
decision-making of EV n given the entire arrival information 7.
In this offline benchmark, even though the choice probabilities of
all future EVs are known a priori, the realizations of future EVs’
choices, including the current one, are unknown for the offline
benchmark. Therefore, the optimal offline algorithm is an adaptive
algorithm and the optimal solution is a policy mapping the offline
information Oy, to decisions. Let Y,/ (Oy,) and X,T 2/ (On) denote

S Onw, . wpg )

the recommendation and charging variables based on Op,. Y,)" J (On)
and XZL ;j (On) are the outputs of a causal decision maker = whose
decisions can only be made based on O,. The CNO can collect a
revenue e,r™/ from EV n only if the station-price pair (m, j) is
offered to EV n (i.e., Y,',n J (On) = 1) and meanwhile the EV accepts
this offer (i.e., W, J = 1). The total revenue is

N M J" ) )
RVN(r, I;W) = 3" 3" " (ear™)) - Y™ (On) - W™,
n=1m=1 j=1
subject to
Z XrTZ](On) 2 en,er:n’j (On), Vn,m,j, (3a)
t€Tnm
N J” A A
D Wt X (Op) < b, Yt (3b)
n=1j=1
M Jm )
Z Z Y, (0n) <1, Vn, (3¢)
m=1 j=1
Yo (On) € {01}, Vnom,j, (3d)
X (On) € {01}, Vnm,j.t € Tom, (3¢)

where constraint (3a) is the energy constraint that ensures a charg-
ing allocation is scheduled to deliver e, amount of energy at station
m if EV n is offered to charge at station m. Constraint (3b) is the
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capacity constraint ensuring the total number of EVs that are si-
multaneously charging at a station cannot exceed the total number
of chargers. Constraint (3c) restricts that at most one station-price
pair is offered to each EV. We consider the best causal decision
maker 7 defined by

7" = argmax Eqy [RVN(z, T; W)]. (4)
T

With 7* being used, the optimal revenue for each ‘W is OPT(ZI; W)

and the expectation Eqy [OPT(Z;W)] is maximized.

Due to lacking future arrival information, any online algorithm
cannot achieve an expected offline revenue E«y [OPT(Z;W)]. In
this paper, we aim to design an online algorithm that can achieve
at least a fraction of the offline revenue aE«y [OPT(J;W)], where
0 < a < 1is a constant and defined as the competitive ratio of the
online algorithm. Formally, the competitive ratio is defined as

Eqy [ALG(Z;W)]
a = min T i~ 7 i
all possible 7 Eqy [OPT(ZI;W)]

The goal is to design an online algorithm that achieves a compet-
itive ratio as large as possible. Note that « is defined as the ratio
of the expected revenues of the online and offline algorithms over
EVs’ random choices in the worse-case realization of EVs’ arrival
instances. Different from the conventional competitive analysis that
defines the ratio in the worse scenario regarding all uncertainties,
our expected competitive ratio is necessary in this problem since
EVs may reject all recommendations such that both online and of-
fline algorithms achieve zero revenue, leading to meaningless ratios
defined for cases that rarely occur. Before proceeding to our design,
for the purpose of competitive analysis, we first introduce an auxil-
iary optimization, whose optimal value bounds Eqy [OPT(Z ;' W)]
from above.

®)

2.2 Auxiliary optimization

The randomness from EVs’ choices makes it hard to find the optimal
decision maker 7* and compute Eqy [OPT(Z;W)]. Thus, given
the setup S and arrival information 7, we construct an auxiliary
optimization which is a deterministic offline optimization that can
be used later in our analysis.

N M J"
OPT(Z) = mjy . i m. 6

@y =max D, D, ) ear™ ) pt -y (oa)

n=1m=1 j=1
st ) a2 eamyn”’. Vnmj  (6b)

t€Tnm
N J" ) .
ZZp,T’jx:f;j <bm, VYmt, (6¢)
n=1 j=1
Mo
D>y <1, v, (6d)
m=1 j=1
yl 20, Vnm,j, (6e)
0<x™ <1, Vnmjt € Tnm. (6f)

LEMMA 2.3. Given a setup S and an arrival instance I, the optimal
objective OPT(I') of the auxiliary optimization (6) is an upper bound
of the optimal expected revenue Eqy [OPT(Z; W)].
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In this auxiliary optimization, all constraints are satisfied in
expectation instead of being respected for every sample path in the
original problem (3). Thus, this auxiliary problem can be considered
as a relaxation of the original problem and hence builds an upper
bound. The formal proof of Lemma 2.3 is presented in Appendix A.

3 ORC: AN ONLINE RECOMMENDATION
AND CHARGING SCHEDULE ALGORITHM

In this section, we propose an online algorithm, ORC, that decides
the recommendation and charging schedule for each EV n based on
the casual information 77,. We first introduce a bid-price control
policy that is the basis of ORC and then present ORC in detail.

3.1 Basic idea: a bid-price control policy

In the online spatial-temporal schedule problem, a myopic algo-
rithm will recommend the station-price pair that can maximize the
instantaneous expected revenue, i.e.,

il (r ™ ey). (7)

max

meM,jegm
However, the myopic algorithm may not give the desired compet-
itive ratio since it, on the one hand, fails to balance the charging
sessions across different stations. As a result, some popular charg-
ing stations may get occupied quickly and some future charging
sessions that only accept to charge at those stations cannot be
served. On the other hand, the myopic algorithm underestimates
the EV arrivals in the future (actually assuming no future arrivals).
Thus, each station may be occupied by some charging sessions that
have arrived earlier but pay less. To deal with these two issues, an
online algorithm needs to provide recommendations to balance the
charging sessions in different stations and reserve some charging
capacity for future arrivals.

Bid-price control is a popular heuristic method in revenue man-
agement literature for balancing the inventory of different resources
[8, 16] and reserving resources for future usages [12]. The basic
idea of bid-price control is to set a threshold (or bid) price for using
one unit of each resource. A product is sold only when the offered
price by the customer is larger than the sum of threshold prices of
the resources that compose this product. The bid-price control is
intuitive and easy for implementation. However, its performance
highly depends on the threshold prices and there are no general
guidelines for designing those prices.

Our proposed ORC adopts the bid-price control policy for mak-
ing recommendation decisions. In particular, we can consider the
number of idle chargers in one time slot at one station as a resource.
A charging session can then be considered as a product that needs
to consume a bundle of resources to fulfill energy demand. Thus,
the core of ORC is to design threshold prices for activating one
charger in each time slot at each station based on the casual infor-
mation ¥, to estimate the marginal charging cost of each charging
session at each charging station.

3.2 Algorithm description

A modified bid-price control policy is used for generating the rec-
ommendations to vehicles, which gives the online recommendation
algorithm shown in Algorithm 1.
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Algorithm 1 The proposed ORC(¢)

Inputs: Sequential setup information S and value functions

= {¢m}meM

Initialization: o, = 0,Vt € T,m € M.

while a new chargmg session n arrives do
Observe arrival information 6, = {{ep,m, Tn
for each station m € M do

Calculate the candidate charging schedule u]}!

mYmeMs Pnts

Set the marginal cost {T*;
end for
Determine the candidate station-price pair (my, j;);
if p™ IR (pMidn — MMYe, < 0 then
Offer no recommendations;
else
Recommend (m},, j;;) to EV n;
Observe the realization of EV n’s choice;
if EV n accepts the recommendation then
Recompute charging schedule;

fort € 7,,,, do
Charge EV n by x,, "’j" =u, : ;
end for

Collect revenue r™nJne, from EV n;
forme M,t € 7, do
m _,m m,j
Update Upp =0t qp + Zjejm Xp.f s

end for

else
forme M,t € 7, do

Update vy, = o7 Lt

end for

end if

end if
end while

A. Choose a value function. To estimate the marginal cost of a
charging session at a particular station, we need to estimate the cost
of activating one charger each time at this station. This motivates
the following definition of a value function. Denote by w € [0, 1]
the utilization level that is defined as the ratio of the chargers being
used (divided by the total number of chargers).

Definition 3.1 (Value function). A value function ¢, (w) : [0,
[0, 7™J™] is a monotonically non-decreasing function that evalu-
ates the cost of activating one additional charger at charger utiliza-
tion level w for station m. Denote ¢ := {¢m } e m-

1] —

B. Calculate candidate charging schedule.

The value function defined above can be used for scheduling EV
charging. Let up’ := {up’; }te7, ,, (Where u, € {0,1}) denote the
candidate charging schedule if EV n charges at station m (i.e., when
station m is recommended to EV n and the EV accepts this offer).
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We determine u};' by solving the cost minimization problem:

o™
min Z ul dm il , (8a)
u)’ ’ bm
t€Tnm
st ul > enm, (8b)
t€Tnm
up, €{0,1}, t € 7, (8¢c)

where o™ J is the total number of occupied

n-1,t =2 Zj egm x
chargers at time ¢ by the prev1ous n 1 EVs at station m. Based on the
value function, ¢m(”n—1, /bm) is the estimated cost of activating
one charger of station m at time ¢. The dual variable with respect to
constraint (8b), {}*, can be regarded as the marginal cost of charging
session n at station m.

C. Set marginal cost.

Let @)} denote the optimal solution of the problem (8). The mar-
ginal cost {}"* of serving the charging session n at station m is

Uns1e
L)

D. Determine candidate station-price pair.

The threshold price {* gives (r'™/ — {™)ep,, the pseudo-revenue
of serving EV n at station m, based on which the CNO determines
the recommendation for EV n by solving

m.—= max

teTn,m:al,

©)

pr (™ = GMen.

(m}, jn) = argmax (10)

meM,jegm

Using {}', we can solve the problem (10) and obtain its optimal
solution (m;,, ]n) If the maximum pseudo-revenue is non-positive,

ie., rMmin — o " < 0, the CNO offers no recommendation. This
bid-price control can achieve our goals of balancing the charging
sessions across the stations and reserving the charging capacity
for each station. In particularly, given a station m, if the pseudo-
revenue is negative for a price level j, the CNO makes no revenue
of recommending (m, j) to EV n anymore and the charging capacity
at station m will be reserved for future EVs that can accept higher
prices. Moreover, according to the expected pseudo-revenue of dif-
ferent stations when serving the same EV, the station with relative
less charging sessions is more possibly offered. To sum up, we can
set the recommendation variable 7"/ by

I L L e e i
" 0 otherwise.
E. Recompute charging schedule.
m,j
The last step is to compute charging schedules %, ;’, once the
user accepts the recommendation:
il =gl Uy Ym,jit € Tam (12)

Note that when the charging resources have been used up by the
previous n — 1 EVs at station m at time t, we have o]" Lt = bm.
If the optimal solution of problem (8) is ', = 1, the marginal
cost is {* = ¢m(1) = r™/™ . Based on the recommendation pol-
icy (11), the algorithm will make no recommendations to EV n,
which automatically guarantees the feasibility of the solutions.
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4 MAIN RESULTS

In this section, we present our main results. The first result is a
general statement on sufficient conditions for guaranteeing the
competitiveness of our proposed online algorithm ORC. We then
design a specific value function for ORC based on this sufficient
condition and derive its competitive ratio.

4.1 Sufficient conditions for a-competitiveness

Before proceeding to our first main theorem, we specify our value
function (see Definition 3.1) as a class of functions created by con-
catenating a sequence of functions over the domain [0, 1]. Divide
the domain [0, 1] into J™ segments [0, £™1), .., [em™J7 =1 1] with
0< ™l < ... < ¢mJ"=1 < 1 Formally, we define the following:

Definition 4.1 (Piece-wise value function). A piece-wise value
function ¢, is a value function whose value in each segment ranges
between two consecutive prices, i.e.,

dm(w) € [rm’j_l,rm’j), forallw e [[m’f‘l)[m,j)_

Based on Definition 4.1, the theorem below provides sufficient
conditions as a system of ordinary differential equations (ODEs)
for ensuring the online algorithm being a-competitive.

THEOREM 4.2. Given a setup S, for any 0 < a < 1, the online
algorithm ORC(¢) is a-competitive if the following conditions hold:

(i) There exists a non-decreasing piece-wise value function ¢, for
allm € M, which satisfies the following ODEs for all j € J™:

rmJ

{§m¢;n<w>—¢m<w>+rm’f < 2y e (emi=1, i),

B (E7971) =PI, G (0) = g, "
where E™ .= (b, + 1) /by

(ii) The segment points {£™J }jegm takediscrete values, ie., e
{1/bm,2/bm, ..., 1}, forallj € T™

Theorem 4.2 indicates that if we are able to find a value function
¢ that satisfies both (i) and (ii), the competitive ratio of ORC(¢) is
a. The detailed proof of Theorem 4.2 is deferred to Section 5.1. This
sufficient condition is built based on an online primal-dual analysis
[5]. Some recent works [11, 18, 22] have also reported similar results
that construct a set of ODEs as sufficient conditions for designing
online algorithms. Those works derive the ODEs by assuming the
capacity to be infinitely-large for taking the limit. However, in this
paper, we derive the ODE (13) based on Lagrange’s mean value
theorem directly without such an assumption. The discrete value
constraints are also due to the condition of applying the mean value
theorem. Thus, our result is more general and our proof approach
may be also useful for existing works to derive sufficient conditions
without assuming infinitely-large capacity.

4.2 Value function design

Our next main result gives an explicit construction of a value
function satisfying the conditions in Theorem 4.2 asymptotically
(b — oo for all m € M). In addition, we analyze its corresponding
competitive ratio, presented in the following theorem.

LEmMmA 4.3. [Asymptotic value function] Given a setup S, asbpy, —
oo for allm € M, the online algorithm ORC(§) is ot -competitive if
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for allm € M, the value function on the segment [£™J=1, {™J) is

pm,j-1
eV — eé’m']
Pm(w) = o

i __ (rm,j _rm,j—l) +rm,j—1’
J _ e[m,]—l

(14)

where segment points {£™J }jegm are the solutions of the equations

l_e_([m,z_,m.l)

l_rm,l /rm,Z -

1_6_(,m.jm_(m.jm71)

el _ -
€ T 1—pmJT L pmg™

1-
emJ™ =1

and the competitive ratio is g = minpyep 1 — et

As by, — oo, it follows that €™ — 1 and the segment points in
the sufficient condition take continuous values. This enables us to
derive the value function and its corresponding competitive ratio
by binding the inequality in the ODEs (13) and solving it for each
segment. The detailed derivation is shown in Section 5.2.1. Based
on the asymptotic value function ¢, our next Theorem shows that
if we round the asymptotic value function, parameterized by ay, a
bounded competitive ratio can be guaranteed.

THEOREM 4.4. Given a setup S, the online algorithm ORC(gzg) is
ad;—competitive if for allm € M, when q € {0,1/bp,2/bm, ..., 1},
the value function is, for all j € J™,
$m(em) = pmd g = [0l )

i1, mby,
dm(q) [ B ]<q<[bm W,
where ¢, is the asymptotic value function defined in (14), and the

_im,l

&m(‘]) =

competitive ratio is aj = ming, « pm (bnﬁrll;‘(el——ﬂ/”"‘)'

The value function gzg is a discrete function, which only takes
values at discrete points g € {0,1/b;,,2/by, ..., 1}. ¢Z(q) takes the
same value as the asymptotic value function ¢(q) except when a
segment point of ¢ lies in (q — 1/byy,, q). In that case, ¢(q) is set as
the price corresponding to the segment point. Since the charger
utilization level only takes discrete values from the same set, ¢; can
be applied to ORC. Although g{; does not satisfy the ODEs in (13),
we are still able to prove that ORC(qg) achieves the competitive
ratio ag. Note that (b, + 1)(1 — e 2/bm) is strictly larger than
1 and goes to 2 as by, — oo, the derived competitive ratio for
finite segments goes to o ; = a/2 when b, goes to infinity. The

¢

recovered competitive ratio is smaller than the one proved for the
asymptotic case in Theorem 4.3. Despite of this, our results provide
a rigorous competitive ratio analysis in case for finite segments.
As a comparison, most of the existing work such as [11, 18, 22]
only provides results for the asymptotic case. The detailed proof of
Theorem 4.4 is presented in Section 5.2.2.

5 COMPETITIVE ANALYSIS
5.1 Proof of Theorem 4.2

Our proof'is based on the online primal-dual framework [5]. Its basic
idea is to construct a feasible solution to the dual of the upper bound
problem (6) based on the decisions made by the online algorithm. Let
Dual(Z) denote the objective value of the dual problem evaluated
at the constructed feasible point. Based on weak duality, we have

Dual(I) > OPT(X) > Eqy [OPT(Z; W)]. (16)
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Note that Dual(Z) can be regarded as a function of the decisions
made by the online algorithms. Thus, if we can show that under the
conditions provided in Theorem 4.2, the expected revenue achieved

by ORC(¢) is bounded by a fraction of the dual objective, i.e.,
Ew [ALG(Z;W)] > aDual(1), (17)

the online algorithm is a-competitive. Therefore, to prove Theorem
4.2, we will prove two lemmas that show (16) and (17) hold.
The dual of the upper bound problem (6) is

WIS WS D INIPY

min ,rlnt] (18a)
Awnp m=1t= n=1m=1j=1teT,m
st. np 2> pm’](rm’] - m’J)en,Vn, m, j, (18b)

Blin = il (T — i, 18c)

Vn,m, j,t, (

Apnp =0, (18d)
c), a

]

where dual variables A, p, i correspond to constraints (6b), (6
(6d), respectively, and f is associated with the constraints x,,

Let ij = Ym](‘i‘—-n) and Xm] = ij(ﬁ) denote the deci-
sions made by the ORC based on casual information Fn- They are

random variables with respective to the random choices of the
previous n — 1 customers.

<L

Definition 5.1 (Random dual variables). We construct random

dual variables by the decisions Y}, ™J and X:ln tj ,
M = ¢m(V, /bm),  Vm,t, (19)
AP = Ienff; dm ( 1t/bm) nys Ynm,j, (20)
M J" . . ) .
= > D W (™ - A )en, W, (21)
m=1 j=1

Bm}_WmJXm}[ ¢m( - )],Vn,m,j,t, (22)
where V'™

s = =vn L +(%n) is the total occupied number of chargers
of station m at time ¢ after processing the (n — 1)-th EV.

LEMMA 5.2. The expected values of the random dual variables

A = EIMM, 20 = ELAR ], iin = ELH), By’ = ELBLY,

are a feasible solution to the dual problem (18).

Lemma 5.2 is proved in Appendix B. Let Dual(Z) denote the
J , fin, and
ﬂn +, we have Dual(1) > OPT(I) (i.e., Equation (16)) based on the
weak duality. We next show Equation (17) holds in Lemma 5.3.

dual objective evaluated at the feasible solution ", Pl

LEMMA 5.3. If the value function ¢ satisfies sufficient conditions
in Theorem 4.2, we have Eqy [ALG(Z;'W)] > aDual(7).

Proor. The expected revenue of the online algorithm is

N M J" ) )
Eqy[ALG(Z;W)] = E Z Z Z YT W g |
n=1m=1 j=1
N M J" N
=ZE7:" ZZY’:MP” enr™ Z [AP,],
n=1 m=1 j=1 n=1
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where AP, is the conditional expected revenue of the n-th EV.
The feasible dual objective value Dual([) is

M T vm N N M J"
, m,
g (Bt 585 5 o
m=1 t=1 n=1 n=1m=1j=1te€Tym
The first part in the dual objective is
5T (VR
m=1t=1
.M T N m ym
(i) Z ZZ (Vn,t) ( n—1,t)]
= E ¢m e ¢m bm,
m=1 t=1 n=1 bm bm
SESES Ve * X W Vil
= Z Z Z E ¢m b - - ¢m b - bm,
n=1m=1 t=1 m m
m,
& A m,j n—1,t +Xn,t Vr:ril,t
= Z Z an E7—'n Pm b “Pmly bm
n=1m=1 t=1 m m

The equality (i) holds since ¢m (Vy';/bm) = ¢m(0) = 0 and the last
equality follows by applying tower property. Combining with the
conditional expectations E[H,|F,] and E[Brrf’t] |Fn] in Equations

(26) and (27), the dual objective can be denoted by

N
Dual(7) = Z E¢ [ADy],
n=1
N M T m +XmJ ym
L 1,t n,t -1t
:ZEfn ZZPZZJ ¢m = b _¢m(rll7 ) bm
n=1 m=1t=1 m m
Mg )
# 3 S v (A,
m=1 j=1
ML m] m,j Vr:ril,t
+ Z Z n,t Pn - ¢m b s
m=1j=1 t €T m m

where AD,, is defined as the conditional expected dual increment
by processing the n-th EV. We next prove Eqy [ALG(Z;W)]| >
aDual(T') by showing that AP, > aADy,Vn € N. Note that when

no recommendation is offered, i.e., Zm IZJ Ym] =0, ij nd
X, t] are all zeros and AP, = AD, = 0. Therefore, we only need
to consider the case that a station-price pair (mj, j;;) is recom-

mended, i.e., Ym min 2 1. Let 7, denote the set of time slots in
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which X "’] " = 1. We then have
my, my,
AD, Vol t1 Va1t b
Mg Z i | =5 mn || P
Pn teT; Mn Mn
m
. v
(rm;,j; — nljn)e + n!]n _ ¢ N n-1t
n my, b N 5
teTy Mn
m;,
(i) V ,+1 v, Lt b
= ¢m,, . ¢mn bos ( ’;l+1)
te'];l* mn my
Vo +1
RPN S
my, b N H
teT,; Mp
m,
(iii) by, +1 MmNt Va1 t1
phey sJn _ o | —
- Z b« ¢mi‘1(wf )+rn" P, b, « ’
tETJ my my
(iv) N * - *
m ’ m m’, m
£ 5 [t o) 7 o)
teT,
v . . m;,.j
v [’ Pl — e 4 ] ,
a
teT,
(0i) pMnoin 1 AP,
< cep = — -
[04 (Zp;nm]n

By substituting };c 7 Amﬁ’j n = e, Ann) " and arranging the terms,
we can easily check the equahty (ii). Based on Lagrange S mean

lt/bmn (V 1t+1)/b ]

()5,
n\t -

We can then get equality (iii). Since (Vr:rﬁ D/ b 2 w;n; and
the value function is non-decreasing, the inequality (iv) holds. Let

value theorem, there exists w, m, e[V,
such that Vt € 7,)",

P, ((Vfi’t + 1)/bm¢1) — G (

m, _
anl,t/bm::) - ¢;n

th = MaXeqr wt . Then w:}” is the largest charger utilization
level, at which one more charger is scheduled to be activated (i.e.,

Xn t’i’]" = 1). Based on Equation (13), if w, M [£Mne=1 pnain),
we have inequality (v). Note that r™mJ¢ increases with the increase
ofwt . We then have r™nJt < ¢™mJt; The value of ™/t is de-

termined by which segment w,. ™1 Jies in. Recall the online algorithm

= by, (Vo1

Thus, we have V ”* [bmz € [£mnn1, t’m;’fn). Since the segment

will recommend (mfl, i) only if r™Mmsin > {,rln

points only take discrete values, w *” < (V +1) /by < Mo

-1t
Thus, we have r™nJt < r MJt, = pMiwsin and the last inequality (vi)
holds. This completes the proof. O

5.2 Proof for Theorem 4.4

To design the value function provided by Theorem 4.4, we first prove
Lemma 4.3 and show how to design an asymptotic value function
when b, — oo based on the sufficient conditions in Theorem 4.2.
When by, is a finite value, we design a discrete value function by

1/ bmy,)-
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rounding the asymptotic value function, and rigorously prove the
competitive ratio it can achieve.

5.2.1 Asymptotic Case (b, — o0). Without the constraints of
the discreteness as by, — o0,Ym € M, the value function can be
derived by changing inequality in (13) to equality and solving the
ODEs with boundary conditions for each segment.

The general solution of the j-th segment is Pm(w) = a™ eV
(1/a™J — 1)r™J where a™/ and o™/ are parameters to be deter-
mined. Substltutlng the boundary conditions we have

ami ef i1
s t™

and the parameters can be solved as

—(1/a™J = 1)pmd = pmi—1
- (/™ =)™ = ™,

fm,j_[m,j—l)

l—e_(

pmej _ pm,j-1
1—pmj=l/pmj ’

a™J m,j

= e[m,j _ e(m,jfl >
Note that the competitive ratio & = minpe A, je gm o™/ is deter-
mined by the minimum ™/ over all stations and all segments.
Thus, in order to maximize the minimum a™™/, for each station m,
we set @™/ of each segment to be equal, namely,

m m_
. i T
a"=1—-e" ==

23
1_rm,]’"71/rm,]’" ( )

LEMMA 5.4. ForVm € M, there exists a solution {f™J }jegm to
Equation (23) and £™J™" = 1.

The proof of Lemma 5.4 and the computation method for £™/
have been presented in Appendix C. Based on Lemma 5.4, the com-
petitive ratio is determined by a = min,,c o @™ = mingep 1 -

- By substituting o’ and {a™/} jegm, the asymptotic value
function (14) can be derived.

5.2.2 General Case (Finite by, ). If the number of chargers is finite,
we design the value function qg by rounding the asymptotic value
function ¢ as shown in Equation (15). Recall {£"™/} jegm are the
segment points of the asymptotic value function ¢ and unneces-
sarily take discrete values. Thus, we cannot expect ORC(gz;) can
achieve a competitive ratio as good as that of the asymptotic case.
We next prove the competitive ratio of ORC((;g).

To analyze ORC((;;), we can follow the proof of Theorem 4.2
until the procedure to bound the ratio of the primal and dual in-
crements AP, and AD,,. The arguments in the proof of Lemma 5.3
fail when q < ™/ < q+1/by,, where g = o 1.+/bm is the discrete
charger utilization level. This is because in thls case, ¢, is not dif-
ferentiable in the interval (g, g + 1/bp,) at the point #™/ and hence
the Lagrange’s mean value theorem cannot be applied to achieve
equality (iii). To bound the ratio of primal and dual increments, we
prove the inequality (24) in Lemma 5.5.

LEMMA 5.5. The value function gg satisfies VYm € M,Vj e g™,
when [ by, /b < q < [6™T b1 /b, g € {0,1/byms ..., 1},
(24)

$m (q+ 1/bm) — $m () |bm — m (q) + 1™

m,j

< D (b + 1)(1 = 72/bm),
[04
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The proof of Lemma 5.5 is presented in Appendix D. Inequality
(24) is the discrete version of the ODE (13). Based on this inequality,
we can bound the ratios of primal and dual increments as follows.

AD * *
= S A (0 + Db ) = B, (Vi 17, )| b
Pn™ " teTy
il = g ((Vn"i’it +1) /by )} ,
< Z rm;’j;+ (bm+1)(l—e_2/bm) _1} rm;,jt:|,
teT, @
(b +1)(1 — e72/bm) AP,
- a my.jn

Pn

Thus, the ORC(¢Z) can achieve a competitive ratio of a/[(by, +
D(1-e?/bm).

6 EXPERIMENTAL RESULTS

In this section, we provide experimental results for our proposed
ORC algorithm. We construct the value function ¢ in the asymptotic
case based on the setup information and then derive the rounding
version $ based on Equation (15). This case study aims to evaluate
the empirical performance of ORC(gzg) and compare it with other
benchmark online algorithms.

6.1 Simulation parameters

6.1.1 Real-world transportation network. We focus on a sim-
plified transportation network in Hong Kong. The city is divided
into 18 districts, which are connected by 32 main roads as shown in
Figure 1. The traveling time through each main road is estimated
based on Google map data. We assume that there are four public
charging stations that can provide charging services for private
EVs. The setup information of the four stations is listed in Table 1.

6.1.2 Generating EV requests. Each arriving session n € N in
the experiments is a tuple of random variables (Ap, Ep, Dy) € Ri
where A, is the submission time; Ej, is the energy to be delivered
and Dy, is its deadline.

The arrival times {A, : n € N'} are generated according to a non-
homogeneous Poisson process, with arrival rate being the product
of the time-varying demand function depicted in Figure 2(a) and
the average total number of EV arrivals, which is 600 multiplied
by a load factor p > 0. We generate EV requests with varying
p € {0.6,...,1.6} to investigate the impact of the total number
of requests on the performance of online algorithms. The demand
function describes the percentage of the hourly refueling demand of
gasoline stations within one week [14]. Therefore, the total number
of arriving sessions N is a Poisson random variable with mean 600p.
The total number of arriving sessions are further divided into 18
districts proportionally according to its corresponding normalized
population density, which is visualized in Figure 2(b).

After assigning an arriving session n € N to the districts, we
estimate the driving times ¢, to the four stations based on the
shortest paths in the transportation network shown in Figure 1.
The energy demand E, is a uniform random variable defined on
[12,24] (kWh). We set the deadline as D, = Ay + tym + Mp + U
where A, + t;, m is when the EV (if it accepts the recommendation)
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@ Charging Station

HK Island Gy Sation D D
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Figure 1: Simplified transportation network of Hong Kong.

Table 1: Setup of Charging Stations

StationID  Location  No. of Chargers Prices (cents/kWh)
A District 7 10 {40,55,75}
B District 10 10 {50,70,90}
c District 12 20 {50, 70,90}
D District 18 20 {60,90,110}
0.014
2 0.5
E 0012 z
g 0.01 %
Ea 2 01
3 0008 %
S 0.006 %
) £ 005
:E 0.004 'g
2 0.002 2
0
0 0 5 10 15
Mon Tue Wed Thu Fri Sat Sun District ID

(a) Demand for EV charging (b) Population density of 18 districts

Figure 2: Time-varying demand for EV charging and geo-
graphically distributed population density.

arrives at the charging station m; M, = E, /Ry, is its minimum
charging time and U is a random variable uniformly distributed in
[0,2] (hours). The charging rate is set as R, = 6,Yn € N (kW).

6.1.3 Estimating choice probabilities. We use the choice model
described in Remark 2.2 to estimate the choice probability. Partic-
ularly, we sample the three preference parameters y,, uniformly
from [0, 1], [20, 30], and [12000, 14000] for each EV n.

6.2 Benchmarks

We compare our ORC(L/’;) with the following three benchmark on-
line algorithms. These benchmarks use the same scheduling al-
gorithm for EV charging by greedily assigning the energy to the
time slots with lowest utilization of chargers. They, however, dif-
fer in the sense that they adopt different rules for selecting the
recommendations.
e Myopic. This algorithm recommends (m, j) that maximizes
the expected revenue of the current EV by solving the prob-
lem (7) without considering future EV arrivals and the im-
balance of the charging demand over different stations.
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Figure 3: Comparison of empirical ratios achieved by differ-
ent online algorithms. Results are averaged over 100 inde-
pendent simulations.

o Heuristic-Greedy. This algorithm recommends the nearest
charging station that is feasible to schedule the charging
with the lowest price.

e Heuristic-Conservative. In contrast to Heuristic-Greedy, this
algorithm offers the nearest station at the highest price.

We compute the total revenue collected by each online algorithm
listed above. In each independent simulation, the arriving sessions
{(An,En,Dp) : n € N} are generated randomly as described in
Section 6.1.2 and the EV accepts the recommendation according to
the choice probabilities in (1). The final results are averaged over
100 independent simulations.

Let RaLG denote the total revenue of an online algorithm ALG
in each simulation and let Rgp7 denote the optimal value of the
upper bound problem (6), which is linear and can be solved by
the interior-point algorithm. We compare ORC(¢) with the three
benchmark algorithms based on their empirical ratio, defined as

Empirical Ratio of ALG = RaLG/Rgpt- (25)

Since it is computationally difficult to obtain the optimal offline
decision 7* in (4), we choose the optimal benchmark of the em-
pirical ratio as the upper bound of the expected optimal revenue.
Therefore, the average of the empirical ratio is a lower bound of
the competitive ratio (5). Moreover, the empirical ratio is defined
for each realization of EVs’ random choices, and hence, the total
collected revenue sometimes can be greater than the upper bound
of the expected revenue. Thus, the empirical ratio may be larger
than one for certain realizations. But the average empirical ratio cor-
responding to each arrival instance (i.e., average of 100 simulations)
is guaranteed to be smaller than one.

6.3 Performance evaluation

The numerical results are shown in Figures 3 and 4, with load
factors selected from {0.6,. .., 1.6}.

Figure 3 compares the empirical ratios that are achieved by our
proposed ORC and other three benchmark online algorithms. For
each arrival instance, the empirical ratios of ORC generally out-
perform those of all benchmark algorithms and ORC achieves the
largest average empirical ratio for all arrival instances. The figure
also highlights that the average empirical ratio for ORC is very close
to 1, which is much larger than the theoretical competitive ratio
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Figure 4: Comparison of the average acceptance ratios
achieved by different online algorithms. Results are aver-
aged over 100 independent simulations.

0.254 for this simulation setup. This theoretical value is calculated
by solving Equation (28) to obtain {£™1}y,,c p( based on bisection
search, and then substituting it to the expression of « ; in Theorem
4.4. The main reason is that the competitive ratio is derived for the
worse-case scenario for all possible arriving instances. Moreover,
with the increase of the load factor p, the performance gap between
ORC and Myopic increases. This is because balancing the demand
over stations and reserving capacity for future arrivals become
more important in high-demand cases, which is also the reason
for that the greedy and conservative heuristics perform worse and
better, respectively as p becomes larger.

Figure 4 displays the average acceptance ratios, i.e., the ratio of
the number of served charging sessions and that of the total charg-
ing sessions. Myopic and Heuristic-Greedy serve more charging
sessions in all cases since both algorithms recommend available
charging stations and allocate available chargers in an aggressive
manner without reserving some chargers for future EV arrivals,
which may accept higher prices. In comparison, our proposed ORC
achieves a medium average acceptance ratio to trade off the ag-
gressiveness and conservativeness when allocating the resources
without future information. In this way, ORC achieves a much
better expected total revenue as shown in Figure 3.

7 CONCLUSIONS

In this paper we introduce an online algorithm, ORC, that can
jointly decide recommendation and charging schedules for sequen-
tial EV arrivals in a network of charging stations. Sufficient con-
ditions for ensuring that ORC has a constant competitive ratio
are provided. Based on the conditions, we design an explicit value
function for ORC and its competitive ratio is also given. Numerical
experiments validate the effectiveness of ORC by showing that it
outperforms other benchmark online algorithms.
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A PROOF OF LEMMA 2.3

Let {Y m.J (On), X (On)} denote the decisions made by the op-
timal decision rulelfr for EV n with the offline information O,,.
Y% (Op) and X, 7] (Op) only depend on the realizations of EVs’
choices, i.e., wiy,...,wy_1. Therefore, Y m.Jj (On) and X (On) are
both independent of W, mJ Let Un mj - E[ m.J (On)] and x =

E[ n,t(O")]’ where the expectation is taken with respective to the
previous n — 1 EVs’ random choices. The optimal expected revenue
can be denoted by

(enr™) - Eqy Wy - 13 (On)],

M=
N

Ew[OPT(Z;W)] =

3
1l
-

,m,]

(er’f)p‘ :

Mz iD=
T

bnﬁz
M\

n=1 1

3
N
~.

Ii

= gl f
we can show {yn }n,m,j and {xn 7 In,t,m,j are a feasible solutlon
to the problem (6), it follows Eqy [OPT(Z;“W)] < OPT(I). Since
constraints (3a)-(3e) are respected by the optimal decision rules
for any realizations of ‘W, we can take expectation on both sides
of these constraints and this leads to the constraints (6b)-(6f) with
{g,rln’j},,!m,j and {f:f’tj In,t,m,j being substituted. Note that we use

which is the ob]ectlve of the problem (6) when y,’

the independence of X,rl" 2/ (Op) and W,," "/ when taking expectation

for (3b). Thus, {g,r,n’j Yn,m,j and {)'C,T ;j }n,t,m,j are a feasible solution
to the problem (6) and hence Eqy [OPT(Z;W)] is an upper bound
of OPT(T).

B PROOF OF LEMMA 5.2

Conditional on 7, or equivalently the random choices of the previ-
ousn—1EVs {wy,...,.wyp_1}, Y, mJ ij and le , are all deter-
ministic values. We then have the condltlonal expectation

M J"
E[Hnl 7o) = E| > D Y Wil (™ = A yen|
m=1 j=1
Moo
= 0 (= A e, (26)
m=1 ]:1
@)

= max {maxmeM,je[]m prd (r™ — AR Yep, 0} ,

> o™ (7 — A Yep Vm € M, j € T

Equality (i) holds since Y;," 7/ is determined based on Equations (10)
and (11) to choose the maximum non-negative p;n’j (rmJ —A;ln’j ).By
taking expectation on both sides of above equation with respective
to 7y, and applying tower property, we show that 7, and A ] satisfy
the constraint (18b), namely,

fin = E[Hp] = Eﬂ[E[Hn|(ﬁt]]

> Eg, Lpn (™ = A )e]
= (7 = T )en Nm € M,j € I



e-Energy’20, June 22-26, 2020, Virtual Event, Australia

Next, by taking conditional expectation on B""/, we have

nt’

E[B) 7] = x;’f;fp;"’f (AR = (VI [bm)],

(i) "
I = dm (V21 1/bm)]

2 Pn
”“[ m —¢m<v,33/bm)].

Z Pn

When X, J = 1, inequality (ii) holds naturally. When X, J =0,
there eXlst two cases. If the station-price (m, j) is not offered ie.,

Y J =, AR =0 by definition in (20) and inequality (ii) holds. If
(m, j) is offered while the EV n is not scheduled to charge at time
- (;Sm(Vr:'iLt/bm) < 0, i.e., the cost of activating
one more charger at time ¢ is no less than the marginal cost of the
charging session n at station m. Thus, inequality (ii) still holds in
this case. Since V"', , < VN , and the value function ¢y, is non-

t, we have A;n’]

decreasing, the last mequahty holds. Finally, we take expectation
with respectlve to 5, on both sides of above inequality and we

show fi}" ,An | and ﬁ satisfy the constraint (18c).
Bl =ELB] = Eﬁ,[E[B’"’f 2l
> Eg, [ = ¢m (VR +/bm)]],

= pp J(/lm]—yt WneNmeM,je J™t € Tum.

C PROOF OF LEMMA 5.4

Define the length of the j-th segment as ¢/ = ¢™J — ¢™J=1 vj €
J ™. Based on Equation (23), 6™/ can be represented as a function

of ™1 ie.,
’
. (1 -

Since Zjejm o™J =1, we have

_eml T 1" | T _r
e I_[j:z [ + (1

Define g(c™™!) as the left hand side of the above equation. (o
is a non-increasing function in [0, 1] with g(0) = 1 and

g(1)=¢! H] , [

Thus, there must exist a solution to g(¢"™!) = e~! and hence there
exists segments points {¢™/} ;¢ gm that satisfy Equation (23). Since

rm,jfl m,j—1

rim.j rmJj

o™/ = _In [

m,j—1 m,j—1

) e_am'l] =e L (28)

rm.j rm.j

m,l)

m]l
_(1—e DN +e | <e .

g(c™1) is monotonic in [0, 1], bisection search can be used to find
o™1!. We can then compute all segment points {{™/} ;¢ gm.

D PROOF OF LEMMA 5.5
We check the inequality in the following three cases.
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Case (i): when g = [{™ by, ]/ bm
|6 (@ 17bm) = i (@)| b+ 777 = G (@)

D [4m (™) = (@) bin + $m (E™) = $m ()

(E) rm,j — rm’j_l

— 1/bmy, we have

[eim'j - eq] (b + 1),

et?m,j _ efm,j—l
i _m,j-1/,.m,j N
_mj AT g (b + 1)
1-— e_([m,j_fm,j—l) m ’

m,j i m,j
Wy r- 1= et (b + 1) < (b (1= 70,
a a
where equalities (i) and (ii) are obtained by substituting (;gm and ¢,
in Equations (14) and (_15), and equality (iii) is from Equation (23).
Case (ii): when [£™J by, /b < q < [£™/bm]/bm — 1/bum.

|9 @+ 1/bm) = G (@] b+ 7™ = G (9)
[fm(q+1/bm) = pm (D] bm + m (E™) = $m(q),

pmj _ pmij=1

= [ (b e oy o ]
et —et

(iv) m,j _ ,.m,j—1 m.j .
< ;[(bm—(bm+l)e_l/bm)ef T el ’],

et?m,j _ efm,j—l

rmJ _
= T(bm +1)(1— e bm),

where inequality (iv) holds since b, — (by, + 1)eY/bm > ¢ for
bm=1,2,...,and q+ 1/b;, < m

Case (iii): when g = [{™J71b,, ] /b.
|6 (@ + 17m) = i (@) | b+ 1™ = G ()
= [¢m(q+1/bm) = $m(E™ )| by + $m (£™7) = (F™I71),

rms - FIT g b g o BT
:m [(bm—(bm+l)€ q '")Eq m4+e ],
et —et
(v) rm,]' — rm,j—l P . j P
Jro-r- [(bm — (b + 1)l ™7 2071 by 8™ ef'""] ,

- e[m,j _ efm,j—l

m,j
< L (b + 1) (1 = 7 2/bm),
[04

Note that —2/by, < M1 — g —1/bp < =1/bp,. Thus, by, — (b, +
l)efm'jil_q_l/b’" > by — (b + 1)e”/bm > 0 and inequality (v)
holds. Combining the three cases, we have the inequality (24).
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