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ABSTRACT Electron paramagnetic resonance spectroscopy (EPR) is a uniquely powerful technique for characterizing confor-
mational dynamics at specific sites within a broad range of molecular species in water. Computational tools for fitting EPR
spectra have enabled dynamics parameters to be determined quantitatively. These tools have dramatically broadened the ca-
pabilities of EPR dynamics analysis, however, their implementation can easily lead to overfitting or problems with self-consis-
tency. As a result, dynamics parameters and associated properties become difficult to reliably determine, particularly in the
slow-motion regime. Here, we present an EPR analysis strategy and the corresponding computational tool for batch-fitting
EPR spectra and cluster analysis of the x2 landscape in Linux. We call this tool CSCA (Chi-Squared Cluster Analysis). The
CSCA tool allows us to determine self-consistent rotational diffusion rates and enables calculations of activation energies of
diffusion from Arrhenius plots. We demonstrate CSCA using a model system designed for EPR analysis: a self-assembled nano-
ribbon with radical electron spin labels positioned at known distances off the surface. We anticipate that the CSCA tool will in-
crease the reproducibility of EPR fitting for the characterization of dynamics in biomolecules and soft matter.

SIGNIFICANCE Electron paramagnetic resonance spectroscopy is a useful technique for measuring conformational
dynamics at specific sites of biomolecules and molecular materials. This tool can provide quantitative measures of
dynamics; however, spectral analysis often leads to problems with reproducibility. We developed a computational tool
(CSCA, “Chi-Squared Cluster Analysis”) for Linux that is designed to address this problem. CSCA allows users to visualize
the 2 fitting process and employs statistical clustering methods to help assign best fits. We demonstrate that these
capabilities reduce overfitting and provide self-consistent, quantitative measures of dynamics.

INTRODUCTION gions of the same self-assembled sample (2,8). Dynamic
behavior is complicated and challenging to study, espe-
cially in heterogeneous systems such as membrane
proteins or in systems that precipitate or aggregate at
moderate concentrations.

Continuous wave electron paramagnetic resonance (CW-
EPR) is a powerful tool for measuring dynamic behavior of
radical electron spin labels at specific sites of molecular spe-
cies in water (9-15). By synthetically introducing nitroxide
(also called nitroxyl) radicals into the sample at known po-
sitions, the rotational diffusion rate (Dy) of these radicals
can be determined by fitting their EPR spectra. Most
commonly, EPR is used to characterize the dynamics of pro-
teins (12,16,17), peptides (18), polymers (19,20), and small
molecules in water (2,8,21). In these systems, spin labels are
covalently tethered to molecules. Rotational diffusion rates
of the spin labels are inversely related to rotational correla-
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The dynamic behavior of biomolecules and soft materials
is often critical to their function (1-5). In protein biology,
for instance, a dynamic picture of proteins has gradually
replaced the purely structural “lock-and-key” model
describing their function. More recent models, such as
the induced fit and the conformational selection models,
describe proteins as conformationally fluctuating mole-
cules and relate the equilibrium conformational distribu-
tion and the rate of conformational change to the
activity and interaction of these macromolecules with
each other (6,7). In self-assembling materials with
biological applications, dynamics measurements are
used to understand thermodynamic phase behavior, and
even to identify liquid or solid phases within different re-
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The stochastic Liouville equation (SLE) quantum me-
chanically describes the spectra associated with slowly
moving electrons and is important for analyzing conforma-
tional dynamics on timescales relevant for EPR dynamics
measurements (10,14,15). Several software packages that
use the SLE model are available for fitting EPR spectra,
most notably the NLSL software package (11), EasySpin
(13), and MultiComponent, a LabVIEW wrapper for
NLSL (22). Since the introduction of these software pack-
ages, the SLE model has been enhanced by incorporating
the macroscopic order microscopic disorder (MOMD)
model and the slowly relaxing local structure (SRLS) model
(23,24). The validity of the SLE model in the slow-motion
regime has been verified by molecular dynamics simula-
tions, which can accurately reproduce EPR spectra from
atomistic trajectory files and confirm that the diffusion of
spin labels gives an accurate approximation of the dynamics
of the local environment (25-29).

Despite the availability of fitting programs, challenges
remain in the analysis of dynamics by CW-EPR. Expert
analysis is typically necessary to reliably estimate fit uncer-
tainty, as well to obtain self-consistent results in variable
temperature experiments (4). Such analysis reduces the
risk of overfitting and improves the reproducibility and con-
sistency of fits. In nonlinear curve fitting, there are many
cases for which the absolute best fit is less consistent with
physical reality than other possible fits—even in systems
with very few parameters (30,31).

In the cases in which self-consistent variable temperature
experiments have been demonstrated, they have revealed
Arrhenius-like dependences on temperature (4,5,32,33).
Although this observation lacks a precise formal justifica-
tion, it is consistent with the widely accepted belief that
the motion of spin labels is connected to the diffusion of
the label’s parent molecule, as well as to the local viscosity
of the environment. Both of these properties typically expe-
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FIGURE 1

rience Arrhenius-like temperature dependence at ambient
temperatures.

Here, we report an open-source MATLAB (The Math-
Works, Natick, MA)-based software referred to as CSCA
(Chi-Squared Cluster Analysis) that interfaces with NLSL
for Linux to improve the reliability of EPR spectral fitting.
The CSCA toolkit enables users to 1) automatically resample
data points from spectra to incorporate the effects of noise
into error analysis; 2) map and analyze the x? error function,
allowing visualization of clusters of local minima; 3) provide
more meaningful fit values and error bars based on statistical
analysis of high-quality fits; and 4) incorporate a variety of
popular bounded global optimization tools, including simu-
lated annealing, genetic algorithms, particle swarms, and
Monte Carlo methods. Furthermore, CSCA allows fitting us-
ing any choice of parameters available in NLSL.

We used CSCA to analyze the dynamic behavior of spin
labels attached via oligoproline spacers to aramid amphiphile
(AA) nanoribbons after spontaneous self-assembly in water.
These amphiphilic molecules were designed to form nano-
ribbons of 5 nm width, 4 nm thickness, and up to 20 um in
length. AA nanoribbons exhibit negligible molecular ex-
change over 2 months, in addition to high Young’s moduli
and tensile strengths (upublished data). Fig. 1 a illustrates
the chemical structure of the AA molecule (compound 1)
and the spin labeled analogs (compounds 2-5) that are incor-
porated by co-assembly at low concentrations (2 mol%). The
spin labeled nanoribbon is schematized in Fig. 1 b, and a
transmission electron microscopy (TEM) image of a spin
labeled assembly is presented in Fig. 1 ¢. Oligo- and polypro-
line spacers are often incorporated into biomaterials, in order
to enhance cellular interaction with functionalized end
groups (34,35). A major advantage of prolines over other
spacers is their rigidity; oligo- and polyprolines are often
used as “molecular rulers” because of their tendency to
coil into stiff helices with known lengths (36,37).

Self-assembly of nanoribbons with spin labels tethered at known distances off the surface. (a) A cationic aramid amphiphile (AA, compound 1)

and spin labeled analogs with oligoproline spacers (AA-Pn-SL, 2-5) self-assemble spontaneously in water. (b) AA (compound 1) is co-assembled with 2 mol
% 2,3, 4, or 5 to form nanoribbons in water with integrated oligoproline-linked spin labels at distances, d, off the nanoribbon surface. (¢) A representative
transmission electron micrograph of compound 1 co-assembled with compound 5 shows that spin labeled oligoproline AAs do not affect the geometry or

dimensions of AA nanostructures. To see this figure in color, go online.
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The dynamic structure of protein-binding peptides can
also play a significant role in peptide interactions (4). There-
fore, the length dependence of dynamics in oligoprolines is
likely important to the behavior of binding sites attached to
the end of the helix. However, these molecules are rigid, re-
sulting in slow conformational changes (37). In this regime,
self-consistent analysis of EPR results becomes challenging,
making it an ideal test case for new analytical methods.

METHODS

Background on the SLE model and fitting
function

The theory of EPR spectral simulation is complex and has been more
thoroughly described elsewhere (10,13,14). In brief, EPR spectra of nitro-
xide radicals may be computed numerically by iteratively solving the
SLE, which depends on several parameters. The SLE model treats elec-
tronic and nuclear spins as quantum mechanical objects while treating
the reorientation of these spins classically. In particular, spectra are usu-
ally defined by an electron’s gyromagnetic g-tensor, its hyperfine A-
tensor, and its rotational diffusion D-tensor, which contains elements
inversely related the electron’s rotational correlation times, called the
7-tensor. A set of ordering potentials, ¢, €22, C40, C42, and cyq (listed
in order of significance for describing ordering), describe the tendency
of spins to become partially ordered within their local environment. Pos-
itive or negative values for these coefficients define different population
distributions for nitroxide spins, which in turn can modulate the effects
of orientation on EPR spectra (38). Here, we limit ourselves to the
case of isotropic diffusion with an ordering potential, in wich all diagonal
components of the diffusion tensor are equal to the scalar Dg and all off-
diagonal components are zero.

Simply simulating EPR spectra is usually insufficient for interpreting
real data sets. Instead, we perform nonlinear fitting to find simulation pa-
rameters that best describe experimental data sets; this is done using an
algorithm for x> minimization. x* (defined in Eq. 1) is a function quan-
tifying the difference between experimental and model-predicted values
as a function of a set of fit parameters, ¢ (11,13).

i [I exp(wi - w()) - mod(wi - wo,C)] 2 (1)

o?

i=1 i

x*(c) =

In this equation, I.,, denotes the experimental spectral intensity at a fre-
quency w;, which is taken with reference to frequency wq (wy is typically
chosen to be 0). g; represents an uncertainty associated with each point,
and it weights the fit to more closely conform to points with greater exper-
imental significance. The set ¢ = c¢,,;;,, Wwhich most effectively minimizes
x>, is the set of parameters that best explains the spectral data. Unfortu-
nately, the xz function is nonconvex, and therefore, it can have any number
of local minima that often trap algorithms designed to minimize x> (39).
The algorithms used for this purpose range from the relatively simple fam-
ily of gradient-based methods, such as gradient descent and Levenberg-
Marquardt, to more sophisticated techniques such as simulated annealing
and particle swarm methods (30,39).

All optimization algorithms for x? are iterative, therefore we cannot be
assured that any will find the global minimum with perfect confidence.
Nonetheless, many effective numerical algorithms exist for global optimi-
zation, particularly over bounded intervals. In such cases, simulated anneal-
ing, genetic algorithms, particle swarms, and Levenberg-Marquardt Monte
Carlo methods will all typically agree on a global optimum if run for a suf-
ficient number of iterations. In modeling, the hardest problem is rarely iden-
tification of the global x> minimum. Much more challenging is the process

Computational Tool

of understanding the extent to which an identified global minimum can be
trusted to describe observed data (30,31).

The x* landscape of a nonlinear fit is commonly populated by a large
number of local minima, often clustered in the vicinity of the global opti-
mum. Local minima are defined as regions where the Levenberg-Marquardt
algorithm satisfies a convergence criterion—i.e., at which the x? function’s
value approaches invariance or the algorithm’s step size becomes suffi-
ciently close to zero. In the CSCA software, the tolerances for these param-
eters remain as the NLSL defaults, but can be adjusted by a user to suit their
needs.

The observation of a large number of clustered local minima can be
referred to as “multimodality” or “ruggedness” (39). If multiple experi-
mental repetitions are collected and analyzed, random variations will result
in random deviations within this cluster, suggesting that global optima are
statistically uncertain. In some cases, multiple distinct clusters of optima
exist, indicating that multiple models are good fits to the data. Under these
circumstances, deciding which model is more physically accurate requires
an understanding of the physics of the problem, which can help constrain
the fit to a particular region of parameter space (30). In rarer cases, obvious
clusters of local minima are misleading, and a truly accurate model is ill-
informed by x* analysis alone. Therefore, true insight into the nature of
the model is required for accurate fitting of data (31).

Fitting protocols and analysis of the ¥ landscape

Here, we consider that the uncertainty associated with fitting always
arises from two sources, experimental or fit uncertainty. Experimental un-
certainty arises from noise, artifacts, or other error associated with data
collection. Fit uncertainty arises because multiple sets of parameters
describe a given data set with sufficient accuracy, and we are unable
to meaningfully distinguish between them. As we demonstrate in the Re-
sults section, fit uncertainty is important, even when we analyze ideal,
simulated spectra. Therefore, fit uncertainty encompasses the effects of
overfitting within a rugged cluster, as well as the possibility that the
SLE model or x* function interacts unexpectedly with data artifacts.
Our results suggest that for CW-EPR in the X-band, fit uncertainty is
usually a much more significant problem than experimental error.

In most cases, the contribution of experimental error is nearly negligible
for CW-EPR fitting, particularly with the development of wavelet-based
methods for denoising spectral data (40). Nonetheless, we can account
for the effects of any residual experimental noise in EPR fitting via a Monte
Carlo approach (30). By fitting the same spectrum many times, randomly
varying the experimental noise, we ensure that we accurately incorporated
the effect of noise into any uncertainty estimates we generate. In our soft-
ware, we refer to this option as Monte Carlo resampling. To describe fit un-
certainty, we run multiple Levenberg-Marquardt optimization algorithms
with a randomly varied starting point (Monte Carlo Levenberg-Marquardt
(MCLM)). The iteration of this process within a bounded region identifies
a large number of local x> minima, as well as the function’s global mini-
mum. As a minor technical note, our algorithms operate via minimization
of the reduced % function, defined as Xf = x?/v, where v is the number
of degrees of freedom available to the fit. These have the same optima
because v is constant.

We select the subset of the minima whose values fall below a threshold
value (x3,.4)- The threshold value is small enough that all models accu-
rately describe the data but large enough to provide a statistically represen-
tative sampling of local x> minima for the cluster containing the global
optimum. We use this cluster of good fits to assign a univariate distribution
to each parameter and treat this as the fit uncertainty. This distribution al-
lows us to assign confidence intervals to each parameter. Because the values
of parameters within a cluster are often correlated, these distributions prob-
ably overstate the uncertainty of our fitting process; however, this process
allows us to assign reliable uncertainty estimates to fitted parameters. We
combined the MCLM method with Monte Carlo spectral variation to ac-
count for both experimental and fit uncertainty.
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Poor reproducibility of CW-EPR fitting often occurs when the positions
of global optima vary considerably within their good-fit cluster. In these
cases, we observe the positions of the clusters themselves to be quite repro-
ducible. We therefore take the approach of assigning a measure of central
tendency to fit clusters to achieve self-consistency. Because these clusters
tend to have unusual shapes, we compare three metrics for central ten-
dency—the marginal median, the geometric median, and the medoid—to
identify which of these describes the data accurately. A fourth method,
the mean, was disregarded because it produced irregular results due to
the disproportionate weight of outlying data. Precise formulas for these
metrics are available in the Supporting Materials and Methods. All four
metrics are included within our software package, and our comparisons be-
tween these and the global optima are presented in the results section.

RESULTS

Peptide spin labels incorporated into self-
assembled nanoribbons

We synthesized four spin labeled molecules whose chemical
structures are illustrated in Fig. 1 (with synthetic details
described in Table 1). These spin labels were incorporated
by co-assembly into AA nanoribbons. CSCA analysis of nano-
ribbons spin labeled with compounds 2-5 reveal room temper-
ature rotational diffusion rates, Dy, reported in Table 1. Dg-
values are smallest for the shortest proline sequences, indi-
cating that the motion of these peptides are the most restricted.
This trend, coupled with the observed lack of concentration
dependence, is a good indicator that labeled samples integrate
into the self-assembled nanostructure. If the oligoprolines had
been dissolved in water rather than tethered to a nanostructure,
the shorter peptides would ordinarily move faster than longer
ones (41). If the labeled molecules had instead precipitated
into a unique phase, spin-spin interactions would have resulted
in a significantly different EPR spectral lineshape. Therefore,
we conclude that the labels reside at positions separated in
space tethered to the surface of the self-assembled
nanoribbons.

Measures of central tendency achieve self-
consistent descriptions of rotational diffusion
rates

We used CSCA analysis to produce Arrhenius plots of the
rotational diffusion rates, D, of each sample as a function
of temperature. In almost every case, comparison of the

global X% optima showed a high degree of inconsistency
of Dy and the appearance of non-Arrhenius behavior, partic-
ularly in colder, slower-moving samples. For these samples,
the mean also proved inconsistent, so we chose to neglect it
from further analysis. All three median-based methods, the
marginal median, geometric median, and medoid, agree on
the optimal value of Dy at every temperature, resulting in
linear Arrhenius behavior of Dy that is typical for diffusive
processes. Fig. 2, a—d illustrates the Arrhenius fits produced
by each median method and the global optimum for com-
pound 1 coassembled with 2, 3, 4, and 5, respectively.
50% confidence intervals based on the univariate histogram
of Dg-values are overlaid, indicating that the global opti-
mum frequently falls at an extreme position within the clus-
ter, a fundamental weakness of the approach. Fig. 2 e
presents the R” obtained for each Arrhenius fit and shows
that the median methods all describe a thermally activated
process, whereas the global optimum does not.

Although Dy was remains similar between AA-P8-SL
and AA-P12-SL, the shorter peptides exhibit much slower
rates of conformational change. Multiple explanations
may justify this, but the likeliest are either 1) intermolecular
interaction between the spin labels and adjacent amphiphile
headgroups, which are only possible in the shortest peptides,
or 2) an effect of solvent dynamics because water molecules
are influenced by nearby surfaces and in particular are
slowed down at supramolecular interfaces with high surface
charge density (42).

Significantly, median methods reveal that for slowly mov-
ing probes, an accurate value for Dy should fall well below
the value associated with the global optimum. This observa-
tion is consistent with the limitations of the SLE model,
which is less reliable when rotational correlation times are
longer (14). This broadening is manifest in broadening of
good-fit clusters and the correspondingly larger error bars
observed at low temperatures, confirming that slow-motion
spectra are more prone to overfitting. Thus, our results
demonstrate that cluster-based fit analyses substantially in-
crease the range of Dg-values for which fitting can provide
meaningful insights using the SLE model.

One measurement artifact may have biased our analysis is
the presence of a dilute Mn>" radical in the Critoseal used to
close capillary tubes. Although we performed background
subtraction from a reference tube, slight variations in the

TABLE 1 Spin Labeled Oligoprolines Tethered to the Surface of AA Nanoribbons

Expected Molecular ~ Observed Molecular Approximate Medoid Dy Medoid 7%
Compound Name Surface Sequence Weight Weight Helix Length (A) (T =299 K) (T =299 K)
2 AA-P3-SL -PPPJ 961.48 961.50 9.3 55 % 10" s 32%x107%s
3 AA-P5-SL -PPPPPJ 1155.58 1155.61 15.5 6.5 % 10" s 27 %1077 s
4 AA-P8-SL -PPPPPPPPJ 1446.75 1446.76 24.8 9.8 x 10" s 17x107°s
5 AA-P12-SL  -PPPPPPPPPPPPJ 1834.96 1834.98 37.2 9.8 x 107 s 17x107°%s

The spin label TOAC residue is denoted by J. The expected and observed molecular weights are presented, with supporting LC-MS data presented in Fig. S1.
The expected oligoproline helix length is calculated based on the known left-handed poly-proline type 2 (PPII) helix length of 0.31 nm per proline residue

(46). Correlation times were computed by the formula 7z = 1/(6Dg).
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FIGURE 2 Arrhenius plots describe Dy derived from CSCA analysis of EPR fits. Arrhenius plots of co-assemblies of (¢) compound 1 and 2, in which the
spin label is positioned close to the nanoribbon surface; (b) compound 1 and 3; (¢) compound 1 and 4; and (d) compound 1 and 5, in which the spin label is far
from the nanoribbon surface, are given. Within each Arrhenius plot, Dg-values computed using the global optimum, the marginal median, the geometric
median, and the medoid are included. The mean was excluded because, like the global optimum, it lacks self-consistency in Dg. A 50% confidence interval

for each Dy is also presented, based on the Dy histogram. (e) The R* values for each Arrhenius-type fit are presented. Each measure of central tendency agrees

on the Arrhenius behavior of D, with the exception of the global optimum. This figure is available for viewing in color online.

amount of sealant used resulted in a minor distortion of the
spectrum in the low-field range. Fortunately, this signal only
partially overlaps with the EPR signal, so we are confident
that its effects are minimized during background subtrac-
tion. Furthermore, the inclusion of Monte Carlo data resam-
pling to each fit helps ensure that our results are robust. An
unsubtracted background is presented in Fig. S83.

rameters, namely the ¢,y orienting potential and the
Gaussian line broadening, yo. This shortcoming results
from the unusual curvature of good-fit clusters in parameter
space. Fig. 3 a represents the x> landscape of these param-
eters for a representative AA-P3-SL sample collected at
275 K. This analysis contains Xf-values calculated during
every iteration of an MCLM analysis, which started from

500 initial positions. Fig. 3 a shows the positions of x2
minima, depicted by purple points, which form a cluster
containing the global optimum. This optimum and each
metric of central tendency are labeled. For these spectra,
we used a three-parameter model, fitting for c,g, 7vo, and
Dpg. The two-dimensional scatter plots in Fig. 3 a flatten
the x? function to show its dependence on each pair of

The geometric median and medoid provide the
most physically representative estimates of other
parameters

Despite their agreement on Dy, the measures of central ten-
dency often fail to agree on appropriate values for other pa-
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FIGURE 3 CSCA representations of the x2 landscape for a spectral fit. (a) Scatter plots of the x landscape associated with fitting the EPR spectrum of
AA-P3-SL at 275 K are given. The first three plots flatten the x2 landscape to a function of two parameters, whereas the fourth preserves its full, three-dimen-
sional shape. Color indicates the value of x2. Smaller values are rendered in blue, and larger values are rendered in yellow and intermediate values in shades
of green. Local minima are overlaid in purple, and the global optimum and the various cluster medians are plotted using large symbols in each figure. The
final plot shows the raw EPR spectrum (black) as well as the best fit (blue). (b) This row is identical to the row above it, except that instead of fitting exper-
imental data, we analyzed the best-fit spectrum taken from the line above. The position of the new global optimum shifts significantly, indicating that the
initial data set was overfitted. In contrast, the median methods remained highly self-consistent. This figure is available for viewing in color online.
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variables, and the complete dependence is presented in the
three-dimensional plot.

A three-parameter approach was chosen as the simplest
model capable of describing the data to reduce the risk of
overfitting. Necessarily, our assumptions—e.g., the isotropy
of Dy and the thermal stability and symmetry of the hyper-
fine and g-tensors—bias our results in favor of simple and
symmetric views of the data. However, these assumptions
are physically reasonable in the case of spin labeled pep-
tides, and, in our experience, including more parameters
often results in overfitting.

In Fig. 3 b, we fit the simulated EPR spectrum that best
describes the original data shown in Fig. 3 a. The same
randomized starting values were used to analyze both
the experimental and the simulated data sets, with no syn-
thetic noise added. In principle, fitting a simulated spec-
trum should identify x2, = O precisely at the position
of the parameters used for simulation. However, we
observed that the position of the global x> optimum devi-
ates significantly from the best-fit parameters used to
generate this spectrum. In such cases, when we attempted
to assign X3, for 95% confidence intervals via a clas-
sical approach (using the x? distribution), we found that
no other observed points fell below X2, ., (43). Yet, we
know that a point exists in that neighborhood where
X2, is zero (to within round-off error), indicating that
the x* function for this kind of analysis has achieved
such pathological roughness that our algorithms could
not sufficiently sample the neighborhood of the minimum.
When started at the correct coordinates, the algorithm
converges to the correct minimum.

This inconsistency reveals the uncertainty of the global
Xf optimum as a representation of spin label dynamics. In
contrast, all median methods were self-consistent in com-
parisons of simulated versus real data. This consistency
can be verified by inspection of Figs. S3—S42, which are
analyses of every spectrum collected in this work. There-
fore, using CSCA, we find that clusters of good fits are
self-consistent, even if positions of the global optima
are not. Furthermore, the Arrhenius behavior of all of
these metrics suggests that cluster position depend logi-
cally on temperature, further supporting this method of
analysis.

As illustrated in Figs. 3 and S3-S42, we find that not
every median-based analysis performs equally well.
Although they all agree on the value of D, the U-shaped na-
ture of good-fit clusters means that the marginal median
frequently selects points that do not fall within the cluster
itself. In contrast, the geometric median tends to conform
quite closely to the cluster, and the medoid must fall within
the cluster by its mathematical construction. In general, we
prefer the medoid because this metric necessarily falls
within the best-fit cluster. One critique of this method is
that reporting cluster centers in place of global optima has
no statistical advantage because, unlike the global optimum,
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cluster centers cannot serve as maximal likelihood estima-
tors for the fit parameters. However, the pathological nature
of our x? function suggests that we cannot be confident in
the positions we have identified as global optima. Therefore,
relying on this more heuristic approach for identifying
optimal parameters is likely, in many cases, to give more
physical and reproducible fitting results. In our experience,
this approach is particularly well suited for fitting CW-EPR
spectra in the slow-motion regime, but its applicability to
other types of data fitting relies on the particulars of those
analyses.

From these figures, as well as the error bars reported in
Fig. 2, we observe that overfitting occurs most frequently
in the rigid limit, at which the SLE model begins to break
down. Physically, this phenomenon suggests that as rota-
tional diffusion slows beyond the resolution of the SLE
model, our ability to precisely define Dy is reduced. None-
theless, we observe that the cluster positions are relatively
self-consistent and predictable, a key advantage of this
approach.

Classical methods exist for predicting confidence inter-
vals for fit parameters, however these methods are only
capable of providing realistic estimates when the data
adequately sample the island of confidence. Therefore, we
take a heuristic approach, artificially increasing X3,y t0
exceed the roughness of x> near the minimum and giving
each valid local minimum equal statistical weight. In this
way, we establish univariate distributions for the uncertainty
in each parameter. Therefore, our error bars do not depend
on the precise position of the global best fit. In our experi-
ence, the error bars greatly overstate error because good-
fit clusters tend to follow predictable patterns rather than
falling randomly within the uncertainty window. However,
we view this as a benefit because we have greater confidence
that the accurate value falls within our prescribed range.
Notably, the global best fit rarely falls within the range con-
taining the central 50% of Dg-values. We acknowledge that
the accuracy of this calculation could be biased by the
nonuniform distribution of local minima, and as a result,
the confidence interval boundaries should be treated with
a degree of caution.

Finally, we wish to specifically address the Mn?" subtrac-
tion artifact noted in Measures of Central Tendency Achieve
Self-Consistent Descriptions of Rotational Diffusion Rates.
This artifact may have influenced our observed values of
Dg, and we have indicated our approach toward correcting
the role of this distortion. However, we are confident that
these distortions have negligible bearing on the results
described in this section, which describe the nature of
EPR spectral fitting in general. The X,% landscape for fits
of simulated spectra still includes the broad “islands of un-
certainty” containing local x2,,. Because simulated spectra
do not contain Mn>" subtraction artifacts, we are confident
that the properties observed in the x2 landscape apply gener-
ally to CW-EPR fitting of nitroxides in the X-band.
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Observed activation energies closely correspond
to predictions based on the energy landscape
model

The activation energies were computed for each peptide as a
function of approximate distance from the nanoribbon surface
(Fig. 4). We estimated this distance based on the helix length
presented in Table 1 but acknowledge that the true distance
could be affected by the absence of a charged headgroup in
AA-Pn-SL compounds, the added length of TOAC, or the
angle between the oligoproline helix and the assembly’s sur-
face. For peptides long enough to form oligoproline helices
(longer than three residues), the activation energy of
diffusion is nearly constant, ~40 kJ/mol. The calculated values
of activation energy of diffusion exceeded those observed for
other peptides, which typically fall below ~10 kJ/mol (4).
However, the peptides with activation energies of diffusion
less than 10 kJ/mol are intrinsically disordered, whereas oligo-
prolines exhibit a stable conformational structure, especially
when the oligoproline contains four or more residues, in which
case stable helix formation occurs (36,37).

In previous works, the activation energy of peptide diffu-
sion was determined by EPR and was shown to correspond
to the characteristic energy barrier associated with diffusion
through a rough energy landscape (4,5). In the case of oligo-
proline helices, these landscapes have been described by
molecular dynamics simulations, making our oligoproline-
based samples an ideal test of this conclusion (37). These

42
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FIGURE 4 Activation energies of diffusion, Q, of spin labels tethered at
known distances off a nanoribbon surface. Values of Q are computed from
the medoid values for Dy as a function of spin label height, with error bars
based on the standard error of each linear fit. The oligoproline spacer of
compound 2 is too short to form a complete helix (<4 residues). The acti-
vation energies of diffusion of compounds 3-5 co-assembled with com-
pound 1 are similar—~40 kJ/mol— and comparable to the energy barrier
associated with conformational change in oligoproline helices. This figure
is available for viewing in color online.

Computational Tool

studies indicated that the conformational energy landscape
of oligoproline contains a significant number of energy
wells, each corresponding to a stable point between pure
polyproline type 1 (PPI) and pure polyproline type 2
(PPII) secondary structure. The observed energy barrier
for transitions between these wells is ~40 kJ/mol, agreeing
closely with our observations (37). Thus, our observed acti-
vation behavior is consistent with the picture of rigid oligo-
proline helices, whose motions are associated with
surveying of the oligoproline energy landscape.

DISCUSSION

Here we present a software, CSCA, for batch-fitting and -
squared cluster analysis of CW-EPR spectra. This software
allows one to self-consistently place an optimum within a
rugged cluster of local minima. Furthermore, we identify
CW-EPR as an experimental area in which statistical
methods may provide valuable insights into the physics of
a system. We use cluster-based methods that select the me-
doid, the geometric median, or the marginal median to
demonstrate that the diffusional motion of peptides tethered
to a nanostructure is a thermally activated (Arrhenius) pro-
cess, and we find that the activation energy matches the
characteristic energy barrier associated with conformational
change in oligoproline helices (37). In concert with rapid
protocols for peptide synthesis (4,44), this methodology
provides a robust and high-throughput approach for the
experimental analysis of conformational energy landscapes
in peptides. We employ a medoid-based approach to assure
that good fits are fully descriptive of experimental data (i.e.,
they fall within an obvious cluster of local minima) and self-
consistent enough to allow Arrhenius analysis of Dg. By
making these capabilities available publicly through the
CSCA software toolkit, this approach may be adapted to
suit the needs of a variety of experimenters.

SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
2020.08.042.
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