SEQUENCE BRAIDING: Visual Overviews of Temporal Event
Sequences and Attributes
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Fig. 1: An example of SEQUENCE BRAIDING applied to blood glucose and meal data of a patient with type 1 diabetes. This
temporal event sequence and attribute data is modeled using a layered directed acyclic network, where each node == represents an
individual event (meal) and contiguous edges connect the events from a single day in sequence. Nodes are aligned into columns
based on their event (meal) type and into rows based on attribute values, in this case quantitative blood glucose groups. Nodes are
also color-coded by attribute group: M very high, M high, B normal, ' low, and M very low.

Abstract—Temporal event sequence alignment has been used in many domains to visualize nuanced changes and interactions
over time. Existing approaches align one or two sentinel events. Overview tasks require examining all alignments of interest using
interaction and time or juxtaposition of many visualizations. Furthermore, any event attribute overviews are not closely tied to sequence
visualizations. We present SEQUENCE BRAIDING, a novel overview visualization for temporal event sequences and attributes using a
layered directed acyclic network. SEQUENCE BRAIDING visually aligns many temporal events and attribute groups simultaneously and
supports arbitrary ordering, absence, and duplication of events. In a controlled experiment we compare SEQUENCE BRAIDING and
IDMVis on user task completion time, correctness, error, and confidence. Our results provide good evidence that users of SEQUENCE
BRAIDING can understand high-level patterns and trends faster and with similar error. A full version of this paper with all appendices;

the evaluation stimuli, data, and analysis code; and source code are available at osf.io/mqg2wt.

Index Terms—Temporal event sequence visualization, network visualization, algorithm, evaluation
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1 INTRODUCTION

Temporal event sequence data is common across many domains such
as health care, activity tracking, sports analytics, cybersecurity incident
analysis, and web analytics [13]. The gathering and analysis of this
data is important to help users make sense of what has happened and to
aid in future decision making. Analysts are often interested in whether
there are general patterns and trends in the data. These patterns can be
related to the sequence, such as the common precursor, co-occurring,
and aftereffect events around an event of interest, but also the attributes
associated with these events [13].

For sequence analysis, sentinel event alignment has been used effec-
tively for clearly showing patterns around one [55] or two [63] events of
interest. However, overview tasks may require examining all possible
alignments of interest. Existing alignment approaches require interac-
tion and time or juxtaposing many separate aligned visualizations for
the analysts to build such an overview.

Multiple coordinated visualizations help illustrate overviews of event
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attributes [56]. However, it is challenging to examine the linkage be-
tween related data in juxtaposed views due to limited space for each
individual visualization. Moreover, coordination in juxtaposed views
requires substantial interactions [24]. Existing approaches for combin-
ing event sequence and attribute visualization include separating event
types for quantitative attribute groups (e.g., [32,55]) and using color to
encode aggregated attributes (e.g., [39]). Yet, current approaches do
not sufficiently support visualizing event sequence data and attributes
together. Therefore, we need new holistic overviews that directly inte-
grate attributes as a first-class citizen in sequence visualization.

We aim to address these issues by aligning a large number of tempo-
ral events as well as aggregating attribute groups in a single overview-
first visualization. The main contributions of this paper are:

1. SEQUENCE BRAIDING, a novel network visualization technique
for temporal event sequences and attributes. Many temporal
events and attribute groups are aligned simultaneously to sup-
port overview analysis of sequence and attribute data, while still
preserving the ability to follow individual sequences.

2. An n-layer network layout algorithm with grouping and group
ordering constraints for creating SEQUENCE BRAIDING visual-
izations, focused on intersection reduction and building on the
barycentric approach.

3. The results of a comparative evaluation based on user task com-
pletion time, correctness, error, and confidence which evidences
the efficacy of SEQUENCE BRAIDING.

The structure of the paper is as follows: First, we motivate SE-
QUENCE BRAIDING using a design case study of type 1 diabetes
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treatment, though our approach is general and we show examples
of effective usage in other domains. We next discuss related work on
temporal event sequence visualization and n-layer graph intersection
reduction approaches. From our case study, we then gather design
requirements that informed the design, implementation, and layout
algorithm behind SEQUENCE BRAIDING. Finally, we discuss our com-
parative evaluation and the implications of our work for researchers
and practitioners. A full version of this paper with all appendices and
supplemental material is available at osf.io/mg2wt and examples are
online at the SEQUENCE BRAIDING website!.

1.1 Motivating Case Study: Type 1 Diabetes

We introduce our visualization technique and algorithms in the context
of a design case study on type 1 diabetes treatment.

Type 1 diabetes is an incurable autoimmune disease that affects
the patients’ ability to regulate their blood glucose levels [58]. The
only treatment is for patients or their caregiver(s) to take over the
role of their body in monitoring their blood glucose and administering
food and injecting insulin to shift their glucose levels up and down,
respectively [58]. Our discussion here of type 1 diabetes treatment is
necessarily limited. For more information please see [43,58, 63].

Blood glucose levels can be monitored by periodically testing
blood with a glucose meter (SMBG) [44], e.g., daily before eating, or
with a continuous glucose monitor (CGM), which provides frequent
measurements on the order of every 5 minutes throughout the day [8].
Proper titration of the amount of insulin to administer for treatment and
for food, e.g, at a meal, requires careful data analysis that can happen
on a monthly or even weekly schedule. This titration can even be done
independently by the patients themselves [58,63]. Regardless of who
performs the analysis, it requires that the patient or their caregiver(s)
have logged events such as food intake and insulin injection as well
as attributes like blood glucose levels at those events. Analyses are
generally limited to exploring the previous 14 days of data due to some
combination of logging burden, and relevance to current care and can
last 15-60 minutes in the clinical setting [63]. However, research in
diabetes treatment suggests that clinicians also need information over
a longer duration (e.g., three-month clinical visit data) to evaluate how
well patients control their diabetes condition [58]. Current approaches
do not sufficiently support examining event sequences within a long
period of time. Our approach attempts to address this issue.

1.1.1

For this study we use data from an anonymized single elementary-
school-aged child with type 1 diabetes which was collected by the
patient and their caregivers over 877 days. It includes timestamped
pre-meal blood glucose measurements (SMBG or CGM), the meal type,
the grams of carbohydrates ingested with each meal, and the injected
insulin amount in units (U-100, 1 unit= 0.01 mL). Blood glucose
measurements are recorded using mg/dL in the USA, also used herein,
with target values falling in 80-180 mg/dL. Excursions from this range
can result in both imminent and long-term medical complications [2].
In the UK and many other countries, mmol/L is used with a target of
4.4-10 mmol/L. Roughly, mg/dL. = 18 x mmol/L. We contribute this
data as part of our supplemental material at osf.io/mq2wt.

Software tools are available for visualizing diabetes data, e.g., using
line charts and high-level aggregates such as time-in-range, but few pro-
vide effective multi-day event sequence and attribute overviews which
are necessary for insulin titration [63] and none support simultaneous
alignment of temporal events and attribute groups for overview analysis.
For an overview of diabetes visualizations see Zhang et al. [63].

Type 1 Diabetes Data and Tools

1.1.2 Type 1 Diabetes Case Study

A subset of this data is shown using SEQUENCE BRAIDING in fig. 1.
Since the data is human-generated, the logs can have anomalies
in them. While our system is resilient to anomalies, larger human
introduced errors such as missing types or attributes are impossible
to automatically handle and are therefore discarded. We group the
records according to their blood glucose values into 5 predefined
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ordinal groups — M very high, M high, B normal,
low. The logs are temporally folded by day [13].

low, and M very

2 RELATED WORK
2.1 Temporal Event Sequence Visualization

Much has been written on event sequence visualization given the
widespread availability of data and variety of visual representations
possible. There have been attempts at defining a design space for event
sequences, e.g., Du et al. [13], Chen et al. [10], and Tang et al. [50].

As we have discussed, aligning temporal event sequences by sentinel
events of interest can help display patterns of precursor, co-occurring,
and aftereffect events [13]. Single-event alignment was pioneered
by LifeLines2 [55] for clinical tasks and has been adopted in the de-
sign of, e.g., CareCruiser [21], LifeFlow [60], EventFlow [32], and
Peekquence [28]. Single-event alignment has since been applied to
many diverse domains [13]. Recently, in IDMVis Zhang et al. [63]
extended this approach to support dual-event alignment and provide
ways for scaling the intermediate timeline. The value of dual-event
alignment for analyzing intermediate events was demonstrated in a con-
trolled experiment by Zhang et al. [64]. These alignment approaches
display either an exact or relative time delta around sentinel events.

In order to provide overviews of the entire set of sequences, several
tools have used layered flow graph visualizations. LifeFlow [60] and
EventFlow [32] have used hierarchical icicle plots to aggregate events
at multiple layers out from the aligned sentinel event. BaobabView [53]
used a comparable approach for visualizing decision trees. Escaping
the limits imposed by a strict hierarchy, Outflow [59], Care Pathway
Explorer [40], used node-link visualizations of directed acyclic graphs
and combined events of a type at each layer, akin to interactive Sankey
diagrams [41], TopicStream [31], or the adjacency matrix representation
in MatrixWave [66]. However, there are limitations to layered flow
graph approaches: (1) there exists a fan-out effect as the number of
possible subsequences expands each layer from the alignment, (2)
each layer can contain many different types of events making high-
level observation difficult, and (3) by necessity the time delta between
events on subsequent layers is aggregated or omitted in static views. In
SEQUENCE BRAIDING we address issues (1) and (2), and retain (3).

Like our work, egoSlider [61] and Set Streams [1] employ layered
node-link graphs, with the objective of using graph topology to high-
light patterns in the data. Both use fixed rank assignment by binning
events by time period, while SEQUENCE BRAIDING uses an event
alignment algorithm. Moreover, we improve upon the simplistic inter-
section reduction methods used. Interestingly, Hive Plots [26], pursues
the same objective with a radial axis that represents a layer for each
structurally-derived attribute of interest, with nodes positioned by the
attribute value. This limited structural grouping can produce visual sig-
natures to help make patterns stand out. These node-link visualizations
share issues (2) and (3) with flow graphs, mentioned above.

Conversely, storyline visualizations such as described by Tanahashi
et al. [49] and Tang et al. [50] are designed to represent the relational
dynamics of individual entities, each represented by a line. While the
overall goal is similar to ours, storylines make use of vertical position
only for showing approximate groupings of entities at time points and
not exact event or attribute alignment as is our goal with SEQUENCE
BRAIDING. Likewise, it is possible to directly visualize multiple se-
quence alignment results as in Sequence Bundles [27], though it is not
designed for showing attribute and event overviews.

As our domain case study is related to type 1 diabetes, we should
point out the survey of electronic health record visualizations by Rind
et al. [42] and the five W for healthcare informatics visualization [65].
However, as SEQUENCE BRAIDING is a general-purpose event se-
quence and attribute visualization, we will not further detail less rele-
vant domain visualizations.

2.2 N-layer Intersection Reduction Approaches

The barycentric approach is a common heuristic-based method to re-
duce the number of intersections in a layered graph. The vertical posi-
tioning can be computed using either the mean [46] or the median [15]
for the barycenter of incident nodes. The use of heuristics is common in
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solving the intersection reduction problem [12,52]. Gansner et al. [19]
use another heuristic approach using the median, and cite Warfield [57]
as a base for their work. In SEQUENCE BRAIDING, we use Gansner et
al. as a base, adding a multiple sequence alignment algorithm for the
rank assignment step and grouping constraints. Another approach is
based on calculating and drawing the maximum level planar subgraph
and reinserting the nonplanar edges at the end — with the nonplanar
edges being the ones that introduce crossings [34,35].

Heuristic approaches do not guarantee an optimal solution. It is
possible to formulate the problem as a linear programming problem to
find an optimal solution [18,25, 62]. However, these methods are only
suitable for small graphs. We discuss this further in appendix B.

N-layer intersection reduction techniques have been applied to a mul-
titude of different contexts that required different constraints and have
different objectives. Waddle [54] proposes the problem of displaying
data structures on graphs with nodes that include ports. Metro map lay-
out algorithms often include layered intersection reduction approaches
aimed at better readability [4,37]. For a more complete survey, please
see Tamassia’s book on graph drawing [48].

3 DESIGN REQUIREMENTS

We first developed requirements using Adrienko & Adrienko’s general
task typology [3] and a hierarchical task abstraction by Zhang et al. [63].

DR 1: Support many-event alignment — The visualization should
support many-event alignment such that general patterns across event
sequences can be clearly displayed in a single overview-first visual-
ization. A single visualization avoids needing interaction and time or
juxtaposing many aligned visualizations for creating a mental overview.

DR 2: Provide an overview of the distribution of attribute values
at each event — The visualization should let the reader have a sense
of the distribution of values among events in each event type — e.g.,
being able to discern the prevalent value, and in what percentage.

DR 3: Allow holistic analysis of a set of sequences — Attribute and
sequence overviews should be closely tied for a more holistic analysis.

DR 4: Support arbitrary ordering, absence, and duplication of
events — Human-generated data is messy and prone to errors. Our
visualization must not make any assumption on the data and be robust
with regards to arbitrary ordering, absence, and duplication of events.

DR 5: Specific sequences are uniquely identifiable — Within the
overview, the reader can still identify specific sequences and all the
events belonging to that sequence.

DR 6: Support reasoning about an individual event type — The
visualization should display the distribution of an attribute value, the
frequency of the precursor, and aftereffect events.

4 SEQUENCE BRAIDING

SEQUENCE BRAIDING is a method to display multiple sequences of
events with associated values, that aims to help the reader detect patterns
and trends in the data. Multiple sequences spanning a time window are
represented adjacent to each other, with each sequence being displayed
as a line. Events which occurred throughout a sequence are represented
by nodes placed on the line and aligned according to their type.

The ranks for each event type are computed before building the
visualization via pairwise alignment. In accordance with DR 4, the use
of an alignment algorithm allows our method to represent any types of
event occurring in any order. In SEQUENCE BRAIDING, each event
has a continuous attribute associated with it. The attribute values are
grouped into ordinal groups based either on the data or to minimize
edge crossings. We keep a consistent ordering of events according to
their associated attribute across the ranks in order to make patterns and
outliers emerge. The most apt ordering for the attribute should be used.
This can be the numeric value of the attribute (e.g., blood glucose), or
an arbitrary ordering (e.g., chess pieces).

SEQUENCE BRAIDING is designed for non-cyclic sequences: if an
event occurs twice in a sequence, the event will be repeated. This is
necessary in order to represent sequences with repeating events (such
as multiple snacks in a day) that do not imply a cycle. Cyclicity can be

managed by folding [13] the sequences according to the qualities of a
dataset and needs of the designer. In our diabetes case study, given the
cyclic nature of daily behaviors we fold the sequences at each midnight.
However, folding by week may also be appropriate.

One of the largest advantages that SEQUENCE BRAIDING offers
over the other currently available methods is the ability to represent
many sequences simultaneously in relatively little space, as in fig. 7
with 200 sequences. Even with more sequences, the overview clearly
shows the distribution of events in each attribute group for each event
type, and by focusing on the groups it can be read like a bar chart.

We believe SEQUENCE BRAIDING can be generalized to many
domains which have sequences with similar characteristics, discussed
in section 8.3. Examples of other uses can be found in appendix A.
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SEQUENCE BRAIDING represents events as nodes in a graph. An edge
represents a sequential relationship between two events. The algorithm
has two key steps: rank assignment & intersection reduction. Rank
assignment is obtained through a pairwise alignment of the input se-
quences. Ordering within each rank is then done through a constrained
intersection reduction algorithm based on the barycentric approach.

The objective of the rank assignment step is to find the shortest com-
mon supersequence of events that ensures they match across sequences.
This supersequence allows us to keep events that are often subsequent
close together, creating clusters of edges and high-level visual patterns.
Likewise, anomalous infrequent events stand out from the rest. The
intersection reduction step is then used to improve the readability and
visibility of the high-level patterns. This step moves nodes within the
prescribed constraints imposed by the rank assignment and their ordinal
attribute value groups. The diabetes dataset well demonstrates how
these features play well together. Meals that often happen subsequently
appear close together and common chains of events and attributes ap-
pear grouped, making the trend stand out. Conversely, rarer events
catch the eye as outliers not grouped with the others.

The output is a graph layout that supports many-event alignment
[DR 1], allows the holistic analysis of a set of sequences [DR 3], yet
ensures specific sequences are uniquely identifiable [DR 5].

Description of the Algorithm

4.1.1

The shortest common supersequence is the sequence that contains all
the sequences of a collection as subsequences. Given two sequences
X =<X{,..,xm>and Y =<yq,...,y, >,asequence U =< uy,...,u; >
is a common supersequence of X and Y if items can be removed from U
to produce X or Y. In our case, we want to find out the shortest common
supersequence of our collection of sequences of events. This is known
either as the multiple sequence alignment or the shortest supersequence
problem. Sequences can be aligned by adding gaps, assigning a positive
score to the matches, or a negative score to all the mismatches or gaps
that are introduced. As an example, the result of aligning the two DNA
sequences ATCGGTGAC and ACGGTATC by inserting gaps (-) could be:

ATCGGTGAC > ATCGGTGA-C » ATCGGTGATC
ACGGTATC - A-CGGT-ATC -

Similarly, we map each event type to an alphabet letter and produce a
general sequence of events that has all the sequences in our dataset as
subsequences. There are several ways to perform multiple sequence
alignment. A general approach is to use a graph to represent all possible
alignments, and use a heuristic to help find a path through the graph
that produces an alignment [23,36]. However, due to the size that the
graph can reach, this approach is only feasible for small numbers of
sequences. Another one is progressive alignment, in which a multiple
sequence alignment is built up gradually using a series of pairwise
alignments [17,47]. Our approach is based on progressive alignment,
finding out the best matching sequences through pairwise alignment
and progressively aligning all the others. We used the Pairwise DNA
Alignment implementation from [45] to obtain the supersequence. Al-
though the algorithm is borrowed from a biomedical domain, pairwise
DNA alignment can be used in any domain. This allows us to compute
the shortest minimum supersequence of sequences with arbitrary event
types for any domain. In this way, if we align these sequences:

Rank Assignment: Multiple Sequence Alignment



Breakfast » Lunch - Snack » Dinner
Lunch > Dinner - Snack
Breakfast » Snack - Snack

We would obtain this supersequence:

Breakfast » Lunch - Snack » Dinner - Snack

The final result will be determined by the weight that is assigned to
each possible gap or match. The weights that we used are:

MATCH_SCORE : 10 BEGIN_GAP_PENALTY : 2
MISMATCH_SCORE : -50  GAP_PENALTY H
END_GAP_PENALTY H

In this way, we are indicating that mismatches are unacceptable, the
insertion of gaps is discouraged but accepted, and that we prefer more
gaps in the inner part of the sequences instead of outer buffers.

The use of the shortest common supersequence of events allows us
to minimize the number of ranks and the distance between common
subsequent events across all the sequences. While generating the super-
sequence, we abstain from making any assumptions about the order of
meals, or the number of them. Since we don’t make assumptions about
the ordering of the events, our method is robust towards anomalies in
the data and the messiness of real-world data [DR 4].

4.1.2 Building the Graph

We use a layered acyclic directed graph to represent our problem be-
cause it allows for a straightforward representation of sequences, and
allowed us to map the terminology to already-existing intersection re-
duction techniques ongraphs. We represent each event as a node, and
each relationship of sequentiality between two events as an edge.

The events in a sequence succeed each other in time, and there is no
way for an event to be succeeded by another event that is prior in time.
Therefore, the graph must be acyclic, which also allows for a consistent
rank assignment. We build the graph using the supersequence obtained
by the previous step. The depth (rank) of each node is determined by:

ref _seq <— supersequence
: £ < length of supersequence
: for s in sequences do
s[0].depth =0
for i = 1 to s.length do
cur_node = s[i]
prev_node = s[i—1]
cur_ref = ref_seq.slice(prev_node.depth, ()
cur_node.depth = cur_ref
.indexOf(k such that k == cur_node.event_type)

W =

R A

We cycle through every node in a sequence, and slice the supersequence
based on the depth of the previous node, thus making sure that the graph
is acyclic. We then find in the sliced supersequence the next event that
corresponds to the event type of the current node.

Each edge that passes through a rank without having a node on it will
be assigned an anchor: an object that behaves like a node in the sorting
process but is not assigned to a group and does not have a graphical
representation, and is only needed to assign a proper shape to the edge,
in order to make it pass through without overlapping with any nodes.

All nodes belonging to the same group must be adjacent, without
gaps or anchors between them. At this point, a rank contains a set
of anchors and a set of groups, with each group containing one or
more nodes. We then need order the elements in a rank on two levels:
between groups and anchors, and between nodes within each group.

4.1.3 Within-rank Node Sorting: intersection reduction heuristic

The vertical ordering is done following a heuristic approach based
on Gansner et al.’s work [19] for intersection reduction, that in turn
evolves from Sugiyama’s method [46]. Gansner et al. describe a general
approach including the assignment of ranks in a graph, but our ranks
are already assigned at this point, so we only use their technique within
each rank to establish a vertical order.

The sorting has to respect the following constraints: (1) If node A
belongs to a higher group than node B, node A should always be posi-
tioned above node B. (2) Nodes in the same group should be adjacent.

s

Lunch very high has
incoming edges from:

- breakfast very high (0)
- breakfast high (1)

- breakfast normal (2)
The wmean is 1

I

@

I

=1
— Lunch normal has
~ incoming edges from
breakfast normal (2) only,
the wmean is 2,
so it is positioned under
lunch very high

i

Fig. 2: The vertical positioning of
the groups in each rank is com-
puted according to the position,
in the previous rank, of the nodes
that are sources to the edges in-
coming in the group.

Rank

f

Node
Group

K— Anchor

Fig. 3: A rank can contain groups
and invisible anchors. A group
can contain 1 or more nodes. The
process of reordering nodes and
groups is repeated first left to right,
then right to left, several times.

Differently from the one by Gansner et al., our method produces a
result that is less optimized for crossings, but is suited for the specific
purpose of highlighting patterns. While their method starts with an
initial assignment of the ranks, our ranks are given by the alignment
algorithm. In the second step, when the ordering within the ranks is
computed, we have additional constraints over a general layered graph
that we need to respect: groups of nodes belonging to the same level
must be bundled together, and they need to follow the specific order
assigned to the general levels (e.g., in the case of the blood glucose
dataset, ‘very high’ nodes must be above ‘high’ nodes). Beyond a
general rank ordering, we also reorder the nodes within each group.

Initially, we define an order object: a two dimensional matrix having
all the ranks on one dimension and the sorted nodes in each rank on
the other dimension. After declaring a maximum number of iterations,
we incrementally sort the nodes, alternating between starting from the
leftmost rank and from the rightmost rank. The crossings() function
counts how many intersections there are when a particular order is
applied to the graph. We store the values in a temporary structure and
find our best ordering by iteratively sweeping left and right:

1: cur_ord <+ initial ordering
2: best_ord < cur_ord
3: for i = 0 to max_iterations do
if i%2 == 0 then
tmp_ord = sort_nodes_left(cur_ord)
else rmp_ord = sort_nodes_right(cur_ord)

AN

if crossings(tmp_ord) < crossings(best_ord) then
8: best_ord =tmp_ord
9: apply(best_ord)

The structure is swept at each iteration alternately from left to right
and from right to left. Each sorting pass of each one of the ranks will
sort items in each rank both at their group level (sorting groups and
anchors), and at the level of the nodes inside each group.

1: function sort_nodes_le ft(ord)
2 for i = 0to ord.length do
3 rank < ord|i]
4: for item in rank do
5: if item.isgroup then
6: for node in item.nodes do
7 node.wvalue < wvalue(node)
8 item.nodes.sort((a,b) —
within_group_sort(a,b))
9: item.wmean <— wmean(item)
10: rank.sort((a,b) — within_rank_sort(a,b))

The wvalue attribute is computed for all the nodes within a group, and
equals to the position in the previous rank of the node preceding the



Breakfast Lunch Snack Dinner

very high

normal

Fig. 4: 1 day represented using SEQUENCE BRAIDING will be dis-
played as single line. The day in the visualization had a breakfast in
the normal blood glucose range, then lunch and snack in the very high
blood glucose range, and then finished the day with a normal dinner.

current node in the same sequence. The wmean attribute is computed
for all the groups, and it is just the mean of all the wvalues of the nodes
belonging to the group. Note that while the within_group_sort function
is just a simple sorting based on the wvalue, the within_rank_sort has
a constraint that forces elements belonging to a higher group to be on
top of elements belonging to a lower group.

1: groups < ordered list of groups
2: function within_group_sort(a,b)
return a.wvalue < b.wvalue
3: function within_rank_sort(a,b)
4 if groups.indexOf (a.group) < groups.indexOf (b.group)
5: return 1
6 else return a.wmean < b.wmean

We consider convergence reached when we obtain the same solution
with the same number of intersections from three different cycles.
max_iterations is set to 20 by default, but can be customized. We
report a table with performance time in appendix B.4. In all the
tests we performed — including up to 3500 edges — the algorithm
converged in 13 or less iterations.

4.1.4 Linear Programming for Exact Intersection Reduction

The use of a heuristic for intersection reduction means no guarantees of
finding the optimal solution. An approach to find the optimal solution
is to formulate a linear program using the same constraints. Similar
approaches have already been experimented with [18, 62], and the pros
and cons have been discussed by Gansner [19]. We run a series of
experiments using a solution based on Zarate et al. [62]. Although a
linear programming approach finds an optimal and aesthetically pleas-
ing solution for smaller graphs, this approach does not scale to higher
numbers of edges. Indeed, while SEQUENCE BRAIDING is able to
effortlessly process a graph with 1400 edges in 2 seconds, our linear
programming approach ran out of memory. As representing more se-
quences was more relevant for us than displaying an optimal solution
to the intersection reduction problem, we deemed the use of a heuristic
more appropriate. Our linear programming implementation details and
timing comparisons can be found in appendix B.

4.2

We built a free and open-source web-based visualization tool using
JavaScript and the D3 library [6]. SequenceBraiding.js uses the output
of the graph layout algorithm to produce a visual representation. We
use rounded rectangles to display the nodes, and splines for the edges
between a node and the next. Each spline has anchor points before and
after the traversed nodes that allow us to give the impression of seeing
bundles of lines. Multiple gradients are applied to each spline reflecting
the colors of the nodes it passes through. Many aspects are customiz-
able. For example, the order of the groups can be forced: although the
algorithm can guess it, it is at times necessary to impose an order, e.g.,
when the it is meaningful to the domain. Event types — or columns —
can be filtered out by removing the ones that have fewer events than a
threshold. This reduces the event types displayed, but can be useful to
filter outliers in datasets with a very high number of events. Additional
details can be added by combining complementary views [9]. In fig. 6,
we show an example of how we combined multiple complementary
views from a plugin that we built, that enables showing additional infor-
mation and charts for each one of the sequences, and enables sorting by
attribute values. Documentation, customizability and interactive usage
examples are described on the SEQUENCE BRAIDING website?.

Implementation

2visdunnerigh‘c .github.io/sequence_braiding/docs/
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Fig. 5: 6 days represented using SEQUENCE BRAIDING. The lines
bundle together when the sequences follow a common pattern.
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Fig. 6: A plugin for SEQUENCE BRAIDING showing additional details
about the sequences. Here, we used the type 1 diabetes dataset: the
additional details for each sequences are the full date, day of the week,
distribution of the intake of carbohydrates for each meal event, and
percentage of time that day spent in pre-set blood glucose ranges.

5 COMPARATIVE EVALUATION

We conducted a mixed methods comparative evaluation of SEQUENCE
BRAIDING vs. a baseline visualization for understanding trends and
patterns in event sequence data. In a task-based, within-subjects, con-
trolled experiment we evaluated completion time, correctness, and error
magnitude. Before starting, the study design and analysis plan were
posted at osf.io/mq2wt. See the analysis plan there for complete
details.

5.1 Baseline for Comparison

We use IDMVis [63] as the baseline for comparison. IDMVis was
designed to support type 1 diabetes treatment, using multiple views
to support a large portion of the tasks that would take place during
a clinical visit. Its main view uses several alignment techniques to
enable comparing blood glucose levels at meals across several days,
even if the meals did not happen at the same time each day. We only
compare SEQUENCE BRAIDING with the main view from IDM Vis
as our focus is on showing high-level trends in an overview visual-
ization. In fact, SEQUENCE BRAIDING could be a suitable drop-in
replacement for the IDMVis main view. We limited our consideration
of possible baselines for comparison to tools that: (1) support event
sequence visualization, (2) support event alignment or aggregation by
attributes, and (3) are open source or have otherwise available code
for customization and evaluation. Candidates we considered include
Storylines [38], Storyflow [30], and Sequence Bundles [27]. How-
ever, we found each unsuitable due to substantially different purposes,
constraints, or approaches. More details are available in appendix C.

5.2 Tasks

The controlled experiment included 7 tasks, shown in the first column
of fig. 9 (A). We designed these tasks based on Adrienko & Adrienko’s
systematic approach for visualizing temporal data [3] and the task
analysis and abstraction for type 1 diabetes treatment developed by
Zhang et al. for IDMVis [63], our baseline for comparison. We
considered using well-cited task frameworks such as Brehmer et
al.’s multi-level typology [7] and Lee et al.’s taxonomy for graph
visualization [29]. However, we found these frameworks to be too
generic for helping us design our tasks.

Here we define the terminology used for our tasks. We contrast
elementary tasks and synoptic tasks as per Adrienko & Adrienko [3].
Elementary tasks relate to individual elements of the reference set,
whereas synoptic tasks involve the whole reference set or its subsets [3].
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Fig. 8: Comparison of the stimuli used in the experiment (Top: SE-
QUENCE BRAIDING vs. Bottom: IDMVis).

In SEQUENCE BRAIDING, an element of the reference set can be a
single day represented by a line to indicate the time interval or a given
event (e.g., meal) visualized by a rounded rectangle. A lookup elemen-
tary task means finding a characteristic relative to a specified element.
An inverse task involves having the participant find an element or rel-
evant subset for a given characteristic. For tasks including the term
behavior, we mean a generalisation of notions such as distribution,
variation, and trends — and behavior comparison indicates measur-
ing the degree of similarity/difference between behaviors for multiple
given reference sets. Relation seeking indicates finding occurrences of
specified relations between characteristics and determining the corre-
sponding elements or reference sets, while pattern identification is the
synoptic equivalent of an elementary lookup task.

We further refined the task selection based on the task analysis and
abstraction examined by Zhang et al. for IDMVis [63] to support a more
realistic comparison and our case study on type 1 diabetes treatment.
We include tasks that support overviews; focusing on identifying and
comparing trends, patterns, and outliers; as well as investigating data
quality such as missing data. We only considered tasks which could
be performed using both SEQUENCE BRAIDING and the main view in
IDMVis, e.g., SEQUENCE BRAIDING does not display precise timing
and IDMVis does not support aligning more than two meal labels at the
same time, eliminating tasks that require these encodings.

5.3 Stimuli and Questions

We formulated 7 multiple-choice questions instantiating our selected
tasks for the controlled experiment. In our within-subjects study, each
participant answered each of these questions using both visualizations
generated by SEQUENCE BRAIDING and IDMVis. The order of the
questions was counterbalanced to avoid ordering effects using a Latin
square design. We used the CGM and meal log event sequence data
from IDMVis [63] and its associated study [64] to build our stimuli.
Each question uses a different set of 14 days sampled from the dataset.
The data contained anomalies due to human error. SEQUENCE BRAID-
ING is robust towards anomalies, but we wanted to make sure to avoid
confusing our participants so we eliminated days with problematic am-
biguities. E.g., breakfasts recorded at 9 PM or lunches recorded after
dinners. As a result, the selected days for a question are not necessarily
consecutive but are from the same rough time period. We also smoothed
out places in the CGM curve where rapid changes co-occurred with
events relevant to our questions so as to avoid ambiguity.

Mark and font sizes were kept as similar as possible for the two visu-
alizations. The dots in IDMVis and the nodes in SEQUENCE BRAIDING
had similar heights. In IDMVis colored dots are used to show time
series data and triangles show events, while SEQUENCE BRAIDING
uses colored nodes for less frequent events and their attribute values.
SEQUENCE BRAIDING also uses lines to show event sequences while
IDMVis uses rows. Meal name fonts were also similar sizes. All the
stimuli can be found in our supplemental material at osf.io/mq2wt.

5.4 Procedure

We used a within-subjects approach. Authorized by the Institutional
Review Board of our institution, we recruited participants using flyers
at our institution and posting ads on Facebook. We ran a pilot study
before recruitment that helped us evaluate duration, feasibility, and
adverse events; verify our assumptions; and find flaws in the design.
Based on the pilot study, we conducted power analysis (with Type I
error rate o = 0.05, power 1 — 8 = 0.80 ) to determine the number of
total participants. We determined we needed at least 25 participants to
achieve consistent results for tasks 1, 4, 6, and 7. 16 males, 8 females,
and one that preferred not to say participated in our study. The median
age was 24 years old (/QR = 6), 5 participants held a Doctorate, 7 a
Master’s degree, 9 a Bachelor’s degree, and 4 a high school degree or
equivalent. In this in-person study, participants first signed a consent
form for recording audio and video, confirming they were at least
18 years of age and comfortable being interviewed in English, and
acknowledging the IRB terms. Participants were then given a laptop —
a Dell XPS 9570 with a 15-inch non-reflective screen running Firefox
68 on Ubuntu 18.04 —, mouse, keyboard, blank paper, pens, and a
calculator to perform simple operations. The calculator was provided so
as to minimize the effect of participant numeracy, e.g., for calculating
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Fig. 9: Results of our evaluation comparing SEQUENCE BRAIDING vs. IDMVis [63]. (A) Completion time and correctness per task. Each row
corresponds to the task at left, which is classified based on Andrienko & Andrienko [3]. The specific question instantiating that task for the study
is in the second column. (B) Participants’ Likert scale responses regarding confidence and ease of use. (C) Participants’ answers when asked what
other types of data would they use with SEQUENCE BRAIDING. (D) Participants’ reported strategies used. (E) Participants’ preference for which
method was most useful for displaying trends. (F) Error magnitude per task, for those which are quantifiable.



percentages, as numeracy was a possible confounding variable.

In the browser, participants then viewed an online tutorial about how
to read the first visualization they would see, followed by answering 7
multiple-choice questions using the associated stimuli. After complet-
ing these, participants viewed a tutorial about the second visualization,
followed by the other set of 7 associated questions. We alternated be-
tween participants starting from IDMVis and starting from SEQUENCE
BRAIDING. Our web app registered their answers and completion
time for each question answered, showed the correct answer after they
confirmed their answer, and stored the data for later analysis. At the
end, they filled in a survey with demographic and feedback questions.
Each participant was paid with a $10 Amazon gift card.

6 ANALYSIS
6.1 From NHST to Interval Estimation

Null hypothesis significance testing (NHST) tests a null hypothesis
and uses the p-value to decide whether to reject that hypothesis. Most
descriptions of statistical testing only focus on NHST for claiming
a definitive statistical significance [11]. However, p-values are not
definitive proofs of significance and it is dangerous to use a predefined
threshold like p < .05 to separate real results from the false ones. A
more refined goal of statistical analysis is to provide an evaluation of
certainty or uncertainty regarding the size of an effect [20]. Interval
Estimation involves providing information about a range in which the
true value lies with a certain degree of probability. Confidence intervals
are examples of interval estimates. Reporting both confidence intervals
and p-values helps better understand what’s happening in the data than
p-values alone because they provide complementary information [14].

6.2 Measures and Analysis

For each task, we measured the completion time and accuracy. The
accuracy is quantified at two levels of granularity for each question.
First, we determined the correctness, a binary measure of whether or
not the participant got the correct answer. Second, for the tasks which
had numerical answers, we report the amount of error (ER) using
ER=| 0, — 0, | /O, where the O, and O; represent the option that
the participant selected and answered correctly, respectively. In this
tasks study, the ER was only applicable to the first four.

To analyze our experiment data, we used both NHST and interval
estimation. We formed the null hypothesis as follows based on our
objective with this evaluation: There is no meaningful difference be-
tween SEQUENCE BRAIDING and IDMVis in correctness, error rate,
and completion time for tasks involving lookup, comparison, relation-
seeking, pattern comparison, and pattern identification of quantitatively
abstractions when investigating time-oriented variables.

We first tested for normality with two methods qualitatively and
quantitatively by using Q-Q plots and the Shapiro-Wilk test respec-
tively. Our results showed that our data does not have a normal distri-
bution. Therefore, we used chi-square test for independence to analyze
correctness and the Wilcoxon signed-rank test as the nonparametric
alternative to the dependent t-test to analyze time and error rate. We
adjusted all p-values using the Benjamini-Hochberg procedure [5] to
control the false discovery rate. We report mean completion time and
use the natural logarithm of the ratio of means as effect size — natural
log ratios are the only symmetric, additive, and normed indicators of
relative change [51]. We also report the mean accuracy and use the
difference between the samples means as effect size. Last, we report
mean error magnitude. For each of these we report bootstrapped 95%
confidence intervals (Cls) to indicate the range of plausible values [16].

7 QUANTITATIVE RESULTS

Chart (A) in fig. 9 shows our results in terms of time and correctness.
In general, there is good evidence that participants are faster using
SEQUENCE BRAIDING than IDMVis. The fourth column of (A) shows
the proportion of participants who responded correctly to each task. We
computed binary proportions and their CIs. A ceiling effect appeared
in task 2, in which all participants responded correctly with both visu-
alizations. There was another ceiling effect in task 6 using our method.
Chart (F) shows the error magnitude for the tasks with quantifiable error

(Tasks 1-4). The ceiling effect reappeared here. Results about correct-
ness were less conclusive, varying across methods and remaining tasks.

Task 1: elementary lookup
95% CI p-value avg In(S/I)
[27.8,43.3]
[28.8. 50.8] 0.78 -0.12
avg In(I-S)
0.12

95% CI In(S/T)
[-0.26, 0.03]
95% CI In(I-S)
[-0.12, 0.37]

time avg
SB 354
IDMVis  39.6
accuracy
SB 0.76
IDMVis (.88
error rate
SB 0.28
IDMVis 0.16

[0.58,0.93]
[0.74, 1.00] 1.00
[0.06, 0.50]

[0.00, 0.35] 0.60

Completion time: We have minimal evidence that SEQUENCE BRAIDING
mean completion time is slightly shorter than IDMVis. Accuracy: The
proportion of correct responses and error rate are not meaningfully different
between interfaces.

Task 2: elementary direct comparison

time avg 95% CI p-value avgIn(S/I) 95%CI In(S/T)
SB 16.8 [12.1,21.5]
IDMVis 27.1 [23.3.30.8] <0.01 -0.52 [-0.68, -0.37]
accuracy avg In(I-S) 95%CI In(I-S)
SB 1.00 [1.00, 1.00]
IDMVis 1.00 [1.00. 1.00] 1.00 0.00 [0.00, 0.00]
error rate
SB 0.00 [0.00, 0.00] 1.00
IDMVis  0.00 [0.00, 0.00] ’

Completion time: We have strong evidence that participants are meaningfully
faster using SEQUENCE BRAIDING. Accuracy: All participants responded
correctly using both interfaces.

Task 3: elementary inverse comparison

time avg 95% CI p-value avgIn(S/I) 95%CI In(S/T)
SB 423 [29.3,55.4]
IDMVis 60.2 [45.0, 74.5] 0.04 -0.07 -0.21, 0.08]
accuracy avg In(I-S) 95%CI In(I-S)
SB 0.96 [0.88, 1.00]
IDMVis 0.88  [0.74, 1.00] 1.00 -0.08 [-0.24, 0.08]
error rate
SB 0.03 [-0.03,0.09] 0.38
IDMVis 0.52 [-0.16, 1.20] ’

Completion time: We have weak evidence that participants are faster using SE-
QUENCE BRAIDING. Accuracy: No meaningful difference in accuracy between
interfaces, though the error magnitude with IDMVis had a much larger variance.

Task 4: synopic inverse behavior comparison

time avg 95% CI p-value avgIn(S/I) 95%CI In(ST)
SB 97.8 [60.7,134.9]
IDMVis 146.6 [110.2, 183.0] 0.05 033 [051,-0.16]
accuracy avg In(I-S) 95%CI In(I-S)
SB 0.76 [0.58, 0.94]
IDMVis 072 [0.53,0.90] 1.00 -0.04 [-0.34,0.26]
error rate
SB 0.14 [0.02, 0.24] 038
IDMVis  0.34 [0.09, 0.59] :

Completion time: We have good evidence that participants are meaningfully
faster using SEQUENCE BRAIDING. Accuracy: Participants had similar
correctness and error rates using SEQUENCE BRAIDING and IDM Vis.

Task 5: elementary relation seeking

time avg 95% CI p-value avgIn(S/I) 95%CI In(S/T)
SB 31.8 [25.7,37.9]

IDMVis 613 [49.8.727] <001 053 [-0.63,-0.42]

accuracy avg In(I-S) 95%CI In(I-S)
SB  0.96 [0.88,1.00]

IDMVis 092 [0.80, 1.00] 1.00 -0.04 [-0.18, 0.10]

Completion time: We have strong evidence that participants were meaningfully
faster with SEQUENCE BRAIDING. Accuracy: Participants had similar
correctness in both interfaces.



Task 6: synopic direct behavior comparison

time avg 95% CI p-value avgIn(S/I) 95%CI In(S/T)
SB 49.6 [41.8,57.4]
IDMVis 125.2 [90.3, 160.2] <001 -0.93 [-1.02,-0.83]
accuracy avg In(I-S) 95%CI In(I-S)
SB  1.00 [1.00, 1.00]
IDMVis  0.68  [0.48,0.87] 0.05 032 1:0.50,-0.12]

Completion time: Participants spent up to 2.5 times longer with IDMVis than
SEQUENCE BRAIDING and we have strong evidence to support this difference.
This is the largest difference in task completion time that we have observed.
Accuracy: We have good evidence that participants were meanginfully more
correct using SEQUENCE BRAIDING than IDM Vis.

Task 7: synopic pattern identification

time avg 95% CI p-value avgIn(S/I) 95%CI In(S/T)
SB 472 [39.7,54.8]
IDMVis 1115 [79.8,1432] = 0.01 050 1-0.64,-0.36]
accuracy avg In(I-S) 95%CI In(I-S)
SB 096 [0.88, 1.00]
IDMVis  0.88  [0.74, 1.00] 1.00 -0.08 [-0.19,0.03]

Completion time: We have strong evidence that participants were meaningfully
faster with SEQUENCE BRAIDING. Accuracy: Participants had similar
correctness with both interfaces.

8 DISCUSSION
8.1 Task Type Matters

Overall we found that there is good evidence that participants are faster
using SEQUENCE BRAIDING than IDMVis. This time improvement
was primarily on tasks which involved analyzing the sequentiality of
events (T4, TS, T6, T7). The most outstanding time improvement,
as well as the only big correctness difference, is found in T6 which
involved comparing two time intervals and finding a pattern. Two
14-day IDMVis visualizations incur substantial visual complexity, as
the user is effectively looking at 28 small multiples visualizations in
two groups. Conversely, SEQUENCE BRAIDING is capable of a much
more compact and less complex representation still very fit for the task.
Another large difference occurs in T2, a task for which SEQUENCE
BRAIDING is effectively a stacked bar chart. It is thus not surprising
that position on an unaligned scale is a more effective encoding than
color luminance for this quantitative task [33].

8.2 AQualitative Explanations for Quantitative Results

We also collected participants’ subjective evaluation of the two vi-
sualizations. A high-level summary is shown in fig. 9 (B), (D), (E).
Validating a novel algorithm and visualization tool using clock-wall
evaluations (e.g., time and accuracy) [33] alone can provide insights on
the tool performance. However, our qualitative findings may provide
explanations of why SEQUENCE BRAIDING outperformed IDM Vis.

As one approach to examine why SEQUENCE BRAIDING performs
better, we conducted affinity diagramming [22] to analyze the qualita-
tive results. It highlighted two benefits of using SEQUENCE BRAIDING:
it (1) helps identify overall patterns, and (2) can be more suitable for
more complex datasets with longer duration.

We also looked at specific ratings provided by participants. Par-
ticipants reported feeling more confident performing tasks using SE-
QUENCE BRAIDING vs. IDMVis (fig. 9 (B)) — mean 0.63 points higher
on a 1-5 scale. Likewise, participants preferred SEQUENCE BRAIDING
vs. IDMVis regarding ease of use for understanding trends and patterns

B) — mean 0.79 points higher on a 1-5 scale. Furthermore, 53% of
the participants reported SEQUENCE BRAIDING as most useful for
displaying trends, vs. 36% for IDMVis (E).

We also examined the strategies participants claimed to use when
reading the visualizations (fig. 9 (C)). In both cases focusing on color
was most common. With SEQUENCE BRAIDING, participants also
used many other strategies in concert. But only one other strategy was
given for IDMVis — counting dots. This suggests that SEQUENCE
BRAIDING users would pick and choose from the encodings most
relevant or comfortable for their task. Moreover, the strategies reported
for SEQUENCE BRAIDING are perhaps at more focused on higher-level

patterns vs. inferring patterns by reading small multiples visualizations
in IDMVis. It stands to reason that the difference in strategies used
influenced the higher confidence scores (B), perceived ease (B), and
perceived usefulness (E) of SEQUENCE BRAIDING vs. IDMVis — as
well as the timing and overall smaller error rate.

8.3 When to Use Sequence Braiding

SEQUENCE BRAIDING was originally developed to easily represent
several weeks or months of meal logs for diabetic patients, with the
event sequence folded [13] by day. We believe our method is most ef-
fective on data with similar characteristics. In particular, our alignment
approach will be most helpful in cases where there is no apriori canoni-
cal ordering of event types. Our algorithm is robust to human-generated
data which is prone to containing inconsistencies or situations with a
mixed ordering or acyclically repeating event types. Likewise, the
visual design of SEQUENCE BRAIDING is most directly applicable to
domains in which attribute value and sequence overviews are important
to see, where precursor and aftereffect events must be known, and
where it is valuable to show specific sequences individually. How-
ever, it would not be useful in cases where specific times of events
or time deltas between them are important — at least without added
interactivity or additional encodings. = There are also algorithmic
and visual scalability considerations. We have not calculated exact
numbers for how many sequences, event types, or events in a sequence
will work in general, but we discuss the overall constraints and refer
readers to more examples in appendix B.4. The worst-case runtime
complexity of our layout is O(k - m - n?log(n)), with k iterations, m
ranks from alignment, and n sequences. Experimentally, we can lay out
125 sequences in less than a second using JavaScript on a commodity
laptop. See appendix B.4 for details. The visualization scales well
with more sequences, but worse with longer sequences and many event
types. Additional ranks from the alignment require much more screen
space than additional lines and associated nodes. If sequences are not
necessary to perceive individually, visual scalability can be improved
by reducing the gap between lines and their thickness (configuration
options). Moreover, the visualization can use scrolling, zooming, or
mouseover highlighting to explore relevant subsets or sequences. If
appropriate, filtering out infrequent sequences of events also reduces
the visual complexity substantially.

9 LIMITATIONS AND FUTURE WORK

Although we claim that SEQUENCE BRAIDING is useful for under-
standing trends, it does not allow for examining precise details, such as
the timing of the events or exact attribute values. In addition, since we
use heuristics to position nodes, the solution is not necessarily minimal
in terms of intersections. The version we used in the experiment did
not include any interactivity in order to reduce the number of variables
that could influence the results. Currently, events with missing data
(without associated values) are discarded. Initially we kept them in the
visualization and displayed them as belonging to an ‘unknown’ type
positioned using only the minimum intersection heuristic. We removed
the feature due to the additional complexity added, but adding it back
would increase robustness with regards to missing data.

10 CONCLUSION

We presented a novel method for temporal event sequence visualization
that focuses on highlighting common patterns through the collection
of sequences. We conducted an in-lab experiment to test the effective-
ness of SEQUENCE BRAIDING in relation to another state-of-the-art
technique, IDMVis [63]. The results suggest that our participants
performed faster using SEQUENCE BRAIDING and indicated that SE-
QUENCE BRAIDING were easier to use for examining specific tasks
(e.g., with no apriori canonical ordering of event types) and helped
them obtain a holistic overview of the data.
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A USAGE EXAMPLES

Here we show several examples of SEQUENCE BRAIDING used with different datasets. These examples do not necessarily share the same
complex data properties of the diabetes use case motivating our design (see section 8.3), and thus some may be amenable to visualization using
other approaches, e.g., Sankey or icicle visualizations.

home art portfolio cv project 1 project 2 home
®5 min e ——
®2 min —— _— /
® 1 min = = = = \
® 10 sec X

Fig. 10: This figure shows the sequences of pages visited on one of the authors’ personal website from March 1, 2019 to March 1, 2020. Each
sequence represents 5 users who visited the same sequence of pages, and the timings are averages within the group. Navigation sequences from
less than 5 users were filtered out. We filtered out users who visited a single page. The y axis represent the time spent on each page, while the
events are the pages visited. From the visualization, it can be deduced that users who start looking at pages quickly (30 seconds) tend to do a
quick tour and do not end up on pages that attract their attention enough to spend more time on them. Most users spend about 30 seconds on each
page. Some users spent a long time on the home page, then proceeded to spend a long time on the art page too.

Fig. 11: IMDb rating of movies by movie franchise. The vertical axis is the rating, rounded to the nearest half integer. A node represents a movie,
and the position of a node in a sequence represents the index of the movie within the franchise. Movies within a franchise are ordered according
to their release date (e.g., Star Wars is 4, 5, 6, 1, 2, 3, etc.).
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Fig. 12: Number of medals obtained by different countries in the swimming category of the Olympics, throughout the years.
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Fig. 13: “Dump months” ¢ are a phenomenon known in the movie industry where there are lowered critical and commercial expectations from

new movie releases. January and February usually see companies trying to recoup investments done during Christmas, therefore avoiding major
releases during that period, while during August and September — the back to school season — companies are both trying to recoup investments
from the summer blockbusters released earlier in the summer, and sales are affected by other expenses such as tuition payments and school
supplies. The visualization shows the sum of the gross income for the whole domestic movie industry in millions of dollars, per year, from 2010
to 2019. Each node represents the sum, and not a single movie — annotations at the top show movies that had a particularly outstanding income.
Note that there are several outliers.
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B INTEGER LINEAR PROGRAMMING FORMULATION

Here we describe how we formulated the intersection reduction problem
as an integer linear programming (ILP) problem. Our formulation is
largely based on Zarate et al.’s optimal intersection reduction algorithm
for sankey diagrams [62], that we deemed most similar to our case.
However, differently from Zarate et al., this integer linear programming
formulation has:

* An unweighted directed graph instead of a weighted one.

* Ordered grouping constraints. Although Zarate et al. briefly
discuss grouping constraints in their paper, SEQUENCE BRAID-
ING defines an order between the groups that must be respected
throughout the ordering process.

In addition to these difference, we also want to note that the rank as-
signment step of our algorithm is part of the contribution of SEQUENCE
BRAIDING, that is not covered in this integer linear programming for-
mulation nor in Zarate et al.’s formulation.

The point of this appendix section is to prove that a integer linear
programming approach is only suitable for smaller graphs, and would
not scale as much as we wanted, while the benefits it provides are not
enough to compensate for the lack of scalability.

B.1

Throughout this section, we keep our terminology and notation as
similar as possible to Zarate et al. [62] for consistency.
Symbols:

Definitions

* G=(V,E) is a directed acyclic graph with unweighted edges.
The nodes of G are partitioned into k ranks.

o Z={0,...,k— 1} is the set of all layers, while £} = {0,...,k—
2} is the set of all layers excluding the last one.

* Vj is the set of all nodes in layer k € £

* E} is the set of all directed edges that have a source in k and a
target in k+ 1.

* wuvis an edge between nodes u and v.

R is the set of all groups. The groups have a fixed and predefined
ordering across all layers.

For each edge in the original graph that extends over multiple ranks,
we add without loss of generality an anchor node for each traversed
rank and partition the edge into multiple, smaller edges so that each
one only connects nodes in two consecutive layers. Therefore, we can
assume that for any edge uv, u € kand v € k+ 1.

Each node in each rank that is not an anchor has a preassigned level
£€0,...,m, and m is the number of layers in the graph. The levels are
similar to groupings, except they have a pre-established ordering. R is
the set of all levels in the graph.

Decision variables:

* Xy u, €{0,1} is a binary variable that indicates the relative posi-
tion of two nodes, specifically whether node u; is above node u;
in layer k, for any given uy and up in all k € 2. x,, 4, = 1 if uy
is above uy, 0 otherwise.

* Cuyvyupv, € {0,1} is a binary variable indicating whether edges
uyvy and upvy cross.

B.2 Formulation

We define the objective function to minimize the sum of the crossings
over every pair of edges.
Minimize : Z Cuyvy v (€))]
kef
uyvy,upvr €EE;
upvy 75142 V2

N [ heuristic | ILP
sequences | edges || cross. | time | cross. | time
5 35 12 0.01s 11 0.02s
10 70 44 0.01s 36 0.03s
15 105 117 0.02s 106 0.05s
25 175 368 0.03s 358 0.18s
50 350 1542 0.11s 1494 1.97s
75 525 3521 0.23s | 3352 7.73s
100 700 6331 0.39s | 6188 | 22.42s
125 875 10207 0.56s | 9842 | 57.69s
200 1400 25199 1.76s - -
500 | 3500 156171 | 18.54s - -

Table 1: Comparison between timing and number of crossings obtained
by the heuristic-based approach and the integer linear programming
approach. Empty cells represent when the computation was unable to
terminate (out of memory).

B.3 Constraints
Either u; is above uy, or uy is above u;.

Vk € L uy,up € Viguy # up 2

Xuguy + Xup g = 1
Transitivity of the "above" relation.

Vk € L uy,ux,uz € Vi

3
uy # up # uz,uy # u3 =

Xug gy = Xuzuy + Xy 0y — 1 {

For each two edges 1] v| and uyv;, they cross if and only if ©; is above
uy and v, is above vy.

Cuyvy,usvy +xuz,u1 +xv1,vz >1 4)

Cuyvy,usvy +xu1,u2 +xvz,v1 >1 )]
Each node uniquely belongs to a group, except anchors, that do not
belong to any group. The groups have a fixed, predefined ordering.
Each node in group g; must be above all the nodes in group g; .
Vuy € gi,u € 8it1,8i:8i+1 €R (6)

Xuyuy = 1

Here, eq. (6) is the real difference from Zarate et al. [62]’s formulation,
in addition to the absence of weights. In their formulation, they do men-
tion grouping constraints, but while groups in SEQUENCE BRAIDING
have a fixed ordering across all ranks, groups in their work are set of
nodes that must be positioned next to each other, independent from the
position of the other nodes in the same layer.

B.4 Performance comparison

We tested and compared the heuristic-based approach and the integer
linear programming approach on our chess case study from the paper.
The integer linear programming solution was solved using Gurobi ver-
sion 9.03, the same integer linear programming solver used by Zarate
et al. [62], running on Windows 10. All the computation was per-
formed locally on a 2018 Dell XPS 15, with an Intel Core i7-8750H
@ 2.20GHz, 16GB RAM. SEQUENCE BRAIDING was executed in 64
bit Firefox 74.0.1 running on Windows 10. Table 1 reports the times
and number of crossings produced with different sized graphs. The
sequences used where the first n sequences from our chess openings
dataset example used in fig. 7. We also have to note that there’s a
fundamental hindrance to the heuristic solution: it is implemented in
JavaScript and running in a browser, as opposed to the integer linear
programming solution computed via Gurobi, a detail that significantly
negatively impacts the performance of the heuristic solution. How-
ever, since the timing comparisons are already largely in favor of the
heuristic-based approach, this detail further shows how much faster the
heuristic-based approach is.

3https://www.gurobi.com/
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Fig. 15: Comparison between the outputs produced by solving a integer linear programming problem (ilp) and a heuristic-based approach (sb) on

15 sequences.
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Fig. 16: Timing comparison of the heuristic approach and the integer
linear programming approach, from table 1. Cases where the ILP
approach could not terminate the computation are filtered out.
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Fig. 17: Comparison of the number of crossings in the solutions found
by the heuristic approach and the integer linear programming approach,
from table 1. Cases where the ILP approach could not terminate the
computation are filtered out.



We added a function into SEQUENCE BRAIDING so that we could
generate, from any SEQUENCE BRAIDING example, a integer linear
programming formulation of the problem suitable as input for Gurobi,
and another function that takes as input a solution produced by Gurobi
and represents it as a SEQUENCE BRAIDING visualization. Figure 15
shows an example of the outputs produced by the two methods.

B.5 Discussion

Although the solution found with the integer linear programming ap-
proach is optimal, it does not scale as well as the heuristic-based one
and is therefore not suitable for large graphs.

As shown in fig. 15, the visual complexity of the output produced
by the integer linear programming approach is not enough to justify
such a loss in scalability. Figure 16 shows how different is the way
in which the two approaches scale in terms of time used to find a
solution. Figure 17, instead, shows that the amount of crossings found
in each solution is, in the end, not that different: the line representing
the integer linear programming approach is better, but only by a small
amount.

We deemed that, for our objectives, it was ultimately more important
to provide a representation of bigger graphs rather than the optimal
intersection reduction solution.

C COMPARATIVE EVALUATION: BASELINE ALTERNATIVES

Before deciding to settle on IDMVis [63] as a baseline for our com-
parative evaluation, we tested several other alternatives. The following
sections explain why we deemed these other options unfeasible.

C1

The project we focused the most on is Storylines [38] due to apparent
similarities in purpose to our project.

Storylines does not align nodes based on event type — the horizontal
position of the nodes is only based on time. It does have grouping con-
straints based on a node attribute. The colors are applied by sequence
and not by attribute, and the distribution of the event types for every
time step is presented using a barchart at the bottom of the visualization.
The lack of an option to see the value of the node attribute directly on
the sequence meant that we had to show the node label at each node
to let users to distinguish nodes with different attributes, adding visual
complexity to the final visualization.

Overall, the sample dataset contained in Storylines works well
(fig. 18), but making our examples readable required such extensive
edits to the source code and design of Storylines that we worried we
were departing too much from a viable original baseline. Our initial
modified version of Storylines, with a representation of our diabetes
dataset, can be seen in fig. 19. The absence of alignment by event and
the complexity of understanding the attribute values led us to us discard
Storylines as an option.

Storylines

C.2 Storyflow

Storyflow [30] has the same issue as Storylines: there is no event align-
ment, the alignment is based on the time. Additionally, in Storyflow,
the sequences are bundled together based on an attribute — in fig. 20,
this attribute is the co-occurrence of two characters in a scene. This
does not allow for an attribute to be displayed on the vertical axis.

C.3 Sequence Bundles

In Sequence Bundles [27] (example in fig. 21) the vertical position
of the nodes encodes a node attribute and the horizontal position is
the position in the sequence. Individual sequences overlap if they
have a node with the same attribute value at the same position in the
sequence, making keeping track of individual sequences very difficult.
The bundling in Sequence Bundles is not based on event types — the
event types are only encoded on the vertical axis as the categorical
attribute values — but on position in the sequence. This means that the
first event is always going to be aligned with the first event, the second
with the second, and so on, regardless of the type. This effectively
means that one less attribute is able to be encoded in the visualization.
While in SEQUENCE BRAIDING we display for each event both a type

and a level, Sequence Bundles would only be able to display one of the
two attributes.
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Fig. 18: One of the standard Storylines samples, unedited [38].
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Fig. 19: A subset of our diabetes dataset represented with Storylines [38] after extensive edits to load and represent the dataset.
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same scene of the movie.
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