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Abstract—With the unification of modern wireless services
of Mixed Reality and Tactile Internet, providing Quality of
Experience (QoE) with ultra low latency become critical chal-
lenges in edge resource allocation. In this paper we propose a
reinforcement learning-based economic pricing model for wireless
multimedia QoE, leveraging economic theories and machine
intelligence. In the proposed approach, the QoE pricing model
considers the User Equipment (UE)’s perceived QoE, the amount
of purchased data, the wireless channel conditions, and the
user’s subjective multimedia content preference. In addition, the
QoE gain of UE, cost of three entities in wireless networks -
Content Provider (CP), Wireless Carrier (WC), and UE, are
integrated in the economic concept of social utility. The social
utility would be affected by all system factors such as unit data
price, multimedia quality requirement, and wireless channel con-
ditions. The proposed reinforcement learning method improves
the social utility performance by maximizing the accumulated
utility through obtaining the optimal factors set up. At last,
through numerical simulations we show the impacts of different
system parameters on UE’s QoE gain and the improvement of
social utility performance by using the proposed reinforcement
learning approach.

Index Terms— Reinforcement Learning, Smart Media

Pricing, Quality of Experience

I. INTRODUCTION

How to improve the Quality of Experience (QoE) and to
reduce latency of User Equipment (UE) remains the obstacles
for emerging wireless Tactile Internet with Mixed Reality
multimedia traffic. The increased 4K or 8K picture resolution
and low delivery latency lead to new challenges to rethink the
economic modeling the relationships among User Equipment
(UE), Content Provider (CP), and Wireless Carrier (WC) [1-3].
The CP and WC would have to bear financial cost to provide
the Mixed Reality multimedia service through wireless Tactile
Internet devices, and the Mixed Reality headset UE would
have to purchase wireless resources to obtain desirable QoE.
As illustrated in Fig. 1, the economic cost of CP to keep certain
level of data quality (i.e., data distortion reduction and data
length), the cost of WC to ensure the desirable packet error rate
(i.e., through control power), and the cost of UE to purchase
the data are collectively considered in the social utility model.

By combining the QoE and the economic social utility
together, we are able to address the aforementioned challenge
through properly analyzing the impacts of all system factors
(i.e., channel conditions, data quality, and incurred cost of
entity) on the QoE gain and social utility gain. While taking
all factors into consideration simultaneously would be handful.
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Fig. 1. The wireless multimedia quality pricing scenario we studied in
this paper. Three entities (i.e., content provider, wireless carrier, and user
equipment) are participating in the pricing design.

Therefore, a machine learning based method is introduced in
our work, where all system factors are included and manifested
in terms of state. The three entities (CP-WC-UE) are treated
as the agent in the learning procedure and it wanders among
states (the agent’s transition from one state to another state is
accomplished by taking action). In addition, the social utility
gain at each state serves as the reward of agent by taking the
action. Our goal of learning is to obtain the optimal action
policy for the agent, so that the maximization of accumulated
reward is achievable.

The rest of this manuscript is organized as follows. A
short review of related work about machine learning method
and QoE improvement issue is given in Section II. The
detailed explanations of our studied multimedia service system
model is shown in Section III. The reinforcement Q-learning
method is designed in Section IV. We carry out the numerical
simulations to evaluate the system performance in Section V.
The conclusion of this paper is drawn in Section VI. The key
notations and nomenclature used in this paper are summarized
in Table I.

II. RELATED WORK

To solve the UE’s QoE performance issue in the wireless
multimedia service, lots of research has been conducted in
the literature, from the objective Quality of Service (QoS)
model developing to the cognitive QoE model perfection [4-
6]. Authors in [4] provided a multi-polling controlled access
scheme to guarantee the important video delivering latency
and reduce the transmission overhead, for the purpose of
improving the QoS/QoE in the wireless video service. In their
work, the Multiple Input Multiple Output (MIMO) feature is

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: San Diego State University. Downloaded on November 05,2020 at 20:03:36 UTC from IEEE Xplore. Restrictions apply.



TABLE 1
THE KEY NOTATIONS USED IN THIS PAPER.

Symbol Comments

Pk The packet error rate of packet k.

[ Positional dependency set of packet 7.

q; Multimedia quality contribution of packet <.

l; The length of the ¢« — th frame.

Yi The per-bit price of multimedia packet 7.

N, M UE’s requested data, N PGs and M packets per PG.

a1 ~ a4 System parameters to describe UE’s QoE.

a, B,y The price coefficients in the social utility definition.

%) The coefficient of UE’s preference on the multimedia
content.

s,a,r The state, action, and reward in the Q-learning procedure.

dy The discount factor of the old reward in Q-learning.

Iy The learning rate in the Epsilon greedy algorithm.

exploited as well in their proposed cross-layer quality adjust-
ment strategy. The MIMO technology is also utilized in [5]
where authors provided an optimal multimedia relay scheme
to improve the UE’s QoE gain. The multimedia content distri-
bution and devices’ antenna selection are jointly considered in
their research. In addition, authors in [6] proposed a context-
aware wireless multimedia relay solution to improve the QoE
of mobile user. The game theory is utilized by the authors
and a Stackelberg game model is provided in their work to
analyze the relationships among mobile user, relay device and
base station. In the aforementioned work, the QoE model is
constructed only based on the objective factors such as data
rates and multimedia quality. In our work, the UE’s multimedia
content preference will be considered in the QoE model as
well.

Furthermore, plenty of research has been published on
modeling the business relationships among CP, WC and UE, in
fixed pricing type and dynamic pricing type [7-11]. Authors
in [8] classified the static-based pricing and dynamic-based
pricing schemes between wireless service provider and UE,
where factors such as network capacity, available bandwidth,
frequency spectrum, and network hops are involved in the
price calculation. A smart media pricing framework is provid-
ed in [9] to deal with the price and data usage between service
provider and client device. By seeking the game equilibrium,
both service provider and client could reach the maximum
utility gain. To extend the two players situation to three players
in the wireless service, authors in [10] adopted a generalized
best response game solution to improve the UE’s QoE and the
profit of CP, WC simultaneously. Authors in [11] proposed a
new polymatroid theoretic framework to maximize the three-
party achievable profit through proper bandwidth allocation.
Similar to [10] and [11], we focus on the three-party wireless
service with specific consideration of pricing the QoE. The
social utility concept is proposed in this paper to unite three
entities together and our goal is to maximize the social utility
gain.

One challenge to unite three entities together in terms of
social utility is: the factors would not only affect individual
entity but also impact the social utility in a complex fashion.
To handle such challenge that taking various factors into con-

sideration simultaneously, a machine learning based method
is proposed in our work. As one of the promising artificial
intelligence tools, lots of research has been carried out in
the literature by using the machine learning approaches in the
wireless network service [12-14]. Authors in [12] investigated
the machine learning algorithm’s motivation refining, problem
formulation, and methodology in their work. The learning
efficiency is important to achieve QoS, facing complex chal-
lenges. Authors in [13] presented the application of machine
learning techniques to improve the congestion control of TCP
in wired and wireless networks. The reinforcement learning
is adopted in [14] to develop a novel decentralized resource
allocation mechanism for vehicle-to-vehicle communications.
All the factors in the environment are modeled as states in
their work. Inspired by aforementioned work, a reinforcement
learning based Epsilon-greedy Q-learning method is proposed
in this paper to address the social utility maximization problem
for wireless multimedia. Through the learning procedure of
the three agents, i.e., CP-WC-UE, the system would reach the
maximum social utility with the optimal policy output.

III. SYSTEM MODEL

As shown in Fig. 1, the economic pricing model of wireless
multimedia QoE is illustrated at the network edge. The UEs
are typically Tactile Internet Mixture Reality users with picky
QoE requirements. The CP will provide the source multimedia
data to WC based on UEs’ content purchasing requests. The
WC is responsible for transmitting data to UE through wireless
channels and provide the QoE. While for a individual UE, it
purchases the source data from CP and obtain the QoE gain
form the WC service.

A. QoE Model of Wireless Multimedia

It is realistic to assume UEs request multimedia data in the
form of Packets Group (PG), where each PG contains multiple
packets. Let p;. denote the packet error rate of the k—th packet,
[ denote the packet length, ¢; denote the multimedia quality
contribution of packet ¢, 7; denote the positional dependency
set of packet i, i.e., decoding ancestor set including itself.
Then, the multimedia service quality-throughput contribution
of a certain PG could be quantitatively approximated as ), ¢;*
li*[Iex, (1 —pr), and the financial cost of acquiring this PG
is estimated as ) . ¥;(g;, m;) * ;. The term y; here denotes the
per-bit price of multimedia packet ¢, which is related to the
packet’s quality contribution g;.

In this paper, the personalized QoE model is adopted in
a way similar to [15], and we added additional packet level
multimedia distortion to the QoE model. We assume each UE
consumes totally /N PGs in the multimedia service, and thus
the QoE expectation will be approximated as:

a1
M ; :
—az 300, 52 @i+ ken, ; (1=Pk)+asxptas

ey
where a1, ag, as, and a4 are system parameters to configure
the QoE model. Term ¢ denotes the UE’s personal preference

QoF =
1+e
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of a certain multimedia content. For example, some UEs
could be a big fan of a football match video, and some
UEs may not be interested in football at all. Thus these UEs
could have very different values of ¢ even on the same data
content. The financial cost of UE to purchase those PGs is
calculated as follows, assuming per-bit price y; for each packet
is determined by the CP.

N
Cue = Z
=1

B. Social Utility Definition

Let C¢p, and Cy,. denote the cost function at CP side and
WC side, respectively. The social utility Usggyeiq 1s defined
as the UE’s utility, which is related to UE’s obtained QoE,
subtracted by the cost of all entities:

<

i

Yij * lij (2)
1

J

Usocial - U(QOE) - Cue (Zy * l) - Ccp (Z q * l) -
Cye (ZZ erm,j(l _pk)) .

(3)
o * Ay
U(QoFE) = .
( ) 1+ e 2 >N, Zjﬁl ‘Iz,j*li,j*nkewtj (1—pg)taz*ptaq
(C)]

The term « is a constant parameter to align QoE to
utility. The cost of CP is directly related to its source coding
parameter settings, such as the compression ratio and rate-
distortion truncation of bit-planes:

N M;

Cop=B%Y_> aij*lij, )

i=1 j=1

where the 3 is the system parameter to align the CP’s cost to
utility. The cost of WC is approximated as wireless channel
quality, i.e., the packet error rate it can provide in the wireless
channels. The constant parameter -y is to align the packet error
rate to utility:

N M;
ch:’Y*ZZlOQ H (17pk)' (6)

=1 j=1 kem; j
C. System Objective

The goal of our work is to maximize the social utility
Usocial by finding the proper amount of data that UE purchase
from CP, and the optimal price setting for each multimedia
PG. Regards to the optimal per-bit price 3, the feasibility of
achieving such an optimal solution would be impractical for a
large amount of multimedia packets within a number of PGs.
Let yo denote the normalized base price, i.e., the unit quality
gain price for each bit. Then the per-bit multimedia gain
price of packet j could be presented as y; = yo * ), en, Qk-
Then, instead of finding the optimal price for each packet, we
change our goal to find the optimal base price ¥y and optimal
multimedia transaction bits > [, for the purpose of maximizing
the social utility Ugpciqr-

{yO: Z} = argmax{Usocial} (7)

IV. REINFORCEMENT Q-LEARNING QOE PRICING
SOLUTIONS

A. Q-Learning Pricing Algorithm Design

As one of the important machine learning paradigms, the
reinforcement learning has been widely studied to address
the exploration vs. exploitation trade-off in the finite Markov
Decision Process (MDP) scenarios. A typical reinforcement
learning model includes 5 features. 1): A set of environment
and agent states, S. 2): A set of actions of the agent, A. 3):
The probability of transition from state s to s, P,(s,s’) =
P.(st41 = §'|st = s,a; = a). 4): After the transition from
state s to s’, the agent gains an immediate reward R, (s, s'). 5):
The rules (a.k.a policy) that describe what the agent observes,
P. Recall the wireless service scenario in our work, where
the CP-WC-UE system is treated as the agent in the learning
procedure. The state observed by agent for characterizing the
environment includes all the factors that affect social utility,
i.e., the quality-throughput contribution } ; g;*li * [ [ <. (1 —
pr), the content preference of UE ¢, the packet error rate in
the channel py, the consumed data length of UE > [, and the
CP’s base price base price yg. Thus, the state is expressed as
st =D @i*li*[Iper, (1=pr)s 0, Pk, 2 1 Yol At each time
t, the agent observes a state s; from the state space .5, takes
an action a; from the action space A, gains the reward r; and
reaches the new state s; .

It is worth pointing out that the transition probability and
reward function are not available in our proposed wireless
service scenario. The rationale behind this is that we assume
the system factors, i.e., channel quality, UE’s requested da-
ta, are changing stochastically with time. The system will
randomly move to next state if any factor in current state
st = [qi, ¢, Pk, »_ 1, yo]t changes. Thus, the model-free re-
inforcement learning will be utilized in our work, i.e., the Q-
learning approach. The goal of Q-learning is to learn a policy,
which guides the agent to take the optimal action under any
circumstances. The Q-learning model adopted in this paper
works well in handling problems with stochastic transitions
and rewards.

Since to the reward function is not available in the proposed
wireless service scenario, we would use instant social utility
gain (i.e., Usociqr Of next state) as the reward of agent when
we adapt the Q-learning into our work. More specifically,

Ty = Usocial ([qi:<p7pkvzl7y0]t+l) (8)

where r; denotes the reward the agent obtains by taking action
ay at state s¢. The calculation of Usociai ([9is 05 iy D U Yol t+1)
is given in Equation (3), which implies the social utility gain
at state s;11. The state transition and reward are stochastic
by following the MPD. They only depend on the state of
environment and the actions taken by the agent. The Q-
learning obtains the optimal agent actions policy to maximize
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the social utility:

oo
argmaz{G}|Gy = E[Z dTi4n] 9)
n=0
where dy denotes the discount factor of the previous reward.
The core factors that would affect the agent’s reward (a.k.a
social utility gain) include channel quality pj, base price of
data yo, and user’s consumed data amount Y [. Assume there
are X possible channel conditions, i.e., Vpi € [p}c, ...,ka], Y
available base price options for CP, i.e., Yy, € [yd, ..., ud |,
and Z data request options for UE, i.e., VY.l € [L!,..., LZ].
Then the size of agent’s action space is X * Y % Z. The goal
of Q-learning is to obtain the optimal action policy P*, so
that the agent would achieve the maximum Q value from any
state: a; = argmazQ(st, ar) through a; € P*. The Q value
for a given state-action pair (s, a:), denoted as Q(s¢, at), can
be calculated and updated according to the dynamic Bellman
Q-function [14] without any knowledge of the system.

Qnew(sta at) = Qold(5t7 at)+
Lo [re + dy « maz{Qoa(s, ar)} — Qorals, ar)] .

where the [, denotes the learning rate of the process. It has
been proved that the Q value at action-state pair (s¢,ar)
will converge to the optimal Q*(s;,a;) if each action-state
is visited infinite times with properly setting up the learning
rate [, [16].

Generally speaking, the channel condition in the physical
environment keeps stable in certain period of time. Thus we
would cut down the size of agent’s action space to Y *x Z
in our actual Q-learning application by assuming the channel
keeps constant. The rationale behind such simplification is
that reduction of action space would dramatically decrease the
iterations of Q-learning procedure, where all exploration steps
are stochastically chosen. It is important pointing out the extra
cost the simplification is that we need to re-run the Q-learning
to obtain the new optimal action policy P* when the channel
condition of UE occurs significant changes, i.e., packet error
rate changes from pi to i

(10)

B. Algorithm Analysis

The learning procedure of the agent (i.e., the CP-WC-UE
system) is illustrated in Algorithm 1, where the Epsilon-greedy
strategy is utilized. In order to reduce the complexity of Q
matrix (i.e., the Q matrix is with size of Q[length, action])
and to improve the learning efficiency, the two dimensional
(2D) agent action space (i.e., Y * Z) is transformed into one
dimension (1D) when the agent starts exploring. The action
space transformation has the following features: 1) The total
number of states in two scenarios doesn’t change; 2) In the
2D scenario, there would be up to 4 options for the next
move, while there are only 2 options in the 1D scenario. The
convergence speed in the 1D would be faster than it in 2D. 3)
The output optimal policies are different in two scenarios, but
they would lead the agent converge to the same Q*(s¢, az).

At the beginning of learning, we initialize the Q matrix with
zeros, as shown in step 3. The value of length(state) is YV % Z

and the value of length(action) is 2 (either moving forward or
backward). The maximum iterations K in step 4 in decided by
the convergence speed of algorithm. The algorithm would not
stop running without K, even the Q matrix already converged.
Thus, we will decide the K after multiple attempts to ensure
the convergence of algorithm. Regarding to the terminal states
mentioned in step 13, we assume the state (L!,y3) and state
(L?,yY) are the two terminal states for the learning. The
agent would gain zero reward if its action leads it to terminal
states.

Algorithm 1 The Epsilon-Greedy Q-Learning Algorithm

1: Inputs: (1) The system parameters to determine the QoE gain of UE,
ie., a1 ~ a4, @. (2) The system preset parameters «, 3, and v for UE,
CP, and WC, in order to calculate the social utility. (3) The parameters
for Q-learning process, e.g., learning rate I,., discount factor df, and
exploration probability e. (4) The parameters in multimedia service, i.e.,
the packet error rate py, the multimedia quality gy, the range of base
price yo, and the range of data request > L.

2: Outputs: (1) The optimal action policy P* for the agent. (2) The state-

action set that achieves the optimal Q*(s¢,a+), where we obtain the

maximum Ugyeiqr -

Initialize the Q matrix: Q = zeros(length(state), length(action)); The

maximum number of iterations K. The initial state to start (randomly).

Fors=1: K
X = rand(); Get one uniform random number;

X = sum(X >= cumsum([0,1 — ¢, €]).

If X ==

Next action: choose exploitation.

Else

Next action: choose exploration.

Based on reward definition 7t = Usocial ([¢i, 05 Py 2. L Yolt+1)
and Equation (1) ~ (6), calculate the reward of agent at next action.
Update the state;

12: Update the Q matrix using the Q-learning rule: Qnew (s¢,at) =

Qota(st,ar) + by x [re + dy » maz{Qora(s, ar)} — Qora(s, at)].

13: If current state is terminal state

14: Restart the episode with a new (random) state;

15: End for

16: Output the optimal action policy based on the Q matrix;

bl

YRR

—_—

V. SIMULATION

In this section, we carry out simulations to evaluate the
system performance. In our simulations, the standard test
video Harbour from H.265 codec is used in the multimedia
transmission. More system parameters and their values are
listed in Table II.

TABLE II

MAJOR PARAMETERS AND THEIR VALUES IN THE SIMULATIONS.

Symbol Comments

qi 35 ~ 39dB

N 2~5

M 17

ay 20

as ~ a4 1~6

dy 0.9

Iy 0.85

€ 0.95

In order to properly adjust the QoE model in our work, we
evaluate the impact of parameters as and a3 on the UE’s QoE
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gain. From the QoE definition Equation (1) we know the as
is related to the “objective” service quality (i.e., g;, l;, and p;)
and the aj is related to the UE’s “subjective” experience (i.e.,
content preference, psychological factor). As illustrated in Fig.
2, the content reference factor would not change the maximum
QoE gain of UE (in fact, the maximum QoE gain is determined
by the preset parameter a1). While a3 has significantly impact
on the amount of UE’s consumed data in order to reach the
maximum QoE gain. If UE would request more data to obtain
high QoE gain if the UE has high preference on the multimedia
data.

The QoE Gain of UE

50 100 150 200 250
The Amount of Consumed Data (Mbits)

Fig. 2. The illustration of how the subjective system parameter a3 impacts
the QoE gain of UE.

In addition, we test the parameter of objective service
quality part and the result is shown in Fig. 3. We can observe
that the increase of as would not change the maximum QoE
gain of UE as well. But the bigger a» set up, the faster that UE
would reach the maximum QoE with respect to the consumed
data. We observe that the parameters as and az have similar
influence on the QoE gain of UE. That is to say, both “service
quality” and “content preference” will impact the speed of UE
to reach its maximum QoE gain. While when UE has high
content preference on certain data, the larger amount of data
is need.

As we mentioned before, the social utility gain would be
affected by a lot of factors. In Fig. 4, we evaluate the social
utility gain under different sets up of environment parameters.
We simulate different service situations by taking various
values of cost coefficients of CP and WC (i.e., 8 and ~) and
the base price yg. It is worth pointing out that the value of v is
negative, and thus the 7 % log erﬂi.j (1 —px) in Equation (6)
is always negative. From the results we observe that the curve
of social utility gain is concave, meaning there is an optimal
amount of purchased data. In addition, comparing with the
cost coefficient of CP 3, the WC’s cost coefficient has higher
influence on the social utility. Generally speaking, higher cost
coefficients lead to the decreased social utility.

As one of the most important factor in the business, we
evaluate the impact of base price on the social utility gain

The QoE Gain of UE

0 L L L L L L L

60 80 100 120 140 160
The Amount of Consumed Data (Mbits)

Fig. 3. The illustration of how the objective system parameter az impacts
the QoE gain of UE.
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Fig. 4. The illustration of social utility gain under different environment set
up. The base price in panel (a) and (b) are set as yo = 0.1 and yo = 0.5,
respectively.

in Fig. 5. From the result we observe that with the increase
of base price of the data, the social utility gain will keep
decreasing. The optimal amount of consumed data decreases
as well. The rationale behind this is that when the data’s price
is high, UE would like to consume less data, and vice versa.
When other system parameters keep stable, the base price and
amount of consumed data will affect the UE’s QoE and social
utility. We can observe there is only one optimal base price
and consumed data pair that maximizes the social utility.

In Fig. 6 we compare the social utility performances under
two schemes: in the proposed reinforcement learning approach
(marked as RL method), and the fixed price approach, in
different service scenarios. In the RL method, the base price
and amount of consumed data are obtained from the Q-
learning algorithm. While in the fixed price method, the base
price is pre-set, and the amount of consumed data is chosen
from the simulation in previous figure where the data amount
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The Social Utility Gain
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Fig. 5. The social utility gain performance under different sets of base price
yo and amount of consumed data Z [, in the simulation we set up 5 = 0.1,
v = —2eT.

achieves the maximization of social utility. We can observe
from that the proposed Q-learning method outperforms the
traditional method in all environment parameters set up. The
rationale behind this is that: comparing with the traditional
method, both base price and consumed data are dynamic
along with the changing of environment factors in the learning
method. The proposed Q-learning approach has better social
utility performance.

,
IR Method
I Fixed Price Method

15.5

The Social Utility Gain
N I
> o

w
o

13

12.5

Case lll

Case | Case Il

Fig. 6. The illustration of the social utility performance with proposed
reinforcement learning method and conventional fixed price method, in
different service environments: Case I. v = —1e7,5 = 0.4; Case II,
v = —1e7,8 =0.3; Case IlIl: v = —2e7,8 = 0.2.

VI. CONCLUSION

In this paper, we proposed a reinforcement learning-based
QoE pricing model for wireless multimedia communications
in emerging networks such as Tactile Internet with Mixture
Reality. In the economic pricing model we considered the
media QoE, the amount of purchased data, the packet error rate
in the wireless channel, and the multimedia content preference
of users. Furthermore, instead of analyzing individual entity’s

financial cost and reward, we described the economic concept
of social utility to unite the QoE of UE and the operating
costs of UE-CP-WC together. Facing the fact that factors
such as channel conditions, multimedia content preference,
and data price are variance from time to time, we develop
a reinforcement learning solution to handle the complex and
dynamic aspects of the economic pricing model. We evaluated
the QoE and utility with different parameters and demonstrated
the performance improvement of the proposed Q-learning QoE
pricing model through simulations.
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