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Abstract—For photon attenuation correction, current PET/MR
imaging systems typically use methods based on MR image seg-
mentation with subsequent assignment of empirical attenuation
coefficients in PET image reconstruction. Delineation of bone in
MR images has been challenging, especially in the head and neck
areas, due to the difficulty of separating bone from air. In this
work, we study deep learning techniques that assist the MR-based
attenuation correction (MRAC) process for PET/MR systems,
with focus on the brain region. We use a generative adversarial
network (GAN) with residual blocks in a conditional setting for
this task. We studied the performance of the designed network
on image translation and segmentation tasks, which are essential
for MRAC. For both tasks, the network generates pseudo CT
images that resemble real CT images with normalized pixel value
difference of around 5% and structural similarity (SSIM) index
of around 0.8.

Index Terms—PET/MR, MR-based attenuation map, image
translation and segmentation, deep learning, generative adver-
sarial network (GAN).

I. INTRODUCTION

Positron emission tomography systems combined with mag-
netic resonance imaging (PET/MR) have shown promise to
provide simultaneous molecular and morphological evaluation
of a variety of diseases [1], [2]. In order to acquire accurate
quantitative PET images from a PET/MR system, MR-based
photon attenuation correction (MRAC) methods have been
actively researched and developed [3], [4].

Most current PET/MR systems use methods based on MR
image segmentation and subsequent assignment of empirical
attenuation coefficients for MRAC [5], [6]. The performance
of these methods can be significantly affected by segmentation
and tissue classification inaccuracy. For example, delineation
of bone structures in MR images is challenging due to the
difficulty of separating bone from air, especially in the head
and neck areas. Therefore special MR sequences, such as
ultrashort TE (UTE) and zero echo time (ZTE) sequences,
are often necessary for segmentation-based MRAC methods
[7], [8], [9], [10]. Atlas-based MRAC methods, which rely on
computed tomography (CT) generated attenuation maps and
co-registration of MR and CT images, are also studied and
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used [11]. Commercial MRAC products used for daily clinics
typically use segmentation-based or atlas-based methods as
discussed in [6], [11].

With the widespread use of deep neural networks in med-
ical imaging related tasks [12], deep learning based MRAC
methods have been studied in recent years [13], [14], [15].
Most of these methods use a specially designed convolutional
neural network (CNN) to generate pseudo-CT images from
MR images in order to achieve the MRAC task [16], [17], [18].
Researchers have also used a deep learning network to reduce
the noise of maximum-likelihood reconstruction of attenuation
and activity (MLAA) generated attenuation maps and in turn
to improve the quality of mu-maps for PET/MR systems [19].

In this work we follow this route and study a deep learning
based MRAC method, which can facilitate the automatic
generation of attenuation maps directly from MR images for
PET/MR systems. Specifically, we choose to use a generative
adversarial network (GAN) in a conditional setting (cGAN).

GANs have been widely studied and used for various
applications in recent years, especially for image processing
and generation related tasks [20]. They have also been studied
for medical image synthesis [21], [22], [23], [24]. Conditional
GANs feed input examples, rather than random noise in the
non-conditional case, into the generator. Conditional GANs
have shown outstanding performance in image translation
tasks including colorization, style conversion, and photo syn-
thesis [25].

Since MRAC is essentially an image translation problem,
i.e., translating MR images to corresponding attenuation maps,
cGANs show great potential for solving this problem. The key
features of cGANs can improve its performance for image
translation tasks as compared to simple Autoencoder [26]
or U-net [27] networks, which are widely used for deep
learning-based MRAC [16], [17], [18]. For example, adding
skip connections in a cGAN network can avoid the bottleneck
of information flow that is typically seen in an Autoencoder
network. In addition, adopting GAN loss instead of a simple
L1 / L2 loss (normally used for U-net) helps to preserve high
spatial frequency information (fine structures) in images.

In this work, we will study the feasibility of using a
cGAN network for MRAC. We study the performance of
the designed network in different tasks that are essential for
MRAC, including generating pseudo-CT images from MR
images, and segmenting bone in MR images.
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Compared to other work applying adversarial networks for
MRAC [22], [23], [24], [28], in this manuscript, we have
designed a cGAN with a U-net shape generator containing
residual blocks [29]. The combination of U-net and residual
blocks can facilitate smoother information flow between the
input and output of the network, as well as within each
encoder/decoder layer. In addition, when testing the perfor-
mance of the network, in addition to using regular CT and
MR images, we have also used patient data on both PET/CT
and PET/MR scanners to develop our approach. Since the
MRAC task is mainly needed by PET/MR scanners, testing
the network’s performance on real patient data acquired from
a PET/MR scanner can better resemble the real application
scenario. Lastly, we have tested another possible application of
the cGAN network for MRAC-related task, i.e., bone segmen-
tation in ZTE MR images. For brain PET/MR scans, accurate
delineation of bone is the most critical aspect to achieve
accurate PET photon attenuation correction. The network’s
capability of segmenting bone can lead to new ways of using
it for MRAC.

II. MATERIALS AND METHODS

A. Network Structure

The workflow for a cGAN network is illustrated in Fig. 1. It
is separated into a generator (G) and a discriminator (D). The
generator conditions on the input (x) and tries to generate a
fake example (G(x)) that resembles the label (y). The discrimi-
nator is trained to distinguish between the fake example (G(x))
and the real label (y). In this conditional setting, the real input
example (x) is fed into both the generator and discriminator.
During training, the two networks are trained simultaneously.

G

D

Fake

D

Real

x

x x

G(x) y

Fig. 1. Illustration for a conditional generative adversarial network (cGAN),
with “G” representing the generator, “D” representing the discriminator, “x”
representing the input, “y” representing the label, and “G(x)” representing the
output from the generator (fake example).

The network architecture adopted in this work is inspired
by the pix2pix network [25] and FusionNet [30], where we
inserted residual blocks into a cGAN network. We also only
focused on using a 2D network in this study. The network
is implemented with TensorFlow [31]. The detailed network
structure and the objective functions are described below.

1) Generator: The generator network structure is illustrated
in Fig. 2. We used a U-net [27] structure for the generator net-
work with 8 encoder layers and 8 decoder layers. Each encoder
layer consists of a residual block, a downsampling convolution
(Conv) layer, an optional batch normalization (BatchNorm)
layer [32], and a leaky rectified linear unit (ReLU) activation
layer. The residual block includes two sets of convolution-
leaky ReLU-BatchNorm layers. The convolution layer in the

residual block uses 4×4 filters with stride 1. The residual block
adds an extra skip connection between the input and output
via element-wise addition. The downsampling Conv layer also
uses 4×4 filters but with stride 2. All leaky ReLU layers adopt
a slope of 0.2.

Each decoder layer consists of a residual block, an upsam-
pling deconvolution (Deconv) layer, an optional BatchNorm
layer, and a ReLU (non-leaky) activation layer. The residual
block is the same as in the encoder. The Deconv layer uses
4×4 filters with stride 2. A dropout layer [33] with a keep
probability of 50% is added to the first three decoder layers. A
tanh activation function is applied after the last decoder layer
to generate the final output. Skip connections are adopted in
the U-net structure to connect the output of the encoder to the
corresponding input of the decoder via concatenation in the
third dimension.

The input image to the generator is first resized to 256×256
and has one color channel (gray-scale image). The output of
the generator has the same dimensions as the input image. The
inner latent space has dimensions of 1×1×512. The actual
input and output dimensions for each encoder and decoder
layer are marked on the top of Fig. 2, and example input
and output dimensions of different layers are illustrated on the
bottom of Fig. 2. Only the downsampling Conv layer and the
upsampling Deconv layer change the dimensions of the input,
which respectively shrink the input size by 2 and expand the
input size by 2. All the other layers do not change the dimen-
sions of the input. For the skip connections, concatenation in
the third dimension expands the third dimension by a factor of
2, while element-wise addition does not change the dimensions
of the input. The number of convolution filters (kernels) for
the 8 encoder layers are: 64 - 128 - 256 - 512 - 512 - 512 -
512 - 512. The number of deconvolution filters (kernels) for
the 8 decoder layers are: 512 - 512 - 512 - 512 - 256 - 128 -
64 - 3.

2) Discriminator: The discriminator network structure is
illustrated in Fig. 3. The discriminator has 5 encoder layers.
The first three encoders consist of a downsampling convolution
(Conv1) layer (4×4 filter, stride 2), an optional BatchNorm
layer, and a leaky ReLU activation layer (slope = 0.2). Encoder
4 includes a convolution (Conv2) layer with 4×4 filter and
stride 1, a BatchNorm layer, and a leaky ReLU layer (slope
= 0.2). The last encoder uses the same Conv2 layer with 4×4
filter and stride 1, and adopts a sigmoid activation function to
generate the final output.

The input and label (or alternatively the output from gen-
erator) images are both resized to 256×256 and fed into the
discriminator network. The two images are concatenated in
the third dimension, expanding this dimension by a factor of
2. The final output of the discriminator has a dimension of
30×30×1, which is used to calculate the objective functions.
The actual input and output dimensions of each encoder layer
are marked on the left side of Fig. 3, and example input and
output dimensions of different layers are illustrated on the right
side of Fig. 3. Only Conv1 layer shrinks the input dimensions
by 2. All the other layers do not change the dimensions of the
input. The numbers of convolution filters (kernels) for the 5
encoder layers are: 64 - 128 - 256 - 512 - 1.
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Fig. 2. Illustration for the generator network structure, with the actual input
and output dimensions for each encoder/decoder marked on the top, and the
example input and output dimensions for different layers illustrated on the
bottom.

3) Objective functions: Here we adopt the same symbols
as in Fig. 1, and let x denote the input image, y denote
the label image, G(x) represent the output from the gen-
erator, D(x, y) represent the output from the discriminator
when feeding the input (x) and label (y) into the network
(predicting true), and D(x,G(x)) represent the output from
the discriminator when feeding the input (x) and generator
output (G(x)) into it (predicting fake). We also use E[X] to
denote the mean/expectation of all the elements in matrix X .
For example, the output from the discriminator (e.g., D(x, y))
has a dimension of 30×30×1. With the mean/expectation
operation (E[D(x, y)]), it was averaged across all the 30×30
elements to give one single number.
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Fig. 3. Illustration for the discriminator network structure, with the actual
input and output dimensions for each encoder marked on the left, and the
example input and output dimensions for different layers illustrated on the
right.

The discriminator objective function is then defined as:

Ldis = E[log(D(x, y)) + log(1−D(x,G(x)))]. (1)

The discriminator is trained to maximize the probability
of predicting true (D(x, y)) and minimize the probability of
predicting fake (D(x,G(y))), so that the objective function is
maximized.

The generator objective function is defined as a weighted
sum of the cGAN loss and the L1 distance between the output
and label images, which can be written as:

Lgen = a1 × Lgen−cGAN + a2 × Lgen−L1

= a1 × E[log(D(x,G(x))) + a2 × E[||G(x)− y||1].
(2)

Here we use ||X−Y ||1 to represent the L1 distance between
matrix X and Y. The generator is trained to maximize the
probability of the discriminator predicting fake (D(x,G(x))),
and at the same time minimize the L1 distance between
the output and label images, so that the overall objective
function is maximized. Currently we choose to use a weight
combination of a1 = 1 and a2 = 100.

B. Datasets

We used three different datasets to train the cGAN network
and test its performance for different MRAC-related tasks. The
datasets are described below.

1) Co-registered MR and CT images: Input images are
clinical T1-weighted MR brain images from a 3 Tesla GE
Discovery 750T scanner. Label images are co-registered CT
images of the same patients in the same region. The images
were acquired from a total of 11 patients with 100 slices
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sampled for each patient from the axial view. Any metal
artifacts in the CT images were manually removed. The images
from 2 patients (randomly picked) were used as the test set.
The rest of the images were used as the training set. We
use this dataset to test if the cGAN network can convert MR
images (acquired with a regular MR scanner) to CT images
(acquired with a regular CT scanner).

2) Pairing PET/MR and PET/CT images: Input images
are clinical brain MR images using a two-point Dixon MR
sequence (water only) on a Signa PET/MR (GE Healthcare)
scanner. Label images are pairing CT images of the same
patients in the same region acquired on Siemens healthcare
mCT PET/CT scanner. The MR and CT images were manually
co-registered using 3D Slicer and MATLAB and the metal
artifacts in the CT images were removed. The images were
acquired from a total of 10 patients with 100 slices sampled for
each patient from the axial view. The images from 2 patients
(randomly picked) were used as the test set. The rest of the
images were used as the training set. We use this dataset to test
if the cGAN network can convert MR images (acquired with
a PET/MR scanner) to CT images (acquired with a PET/CT
scanner).

3) ZTE MR images: Input images are zero echo time
(ZTE) MR images of a patient’s brain. Label images are
corresponding images with bone manually segmented. A total
of 115 image slices were acquired from 1 patient. Axial view
images were used. 10 images were randomly picked to serve
as the test set. The rest of the images were used as the
training set. We use this dataset to test if the cGAN network
can perform segmentation tasks for bone since bone is the
most important part to accurately annotate for the MRAC
task, especially for the head and neck region. If bone can be
accurately segmented in brain PET/MR images, we can later
assign empirical attenuation values for brain PET attenuation
correction as done in segmentation-based MRAC methods.

For the MR/CT and PET/MR - PET/CT datasets, we per-
formed image registration between MR and CT images using
image transforms in 3D Slicer and the image registration
function in MATLAB. For the ZTE MR dataset, since the
label images are the same as the input images, just with bone
manually segmented, the input and label images are already
perfectly aligned, therefore no extra registration is needed.

The images were converted from Hounsfield units (HU) to
PNG images for the network input. Specifically, the range
of [-600, 1400] HU values of the original CT images was
linearly converted to the range of [0,255] pixel values of
the converted PNG images, which is consistent with the pre-
processing done in [34], [23]. The inputs of the cGAN network
are the converted gray-scale PNG images with a range of
[0,255] pixel values, and the outputs are also PNG images
with a range of [0,255] pixel values. Then the outputs from
the cGAN network are linearly re-scaled reversely from the
range of [0,255] to [-600, 1400] in order to convert the images
back to HU values.

For this manuscript, the main goal is to present the cGAN
network structure we designed, and to show it can work
effectively for different MRAC-related tasks. We believe even
the limited datasets are more than adequate to support this

aim.

C. Training Details

The input images were fed into the 2D network slice by
slice during training. As done similarly in [23], to augment the
number of training samples, each input image was first padded
to a dimension of 286×286. Sub-images with dimensions
of 256×256 were later randomly cropped to feed into the
network. For different datasets, we trained the cGAN network
for different numbers of iterations since the sizes of the
datasets differ. For the co-registered MR/CT dataset and the
pairing PET/MR - PET/CT dataset, we trained the network
for 5k iterations with a batch size of 50. For the ZTE dataset,
we trained the network for 500 iterations (also with a batch
size of 50) to prevent over-fitting for this relatively small
dataset. Adam optimization [35] was adopted for the training
process with a momentum term of 0.5. A fixed learning rate
of 0.0002 was used for the training process. For each training
step, the discriminator was trained first and then the generator
was trained. When calculating the discriminator and generator
losses, we used an exponential moving average (EMA) with a
decay coefficient of 0.99. The EMA assigns decaying weights
on the losses acquired from earlier training steps. Its formula
can be written as:

St =

{
L1, if t = 1

α · Lt + (1− α) · St−1, if t > 1
(3)

where t represents the training iteration, Lt is the loss output
from the network at iteration t, St is the EMA calculated loss
at iteration t, and α is the decay coefficient, which is set as
0.99 in our training process.

D. Cross Validation

For the MR/CT and PET/MR - PET/CT datasets, we
performed five-fold cross validation. For example, for the
PET/MR - PET/CT dataset, we randomly split the images from
10 patients into five sets, with each set containing images from
2 different patients. Then we used one set for testing, and the
rest of the images for training. We repeated this process five
times until all the five sets have been used for testing. A similar
procedure was performed for the MR/CT dataset, except that
we have a total of 11 patients in this dataset and one was
always used for training. Cross validation was not done for
the ZTE MR dataset since the images were all acquired from
the same patient.

E. Evaluation Metrics

To evaluate the quality of the network-generated CT images
(pseudo CT images), we calculated the pixel-wise value dif-
ference (the absolute value) between the pseudo CT and label
CT images. We further divided this value by 255 to acquire
the normalized pixel value difference. For one pair of images,
we averaged the pixel value difference across all pixels to
represent the deviation of the pseudo CT image from the label
CT image for this specific image pair. For an entire dataset, we
further averaged the normalized pixel value difference across
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all image pairs to represent the overall performance for this
dataset.

As a similar metric, we also calculated the normalized
root-mean-square error (NRMSE) to evaluate the similarity
between the pseudo CT and label CT images. The NRMSE
can be calculated as:

NRMSE =

√
MSE

L
=

1

L

√√√√ 1

mn

m−1∑
i=0

n−1∑
j=0

[X(i, j)− Y (i, j)]2,

(4)
where X(i, j) and Y (i, j) are corresponding pixel values in
two images, m and n represent the image dimensions, which
is 256×256 in our case, and L is the dynamic range of the
pixel values, which is 255 in our case.

In addition, we calculated the peak signal-to-noise ratio
(PSNR) from the mean squared error (MSE). We calculated
the MSE as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[X(i, j)− Y (i, j)]2, (5)

where X(i, j) and Y (i, j) are corresponding pixel values in
the pseudo CT and label CT images, but converted to HU, m
and n represent the image dimensions, which is 256×256 in
our case. Then PSNR is calculated as:

PSNR = 10 · log10(
I2max

MSE
), (6)

where MSE represents the mean squared error as defined
above, and Imax is the maximum intensity value of the CT
images in HU, which we set as 4095 in consistency with [22],
[23]. For NRMSE and PSNR, we still averaged the values
across all image pairs in a dataset to represent the performance
for this dataset. Lower NRMSE and higher PSNR indicate
better similarity between the pseudo CT and label CT images,
i.e., better quality of the pseudo CT images generated from
the cGAN network.

We also used the structural similarity (SSIM) index [36] to
evaluate the similarity between the pseudo CT and label CT
images. The SSIM index between two image windows x and
y of common size N ×N is calculated as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx
2 + µy

2 + c1)(σx2 + σy2 + c2)
, (7)

where µx is the average of x, µy is the average of y, σx2 is the
variance of x, σy2 is the variance of y, σxy is the covariance
of x and y, c1 = (k1L)

2 and c2 = (k2L)
2 are two variables

to stabilize the division with weak denominator, with L being
the dynamic range of the pixel values (255 in our case), and
k1 = 0.01 and k2 = 0.03 by default.

The SSIM index has a value between -1 and 1, where 1
represents two identical images, and 0 indicates no structural
similarity. The output image from the cGAN network has a
dimension of 256 × 256. We used an image window of size
8 × 8 to calculate the SSIM index, and averaged across all
image windows to acquire the SSIM index for one image. For
an entire dataset, again we averaged the SSIM index across
all images to represent the performance for this dataset. The
image background is included for the SSIM index calculation.

For the ZTE MR dataset, since it is used to evaluate the
cGAN network’s performance for bone segmentation task,
we used the Sørensen-Dice similarity coefficient (DSC) [37]
as an additional quantitative evaluation metric. To calculate
the DSC, we first converted both the pseudo CT and label
CT images to binary images with 1 indicating bone and 0
otherwise. This can be done by making pixels with values
above a set threshold (e.g., we chose to use 240 as the
threshold) have a binary pixel value of 1, and other pixels
0 for both images. Then the DSC between the two binary
images can be calculated as:

DSC(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

, (8)

where X and Y represent the converted binary images from
the pseudo CT and label CT images, |X| and |Y | represent
how many pixels these two images have in total respectively,
and |X ∩ Y | represents how many common pixels they have
(where pixels in corresponding positions both have a value of
1 or 0). DSC has a value between 0 and 1, where 1 represents
two identical images, and 0 indicates no common pixels (no
similarity). For the entire test set, the DSC was also averaged
across all images.

III. RESULTS

A. Co-registered MR and CT Images

In Fig. 4, we show the input MR image, cGAN output
pseudo CT image, label CT image and the normalized pixel
value difference map between the pseudo CT and label CT
image from example slices of one patient in one of the test
sets.

Input Output Label Difference

Fig. 4. Input MR image, cGAN output pseudo CT image, label CT image and
the normalized difference map between the pseudo CT and label CT image
from example slices of one patient in one of the test sets for the co-registered
MR/CT dataset.
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The normalized pixel value difference, NRMSE, PSNR
and the SSIM index for different cross validation sets are
summarized in Table I. The averaged results and variances
(across different cross validation sets) are: normalized pixel
value difference of 4.54± 0.13%, NRMSE of 10.50± 1.42%,
PSNR of 26.30± 1.08, and SSIM index of 0.76± 0.0007.

TABLE I
SUMMARY OF THE NORMALIZED PIXEL VALUE DIFFERENCE, NRMSE,
PSNR AND SSIM INDEX FOR DIFFERENT CROSS VALIDATION SETS IN

THE CO-REGISTERED MR/CT DATASET

Set 1 Set 2 Set 3 Set 4 Set 5

Pixel value diff. 4.16% 5.04% 4.61% 4.67% 4.22%

NRMSE 8.62% 11.24% 11.31% 11.33% 10.00%

PSNR 27.97 25.71 25.50 25.67 26.67

SSIM index 0.80 0.77 0.77 0.75 0.73

B. Pairing PET/MR and PET/CT Images
In Fig. 5, we show the input MR image, cGAN output

pseudo CT image, label CT image and the normalized pixel
value difference map between the network-generated pseudo
CT image and label CT image from example slices of one
patient in one of the test sets.

Input Output Label Difference

Fig. 5. Input MR image, cGAN output pseudo CT image, label CT image
and the normalized pixel value difference map between the network-generated
pseudo CT image and label CT image from example slices of one patient in
one of the test sets for the pairing PET/MR - PET/CT dataset.

The normalized pixel value difference, NRMSE, PSNR
and the SSIM index for different cross validation sets are
summarized in Table II. The averaged results and variances
(across different cross validation sets) are: normalized pixel
value difference of 5.59± 0.24%, NRMSE of 13.85± 0.85%,
PSNR of 23.58± 0.31, and SSIM index of 0.76± 0.0007.

TABLE II
SUMMARY OF THE NORMALIZED PIXEL VALUE DIFFERENCE, NRMSE,
PSNR AND SSIM INDEX FOR DIFFERENT CROSS VALIDATION SETS IN

THE PAIRING PET/MR - PET/CT DATASET

Set 1 Set 2 Set 3 Set 4 Set 5

Pixel value diff. 5.77% 5.35% 4.94% 5.62% 6.27%

NRMSE 13.37% 13.23% 13.05% 15.22% 14.38%

PSNR 23.80 23.92 24.15 22.79 23.24

SSIM index 0.74 0.80 0.75 0.76 0.73

C. ZTE MR Images

In Fig. 6, we show the input MR image, cGAN output image
with bone segmented, label image with bone segmented and
the normalized pixel value difference map between the cGAN
output and the label image in the test set.

Input Output Label Difference

Fig. 6. Input MR image, cGAN output image with bone segmented, label
image with bone segmented and the normalized pixel value difference map
between the cGAN output and the label image in the test set for the ZTE MR
dataset.

The quantitative metrics averaged across all images in the
test set are: normalized pixel value difference of 2.48%,
NRMSE of 7.07%, PSNR of 29.35, and SSIM index of 0.90.

In Fig. 7, we show examples of converting the pseudo
CT and label CT images to binary images based on bone
segmentation. Based on the segmented images, we calculated
the average DSC for the pairing images in the test set as: 0.83.
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Fig. 7. Example slices of converting the pseudo CT and label CT images to
binary images based on bone segmentation.

D. Comparing the Conditional GAN Network with Other
Network Structures

We have compared the performance of the cGAN net-
work discussed in this manuscript with that of other network
structures we studied before. First of all, we compared the
performance of the cGAN network with that of the sim-
ple Autoencoder used in our previous work [26]. With the
PET/MR - PET/CT dataset, the simple Autoencoder generates
a normalized pixel value difference of around 15% and a SSIM
index of around 0.5. We have also tried to use the original
pix2pix network [25] without adding residual blocks for the
MRAC task [38]. For the co-registered MR/CT dataset, the
pix2pix network generates an average normalized pixel value
difference of 7.62%, NRMSE of 17.46%, PSNR of 21.98, and
SSIM index of 0.67.

We also compared our results with the results acquired
by other researchers. We still take the co-registered MR/CT
dataset as an example. We have achieved a normalized pixel
value difference of 4.54%. If we convert this to the mean
absolute error (MAE) in HU, it corresponds to around 90 HU.
This value is comparable to the MAE range of 75 - 100 HU
reported in [22], [23]. Looking at the PSNR and SSIM index,
we have achieved a PSNR of 26.30 and SSIM index of 0.76.
The PSNR is comparable to the PSNR of 27 reported in [22]
but slightly lower than the PSNR of 30 reported in [23]. The
SSIM index is slightly lower than the SSIM index of 0.85
reported in [28]. If we look at the DSC of 0.83 acquired from
the ZTE MR dataset, we can see it is comparable to the DSC
of 0.80 reported in [28].

IV. DISCUSSION

From Fig. 4, we can see that the cGAN network can be
trained to convert T1 MR images to CT images, and then
the pseudo CT images can be further used to generate photon
attenuation maps for MRAC. From Fig. 5, we can see that the

network can also perform the conversion task for Dixon MR
images acquired with a PET/MR scanner. From Table I and
II, we can see that the network generalizes very well when
using different cross validation sets.

From Fig. 6, we can see that the cGAN network can
also successfully segment bone from ZTE MR images, which
is essential for the MRAC task. We should note that due
to the limited resource of ZTE MR images, we only have
ZTE MR images from one patient with manually segmented
label images, and therefore performed training and testing on
images of the same patient for the ZTE MR dataset. This was
done to show another possible application of the proposed
cGAN network structure for MRAC-related tasks, i.e., bone
segmentation in MR images. It will also be useful for readers
interested in a different approach for achieving and evaluating
accuracy of bone segmentation. A more ideal case would be
to verify the network’s function by training and testing on
different patients, which will be done in our future work. We
will also study the segmentation of other tissues in the future.

Comparing the results shown in Table I and II, as well as the
results discussed in Sec. III-C, we can see that the cGAN net-
work performs differently (judged by the quantitative metrics)
for different datasets/tasks. This is related to the difference in
the patient data for each dataset, the difference in the statistics
of the input images due to different imaging sequences and
scanners, the difference in the nature of the task (e.g., image
translation vs. segmentation), as well as the difference in the
nature of the training and test sets (e.g., if the training and
testing were done on the same patient). The performance of
the network can also be affected by the registration quality
between the input and label images for each dataset, as well
as the quality (e.g., contrast) of the input images.

Based on the results presented in Sec. III-D, we can
see that the cGAN network discussed in this manuscript
has shown greatly improved performance compared to the
simple Autoencoder used in our previous work [26]. It also
outperforms the original pix2pix network [25] without adding
residual blocks, since the residual blocks further facilitate a
smoother information flow within each encoder/decoder layer.
In addition, it shows comparable performance to the deep
learning networks studied by other researchers for MRAC
task. As we have discussed above, we should again note that
the difference in the quantitative metrics is affected by the
difference in the datasets, the image registration quality, and
the quality of the input images. For our future work, we will
acquire better quality patient data (e.g., MR images with better
contrast) with improved registration and fine tune the network
structure and training hyper-parameters to improve the results.

In this work, we chose to use a cGAN network with residual
blocks since some of its key features have enabled its improved
performance over a simple Autoencoder or U-net network. For
example, our cGAN network avoids the problem of having a
very small dimensional inner-most latent layer as in a simple
encoder - decoder network by adopting the U-net structure.
This feature works to preserve a smooth information flow
between the input and output images. Adding in extra residual
blocks further helps with the information flow within each
encoder/decoder layer. In addition, our cGAN network uses

Authorized licensed use limited to: University of Illinois. Downloaded on November 05,2020 at 22:59:35 UTC from IEEE Xplore.  Restrictions apply. 



2469-7311 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2020.2989073, IEEE
Transactions on Radiation and Plasma Medical Sciences

8

an objective function that combines the L1 loss and the GAN
loss. This GAN structure and loss function treat the entire
input image as a whole instead of performing pixel-wise image
conversion. This feature enables the cGAN network to be less
sensitive to the misalignment between the input and label
images, as well as mitigates the artificial smoothing of the
output images as when using a simple L1 or L2 loss. At the
same time, we adopted a PatchGAN loss [25] instead of a
single value for the GAN loss (i.e., the final output from
the discriminator is 30×30 instead of a single value). This
allows the cGAN network to focus better on the high frequency
information in the images.

V. CONCLUSION AND FUTURE WORK

In this work, we have designed and trained a cGAN network
with residual blocks for MRAC task. We studied the perfor-
mance of the network on image translation and segmentation
tasks, which are essential for MRAC. The network is proved
to successfully convert MR images to CT images, as well as
segment bone from MR images.

For future work, we will further fine tune the network
architecture and adjust the training hyper-parameters (e.g.,
learning rate, number of training iterations) to improve its
performance. We will also acquire images from more patient
subjects for our study. Especially for the ZTE MR dataset, we
will acquire images from other patients in order to train and
test the network on different patients. We will work to achieve
better registration on these images. We also plan to perform
data augmentation to further augment the datasets.

Instead of only focusing on the brain, we will study the
performance of the network on other parts of the body. In
addition, we will upgrade the 2D training to 2.5D training, and
develop a 3D network (which makes better use of the spatial
information/relation between consecutive slices) based on the
2D network used in this manuscript. Finally, we will convert
the network output pseudo CT images to photon attenuation
maps and test their performance for attenuation correction
during PET image reconstruction.
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