Network Testing Using a Novel Framework for
Traffic Modeling and Generation*

Oluwamayowa Ade Adeleke
Computer Science
University of Houston
Houston, USA
oaadelek @ central.uh.edu

Abstract—Network traffic modeling plays an important role in
the geperation of realistic network traffic in test environments.
Especially in cases where researchers carry out experiments with
real production-like traffic, as seen in specific home, enterprise,
campus, LAN, or WAN networks. We present our ongoing work
on a new framework that enables the methodical creation of
application-agnostic traffic models from given network traces of a
known network topology. The framework then uses these models
to generate realistic traffic on a given network topology. We share
a preliminary evaluation of the framework based on repeatable
experiments where we model a typical web application traffic and
then regenerate the traffic based on the model in a fest network
on our VTS (Virtual Topology Services) testbed.

Keywords—Computer networks; Packet generators; captures;
Network Traffic Modeling; Machine Learning; GENI; VTS

I. INTRODUCTION

Software Defined Networking (SDN) has enabled creation
of fairly complex test networks with several nodes and links
in testbed environments[5]. However, the process for obtaining
production network traffic data for testing novel ideas, algo-
rithms, protocols and network functions remains a major pain
point for many academic researchers. Privacy policies restrict
some of the data that industry operators can share with third
parties[6]. Traffic replay can be limited to the capture point
perspective [4]. Therefore, many researchers rely on synthetic
traffic generators [3]. At best, many popular traffic generators
blast out packets at predetermined rates, or at rates based on
statistical distributions of a few traffic parameters. Thus, the
use of such generators may not be suitable when researchers
need to carry out experiments with real production-like traffic.

We believe that intellipent network traffic modeling can be
utilized to overcome the privacy issues involved in sharing
traffic captures. Instead of direct sharing of the captured
traffic, a model for the application behavior can be extracted
from the traces through removal of specific network protocol
reactions to impairments in networks such as refransmissions,
acknowledgments, and other protocol messages. We describe
a new framework that extracts traffic models from captured
traffic accompanied with methods to penerate traffic from
the models in a different testbed environment. The model

This research is supported in part by the NSF Grant CNS Core 1902974

Nicholas Bastin
Engineering Technology
University of Houston
Houston, USA
nick.bastin@ gmail.com

Deniz Gurkan
Engineering Technology
University of Houston
Houston, USA
dgurkan@uh.edu

files provide methods and specific statistics to generate the
original network traffic on any number of endpoints, on a
different network running any choice of transport, network,
and data link protocols. Hence, privacy of original capture
is preserved and capability to test application performance
on desired network topologies is achieved. We present the
outcomes from our preliminary evaluation of the framework

II. FRAMEWORK DESCRIPTION
Our framework (Fig. 1) consists of 4 main components.

1) Dataset Extractor: The input to the dataset extractor is
a libpcap traffic trace file. The extractor performs a re-
assembly of the IP fragments, detects re-transmissions to
remove duplicates, re-orders out-of-order packets, determines
parent TCP and UDP connection, and prepares the application
level protocol data units (PDUs). The extractor provides ap-
plication payload data with a coarse labeling of packet header
information in a csv-formatted dataset as the output.

2) Modeling System: The system runs various ML algorithms
to generate traffic model files for the extracted datasets. The
model files include methods, statistics, and other parameters
required for the generation of each application traffic at the
desired endpoints on a given test network. Our current im-
plementation applies a combination of clustering algorithms,
expert decision trees, stochastic and empirical distributions. A
sample JSON-formatted traffic model file is in Fig. 2 (b).

3) Packet Generation System: The traffic model files provide
the traffic penerator with the application traffic patterns and

Fig. 1. Framework components along with evaluation and validation tasks.

OTE-1-T281-6607-0/20/531.00 ©2020 [EEE
Authorized icensed use limited to: University of Houston. Downloaded on November 06,2020 at 04:08:58 UTC from IEEE Xplore. Restrictions apply.

.
I O TN InarPOL Time POL Sizes
1000
, il
AF —j s g i
T —_— na 3
||;-.l1. = § bl |=|
o] ole 80 nos Er 200 .
=i u
- a o 4z a1 L] W3 10 Dwigired Pagararzisc
_I L WIS taca [aiesh
) ke P S]
{n) Exparimant Topoiogy 1) Sampla traffa modal file o) GOF piorts for sysiog opa infer-POL times i} Box pilats for sysiog opp POU sizes

Fig. 2. (a) Experiment topology: (b) Traffic model file samples; (c) and (d) Preliminary evaluation results: There is a close overlap between the generated

traffic and the original traffic on both the CDF plots, and the box plots.

generation methods. Our current generator implementation is
portable to leverage any host operating system network stack.
4) Evaluation system: Repenerated packet traces are com-
pared with the original input traces to provide an assessment
of the level of similarity based on various traffic metrics.

ITI. PRELIMINARY EXPERIMENT AND RESULTS

We performed preliminary experiments to demonsirate our
framework in modeling and re-generating traffic for a typical
web application in testbed network. To obtain an initial set
of traffic traces, we set up a network as shown in Fig. 2 (a).
The network has a nginx web server with pages of a web
documentation. A client machine on the same network sends
automated page requests for the documentation at random time
intervals using a se leniumweb automation driver simulating
a typical user. Another node serves as a syslog server for
the log messages pushed by the nginx web server. Finally, a
monitor node captures the traffic flowing within the network,
using the span port of the bridge. Each run is about sixty
minutes. We analyzed the traces for the =y=slog service.

Dataset extractor creates a csv file containing details of
packet headers and connections. The modeling system creates
a traffic model file as shown in Fig. 2 (b). We then create
a test replica of the original network where the traffic was
captured on our VTS testbed [1], running on a 64-bit 3.40GHz
Intel(R) Xeon(TM) machine with 128 GB memory. The test
network has five nodes, that is, 2 end hosts emulating the
documentation server and the client machine, a host to emulate
the sy=slog server, and a host to store the captured traffic.
Using our repeatable experiment orchestration framework [2],
we penerate traffic on each host based on the traffic models
created and we capture the regenerated traffic at the node that
is connected to the span port of the bridge.

We evaluated the results of the framework by comparing the
statistical parameters of the regenerated traffic and the original
traffic. The preliminary results are shown in the Fig. 2 (c)
and (d). The PDU size and inter-PDU time distributions are
compared for the sy =1og service packets. The syslog service
exhibits a unidirectional flow of messages from the client, as a
second order effect of HTTP requests received by the nginx
service. In Fig. 2 (c), the inter-PDU time values range from

1.54 to 117.69 seconds in the original trace, which compares
to the range of 4.93 to 108.48 seconds seen in the regenerated
trace. The PDU size distribution is displayed as box plots in
the Fig. 2 (d), indicating interquartile range of 309.25 - 387.00
bytes in the original trace, which compares to the interquartile
range of 309.75 to 386.00 bytes in the repenerated trace.

IV. CONCLUSION

The framework components are validated through statistical
evaluations of traffic metrics. A portable model output gen-
eration mechanism allows for privacy-preserving methods of
realistic traffic generation. The framework design is extensible,
making it easy for other users to add their custom modeling
and regeneration methods. Source code and samples are avail-
able in our version-controlled repositories [7].

REFERENCES

[1] Nicholas Bastin. GENI - Virtual Topology Service VTS.
2017. vurL: https://geni- vis. readthedocs . io/en/ latest/
(visited on 11/08/2019).

[2] S.Baxley, N. Bastin, and D. Gurkan. Analysis of In-order
Packet Delivery Network Policy Enforcement Function.
Ed. by IEEE Conference on Computer Communications
Workshops (INFOCOM WEKSHPS) - Second Place in
GENI Repeatable Experimentation Competition. 2018,

[3] Samad S Kolahi et al. “Performance monitoring of var-
ious network traffic generators”. In: 20171 UkSim 13th
international conference on computer modelling and
simulation. IEEE, 2011, pp. 501-506.

[4] Lun Li et al. “Modeling for Traffic Replay in Virtual
Network™. In: 2018 IEEE 20th International Conference
on High Performance Computing and Communications.
IEEE. 2018, pp. 495-502.

[5]1 Nick McKeown et al. “OpenFlow: enabling innovation
in campus networks”. In: ACM SIGCOMM Computer
Communication Review 38.2 (2008), pp. 69-74.

[6] Douglas C Sicker, Paul Ohm, and Dirk Grunwald. “Legal
issues surrounding monitoring during network research”.
In: Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement. ACM, 2007, pp. 141-148.

[71 UH Networking Lab Staff. UH Nerworking Lab - uhexp.
2020. vrL: https://hg. uh - netlab. org / netlab / uhexp/
(visited on 03/24/2020).

Authorized icensed use limited to: University of Housion. Downloaded on November 06,2020 at 04:08:58 UTC from IEEE Xplore. Resirictions apply.

