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Hot-carriers, energetic electrons and holes with energy dis-
tributions that deviate significantly from equilibrium Fermi-
Dirac distributions (1), are expected to arise in metallic 
nanostructures due to the non-radiative decay of surface plas-
mons. Such hot-carriers hold promise for the development of 
a variety of technologies, including plasmon-driven photo-
chemistry (2–5), alternative solar-energy harvesting devices 
(6), and efficient photodetectors operating below bandgap (7–
9). Central to the design and development of these applica-
tions is knowledge of the hot-carrier energy distributions 
(HCEDs) that are generated under steady-state conditions 
(10). While past work has tried to quantify HCEDs (11–15), a 
majority of this work has relied on first-principle calculations 
or semi-classical approaches, which involve assumptions on 
the dominant relaxation pathways of hot-carriers as well as 
material properties (15) that lead to significant uncertainties 
in the estimated HCEDs (12, 13). In fact, recent calculations 
(16) have even suggested that the deviations from the equilib-
rium Fermi-Dirac distribution are negligibly small, question-
ing past calculations. Therefore, direct experimental 
observations are critical for obtaining detailed insights into 
the HCEDs and for rationally engineering the aforemen-
tioned technologies. 

Here, we show how scanning probe-based techniques (17–
19) that measure charge transport in single molecules, when 
combined with nanoplasmonic experimental methods, can be 
leveraged to directly quantify steady-state HCEDs [fhot(E)] in 
a key model system—a thin gold film that supports 

propagating surface plasmon polaritons (SPPs). Our basic 
strategy is to first create single-molecule junctions (SMJs)—
using carefully chosen molecules with appropriate transmis-
sion characteristics—between a plasmonic gold (Au) film and 
the Au tip of a scanning tunneling microscope (STM), and 
elucidate the current-voltage characteristics with and with-
out plasmonic excitation at various voltage biases (Vbias) (see 
Fig. 1A). The difference in the measured currents for the cases 
with [ISPP(Vbias)] and without [Id(Vbias)] plasmonic excitation, 
which we call the hot-carrier current Ihot(Vbias) = ISPP(Vbias) − 
Id(Vbias), enables us to directly quantify fhot(E). 

To elaborate, as depicted in Fig. 1, B and C, Ihot(Vbias) arises 
due to the generation of the non-equilibrium carriers under 
plasmonic excitation with an energy distribution fne(E). We 
note that the energy distribution fhot(E) represents the differ-
ence between fne(E) and the equilibrium Fermi-Dirac distri-
bution feq(E) as fhot(E) = fne(E) − feq(E). As explained in detail 
in the supplementary materials (20), fhot(E) and Ihot(Vbias) are 
related by 
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where T(E) is the transmission function of the SMJ, e is the 
elemental charge and h is the Planck constant. When SMJs 
that feature a sharp peak in T(E) are employed, Ihot(Vbias) is 
predominantly determined by the hot-carriers with energies 
close to the transmission peak, simplifying the above integral 
to [(20), section 1] 
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Hot-carriers in plasmonic nanostructures, generated via plasmon decay, play key roles in applications like 
photocatalysis and in photodetectors that circumvent band-gap limitations. However, direct experimental 
quantification of steady-state energy distributions of hot-carriers in nanostructures has so far been 
lacking. We present transport measurements from single-molecule junctions, created by trapping suitably 
chosen single molecules between an ultra-thin gold film supporting surface plasmon polaritons and a 
scanning probe tip, that can provide quantification of plasmonic hot-carrier distributions. Our results show 
that Landau damping is the dominant physical mechanism of hot-carrier generation in nanoscale systems 
with strong confinement. The technique developed in this work will enable quantification of plasmonic hot-
carrier distributions in nanophotonic and plasmonic devices. 
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where E0 is the energy of the peak in T(E). Equation 2 relates 
Ihot(Vbias) to fhot(E) via a voltage- and energy-independent con-

stant scaling factor 
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Vbias in the window {V0:−V0}, the steady-state HCEDs can be 

mapped within the energy window 0 0
0 0:
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 (Fig. 

1C). 
We used the molecules shown in Fig. 1D (labeled L1, H1, 

L2) for experimental quantification of the HCEDs. Molecule 
L1 represents a charge-transfer complex of quaterthiophene 
(T4) and tetracyanoethylene (TCNE) with terminal thio-
phenes containing gold-binding methyl sulfides, while the H1 
molecule, 3,4-ethylenedioxythiophene (EDOT), is flanked by 
two thiophenes with terminal thiophenes containing gold-
binding methyl sulfides. The transmission characteristics of 
Au-L1-Au and Au-H1-Au SMJs are expected to be sharply 
peaked and dominated by the lowest unoccupied molecular 
orbital (LUMO) (21, 22) and highest occupied molecular or-
bital (HOMO) (23), respectively. Finally, we also utilize L2, 
1,4-benzenediisonitrile molecules [see section 3 of (20) for ad-
ditional details], SMJs created from which are expected to 
feature weakly energy-dependent T(E) also dominated by the 
LUMO level (24). 

Plasmonic gold films (thickness 6 nm and 13 nm), with 
integrated grating couplers, were fabricated on fused silica 
substrates (Fig. 1A) to excite SPPs and generate hot-carriers 
[(20), section 4]. The 6 nm-thick gold film with grating cou-
pler was first exposed to a solution containing L1 molecules 
to create a monolayer of the molecules [(20), section 5]. Next, 
we positioned a Au STM tip at a separation of ~1 μm (along 
the x direction) from the grating edge (fig. S2). Subsequently, 
the Au film was covered with an immersion oil matching the 
refractive index of fused silica to create a symmetric optical 
medium around the film, and a Vbias = 0.1 V was applied to 
the STM tip while grounding the Au film. We then employed 
the STM break-junction technique (17, 18) [see (20), section 2 
for a detailed protocol] to identify the current through a Au-
L1-Au SMJ. The peak in the current histogram created from 
over 2000 current vs. displacement traces represents the 
most probable current (Id)—corresponding to a conductance 
of 8.5 × 10−4 G0 for a Au-L1-Au junction (Fig. 2A) under the 
absence of plasmonic excitation [G0 ≈ (12.9 kΩ)−1 is the quan-
tum of electrical conductance], in good agreement with prior 
work (22). Subsequently, we illuminated the gratings with a 
focused 830 nm, linearly polarized laser beam (0.3 mW/μm2 
power density) perpendicular to the grating strips, launching 
SPPs in the Au film (Fig. 1A). Concurrently, we measured the 

electrical current and found that the most probable current 
ISPP is larger than Id (Fig. 2A). We then determined the hot-
carrier current as Ihot(Vbias = 0.1 V) = ISPP(Vbias = 0.1 V) – Id(Vbias 
= 0.1 V). The measured Ihot(Vbias = 0.1 V) displayed a strong 
dependence on the laser polarization (Fig. 2C), consistent 
with the polarization dependent SPP excitation efficiency, in-
dicating that the measured Ihot is due to the excitation of 
SPPs. Additional control experiments further confirmed that 
the measured Ihot is indeed due to hot-carrier effects and not 
due to an increased temperature or simple light-assisted 
transport [(20), section 6]. 

Next, we performed additional measurements from Au-
L1-Au SMJs at the same location, while varying Vbias from 
{−0.3 V:0.3 V}. The measured bias-dependent Ihot(Vbias) (fig. 
S16A) displayed an asymmetric shape with a peak around 
0.15 V. Further, the transmission characteristics of Au-L1-Au 
junctions, necessary for determining the spectral distribution 
of hot carriers (see Eqs. 1 and 2), were obtained using an ex-
perimental approach developed in (23) [(20), section 7]. Fig-
ure 2D shows the T(E) obtained for Au-L1-Au junctions. 
Consistent with past work (23), we fit the measured T(E) with 
a Lorentzian and obtained the energy of the peak to be E0 ≈ 
0.18 eV relative to the Fermi energy (EF) with a peak width of 
2.6 meV (Fig. 2D), confirming the sharp nature of the peak 
[(20), section 7], in good agreement with past computational 
work (22). Subsequently, we determined fhot(E) from the 
measured Ihot(Vbias) and T(E) of L1 using Eq. 2. The measured 
fhot(E) (see Fig. 3A) revealed the relative hot-electron energy 
distribution (HEED), displaying a peak around 100 meV fol-
lowed by a decaying tail extending up to about 330 meV 
above EF. It should be noted that, as the transmission func-
tion peak enters the window between the quasi Fermi levels 
of the two contacts, extremely large currents flow through the 
molecular junction making the junction unstable and limit-
ing the Vbias sweep window to {−0.3 V:0.3 V} and the energy 
window to {0.03 eV:0.33 eV} with respect to EF [(20), section 
7]. However, this is not a fundamental limitation as addi-
tional measurements and analysis with Au-L2-Au SMJs ena-
bled measurements of the HEED at higher energies, which 
revealed that there are negligibly few hot-electrons with en-
ergies beyond 0.4 eV [dashed line in the inset of Fig. 3A, (20), 
section 10]. 

To determine the hot-hole energy distribution (HHED), 
i.e., energies below EF, we repeated measurements of Ihot(Vbias) 
in Au-H1-Au SMJs for Vbias in the range of {−1.5 V:1 V} (fig. 
S16B). Unlike for L1, where large Ihot(Vbias) was observed for 
positive Vbias, no perceptible Ihot(Vbias) was recorded in H1 
junctions for positive Vbias. Instead, Ihot(Vbias) in H1 junctions 
increased above the noise floor for Vbias below −0.6 V and 
peaked around −1.2 V. Next, we measured the transmission 
characteristics of Au-H1-Au junctions, and obtained the  
Lorentzian-shaped transmission characteristics shown in  
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Fig. 2E, which features a peak at E0 ≈ −0.7 eV and a peak 
width of 6.8 meV, in good agreement with prior work (23). 
From the measured T(E) and Ihot(Vbias), we obtained fhot(E) us-
ing Eq. 2 over the energy range {−1.2 eV:0.05 eV} (Fig. 3B). 
The HHED featured a peak around −0.1 eV and a decaying 
tail that extends to energies about −0.4 eV with respect to EF. 

To gain insights into the microscopic origin of our obser-
vations, we performed first-principle density functional the-
ory (DFT) calculations (11) to compute the hot-carrier 
generation rates and subsequently employed the Boltzmann 
transport equation under the relaxation time approximation 
(25) to obtain the steady-state HCEDs [(20), section 11]. For 
our calculations, we considered a geometry consisting of a Au 
film surrounded by a symmetric dielectric environment with 
a refractive index n = 1.45, mimicking the geometry in our 
experiments, which is known to support two plasmonic 
modes: a symmetric mode and an antisymmetric mode with 
distinct dispersion relations (26–28). 

The computed HCED arising from the symmetric plas-
monic mode on a 6 nm-thick Au film, obtained using both an 
energy-dependent electron-electron collision rate from Lan-
dau’s Fermi liquid theory (FLT) (29) and an energy-independ-
ent scattering rate are shown in Fig. 4A. Additionally, 
electron-phonon scattering is included via an energy-inde-
pendent relaxation rate (30). Note that these computational 
results are multiplied by a scaling factor so that the peak 
value is 1. The results obtained following FLT predict that 
hot-carriers are largely populated within the energy window 
of {−0.4 V:0.4 V} relative to EF—in excellent agreement with 
our experiments. In contrast, an energy-independent scatter-
ing rate results in hot-carriers in a larger range of energies 
(Fig. 4A, blue curve) that disagree with our experimental ob-
servations. These findings establish the validity of employing 
the energy-dependent electron-electron collision rate for 
modelling hot-carriers in plasmonic nanostructures. 

To understand the effect of film thickness we measured 
the HCED in thicker (13 nm-thick) Au films. The measured 
HCED (Fig. 3, C and D) showed that the hot-carriers are 
mostly populated around EF. Besides, the total number of hot-

carriers ( )F

F

ω

hotω
( ) d

E

E
f E E

+

−∫




 was found to be ~40% smaller 

than those measured on 6 nm film. The observed reduction 
in the magnitude of HCED in thicker films can be attributed 
to the effect of surface-assisted absorption—Landau damping 
(13, 15, 25) [see relevant discussion in (20), section 11]. To 
quantify the role of Landau damping, we computed the 
HCED in a 13 nm film arising from the symmetric plasmonic 
mode, and electron-electron scattering rates from FLT (Fig. 
4A), which revealed that the generated hot-carriers are pop-
ulated close to EF, similar to the 6 nm film. However, about 
43% fewer hot-carriers are generated in the 13 nm film, in 
good agreement with our experiments. 

To elucidate the distance-dependence of hot-carrier gen-
eration, we measured Ihot for Au-L1-Au SMJs at Vbias = 0.1 V 
for varying separations (d) from the grating edge on a 6 nm-
thick gold film [see Fig. 4C and (20), section 14]. The meas-
ured Ihot decreases as the separation from the edge of the grat-
ings increases and drops close to zero for d > 7.5 μm. To 
understand the observed distance-dependence, we simulated 
(using the Lumerical FDTD package) the intensity profile in 
the 6 nm film upon illuminating the grating coupler with an 
830 nm laser. A beating profile was observed close to the grat-
ings (Fig. 4D), which we attribute to the interference between 
the two plasmonic modes [(20), section 13 and inset in Fig. 
4D]. However, for d > 10 μm the symmetric mode decays 
while the antisymmetric mode shows very little decay. Since 
there are no observed hot-carriers at large separations, de-
spite the presence of the antisymmetric mode, we conclude 
that the contribution of the antisymmetric mode to hot- 
electron generation is negligible. Additional calculations (Fig. 
4B) confirmed that the antisymmetric mode is indeed much 
less effective in generating hot-electrons, resulting in 400-
times (30-times) fewer carriers, in comparison to the sym-
metric mode for the 6 nm (13 nm)-thick film. 

Our scanning probe-based approach combines single- 
molecule quantum transport measurements and nanoplas-
monics to directly map the steady-state energy distributions 
of hot-carriers. The approaches developed will enable funda-
mental insights into hot-carrier generation processes and are 
critical for future hot-carrier assisted technologies. 
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Fig. 1. Experimental setup and strategy to map hot-carrier energy 
distributions (HCEDs). (A) Schematic of the experimental set-up. SMJs are 
formed between a grounded nanodevice (Au film with integrated grating 
coupler, see electron micrograph) and a biased Au STM probe. SPPs are 
excited by illuminating the grating coupler with 830 nm CW laser. The 
bottom left graphic represents a cross-section of the nanodevice covered 
with index matching oil. (B) Schematic of hot-carrier generation.  
(i) Equilibrium Fermi function. (ii) Non-radiative decay of SPP energy (ħωp) 
generates electron-hole pairs, resulting in (iii) non-equilibrium distribution 
of hot-electrons and holes. (C) Schematic showing how LUMO or HOMO-
dominated SMJs with sharp transmission peaks selectively transmit hot-
carriers. Biasing the junctions shifts the transmission peak with respect to 
the equilibrium Fermi level enabling quantification of HCED. (D) Structures 
of molecules used in this work. 
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Fig. 2. Hot-carrier induced changes in SMJ currents, polarization-
dependence, and transmission characteristics of L1 and H1 molecules. 
(A) Current and conductance histograms of Au-L1-Au SMJs from over 2000 
traces of dark (grey) and SPP-excited (magenta) measurements at Vbias = 
0.1 V. Gaussian fits to the histogram peaks are represented as solid lines 
and the vertical arrows indicate the most probable conductance and 
current. Inset shows representative conductance traces following the same 
color coding. (B) Same as (A), but for Au-H1-Au junctions and −1.0 V bias 
voltage. The grey and blue colors correspond to measurements from dark 
and SPP-excited cases, respectively. (C) Polarization-dependence of the 
hot-carrier current for Au-L1-Au junctions (red circles) at 0.1 V bias voltage 
along with the best-fit cos2θ dependence (black line). (D) and (E) Measured 
transmission functions (note the linear and logarithmic scales) of Au-L1-Au 
and Au-H1-Au junctions along with the Lorentzian fits (solid lines). 
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Fig. 3. Energy distributions of hot-carriers in 6 nm and 13 nm-thick Au 
films. (A) The measured HEED in a 6 nm Au film obtained from 
measurements on Au-L1-Au and Au-L2-Au SMJs. The energy distribution in 
the range up to 0.33 eV was measured with Au-L1-Au junctions. The inset 
shows the HEED on a log scale and the dashed line represents the upper 
bound on the average fhot(E) in the energy window {0.4 eV:1.45 eV} as 
determined with Au-L2-Au junctions. (B) The measured HHED in a 6 nm Au 
film using Au-H1-Au junctions under otherwise identical conditions 
compared to (A). (C and D) Measured HCEDs for 13 nm Au film but 
otherwise as for (A) and (B). The error bars correspond to the propagated 
errors from uncertainties in the measured Ihot(Vbias). 
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Fig. 4. Computed HCEDs, distance dependence and intensity profile.  
(A) Computed HCEDs in 6 nm- and 13 nm-thick Au films, arising from the 
symmetric plasmonic mode with electron-electron scattering rates from 
either FLT or an energy-independent scattering rate and a constant 
electron-phonon relaxation rate. Inset shows the employed geometry and 
mode profile. (B) Same as (A), but for the antisymmetric plasmonic mode. 
Note that the y-axis scale is smaller in (B) compared to (A). (C) Measured 
Ihot through Au-L1-Au SMJs (Vbias = 0.1 V) for varying separations d between 
the probe tip and the grating edge. Error bars represent uncertainties in d 
and Ihot. The red curve is an exponential fit constrained to have a decay 
length of 405 nm, corresponding to the symmetric mode’s decay constant 
in 6 nm gold film [see (20), section 14]. (D) Simulated intensity profile 
normalized to the incident field intensity upon illuminating the gratings with 
a focused 830 nm laser (spot size of 5.6 μm). Inset shows the intensity 
profile near the grating edge. The color map of the inset is adjusted to show 
the beating pattern and is different from the main panel color map. 
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