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Alkali-activated concrete (AAC) is widely considered to be a sustainable alternative to Portland cement concrete.
However, on account of extensive heterogeneity in composition of the aluminosilicates, coupled with the failure
of classical materials science approaches to unravel the underlying composition-property linkages, reliable
prediction of AAC’s properties has remained infeasible. This paper presents a random forest (RF) model to
predict two properties of fly ash-based AACs that are important from compliance standpoint — slump flow; and

compressive strength — in relation to physiochemical attributes, curing conditions, and mixing procedures of the
concretes. Results show that the RF model — once meticulously trained, and after its hyperparameters are
rigorously optimized — is able to produce high fidelity predictions of both properties of new AACs. The model is
also used to quantitatively assess the influence of physiochemical attributes and process parameters on the AAC’s
properties. Outcomes of this work present a pathway to optimization of AACs’ properties.

1. Introduction

Portland cement (PC) concrete is the most produced-and-used ma-
terial for the construction of infrastructure. However, the production of
PC - currently at ~ 4 B tons/year, and growing rapidly at the rate of ~80
M tons/year [1] — presents considerable energy consumption (~11
EJ/year [2]) and environmental impact (~9% of global CO, emissions
[3]) related challenges. Another challenging aspect of PC concrete
infrastructure is its susceptibility to degradation (e.g., corrosion of
steel-rebar), which could 1lead to exorbitant costs of
repair/re-construction [4], and, in most ill-fated circumstances, culmi-
nate with loss of human lives [5]. There is, thus, burgeoning interest in
developing binders that are more sustainable, and yet more durable,
than PC binders.

Alkali-activated concrete (AAC) — also called geopolymer concrete —
is a promising, sustainable alternative to PC concrete [6,7]. The
cementing constituent of AAC (i.e., alkali-activated binder) is prepared
by mixing amorphous aluminosilicate materials — such as calcined clays
(e.g., metakaolin); or industrial byproducts (e.g., fly ash; and blast
furnace slag) — with an alkaline activation solution (often referred to as

activator) [8]. Typical activation solutions used for formulation of AAC
are aqueous solutions of alkali hydroxides (i.e., NaOH; and KOH) and
alkali silicates (i.e., NaySiOs; and K5SiOs3) [1,9,10]. These highly soluble
alkali compounds, when mixed with water, dissolve rapidly and raise
the pH of the resultant activation solution. At high pH, the elevated
presence of hydroxyl (OH") and alkali (Na*/K™") ions in the activation
solution facilitates dissolution of the solid aluminosilicate precursor (e.
g., fly ash; and slag), resulting in the release of aluminate (AlI(OH)2) and
silicate (H,SiO3~/H5Si037) ions into the solution [9]. Following this, the
formation of reaction product occurs via the following sequence of steps:
(i) precipitation of aluminosilicate (Al-Si) monomers and oligomers; (ii)
hydrolysis and polycondensation of Al-Si oligomers to form a gel
network [11-13]; (iii) reorganization of the gel and release of water; and
(iv) polymerization of the gel, which enhances its binding properties [1,
10,13]. The final reaction product (geopolymer: N-A-S-H and/or
C-(N)-A-S-H gels) comprises of [AlO4]5' and [SiO4] # tetrahedra linked
by oxygen bridges; the alkali cations are incorporated between succes-
sive tetrahedra ensuring valence compensation [10] [-] [13]. Ca-rich
and Ca-deficient AAC precursors (e.g., fly ashes) result, predomi-
nantly, in the formation of C-(N)-A-S-H [including C-(N)o-A-S-H that
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forms in high-Ca systems [8,10,14] and N-A-S-H gels, respectively.

Past studies [9,12,13,15] have shown that — compared to PC concrete
— AAC can produce lower COs-footprint, higher compressive strength,
lower permeability, higher thermal and dimensional stability, and better
corrosion-resistance. However, to formulate such
performance-optimized AAC, it is important to carefully optimize the
composition of its precursors (i.e., aluminosilicate composition; and
activator) and mixture design (e.g., liquid-to-solid mass ratio; mixing
procedure; and curing temperature). This is because the properties of
AACs exhibit significant disparities in relation to precursory chemistry
and mixture design [16-18].

Among the predominantly-amorphous, aluminosilicate materials
that can be used to formulate AAC, fly ash is the prevalent choice
because of its widespread availability and abundance [19,20].
Notwithstanding, fly ash, as a function of lineage of its parent coal and
its combustion, features substantial diversity in composition. Based on
ASTM C618-15 [21], fly ash can be classified into two classes: class C
(calcium-rich) and class F (calcium-deficient). Significant research
[22-25] has been devoted to developing correlations between compo-
sition of precursors (i.e., amounts of Nay0/K>0; CaO; SiOo; AlyOs; and
H20) and properties (e.g., compressive strength) of AACs; success,
however, has been inconsistent. This lack of success can be attributed to
the overwhelmingly large compositional degrees of freedom - emerging
from significant heterogeneity in fly ashes (in terms of their chemical
composition, crystallinity and particle size) and activators (in terms of
their chemistries) — which, essentially, have disallowed the advance-
ment of clear, (semi-)empirical rules that govern the fundamental link-
age between composition and properties of AACs [7,17]. As such,
reliable prediction of composition-dependent properties of AACs, based
on Edisonian approaches (i.e., iterative and parametric
synthesis-testing-analysis cycles [16,18,26]) or conventional
theory-based models, has remained infeasible.

Supervised machine learning (ML) - a tributary of artificial intelli-
gence — is a promising approach, with the potential to overcome the
limitations of the Edisonian approach. This is because ML is data-driven,
and, therefore, capable of predicting composition-dependent properties
of heterogeneous materials (such as AAC), even (and especially) in the
absence of an across-the-board theoretical understanding. Not surpris-
ingly, in the past decade or so, ML models have been extensively applied
to predict various compliance-relevant properties of traditional PC
concretes [27-33]. In the context of AACs, prior studies — albeit very few
compared to PC concretes — have also employed ML models to predict
compressive strength; selected examples are highlighted here. Dao et al.
[26,34] applied artificial neural network, adaptive neuro fuzzy infer-
ence, particle swarm optimization-based adaptive network-based fuzzy
inference system, and genetic algorithm-based adaptive network-based
fuzzy inference system to predict compressive strength of AAC in rela-
tion to four compositional descriptors (i.e., fly ash content; NaySiO3
content; NaOH content; and water content). Lahoti et al. [35] employed
random forest (RF), Naive Bayes, and k-nearest neighbor models to
predict 7-day compressive strength of AAC; the ML models were trained
using a small database comprising of 71 unique data-records. Nguyen
et al. [36] used two different deep ML models to predict compressive
strength of AACs using 8 inputs consisting of compositional descriptors
of the precursors and curing conditions. Prem et al. [37] used several ML
models — all premised on nonlinear regression — to predict compressive
strength AACs in relation to their compositions and mixture designs.

Prior literature referenced above shows that regression-based ML
models are able to predict compressive strength of AAC with reasonable
accuracy. Notwithstanding, in these studies, prediction performances of
the ML models were arguably not tested exhaustively. This is because
databases used to train and test the models had limited volume and
limited diversity (i.e., small number of inputs, which entails that vari-
ations in fly ash compositions and mixture design were limited).
Furthermore, prior studies have focused exclusively on compressive
strength, and not attempted to predict slump flow — a quantitative
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measurement of workability, and an important compliance-relevant
property — of AACs using ML models. Lastly, in prior studies, the AAC
mixing procedure (i.e., protocols used for mixing AAC components,
followed by curing) was not varied; therefore, the prediction perfor-
mance of ML models in relation to mixing procedure is unknown. Such
evaluation is important because mixing procedure — akin to precursor
composition — imparts significant influences on properties of AACs
[38-40]. As an example, minor alterations in the procedure and dura-
tion of mixing could substantially alter fresh- (e.g., rheology) and
hardened-state (e.g., compressive strength) properties of AAC [41,42].
Palacios and Puerta [41] showed that increasing the mixing time — from
a few minutes to several minutes — results in increment of initial and
final setting times, workability, compressive strength, and flexural
strength of slag-based AAC. Another study [42] also showed that
increasing the mixing time from 1 to 10 min resulted in prolongation of
time before the initial and final setting of AACs formulated using class C
fly ash. Mixing energy — an important component of the mixing pro-
cedure, which is directly proportional to the speed of mixing (measured
as revolutions-per-minute, or rpm) — when increased, has been shown to
result in enhancement of compressive strength of AACs formulated using
class C fly ash [1]. As ML models — in particular those based nonlinear
regression — have been shown to reliably predict mechanical properties
of cementitious materials [27,28,43], it is imperative to evaluate if they
would be able to accurately predict fresh-state properties and mechan-
ical performance of AACs, in which composition-properties links are
presumably more complex than traditional PC concretes. It is also
important to evaluate if nonlinear ML models, that are able to produce
predictions with sufficient accuracy, are also able to capitalize on the
composition-properties links to distinguish the influential compositional
(input) parameters from the inconsequential ones [44]. This is impor-
tant because several commonly-used ML models, such as artificial neural
network and support vector machine, function like a “black-boxes” [44],
from which it is difficult — if not impossible — to construe or leverage the
underlying cause-effect correlations.

The study employs a classification-and-regression trees based
random forest (RF) model to predict composition-dependent slump flow
and compressive strength of AACs. The model is trained using a high-
volume database, consisting of >200 unique data-records linking
influential physiochemical properties of the precursors (e.g., chemical
composition; and specific surface area) and mixing procedure (e.g.,
curing conditions) of AACs with their properties (i.e., slump flow; and
compressive strength). During training of the RF model, emphasis is
given to rigorously optimize the underlying hyper-parameters so as to
enhance the model’s ultimate prediction performance. Prediction per-
formance of the RF model is then benchmarked — using multiple statis-
tical parameters — against a blind (to the model) test dataset. On the
basis of aforesaid benchmarking, it is shown that the RF model is able to
produce high fidelity predictions, as well as optimizations, of AACs’
properties. This study also places emphasis on leveraging the training of
the RF model to quantify the influence of each input parameter on the
compressive strength and slump flow of ACCs. This enables the deter-
mination of input parameters that are highly influential to AACs prop-
erties; and those that are largely inconsequential.

2. Experimental method

AACs were formulated using six different class C fly ashes, water, two
different liquidous alkaline activation solutions (activators), sand, and
coarse aggregates. Details pertaining to chemical composition of the
precursors, mixing procedures, and evaluation of AACs’ properties are
described in the following subsections.

2.1. Materials

Fly Ash: Six different types of fly ashes, sourced from five different
power plants located in Missouri (USA), were used. Chemical
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composition of the fly ashes, as determined from X-ray fluorescence
spectroscopy (XRF) and protocols described in ASTM D4326-13 [45],
are shown in Table 1. As can be seen, all fly ashes used in this study are
class C. This classification is based on: (i) ASTM C618-15 classification
[21], which states that in class C fly ashes, the summation of SiO3, Al,O3,
and Fe;O3 contents should be between 50-and-70%; and (ii) ASTM
C618-19 classification [46], which states that in class C fly ashes, the
CaO content should be >18%. Specific surface area (SSA) of the fly ashes
were determined using the Nj-based Brunauer-Emett-Teller (BET)
method [47]; results are included in Table 1.

Alkaline Activation Solutions: Two different alkali compounds —
sodium silicate (Na;SiO3) and sodium hydroxide (NaOH) — were used to
prepare alkaline activation solutions. Na;SiOs (liquidous solution), with
SiO5/Nay0 of 2.0, had NasO content of 14.7%, SiO5 content of 29.4%,
and H,0 content of 55.9% by mass. NaOH (solid) was AR-grade, with
>99% purity. Solid pellets of NaOH were used to prepare liquidous
activator solution with Na®™ molarity of 10 M; to this end, at room
temperature of 23 + 2 °C, 314 gm of the NaOH solid pellets were mixed
with 686 gm of distilled water until all pellets were fully dissolved. The
sodium silicate (SS) to sodium hydroxide (SH) ratio was fixed at 1.0
[N-B.: the mass ratio of SiOz/Nay0O, commonly referred to as silica
modulus (M) was fixed at 0.61] for all AACs formulated in this study.
The aforesaid ratio was chosen to maintain consistency with our pre-
vious study [48], and also on the basis of the guidance that has been
provided in prior studies. Past studies have shown that due to the high
viscosity of the SS solution, a large SS/SH ratio significantly reduces
slump flow and deteriorates workability [7,49]. For both ambient curing
and curing at elevated temperatures, the optimal SS/SH has been pro-
posed to be ~1.0; in terms of the silica modulus (M; or SiO2/Nas0), the
value would be ~0.61 [48]. When SS/SH is increased from 0.50
(Si02/Nag0 = 0.36) to 1.0 (SiO3/Nay0 = 0.61), compressive strength
progressively increases. Conversely, compressive strength reduces when
SS/SH is increased beyond 1.0 (i.e., when SiO2/Na3O > 0.61). For
example, when SS/SH =~ 2.5 (SiOy/Na0 = 1.05), the AAC’s
pore-solution comprises large amounts of condensed silicate rings but
fewer low-order uncondensed silicate monomers (especially at early
ages), thus resulting in inhibition of fly ash dissolution [50]. More
specifically, the large concentration of soluble silicate rings, generated
by the SS, hinders the structure formation of the reaction product
(polymeric aluminosilicate structures); which, ultimately, results in
diminishment of compressive strength [51,52]. When SS/SH is equiva-
lent to ~1.0 (SiO2/Na30 ~ 0.61), the system is rich with depolymerized
lower-order species, such as monomers and dimers [48,51,53]. This
accelerates fly ash dissolution: by reducing the precipitation of alumi-
nosilicate gel particles onto fly ash particulate surfaces; and by

Table 1

Oxide composition and specific surface area of fly ashes used in this study.
Oxide Fly Fly Fly Fly Fly Fly
composition Ash-1 Ash-2 Ash-3 Ash-4 Ash-5 Ash-6

(%) (%) (%) (%) (%) (%)
SiO, 36.9 37.9 38.0 42.3 40.4 43.9
Al,03 14.0 17.4 18.7 17.9 17.5 20.1
Fe,03 3.52 3.67 4.86 4.73 4.72 4.96
Si0, + Al,05 54.4 59.1 61.6 64.9 62.7 69.0
+ Fe;03
CaO 37.0 28.8 27.1 25.9 241 21.2
MgO 4.80 8.00 7.40 4.74 9.39 4.29
NaO 1.62 1.85 1.22 1.58 1.17 2.87
K0 0.62 0.39 0.47 0.56 0.48 0.70
TiO, 0.87 1.17 1.40 1.44 1.40 1.36
P,0s 0.70 0.71 0.80 0.89 0.79 0.51
MnO 0.03 0.04 0.02 0.04 0.02 0.05
Ignition loss 0.50 0.82 0.60 0.12 0.62 0.40
BET SSA (m2. 2560 3925 2722 1446 2858 2921
kg™H

Amorphous 70.5 71.4 NA 74.2 76.7 82.8

content (%)
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expediting the initiation of polycondensation of geopolymer gel [50].
Furthermore, SS/SH =~ 1 (SiO2/Nay0 = 0.61) provides a good balance
between the required hydroxyl ions and alkali species; which results in
enhanced dissolution of fly ash, and effective leaching of siliceous and
aluminate species from the fly ashes, thus resulting in enhanced polymer
precipitation kinetics and higher compressive strength [54].

Aggregates: Dolomite and Missouri river sand, with densities of
2760 kg. m~> and 2600 kg. m 3 (measured using ASTM C127-15 [55]),
were used as coarse and fine aggregates in this study. The aggregates
were stored in closed, dry (low relative humidity) environment prior to
using them. Particle size distributions of both coarse and fine aggregates
were within acceptable limits prescribed in ASTM C33 [56], respec-
tively. The coarse and fine aggregates have fineness modulus [57] of
2.37 and 6.82, respectively.

2.2. Mixing procedure

202 distinct AAC specimens were formulated by mixing fly ash,
liquidous alkali activators, excess water [i.e., additional water (not
including the water present in the activator) that was added to achieve
the target water/fly ash ratio], and aggregates (coarse and fine). Vari-
ations in amounts of the aforesaid ingredients — as used to formulate 202
unique AACs - are described in Supplementary Information. The
aforesaid variations were explicitly accounted for in the database that
was consolidated for training and testing of the ML models [N-B.: details
pertaining to formulation of the database can be found in section 4.1].
Since there is no ASTM mixing procedure for AAC, this study focused on
developing a mixing procedure that led to homogeneous, workable
concrete. Thus, the following eight mixing procedures were investigated
in this study. The main differences among the mixing procedures listed
below are: (i) the sequence of addition of various components of AAC;
and (ii) the duration of mixing at each step of the sequence.

Mixing procedure 1: The mixing procedure consists of the following
steps: (1) Coarse and fine aggregates were mixed for 1 min; (2) Fly ash
was gradually added to, and then mixed with the aggregates for 1 min;
(3) Both liquidous alkali activators (Na»SiO3 and NaOH solution) were
gradually added to, and then mixed with the solid mixture for 1 min; (4)
The excess water was gradually added to the mixture for 1 min; and (5)
Once all components of AAC were added, the mixture was mixed for 3
min.

Mixing procedure 2: The first two steps were similar to mixing
procedure 1. The subsequent steps are as follows: (3) The excess water
was gradually added for 1 min; (4) Both alkali activators were gradually
added for 1 min; and (5) Once all ingredients of AAC were added, mixing
was continued for another 3 min.

Mixing procedure 3: The first two steps were similar to mixing
procedure 1. The subsequent steps are as follows: (3) The excess water
was gradually added to the mixture for 1 min; (4) Sodium hydroxide
solution was gradually added for 2 min; (5) Sodium silicate solution was
gradually for 1 min; and (6) Once all ingredients were added, mixing
was continued for another 3 min.

Mixing procedure 4: The first two steps were similar to mixing
procedure 1. The subsequent steps are as follows: (3) 75% of the excess
water was gradually added for 1 min; (4) Both alkali activators were
gradually added for 1 min; (5) The remaining 25% of the excess water
was gradually added for 1 min; and (6) Once all ingredients were added,
mixing was continued for another 3 min.

Mixing procedure 5: The first two steps were similar to mixing
procedure 1. The subsequent steps are as follows: (3) 50% of the excess
water was gradually added for 1 min; (4) 50% of the alkali activators
were gradually added for 1 min; (5) Mixing was continued for two
additional minutes; (6) The remaining 50% of the excess water was
gradually added for 1 min; (7) The remaining 50% of alkali activators
were gradually added for 1 min; and (8) Once all ingredients were
added, mixing was continued for another 3 min.

Mixing procedure 6: The mixing procedure consisted of the
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following steps: (1) Coarse and fine aggregates were mixed for 1 min; (2)
50% of the excess water was gradually added for 1 min; (3) Fly ash was
added and mixed for 1 min; (4) The remaining 50% of excess water was
gradually added for 1 min; (5) 50% of the alkali activators were added
for 1 min; (6) Mixing was continued for one more minute; (7) 50% of the
remaining alkali activators were gradually added for 1 min; and (8)
Once all ingredients were added, mixing was continued for another 3
min.

Mixing procedure 7: The first two steps were similar to mixing
procedure 1. The subsequent steps are as follows: (3) The excess water
was gradually added for 1 min; (4) 50% of the alkali activators were
gradually added for 1 min; (5) Mixing was continued for one more
minute; (6) The remaining 50% of the alkali activators were gradually
added for 1 min; and (7) Once all ingredients were added, mixing was
continued for another 3 min.

Mixing procedure 8: The first two steps were similar to mixing
procedure 1. The subsequent steps are as follows: (3) The excess water
was gradually added over 1 min; (4) The alkali activators were gradually
added for 5 min; (5) Once all ingredients were added, mixing was
continued for another 5 min.

2.3. Slump and casting

Workability of each AAC mixture was determined using the slump
test, as described in ASTM C143-15 [58]. AACs that had acceptable
slump flow were cast in 100 x 200 mm plastic cylinders per ASTM
(C192-16 [59]. The specimens were placed in two layers, wherein each
layer was tamped (compacted with the steel roller) 25 times.

2.4. Curing conditions

After casting the fresh concrete in the cylindrical molds, three
different curing regimes were applied to the AACs — oven; ambient; and
moist curing (described below). Selected AAC specimens were prepared
as per mixing procedures 1-to-7, followed by curing in oven and ambient
curing regimes; all such specimens were tested (for compressive
strength) at the age of 7 days. The remaining AAC specimens were
prepared as per mixing procedure 8; these specimens were cured in all
three curing regimes, and tested at the ages of 1, 7, and 28 days.
Sequence of steps followed in each of three curing regimes are described
below.

Oven curing: (1) The AAC specimens were rested for 2 h at the
ambient temperature of 23 + 2 °C; (2) The specimens were covered with
oven bags, and placed in electrical oven at 70 °C for 24 h; (3) The
specimens were taken out of the oven, and then demolded and stored at
ambient temperature until the testing age; (4) The specimens made
using mixing procedures 1-to-7 were stored in the laboratory without
any covering until the testing age; and the specimens made using mixing
procedure 8 were stored the laboratory, while being covered with plastic
bags, until the testing age.

Ambient curing: (1) The AAC specimens were stored at the ambient
temperature of 23 + 2 °C for 48 h; (2) The specimens were demolded and
stored at ambient temperature until the testing age; (3) The specimens
made using mixing procedures 1-to-7 were stored in the laboratory
without any covering until the testing age; and the specimens made
using mixing procedure 8 were stored the laboratory, while being covered
with plastic bags, until the testing age.

Moist curing: (1) The ACC specimens were stored at the ambient
temperature of 23 + 2 °C for 48 h; (2) The specimens were demolded and
stored in a moisture room maintained at ambient temperature and
relative humidity of 95 + 5% until the testing age.

2.5. Compressive strength

Compressive strengths of the AAC specimens were tested per ASTM
(C39-16 [60]. The reported compressive strengths represent the average

Cement and Concrete Composites 115 (2021) 103863

of three independent results obtained from as many specimens.
2.6. X-ray diffraction (XRD)

Quantitative XRD analysis (see Table 1) was carried out to: identify
the crystalline phases; and to quantify the total amorphous content in
the fly ashes (prior to mixing) using Rietveld refinement [N-B.: x-ray
structure information for germane phases were sourced from standard
databases; and an external standard (G-factor approach) was utilized to
quantify the x-ray amorphous phases [61-63]]. Four crystalline com-
pounds were found in all fly ashes: quartz (SiO2); anatase (TiO3); peri-
clase (MgO); and a calcium aluminate phase (CagAlgO;g) (Fig. 1). In fly
ashes with relatively high calcium content, additional crystalline com-
pounds were identified: calcium oxide (CaO); and gehlenite (CasAls.
SiO). In fly ash-1, that had the highest calcium content among the six fly
ashes, hatrurite (CagSiOs) was also detected. In spite of the presence of
different crystalline phases, all fly ashes were found to be dominantly
amorphous (i.e., >70%pass; See Table 1).

3. Overview of the random forest model

This section presents an overview of the random forest (RF) model
used in this study. The overview is deliberately kept succinct as the RF
model - and, its underlying algorithms, functions, and parameters —
have been described in detail in our previous studies [27,28,33,64].

The RF model - a modification of the classification-and-regression
decision trees (CART) model - constructs a large number of uncorre-
lated, (CART) trees as a committee to produce independent outputs, and
ultimately averages them to produce the final output [65]. Each tree
within the RF model is partitioned via binary splits into “near-homo-
geneous” terminal nodes; such partitioning is done in recursive fashion
until optimal structure of the tree is achieved. RF leverages the tech-
nique of bagging [66,67], which ensures that each tree grows from a
randomly-selected group of bootstrap samples, each comprising of the
same number of inputs as the entire training dataset. RF also leverages
another technique, bootstrapping, which helps reduce the variation
(underfitting) and bias (overfitting) among the 100s-to-1000s of trees
that are grown in the forest [68]. Another advantage of the RF model is
that it allows each tree to grow to its maximum size without any
smoothening or pruning whatsoever. This helps maintain diversity
among the trees (i.e., output of each tree is truly independent of the
output of all other trees), thereby allowing the model to not just capture
trends in the dataset but also account for outliers.

The RF model contains two hyper-parameters (i.e., number of trees in
the forest; and number of splits in each tree). Both hyper-parameters were
optimized in this study using the 10-fold cross validation (CV) method
[28,29,33,69] in conjunction with a grid-search method [70] that is
described in section 5.0.

4. Training and testing of the random forest model
4.1. Training: establishment of composition-property links

Properties of AAC specimens, as evaluated from experiments
described in section 2.0, were collated into two databases: compressive
strength database (Table 2); and slump flow database (Table 3). The
data from two tables are presented in visualized manner in Figure S1 of
Supplementary Information. Then, the databases were used for
training the RF model, and subsequently for evaluating its prediction
performance (i.e., ability to predict compressive strength and slump
flow of AACs that were precluded from the training database). The
compressive strength database consisted of 180 unique data-records;
each data-record represented a unique ACC specimen with 20 inputs
and 1 output. The inputs included pertinent physiochemical properties
of the AAC: chemical composition of the AAC precursors (i.e., mass
fractions of all major oxides present in the fly ash + activator); specific
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Fig. 1. X-ray diffraction patterns of fly ashes. Crystalline phases present in the fly ashes are indicated.

Table 2
Compressive strength database (volume: 180 distinct data-records), featuring 21
attributes (20 inputs and 1 output).

Table 3
Slump flow database (volume: 202 distinct data-records), featuring 17 attributes
(16 inputs and 1 output).

Attribute Unit Min. Max. Mean Std. Attribute Unit Min. Max. Mean Std.
Dev. Dev.

Normalized Coarse Mass 0.0000 0.4248 0.3925  0.0436 Normalized Coarse Mass 0.0000 0.4747 0.3945  0.0432
Aggregate fraction Aggregate fraction

Normalized Fine Mass 0.3121 0.6451 0.3370  0.0345 Normalized Fine Mass 0.3121 0.6451 0.3374  0.0330
Aggregate fraction Aggregate fraction

Normalized SiOy Mass 0.0655 0.1134  0.0801  0.0078 Normalized SiO5 Mass 0.0535 0.1134  0.0791  0.0084
Content fraction Content fraction

Normalized Al,O3 Mass 0.0259 0.0491 0.0333 0.0039 Normalized Al,O3 Mass 0.0227 0.0491 0.0329 0.0041
Content fraction Content fraction

Normalized Fe;O3 Mass 0.0059 0.0112 0.0081 0.0011 Normalized Fe;03 Mass 0.0048 0.0112 0.0080 0.0012
Content fraction Content fraction

Normalized CaO Mass 0.0349  0.0686  0.0459  0.0075 Normalized CaO Mass 0.0313  0.0686 0.0453  0.0075
Content fraction Content fraction

Normalized MgO Mass 0.0079  0.0195 0.0125  0.0034 Normalized MgO Mass 0.0079  0.0204 0.0128  0.0034
Content fraction Content fraction

Normalized Nay,O Mass 0.0093 0.0201 0.0148 0.0021 Normalized NayO Mass 0.0078 0.0201 0.0145 0.0023
Content fraction Content fraction

Normalized K,0 Mass 0.0007 0.0015 0.0010 0.0002 Normalized K,0 Mass 0.0006 0.0015 0.0009 0.0002
Content fraction Content fraction

Normalized TiO, Mass 0.0016  0.0033  0.0024  0.0003 Normalized TiO, Mass 0.0016  0.0033  0.0024  0.0003
Content fraction Content fraction

Normalized P,0s Mass 0.0009  0.0017  0.0013  0.0002 Normalized P,0s Mass 0.0009  0.0018 0.0013  0.0002
Content fraction Content fraction

Normalized MnO Mass 0.0000  0.0001  0.0000  0.0000 Normalized MnO Mass 0.0000 0.0001  0.0000  0.0000
Content fraction Content fraction

Normalized Loss on Mass 0.0002  0.0021 0.0011  0.0005 Normalized Loss on Mass 0.0002  0.0022  0.0011 0.0005
Ignition fraction Ignition fraction

Normalized Water Mass 0.0366  0.0923  0.0700  0.0090 Normalized Water Mass 0.0208  0.0923 0.0696  0.0101
Content fraction Content fraction

SSA of Fly ash m? kg! 1446 3925 2611 624 SSA of Fly Ash m2 kg! 1446 3925 2609 616

Mixing Procedure Unitless 1 8 - - Mixing Procedure Unitless 1 8

Curing Regime Unitless 1 3 - - Slump Flow inch 0 12 5.93 3.07

Curing Temperature °C 23 70 45.19 23.46

Curing Time Days 1 28 6.15 7.18

Testing Age Days 1 28 9.58 7.52 chemical composition of the AAC precursors; SSA of fly ash; and mixing

Compressive Strength MPa 1.41 51.45 23.72 10.20

surface area (SSA) of fly ash (m> kg_l); mixing procedure (unitless;
ranging from 1-to-8 as described in section 2.2); curing regime (unitless;
ranging from 1-to-3 representing ambient; moist; and oven curing,
respectively); curing temperature (°C); curing time (days); and testing
age (days). The output parameter included compressive strength (MPa).
The slump flow database consisted of 202 unique data-records, wherein
each data-record had 16 inputs and 1 output. The inputs consisted of

procedure. The output parameter included slump flow (inch). It is
pointed out that the two databases have different volumes (i.e., number
of data-records) because AAC specimens with very low (<1 inch) or very
high (>11 inches) slump could be tested for slump flow but not for
compressive strength.

In section 1.0 it was stated that, in AACs, the correlations between
physiochemical attributes of the precursors and the resultant properties
are highly non-monotonic and nonlinear. The three-dimensional (3D)
plots shown in Fig. 2 highlight the complex nature of such correlations.
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Fig. 2. 3D plots showing compressive strength of AACs (z-axis) in relation to: (a) fly ash type and water-to-fly ash mass ratio; and (b) fly ash type and alkali activator-
to-fly ash mass ratio. In both plots, in addition to the input parameters listed in the x- and y-axes, there are variations in the other 18 other parameters.

Such complexity, nonetheless, is expected because each input parameter
— pertaining to either the AAC’s precursor chemistry; or the mixture
design; or the curing condition — unfailingly casts unique and significant
impact on the concrete’s properties. When >1 input parameters are
concomitantly adjusted — as shown in the x- and y-axes of the plots
(Fig. 2) — the cumulative impact on properties is even more complex.
Precisely because of such complexities, derivation of empirical, compo-
sition-properties relationships in AACs is not feasible using simple sta-
tistical models; more sophisticated models such as machine learning are
needed for such tasks.

4.2. Testing: evaluation of prediction performance

Both experimentally-populated databases (i.e., compressive
strength; and slump flow databases, described in section 4.1) were
randomly split into two independent (non-overlapping) databases: a
training set, containing 75% the parent database’s volume, for training
the RF model (i.e., optimizing structures of the trees (CARTs), and
develop inputs-to-output connections); and testing set, comprising of the
remaining 25% of data-records for (blind) testing the model’s prediction
performance. Justification of the aforementioned 75%-to-25% split in
the parent database is provided in several published studies [27,29,31,
33,64], and, thus, not reiterated here.

To rigorously assess the prediction performance of the RF model
against the two testing datasets, this study used 5 unique statistical
parameters: Person correlation coefficient (R); mean absolute percent-
age error (MAPE); coefficient of determination (RZ); root mean squared
error (RMSE); and mean absolute error (MAE). Mathematical formula-
tions for each of these parameters can be found elsewhere [27,33,64].

5. Results and discussion
5.1. Prediction and optimization of AAC’s properties

As described in section 4.0, the RF model was trained using 75%
(randomly selected) of both databases: compressive strength database
and slump flow database. Thereafter, prediction performance of the
trained RF model was evaluated against the testing sets of the two da-
tabases. To maximize the prediction performance of the RF model - or
any other decision trees-based model for that matter — it is important to
ascertain that: inputs-output correlations are properly established; out-
liers are accounted for; and variance and bias among trees of the model
are kept as low as possible. To accomplish these objectives, the two
hyper-parameters of the RF model (i.e., number of trees in the forest; and
number of leaves per tree) ought to be rigorously optimized based on the

nature and volume of the database. In this study, for such optimizations,
the grid-search method [70,71] was used. This method involves
autonomous, iterative variations in the pair of hyper-parameters — while
concurrently employing the 10-fold CV method [69] - to determine
optimal values of both hyper-parameters that result in minimum devi-
ation between RF model’s predictions and actual observations. The
aforesaid deviation between predictions and observations is quantified
using all five statistical parameters listed in section 4.2 (i.e., R; R?, MAE;
MAPE; and RMSE). Simply put, hyper-parameters are determined to be
optimal when R and R? are at (or close to) their global maximum, while
MAE, MAPE, and RMSE are at (or close to) their global minimum.

Figs. 3 and 4 show representative (not all) results obtained from the
grid-search method. Two of the five statistical parameters (i.e., R and
MAE) — which were used as measures of deviations of predictions with
respect to experimentally-measured values of slump flow and
compressive strength — are shown in Figs. 3 and 4. As can be seen,
optimal prediction performance of the RF model for both compressive
strength and slump flow databases occurred for common values of the
two hyper-parameters: that is, number of trees in the forest = 500; and
number of splits in each tree = 9. When the number of splits was less than 9,
logical splits in the databases were numerically inadequate and too
simplistic to fully encompass the complex, underlying correlations be-
tween inputs and output. When the number of splits was larger than 9, the
complex structure of the trees (CARTs) heightened the likelihood of bias,
which in turn resulted in overfitting. Likewise, when the number of trees
was less than 500, the RF model did not have enough independent
bootstraps to produce accurate predictions (for new AAC compositions).
However, when excessive trees (i.e., >500) were used, while the
computational complexity of the model indubitably increased, the pre-
diction performance did not improve (akin to law of diminishing returns
[66,72]). This is hypothesized to a result of redundancy among the trees.
More specifically, it is expected that — in the forest with >500 trees, all of
which ought to be distinct — several trees (that were forced to be grown
from similar bootstraps) ended up having similar structures, and,
therefore, produced similar predictions; as a result, there was little to no
improvement in the RF model’s overall prediction accuracy. It is worth
pointing out that results shown in Figs. 3 and 4 are in good agreement
with prior studies that have also reported saturation or decline in pre-
diction performance of RF model when the number of trees and/or
number of splits are increased beyond certain thresholds (depending on
the database) to very high values [33,66,67,72]. Lastly, on the bases of
results shown in Figs. 3 and 4, in all subsequent applications of the RF
model, the number of trees and the number of splits were fixed at 500 and
9, respectively.

Predictions of compressive strength and slump flow of AACs, as
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Fig. 3. Grid-search method used to optimize hyper-parameters (number of trees in the forest; and number of splits in each tree) of the RF model to improve its prediction
performance against: (a) compressive strength database; and (b) slump flow database. The Person correlation coefficient (R) is used as a measure of deviation

between predictions and observations.
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produced by the RF model, are shown in Fig. 5. Statistical parameters
pertaining to the model’s prediction performances are itemized in
Table 4. It should be noted that parameters listed in Table 4, collectively,
provide quantitative measure of the model’s ability (after it is trained) to
predict properties of AACs in the testing dataset (N-B.: data-records in
the testing set were keep hidden from the model during its training). In
Fig. 5, however, RF model’s predictions of properties of AACs from the
testing set — as well as the training set — are shown. The purpose of
including the training set in the figure is to confirm that during training
of the model, underfitting and overfitting were minimized. Since R of
both training and testing sets are similar in Fig. 5, it can indeed be said
that underfitting and overfitting was avoided.

As shown in Table 4, the RF model was able to produce accurate
predictions of compressive strength of AACs; the root mean squared
error (RMSE) was low (~2 MPa), and the Pearson correlation coefficient
(R) was high (0.97). Typical standard deviation in experimental mea-
surements of compressive strength of AAC is ~ 5 MPa [73]. Considering
that the mean absolute error (MAE) of the RF model’s predictions was
~2 MPa - which is of the same order of magnitude as standard deviation
of experimental measurements — it can broadly be said that the RF model
can reliably predict compressive strength of AACs. Like predictions of
compressive strength, predictions of slump flow were also accurate,
albeit slightly inferior compared to compressive strength predictions.
The root mean squared error (RMSE) of slump flow predictions was 0.95
inches, and the Pearson correlation coefficient (R) was 0.95. Accurate
predictions of both fresh (slump flow) and hardened (compressive
strength) properties of AACs indicate that the methods (i.e., grid-search
and 10-fold CV method) used for optimization of the RF model’s
hyper-parameters were indeed advantageous in developing reliable
composition-properties correlations without discounting the outliers, and
reducing the probabilities of overfitting and underfitting.

Regarding the point made above — that is, RF model’s predictions of
compressive strength were slightly superior compared to predictions of
slump flow (see Table 4 and Fig. 5) — there are two possible explanations.
First, it is hypothesized that some physiochemical factors — for example:
particle shape of aggregates; mixing speed; etc. — that could potentially
influence the slump flow (e.g., small variations in parameters pertaining
to the ASTM C143-15 testing procedure that was used) could not be
represented in the database. Alternatively, it can be said that if all
influential variables were to be exhaustively and accurately accounted
for, predictions of slump flow would improve. Second, it is hypothesized
that composition-slump flow correlations in AACs are inherently more
complex than composition-compressive strength links. This hypothesis is
reasonable considering that slump flow is a property measured at early
ages — when multiple, mutually-interacting chemical processes (e.g.,
dissolution of fly ashes; and precipitation of Al-Si monomers, oligomers,
and polymers) either occur simultaneously or in close temporal prox-
imity of one another [13,74,75]. Such dynamic chemical processes
occurring within the AAC’s microstructure can cause significant
time-dependent variations in all early-age properties including slump
flow. Furthermore, kinetics of such early-age chemical processes
changes rapidly with respect to time [76,77], thus implying that small
differences in the time of measurement of early-age properties (e.g.,
slump flow) could result in significant variability. In contrast,
compressive strength, is a mature-state property — measured at > 24 h

Table 4

Five statistical parameters (i.e., R, R? MAE, MAPE, and RMSE) used to quantify
accuracy of RF model’s predictions of AACs’ compressive strength and slump
flow.

R R? MAE RMSE  MAPE
Compressive strength Unitless Unitless MPa MPa %

0.972 0.944 2.013 2.650 13.644
Slump Flow Unitless Unitless Inch Inch %

0.947 0.897 0.897 0.949 19.546
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after mixing — when dissolution-precipitation processes (e.g., nucleation
and growth of the reaction product) occurring within the AAC’s
microstructure are expected to be at dynamic equilibrium and pro-
gressing with slow kinetics [76,77]. Due to this, small errors in the time
of measurement of compressive strength are expected to result in small —
if at all perceptible — error in compressive strength.

Overall, based on the results shown in Table 4 and Fig. 5, it can be
said that the RF model is apposite of prediction of properties of AACs.
High fidelity predictions of AACs’ properties, as produced by the RF
model, are not surprising bearing in mind that several past studies have
already reported that the RF model produces superior predictions of
materials’ properties [27-29,33,64] - in general, with only a few ex-
ceptions — compared to several other standalone ML models, including
the most prevalently-used ones (e.g., artificial neural networks and
support vector machines). This disparity in RF model’s prediction per-
formance vis-a-vis other ML models can be traced back to the former
model’s structure which lends several advantages [66,67]. In RF, a large
number of trees (i.e., number of CARTs >100) are grown, one-by-one in
a recursive manner by using randomly-selected bootstraps of identical
volume; as such, generalization errors (likelihood of overfitting) are
minimized [68]. As each tree is permitted to grow — and not pruned or
smoothened at all - until it reaches it maximum size, RF is proficient at
developing rational input-output correlations, while ensuring that
seemingly anomalous data-records (i.e., outliers with respect to already
established trends) are not ignored or removed during any stage of the
training process. Furthermore, the RF model employs two-stage
randomization, which goes a long way in ensuring that each of the
deep unpruned trees, is distinct in its structure, and does not exhibit any
dependency to the rest of the trees in the forest. Such independency
among the trees is crucial because it ensures that predictions produced
by the trees are truly independent of each other, which in turn results in
low variance in the final predictions (i.e., average of predictions from all
trees). Lastly, the RF model is easy to implement because the number of
trees in the forest and number of splits in each tree are the only two
hyper-parameters that are required as inputs from the user. Adjusting
these parameters through trial-and-error is generally cumbersome and
time-consuming, and could compromise prediction performance [69].
Therefore, in this study, we used to the grid-search method along with
the 10-fold CV method (see Figs. 3 and 4) for such adjustments. Indeed,
in our previous study [27], we have shown that such union of RF and an
optimization algorithm produces a truly parameter-free model that can
predict outputs with high accuracy even in highly complex
data-domains (produced by using combination of trigonometric and
decaying-exponential functions). In the same study [27], we have shown
that artificial neural networks and support vector machines — while
generally good at capturing cause-effect correlations — fail to accurately
predict data points at (and around) the peaks and troughs of such highly
complex data-domains.

On the closing note of this section, it is worth emphasizing that the
ability of the RF model to produce high-fidelity prediction of AACs’
properties makes the model apposite for optimization. Owing the
limited volume and diversity of the database that was used in this study,
we concede that carrying out all-encompassing optimizations is not
feasible. Nevertheless, to demonstrate the proof-of-concept, we attemp-
ted to capitalize on the excellent prediction performance of the RF model
so as to optimize the mixture design of AAC to achieve an imposed (i.e.,
target) 7-day strength. Two scenarios were considered: (1) the NaO
content was varied, in step-wise manner, from 25-to-45 kg. m~3; and (2)
the CaO content was varied, in step-wise manner, from 90-to-130 kg.
m 2. In both scenarios, the remaining input parameters were fixed, and
three different target 7-day compressive strengths (i.e., 20 MPa; 25 MPa;
and 30 MPa) were imposed as inputs. All input parameters are
enumerated in Table 5. Next, the RF model was used to perform “in-
verse” predictions (as per the Bayesian optimization approach [28]) to
reveal optimal values of water content (as output, in relation to the
variable NayO or CaO content and other fixed input parameters) of AACs
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Table 5

Input parameters and target 7-day compressive strength used to optimize the
mixture design (i.e., water content in relation to variable Na,O and CaO content
and other fixed inputs) of AACs.

Attribute Unit Scenario 1 Scenario 2
Coarse Aggregate kg. m~> 959 959

Fine Aggregate kg. m~3 799 799

SiO, Content kg. m~3 190 190
Al,03 Content kg. m~® 84 84

Fe,03 Content kg. m~3 22 22

CaO Content kg. m3 122 90-to-130
MgO Content kg. m~3 33 33

Na,O Content kg. m~> 25-t0-45 35

K,O Content kg. m~3 2.1 2.1

TiO, Content kg. m~3 5.5 5.5

P,05 Content kg. m~> 3.6 3.6

MnO Content kg. m~> 0.09 0.09

Loss on Ignition kg. m 3 2.7 2.7

SSA of Fly ash m2 kg™t 2722 2722
Mixing Procedure Unitless 7 7

Curing Regime Unitless 1 (ambient) 1 (ambient)
Curing Temperature °C 23 23

Curing Time Days 7 7

Testing Age Days 7 7

Target compressive Strength MPa 20-to-30 20-to-30
Water Content kg/1 'm® output output

that would exhibit the target 7-day compressive strength. Results of
these optimizations are shown in Fig. 6. The trends that emerge are in
excellent agreement with what is known from theory: (1) For any given
NapO or CaO content, compressive strength increases with decreasing
water content. This is expected considering that lower water content
ensures greater solid-to-solid phase connectivity within the micro-
structure, thereby leading to improved load carrying capacity and
compressive strength [74,78,79]; (2) Compressive strength increases
with increasing alkali content. This is also reasonable considering that
elevated Na content in the system facilitates polymerization of the re-
action product, thereby leading to improved strength [7,11,14,78]; and
(3) For a given target compressive strength, the optimal water content is
slightly lower for Ca-rich fly ashes compared to those with lower cal-
cium content. While the reasons for this are not clear, it is hypothesized
that fly ashes with lower calcium content — on account of their inferior
hydraulic nature — require slightly larger amount of water for the re-
action product’s polymerization [80]. To be sure, such agreement be-
tween theory and results of the optimization is encouraging, and
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suggests that more wide-ranging optimizations can be performed, pro-
vided that a sufficiently large and diverse composition-properties database
of AACs can be consolidate to train the RF model.

5.2. Influence of input parameters on AAC'’s properties

In section 5.1, it was shown that the RF model can predict the
compressive strength and slump flow of ACCs in relation to their
composition and relevant process parameters (e.g., mixing procedure;
curing conditions; etc.). In this section, the training of the RF model is
leveraged to quantitatively determine the influence of each input
parameter (e.g., composition; mixing procedure; curing conditions; etc.)
on the resultant properties of the AACs. To this end, the decision-tree
structure of the RF model - after it is trained, and fully validated
against the test set — was analyzed to estimate and rank each attribute’s
importance in accordance with the magnitude of influence it exerts on
the AACs’ slump flow and compressive strength. The results obtained
from these analyses are shown in Fig. 7.

As shown in Fig. 7a, the mixing procedure and curing conditions
exhibit strong influence on the evolution of AAC’s compressive strength;
further description of these parameters is provided later in this section.
Loss on ignition is also reckoned as very influential; presumably because
compressive strength could be undermined if the unburned carbon
content in the fly ash is high [8]. As would be expected, the age of testing
is important; this is because with increasing age, compressive strength
increases monotonically. Interestingly, the water content and composi-
tional parameters are estimated to be substantially less important than
the mixing procedure, curing conditions, and unburnt carbon content.
This is likely due to the limited variation in, and range of, water contents
and fly ashes’ compositions in the database used in this study — which
impart little effect on a mature property like compressive strength that is
measured at >24 h.

Fig. 7b shows the ranking of input parameters in accordance with
their influence on the slump flow of the AACs. As can be seen, water
content is the most influential variable that affects slump flow. This is
expected because water — based on its content in the AAC — can signif-
icantly increase or reduce the viscosity of ACCs; thus, resulting in sub-
stantial changes in the slump flow. Loss on ignition - like in the case of
compressive strength — is shown to be an influential factor for slump
flow; which suggests that the amount of unburnt carbon content can
affect early-age reactivity of the fly ash, and thus the evolution of AAC’s
microstructure and rheological behavior. Alkali content is also deemed
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Fig. 6. Optimal value of water content produced by RF model to achieve target compressive strength — of 20 MPa; or 25 MPa; and 30 MPa - in relation to (a) variable
Na,O content; and (b) variable CaO content, while keeping other input parameters relevant to the AACs fixed (shown in Table 5).
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Fig. 7. The importance of input parameters in terms of their contributions towards: (a) compressive strength; and (b) slump flow of AACs. Parameters are ordered —

from left to right — in relation to their decreasing influence on the property.

as important; this is seemingly because of its contribution on the kinetics
of precipitation of Al-Si monomers, oligomers, and polymers — all of
which dictate the solid-to-solid phase connectivity in the microstructure.
In addition to the parameters discussed so far, fine aggregate content
(but not coarse aggregate content), mixing procedure, and composition
and SSA of fly ash were shown to affect the AACs’ slump flow; although
to a lesser extent as compared to the influence of water content on AACs’
slump flow, and to a greater extent compared to their influence on AACs’
compressive strength.

Upon comparing and contrasting the results shown in Fig. 7a and b, it
is clear that slump flow — an early-age property — is affected by nearly
every input parameter; whereas, compressive strength — a mature
property — is largely affected by mixing procedure, curing conditions,
and loss on ignition, and less so by other parameters. The mixing pro-
cedure — which comprises the sequence of addition of various compo-
nents of AAC and the mixing duration - exerts significant impact on both
the slump flow and compressive strength of the AACs. In this study, it
was found that AACs with highest slump flow were those in which water
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was added prior to adding liquid alkali activators. In these mixtures,
water wets and subsequently lubricates the fly ash particulates; thus,
reducing the localized concentration of the alkalis when the alkali
activator is added. As the local concentration of alkali around a fly ash
particulate increases, the dissolution of particulate initiates. If the
dissolution of several fly ash particulates is rapid, agglomeration of the
mixture in less than a minute becomes likely, which in turn results in
poor slump ability. Based on observations from experiments involving
different mixing procedures, it was found that gradually adding alkali
activators (which accelerates fly ash dissolution in gradual, rather than
abrupt, manner), and increasing mixing time — from less than a minute
to at least 5 min — benefits not only workability but also compressive
strength. The increase in mixing time ensures disaggregation of the
floccules and agglomerates that may have formed; which contributes to
the improvement of workability [81,82], acceleration of dissolution
kinetics of fly ash (due to unlocking of surface area that was diminished
due to flocculation and agglomeration) [42], increased rate of precipi-
tation of polymers, enhanced solid-to-solid phase connectivity, and
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ultimately reduction of total porosity [41]. Based on results obtained
from experiments conducted in this study, mixing procedure 8 was
found to be optimal, as it resulted in both superior workability and
compressive strength.

Like mixing procedure, curing condition was also determined as an
influential parameter for AACs’ properties (i.e., compressive strength).
Based on our analyses of experimental results, we found — with just a few
exceptions — that increasing the curing temperature resulted in
improvement of compressive strength and slight reduction in slump flow
(results not shown). This, however, is expected because at elevated
curing temperatures, the dissolution kinetics of fly ash and precipitation
kinetics of the reaction products are enhanced. As a result of these en-
hancements: the development of the polymeric network (and its solid-to-
solid phase connectivity) is faster, which manifests as lower slump flow;
and the compressive strength is larger, because of the improved solid-to-
solid phase connectivity.

Lastly, alkali and water contents were also determined as influential
parameters for AACs’ properties — especially the slump flow. In general,
low water content aids solid-to-solid phase connectivity in the micro-
structure, thereby improving load carrying capacity and compressive
strength; but resulting in loss of workability [78,79,83]. For a given
AAC, the optimal water content depends on the alkali content; wherein
AACs with high alkali content require high water content to prevent
flash setting and to improve workability. This is because compressive
strength is directly proportional to, and slump flow is inversely pro-
portional to, alkali content [48]. The aforesaid correlations are often
observed in AACs, because with increasing alkali content, the ensuing
enhancement in fly ash dissolution rate facilitates polymerization of the
reaction product, thereby leading to lower workability at early ages (i.e.,
faster development of connected polymeric network) but improved
strength at later ages [6,7,14,78]. Based on analyses of the database
developed for this study, the optimum alkali-to-fly ash mass ratio was
found to be 0.30 [83]. It was found that provision of additional alkali
activator (i.e., exceeding the aforesaid ratio of 0.30) resulted in little — if
any — improvement in compressive strength.

6. Conclusion

This study presented a random forest (RF) model - a classification-
and-regression trees based machine learning (ML) model - to predict
two properties of fly ash-based alkali-activated concretes (AACs) that
are important from a compliance standpoint: slump flow (a fresh prop-
erty); and compressive strength (a hardened property). The RF model
was used to predict the aforesaid properties as functions of influential
parameters pertaining to the AACs: composition of AAC precursors (i.e.,
fly ash; and alkaline activation solution); curing conditions; and mixing
procedures. To the best of the authors’ knowledge, this is the first study
that employs ML to predict properties of AACs that feature such a wide-
range of variations in attributes, including significant disparities in the
mixing procedure. This study also places emphasis on leveraging the
training of the RF model to quantify the influence of each input
parameter on the compressive strength and slump flow of ACCs.

The RF model was rigorously trained using two separate databases:
one that mapped physiochemical attributes of >200 different AACs with
their slump flow; and one that mapped the same attributes with the
concretes’ compressive strength. These physiochemical attributes — that
were used as inputs within the model — comprised of chemical compo-
sition and specific surface areas of six different fly ashes; chemistries of
activation solutions prepared using different amounts of NaOH and
NaySiOs; different curing temperatures (ranging from 23-to-70 °C); and
eight different mixing procedures. The main differences among the
mixing procedures used in this study were: (i) the sequence of addition
of various components of AAC; and (ii) the duration of mixing at each
step of the sequence. During training of the RF model, emphasis was
given to rigorously optimize the underlying hyper-parameters — using a
combination of grid-search method and 10-fold cross-validation method
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— so as to: properly establish the inherent inputs-output correlations;
account for (as opposed to ignoring or removing) outliers in the data-
base, if any; and keep the variance and bias among trees of the model as
low as possible.

Results showed that the RF model - once meticulously trained, and
after its intrinsic parameters were rigorously optimized — was able to
produce high fidelity predictions (Pearson correlation coefficient, R >
0.95) of both slump flow and compressive strength of new AACs.
Thorough analysis of the RF model’s prediction performance was pre-
sented in light of prior studies (including ours) that have compared RF
model with other prevalent ML models in terms of their abilities to
predict properties of heterogeneous material systems and outputs of
highly complex (e.g., periodic) functions. Based on such analysis, it was
concluded that the RF model’s ability to produce accurate predictions of
AACs’ slump flow and compressive strength can be attributed to two
reasons: (1) The structure of the RF model (comprising of deep, un-
pruned, uncorrelated CARTSs) produces an ability to effectively capture
the fundamental cause-effect relations, even when the database is highly
complex; and (2) Implementation of the optimization procedure (i.e.,
grid-search method used in conjunction with the 10-fold cross-
validation method) ensured that the hyper-parameters were tuned and
optimized in relation to the nature and volume of the databases.

The RF model was also used to examine the influence of input pa-
rameters on the properties of AACs. It was found that mixing procedure
and unburnt carbon content exert significant influence on both slump
flow and compressive strength. Water content and curing conditions
were determined as the most influential input variables for slump flow
and compressive strength, respectively. Conversely, SiO2 content of the
fly ash and coarse aggregate content of the AAC were determined as the
least influential input variables for both slump flow and compressive
strength.

Overall, outcomes of this work show that the RF model — or other RF-
based ML models - are apposite ML platforms that could be employed in
the future to optimize AAC properties. Of course, for such optimizations
to be robust, it is critical that the model be trained with a comprehensive
database that not only has a large volume (1000s-t010,000s of unique
data-records) but also encompasses tremendous diversity (i.e., sub-
stantial variations in chemistries of fly ashes and alkaline activation
solutions; curing temperatures; mixing procedures; etc.). Such RF
model-based optimization tools could facilitate the materials—by—design
approach — which is in alignment with the United States (U.S.) Materials
Genome Initiative [84-86] — and expedite the design of AACs with
desired properties.
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