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A B S T R A C T   

Alkali-activated concrete (AAC) is widely considered to be a sustainable alternative to Portland cement concrete. 
However, on account of extensive heterogeneity in composition of the aluminosilicates, coupled with the failure 
of classical materials science approaches to unravel the underlying composition-property linkages, reliable 
prediction of AAC’s properties has remained infeasible. This paper presents a random forest (RF) model to 
predict two properties of fly ash-based AACs that are important from compliance standpoint – slump flow; and 
compressive strength – in relation to physiochemical attributes, curing conditions, and mixing procedures of the 
concretes. Results show that the RF model – once meticulously trained, and after its hyperparameters are 
rigorously optimized – is able to produce high fidelity predictions of both properties of new AACs. The model is 
also used to quantitatively assess the influence of physiochemical attributes and process parameters on the AAC’s 
properties. Outcomes of this work present a pathway to optimization of AACs’ properties.   

1. Introduction 

Portland cement (PC) concrete is the most produced-and-used ma
terial for the construction of infrastructure. However, the production of 
PC – currently at ≈ 4 B tons/year, and growing rapidly at the rate of ≈80 
M tons/year [1] – presents considerable energy consumption (≈11 
EJ/year [2]) and environmental impact (≈9% of global CO2 emissions 
[3]) related challenges. Another challenging aspect of PC concrete 
infrastructure is its susceptibility to degradation (e.g., corrosion of 
steel-rebar), which could lead to exorbitant costs of 
repair/re-construction [4], and, in most ill-fated circumstances, culmi
nate with loss of human lives [5]. There is, thus, burgeoning interest in 
developing binders that are more sustainable, and yet more durable, 
than PC binders. 

Alkali-activated concrete (AAC) – also called geopolymer concrete – 
is a promising, sustainable alternative to PC concrete [6,7]. The 
cementing constituent of AAC (i.e., alkali-activated binder) is prepared 
by mixing amorphous aluminosilicate materials – such as calcined clays 
(e.g., metakaolin); or industrial byproducts (e.g., fly ash; and blast 
furnace slag) – with an alkaline activation solution (often referred to as 

activator) [8]. Typical activation solutions used for formulation of AAC 
are aqueous solutions of alkali hydroxides (i.e., NaOH; and KOH) and 
alkali silicates (i.e., Na2SiO3; and K2SiO3) [1,9,10]. These highly soluble 
alkali compounds, when mixed with water, dissolve rapidly and raise 
the pH of the resultant activation solution. At high pH, the elevated 
presence of hydroxyl (OH−) and alkali (Na+/K+) ions in the activation 
solution facilitates dissolution of the solid aluminosilicate precursor (e. 
g., fly ash; and slag), resulting in the release of aluminate (Al(OH)4

- ) and 
silicate (H2SiO4

2−/H3SiO4
−) ions into the solution [9]. Following this, the 

formation of reaction product occurs via the following sequence of steps: 
(i) precipitation of aluminosilicate (Al-Si) monomers and oligomers; (ii) 
hydrolysis and polycondensation of Al-Si oligomers to form a gel 
network [11–13]; (iii) reorganization of the gel and release of water; and 
(iv) polymerization of the gel, which enhances its binding properties [1, 
10,13]. The final reaction product (geopolymer: N-A-S-H and/or 
C-(N)-A-S-H gels) comprises of [AlO4]5- and [SiO4]4- tetrahedra linked 
by oxygen bridges; the alkali cations are incorporated between succes
sive tetrahedra ensuring valence compensation [10] [–] [13]. Ca-rich 
and Ca-deficient AAC precursors (e.g., fly ashes) result, predomi
nantly, in the formation of C-(N)-A-S-H [including C-(N)0-A-S-H that 
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forms in high-Ca systems [8,10,14] and N-A-S-H gels, respectively. 
Past studies [9,12,13,15] have shown that – compared to PC concrete 

– AAC can produce lower CO2-footprint, higher compressive strength, 
lower permeability, higher thermal and dimensional stability, and better 
corrosion-resistance. However, to formulate such 
performance-optimized AAC, it is important to carefully optimize the 
composition of its precursors (i.e., aluminosilicate composition; and 
activator) and mixture design (e.g., liquid-to-solid mass ratio; mixing 
procedure; and curing temperature). This is because the properties of 
AACs exhibit significant disparities in relation to precursory chemistry 
and mixture design [16–18]. 

Among the predominantly-amorphous, aluminosilicate materials 
that can be used to formulate AAC, fly ash is the prevalent choice 
because of its widespread availability and abundance [19,20]. 
Notwithstanding, fly ash, as a function of lineage of its parent coal and 
its combustion, features substantial diversity in composition. Based on 
ASTM C618-15 [21], fly ash can be classified into two classes: class C 
(calcium-rich) and class F (calcium-deficient). Significant research 
[22–25] has been devoted to developing correlations between compo
sition of precursors (i.e., amounts of Na2O/K2O; CaO; SiO2; Al2O3; and 
H2O) and properties (e.g., compressive strength) of AACs; success, 
however, has been inconsistent. This lack of success can be attributed to 
the overwhelmingly large compositional degrees of freedom – emerging 
from significant heterogeneity in fly ashes (in terms of their chemical 
composition, crystallinity and particle size) and activators (in terms of 
their chemistries) – which, essentially, have disallowed the advance
ment of clear, (semi-)empirical rules that govern the fundamental link
age between composition and properties of AACs [7,17]. As such, 
reliable prediction of composition-dependent properties of AACs, based 
on Edisonian approaches (i.e., iterative and parametric 
synthesis-testing-analysis cycles [16,18,26]) or conventional 
theory-based models, has remained infeasible. 

Supervised machine learning (ML) – a tributary of artificial intelli
gence – is a promising approach, with the potential to overcome the 
limitations of the Edisonian approach. This is because ML is data-driven, 
and, therefore, capable of predicting composition-dependent properties 
of heterogeneous materials (such as AAC), even (and especially) in the 
absence of an across-the-board theoretical understanding. Not surpris
ingly, in the past decade or so, ML models have been extensively applied 
to predict various compliance-relevant properties of traditional PC 
concretes [27–33]. In the context of AACs, prior studies – albeit very few 
compared to PC concretes – have also employed ML models to predict 
compressive strength; selected examples are highlighted here. Dao et al. 
[26,34] applied artificial neural network, adaptive neuro fuzzy infer
ence, particle swarm optimization-based adaptive network-based fuzzy 
inference system, and genetic algorithm-based adaptive network-based 
fuzzy inference system to predict compressive strength of AAC in rela
tion to four compositional descriptors (i.e., fly ash content; Na2SiO3 
content; NaOH content; and water content). Lahoti et al. [35] employed 
random forest (RF), Naïve Bayes, and k-nearest neighbor models to 
predict 7-day compressive strength of AAC; the ML models were trained 
using a small database comprising of 71 unique data-records. Nguyen 
et al. [36] used two different deep ML models to predict compressive 
strength of AACs using 8 inputs consisting of compositional descriptors 
of the precursors and curing conditions. Prem et al. [37] used several ML 
models – all premised on nonlinear regression – to predict compressive 
strength AACs in relation to their compositions and mixture designs. 

Prior literature referenced above shows that regression-based ML 
models are able to predict compressive strength of AAC with reasonable 
accuracy. Notwithstanding, in these studies, prediction performances of 
the ML models were arguably not tested exhaustively. This is because 
databases used to train and test the models had limited volume and 
limited diversity (i.e., small number of inputs, which entails that vari
ations in fly ash compositions and mixture design were limited). 
Furthermore, prior studies have focused exclusively on compressive 
strength, and not attempted to predict slump flow – a quantitative 

measurement of workability, and an important compliance-relevant 
property – of AACs using ML models. Lastly, in prior studies, the AAC 
mixing procedure (i.e., protocols used for mixing AAC components, 
followed by curing) was not varied; therefore, the prediction perfor
mance of ML models in relation to mixing procedure is unknown. Such 
evaluation is important because mixing procedure – akin to precursor 
composition – imparts significant influences on properties of AACs 
[38–40]. As an example, minor alterations in the procedure and dura
tion of mixing could substantially alter fresh- (e.g., rheology) and 
hardened-state (e.g., compressive strength) properties of AAC [41,42]. 
Palacios and Puerta [41] showed that increasing the mixing time – from 
a few minutes to several minutes – results in increment of initial and 
final setting times, workability, compressive strength, and flexural 
strength of slag-based AAC. Another study [42] also showed that 
increasing the mixing time from 1 to 10 min resulted in prolongation of 
time before the initial and final setting of AACs formulated using class C 
fly ash. Mixing energy – an important component of the mixing pro
cedure, which is directly proportional to the speed of mixing (measured 
as revolutions-per-minute, or rpm) – when increased, has been shown to 
result in enhancement of compressive strength of AACs formulated using 
class C fly ash [1]. As ML models – in particular those based nonlinear 
regression – have been shown to reliably predict mechanical properties 
of cementitious materials [27,28,43], it is imperative to evaluate if they 
would be able to accurately predict fresh-state properties and mechan
ical performance of AACs, in which composition-properties links are 
presumably more complex than traditional PC concretes. It is also 
important to evaluate if nonlinear ML models, that are able to produce 
predictions with sufficient accuracy, are also able to capitalize on the 
composition-properties links to distinguish the influential compositional 
(input) parameters from the inconsequential ones [44]. This is impor
tant because several commonly-used ML models, such as artificial neural 
network and support vector machine, function like a “black-boxes” [44], 
from which it is difficult – if not impossible – to construe or leverage the 
underlying cause-effect correlations. 

The study employs a classification-and-regression trees based 
random forest (RF) model to predict composition-dependent slump flow 
and compressive strength of AACs. The model is trained using a high- 
volume database, consisting of >200 unique data-records linking 
influential physiochemical properties of the precursors (e.g., chemical 
composition; and specific surface area) and mixing procedure (e.g., 
curing conditions) of AACs with their properties (i.e., slump flow; and 
compressive strength). During training of the RF model, emphasis is 
given to rigorously optimize the underlying hyper-parameters so as to 
enhance the model’s ultimate prediction performance. Prediction per
formance of the RF model is then benchmarked – using multiple statis
tical parameters – against a blind (to the model) test dataset. On the 
basis of aforesaid benchmarking, it is shown that the RF model is able to 
produce high fidelity predictions, as well as optimizations, of AACs’ 
properties. This study also places emphasis on leveraging the training of 
the RF model to quantify the influence of each input parameter on the 
compressive strength and slump flow of ACCs. This enables the deter
mination of input parameters that are highly influential to AACs prop
erties; and those that are largely inconsequential. 

2. Experimental method 

AACs were formulated using six different class C fly ashes, water, two 
different liquidous alkaline activation solutions (activators), sand, and 
coarse aggregates. Details pertaining to chemical composition of the 
precursors, mixing procedures, and evaluation of AACs’ properties are 
described in the following subsections. 

2.1. Materials 

Fly Ash: Six different types of fly ashes, sourced from five different 
power plants located in Missouri (USA), were used. Chemical 
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composition of the fly ashes, as determined from X-ray fluorescence 
spectroscopy (XRF) and protocols described in ASTM D4326-13 [45], 
are shown in Table 1. As can be seen, all fly ashes used in this study are 
class C. This classification is based on: (i) ASTM C618-15 classification 
[21], which states that in class C fly ashes, the summation of SiO2, Al2O3, 
and Fe2O3 contents should be between 50-and-70%; and (ii) ASTM 
C618-19 classification [46], which states that in class C fly ashes, the 
CaO content should be >18%. Specific surface area (SSA) of the fly ashes 
were determined using the N2-based Brunauer-Emett-Teller (BET) 
method [47]; results are included in Table 1. 

Alkaline Activation Solutions: Two different alkali compounds – 
sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) – were used to 
prepare alkaline activation solutions. Na2SiO3 (liquidous solution), with 
SiO2/Na2O of 2.0, had Na2O content of 14.7%, SiO2 content of 29.4%, 
and H2O content of 55.9% by mass. NaOH (solid) was AR-grade, with 
>99% purity. Solid pellets of NaOH were used to prepare liquidous 
activator solution with Na+ molarity of 10 M; to this end, at room 
temperature of 23 ± 2 ◦C, 314 gm of the NaOH solid pellets were mixed 
with 686 gm of distilled water until all pellets were fully dissolved. The 
sodium silicate (SS) to sodium hydroxide (SH) ratio was fixed at 1.0 
[N⋅B.: the mass ratio of SiO2/Na2O, commonly referred to as silica 
modulus (Ms) was fixed at 0.61] for all AACs formulated in this study. 
The aforesaid ratio was chosen to maintain consistency with our pre
vious study [48], and also on the basis of the guidance that has been 
provided in prior studies. Past studies have shown that due to the high 
viscosity of the SS solution, a large SS/SH ratio significantly reduces 
slump flow and deteriorates workability [7,49]. For both ambient curing 
and curing at elevated temperatures, the optimal SS/SH has been pro
posed to be ~1.0; in terms of the silica modulus (Ms or SiO2/Na2O), the 
value would be ~0.61 [48]. When SS/SH is increased from 0.50 
(SiO2/Na2O = 0.36) to 1.0 (SiO2/Na2O = 0.61), compressive strength 
progressively increases. Conversely, compressive strength reduces when 
SS/SH is increased beyond 1.0 (i.e., when SiO2/Na2O > 0.61). For 
example, when SS/SH ≈ 2.5 (SiO2/Na2O ≈ 1.05), the AAC’s 
pore-solution comprises large amounts of condensed silicate rings but 
fewer low-order uncondensed silicate monomers (especially at early 
ages), thus resulting in inhibition of fly ash dissolution [50]. More 
specifically, the large concentration of soluble silicate rings, generated 
by the SS, hinders the structure formation of the reaction product 
(polymeric aluminosilicate structures); which, ultimately, results in 
diminishment of compressive strength [51,52]. When SS/SH is equiva
lent to ~1.0 (SiO2/Na2O ≈ 0.61), the system is rich with depolymerized 
lower-order species, such as monomers and dimers [48,51,53]. This 
accelerates fly ash dissolution: by reducing the precipitation of alumi
nosilicate gel particles onto fly ash particulate surfaces; and by 

expediting the initiation of polycondensation of geopolymer gel [50]. 
Furthermore, SS/SH ≈ 1 (SiO2/Na2O ≈ 0.61) provides a good balance 
between the required hydroxyl ions and alkali species; which results in 
enhanced dissolution of fly ash, and effective leaching of siliceous and 
aluminate species from the fly ashes, thus resulting in enhanced polymer 
precipitation kinetics and higher compressive strength [54]. 

Aggregates: Dolomite and Missouri river sand, with densities of 
2760 kg. m−3 and 2600 kg. m−3 (measured using ASTM C127-15 [55]), 
were used as coarse and fine aggregates in this study. The aggregates 
were stored in closed, dry (low relative humidity) environment prior to 
using them. Particle size distributions of both coarse and fine aggregates 
were within acceptable limits prescribed in ASTM C33 [56], respec
tively. The coarse and fine aggregates have fineness modulus [57] of 
2.37 and 6.82, respectively. 

2.2. Mixing procedure 

202 distinct AAC specimens were formulated by mixing fly ash, 
liquidous alkali activators, excess water [i.e., additional water (not 
including the water present in the activator) that was added to achieve 
the target water/fly ash ratio], and aggregates (coarse and fine). Vari
ations in amounts of the aforesaid ingredients – as used to formulate 202 
unique AACs – are described in Supplementary Information. The 
aforesaid variations were explicitly accounted for in the database that 
was consolidated for training and testing of the ML models [N⋅B.: details 
pertaining to formulation of the database can be found in section 4.1]. 
Since there is no ASTM mixing procedure for AAC, this study focused on 
developing a mixing procedure that led to homogeneous, workable 
concrete. Thus, the following eight mixing procedures were investigated 
in this study. The main differences among the mixing procedures listed 
below are: (i) the sequence of addition of various components of AAC; 
and (ii) the duration of mixing at each step of the sequence. 

Mixing procedure 1: The mixing procedure consists of the following 
steps: (1) Coarse and fine aggregates were mixed for 1 min; (2) Fly ash 
was gradually added to, and then mixed with the aggregates for 1 min; 
(3) Both liquidous alkali activators (Na2SiO3 and NaOH solution) were 
gradually added to, and then mixed with the solid mixture for 1 min; (4) 
The excess water was gradually added to the mixture for 1 min; and (5) 
Once all components of AAC were added, the mixture was mixed for 3 
min. 

Mixing procedure 2: The first two steps were similar to mixing 
procedure 1. The subsequent steps are as follows: (3) The excess water 
was gradually added for 1 min; (4) Both alkali activators were gradually 
added for 1 min; and (5) Once all ingredients of AAC were added, mixing 
was continued for another 3 min. 

Mixing procedure 3: The first two steps were similar to mixing 
procedure 1. The subsequent steps are as follows: (3) The excess water 
was gradually added to the mixture for 1 min; (4) Sodium hydroxide 
solution was gradually added for 2 min; (5) Sodium silicate solution was 
gradually for 1 min; and (6) Once all ingredients were added, mixing 
was continued for another 3 min. 

Mixing procedure 4: The first two steps were similar to mixing 
procedure 1. The subsequent steps are as follows: (3) 75% of the excess 
water was gradually added for 1 min; (4) Both alkali activators were 
gradually added for 1 min; (5) The remaining 25% of the excess water 
was gradually added for 1 min; and (6) Once all ingredients were added, 
mixing was continued for another 3 min. 

Mixing procedure 5: The first two steps were similar to mixing 
procedure 1. The subsequent steps are as follows: (3) 50% of the excess 
water was gradually added for 1 min; (4) 50% of the alkali activators 
were gradually added for 1 min; (5) Mixing was continued for two 
additional minutes; (6) The remaining 50% of the excess water was 
gradually added for 1 min; (7) The remaining 50% of alkali activators 
were gradually added for 1 min; and (8) Once all ingredients were 
added, mixing was continued for another 3 min. 

Mixing procedure 6: The mixing procedure consisted of the 

Table 1 
Oxide composition and specific surface area of fly ashes used in this study.  

Oxide 
composition 

Fly 
Ash-1 
(%) 

Fly 
Ash-2 
(%) 

Fly 
Ash-3 
(%) 

Fly 
Ash-4 
(%) 

Fly 
Ash-5 
(%) 

Fly 
Ash-6 
(%) 

SiO2 36.9 37.9 38.0 42.3 40.4 43.9 
Al2O3 14.0 17.4 18.7 17.9 17.5 20.1 
Fe2O3 3.52 3.67 4.86 4.73 4.72 4.96 
SiO2 + Al2O3 

+ Fe2O3 

54.4 59.1 61.6 64.9 62.7 69.0 

CaO 37.0 28.8 27.1 25.9 24.1 21.2 
MgO 4.80 8.00 7.40 4.74 9.39 4.29 
Na2O 1.62 1.85 1.22 1.58 1.17 2.87 
K2O 0.62 0.39 0.47 0.56 0.48 0.70 
TiO2 0.87 1.17 1.40 1.44 1.40 1.36 
P2O5 0.70 0.71 0.80 0.89 0.79 0.51 
MnO 0.03 0.04 0.02 0.04 0.02 0.05 
Ignition loss 0.50 0.82 0.60 0.12 0.62 0.40 
BET SSA (m2. 

kg−1) 
2560 3925 2722 1446 2858 2921 

Amorphous 
content (%) 

70.5 71.4 NA 74.2 76.7 82.8  
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following steps: (1) Coarse and fine aggregates were mixed for 1 min; (2) 
50% of the excess water was gradually added for 1 min; (3) Fly ash was 
added and mixed for 1 min; (4) The remaining 50% of excess water was 
gradually added for 1 min; (5) 50% of the alkali activators were added 
for 1 min; (6) Mixing was continued for one more minute; (7) 50% of the 
remaining alkali activators were gradually added for 1 min; and (8) 
Once all ingredients were added, mixing was continued for another 3 
min. 

Mixing procedure 7: The first two steps were similar to mixing 
procedure 1. The subsequent steps are as follows: (3) The excess water 
was gradually added for 1 min; (4) 50% of the alkali activators were 
gradually added for 1 min; (5) Mixing was continued for one more 
minute; (6) The remaining 50% of the alkali activators were gradually 
added for 1 min; and (7) Once all ingredients were added, mixing was 
continued for another 3 min. 

Mixing procedure 8: The first two steps were similar to mixing 
procedure 1. The subsequent steps are as follows: (3) The excess water 
was gradually added over 1 min; (4) The alkali activators were gradually 
added for 5 min; (5) Once all ingredients were added, mixing was 
continued for another 5 min. 

2.3. Slump and casting 

Workability of each AAC mixture was determined using the slump 
test, as described in ASTM C143-15 [58]. AACs that had acceptable 
slump flow were cast in 100 × 200 mm plastic cylinders per ASTM 
C192-16 [59]. The specimens were placed in two layers, wherein each 
layer was tamped (compacted with the steel roller) 25 times. 

2.4. Curing conditions 

After casting the fresh concrete in the cylindrical molds, three 
different curing regimes were applied to the AACs – oven; ambient; and 
moist curing (described below). Selected AAC specimens were prepared 
as per mixing procedures 1-to-7, followed by curing in oven and ambient 
curing regimes; all such specimens were tested (for compressive 
strength) at the age of 7 days. The remaining AAC specimens were 
prepared as per mixing procedure 8; these specimens were cured in all 
three curing regimes, and tested at the ages of 1, 7, and 28 days. 
Sequence of steps followed in each of three curing regimes are described 
below. 

Oven curing: (1) The AAC specimens were rested for 2 h at the 
ambient temperature of 23 ± 2 ◦C; (2) The specimens were covered with 
oven bags, and placed in electrical oven at 70 ◦C for 24 h; (3) The 
specimens were taken out of the oven, and then demolded and stored at 
ambient temperature until the testing age; (4) The specimens made 
using mixing procedures 1-to-7 were stored in the laboratory without 
any covering until the testing age; and the specimens made using mixing 
procedure 8 were stored the laboratory, while being covered with plastic 
bags, until the testing age. 

Ambient curing: (1) The AAC specimens were stored at the ambient 
temperature of 23 ± 2 ◦C for 48 h; (2) The specimens were demolded and 
stored at ambient temperature until the testing age; (3) The specimens 
made using mixing procedures 1-to-7 were stored in the laboratory 
without any covering until the testing age; and the specimens made 
using mixing procedure 8 were stored the laboratory, while being covered 
with plastic bags, until the testing age. 

Moist curing: (1) The ACC specimens were stored at the ambient 
temperature of 23 ± 2 ◦C for 48 h; (2) The specimens were demolded and 
stored in a moisture room maintained at ambient temperature and 
relative humidity of 95 ± 5% until the testing age. 

2.5. Compressive strength 

Compressive strengths of the AAC specimens were tested per ASTM 
C39-16 [60]. The reported compressive strengths represent the average 

of three independent results obtained from as many specimens. 

2.6. X-ray diffraction (XRD) 

Quantitative XRD analysis (see Table 1) was carried out to: identify 
the crystalline phases; and to quantify the total amorphous content in 
the fly ashes (prior to mixing) using Rietveld refinement [N⋅B.: x-ray 
structure information for germane phases were sourced from standard 
databases; and an external standard (G-factor approach) was utilized to 
quantify the x-ray amorphous phases [61–63]]. Four crystalline com
pounds were found in all fly ashes: quartz (SiO2); anatase (TiO2); peri
clase (MgO); and a calcium aluminate phase (Ca9Al6O18) (Fig. 1). In fly 
ashes with relatively high calcium content, additional crystalline com
pounds were identified: calcium oxide (CaO); and gehlenite (Ca2Al2

SiO7). In fly ash-1, that had the highest calcium content among the six fly 
ashes, hatrurite (Ca3SiO5) was also detected. In spite of the presence of 
different crystalline phases, all fly ashes were found to be dominantly 
amorphous (i.e., >70%mass; see Table 1). 

3. Overview of the random forest model 

This section presents an overview of the random forest (RF) model 
used in this study. The overview is deliberately kept succinct as the RF 
model – and, its underlying algorithms, functions, and parameters – 
have been described in detail in our previous studies [27,28,33,64]. 

The RF model – a modification of the classification-and-regression 
decision trees (CART) model – constructs a large number of uncorre
lated, (CART) trees as a committee to produce independent outputs, and 
ultimately averages them to produce the final output [65]. Each tree 
within the RF model is partitioned via binary splits into “near-homo
geneous” terminal nodes; such partitioning is done in recursive fashion 
until optimal structure of the tree is achieved. RF leverages the tech
nique of bagging [66,67], which ensures that each tree grows from a 
randomly-selected group of bootstrap samples, each comprising of the 
same number of inputs as the entire training dataset. RF also leverages 
another technique, bootstrapping, which helps reduce the variation 
(underfitting) and bias (overfitting) among the 100s-to-1000s of trees 
that are grown in the forest [68]. Another advantage of the RF model is 
that it allows each tree to grow to its maximum size without any 
smoothening or pruning whatsoever. This helps maintain diversity 
among the trees (i.e., output of each tree is truly independent of the 
output of all other trees), thereby allowing the model to not just capture 
trends in the dataset but also account for outliers. 

The RF model contains two hyper-parameters (i.e., number of trees in 
the forest; and number of splits in each tree). Both hyper-parameters were 
optimized in this study using the 10-fold cross validation (CV) method 
[28,29,33,69] in conjunction with a grid-search method [70] that is 
described in section 5.0. 

4. Training and testing of the random forest model 

4.1. Training: establishment of composition-property links 

Properties of AAC specimens, as evaluated from experiments 
described in section 2.0, were collated into two databases: compressive 
strength database (Table 2); and slump flow database (Table 3). The 
data from two tables are presented in visualized manner in Figure S1 of 
Supplementary Information. Then, the databases were used for 
training the RF model, and subsequently for evaluating its prediction 
performance (i.e., ability to predict compressive strength and slump 
flow of AACs that were precluded from the training database). The 
compressive strength database consisted of 180 unique data-records; 
each data-record represented a unique ACC specimen with 20 inputs 
and 1 output. The inputs included pertinent physiochemical properties 
of the AAC: chemical composition of the AAC precursors (i.e., mass 
fractions of all major oxides present in the fly ash + activator); specific 
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surface area (SSA) of fly ash (m2. kg−1); mixing procedure (unitless; 
ranging from 1-to-8 as described in section 2.2); curing regime (unitless; 
ranging from 1-to-3 representing ambient; moist; and oven curing, 
respectively); curing temperature (◦C); curing time (days); and testing 
age (days). The output parameter included compressive strength (MPa). 
The slump flow database consisted of 202 unique data-records, wherein 
each data-record had 16 inputs and 1 output. The inputs consisted of 

chemical composition of the AAC precursors; SSA of fly ash; and mixing 
procedure. The output parameter included slump flow (inch). It is 
pointed out that the two databases have different volumes (i.e., number 
of data-records) because AAC specimens with very low (<1 inch) or very 
high (>11 inches) slump could be tested for slump flow but not for 
compressive strength. 

In section 1.0 it was stated that, in AACs, the correlations between 
physiochemical attributes of the precursors and the resultant properties 
are highly non-monotonic and nonlinear. The three-dimensional (3D) 
plots shown in Fig. 2 highlight the complex nature of such correlations. 

Fig. 1. X-ray diffraction patterns of fly ashes. Crystalline phases present in the fly ashes are indicated.  

Table 2 
Compressive strength database (volume: 180 distinct data-records), featuring 21 
attributes (20 inputs and 1 output).  

Attribute Unit Min. Max. Mean Std. 
Dev. 

Normalized Coarse 
Aggregate 

Mass 
fraction 

0.0000 0.4248 0.3925 0.0436 

Normalized Fine 
Aggregate 

Mass 
fraction 

0.3121 0.6451 0.3370 0.0345 

Normalized SiO2 

Content 
Mass 
fraction 

0.0655 0.1134 0.0801 0.0078 

Normalized Al2O3 

Content 
Mass 
fraction 

0.0259 0.0491 0.0333 0.0039 

Normalized Fe2O3 

Content 
Mass 
fraction 

0.0059 0.0112 0.0081 0.0011 

Normalized CaO 
Content 

Mass 
fraction 

0.0349 0.0686 0.0459 0.0075 

Normalized MgO 
Content 

Mass 
fraction 

0.0079 0.0195 0.0125 0.0034 

Normalized Na2O 
Content 

Mass 
fraction 

0.0093 0.0201 0.0148 0.0021 

Normalized K2O 
Content 

Mass 
fraction 

0.0007 0.0015 0.0010 0.0002 

Normalized TiO2 

Content 
Mass 
fraction 

0.0016 0.0033 0.0024 0.0003 

Normalized P2O5 

Content 
Mass 
fraction 

0.0009 0.0017 0.0013 0.0002 

Normalized MnO 
Content 

Mass 
fraction 

0.0000 0.0001 0.0000 0.0000 

Normalized Loss on 
Ignition 

Mass 
fraction 

0.0002 0.0021 0.0011 0.0005 

Normalized Water 
Content 

Mass 
fraction 

0.0366 0.0923 0.0700 0.0090 

SSA of Fly ash m2. kg−1 1446 3925 2611 624 
Mixing Procedure Unitless 1 8 – – 
Curing Regime Unitless 1 3 – – 
Curing Temperature ◦C 23 70 45.19 23.46 
Curing Time Days 1 28 6.15 7.18 
Testing Age Days 1 28 9.58 7.52 
Compressive Strength MPa 1.41 51.45 23.72 10.20  

Table 3 
Slump flow database (volume: 202 distinct data-records), featuring 17 attributes 
(16 inputs and 1 output).  

Attribute Unit Min. Max. Mean Std. 
Dev. 

Normalized Coarse 
Aggregate 

Mass 
fraction 

0.0000 0.4747 0.3945 0.0432 

Normalized Fine 
Aggregate 

Mass 
fraction 

0.3121 0.6451 0.3374 0.0330 

Normalized SiO2 

Content 
Mass 
fraction 

0.0535 0.1134 0.0791 0.0084 

Normalized Al2O3 

Content 
Mass 
fraction 

0.0227 0.0491 0.0329 0.0041 

Normalized Fe2O3 

Content 
Mass 
fraction 

0.0048 0.0112 0.0080 0.0012 

Normalized CaO 
Content 

Mass 
fraction 

0.0313 0.0686 0.0453 0.0075 

Normalized MgO 
Content 

Mass 
fraction 

0.0079 0.0204 0.0128 0.0034 

Normalized Na2O 
Content 

Mass 
fraction 

0.0078 0.0201 0.0145 0.0023 

Normalized K2O 
Content 

Mass 
fraction 

0.0006 0.0015 0.0009 0.0002 

Normalized TiO2 

Content 
Mass 
fraction 

0.0016 0.0033 0.0024 0.0003 

Normalized P2O5 

Content 
Mass 
fraction 

0.0009 0.0018 0.0013 0.0002 

Normalized MnO 
Content 

Mass 
fraction 

0.0000 0.0001 0.0000 0.0000 

Normalized Loss on 
Ignition 

Mass 
fraction 

0.0002 0.0022 0.0011 0.0005 

Normalized Water 
Content 

Mass 
fraction 

0.0208 0.0923 0.0696 0.0101 

SSA of Fly Ash m2. kg−1 1446 3925 2609 616 
Mixing Procedure Unitless 1 8   
Slump Flow inch 0 12 5.93 3.07  

E. Gomaa et al.                                                                                                                                                                                                                                  



Cement and Concrete Composites 115 (2021) 103863

6

Such complexity, nonetheless, is expected because each input parameter 
– pertaining to either the AAC’s precursor chemistry; or the mixture 
design; or the curing condition – unfailingly casts unique and significant 
impact on the concrete’s properties. When >1 input parameters are 
concomitantly adjusted – as shown in the x- and y-axes of the plots 
(Fig. 2) – the cumulative impact on properties is even more complex. 
Precisely because of such complexities, derivation of empirical, compo
sition-properties relationships in AACs is not feasible using simple sta
tistical models; more sophisticated models such as machine learning are 
needed for such tasks. 

4.2. Testing: evaluation of prediction performance 

Both experimentally-populated databases (i.e., compressive 
strength; and slump flow databases, described in section 4.1) were 
randomly split into two independent (non-overlapping) databases: a 
training set, containing 75% the parent database’s volume, for training 
the RF model (i.e., optimizing structures of the trees (CARTs), and 
develop inputs-to-output connections); and testing set, comprising of the 
remaining 25% of data-records for (blind) testing the model’s prediction 
performance. Justification of the aforementioned 75%-to-25% split in 
the parent database is provided in several published studies [27,29,31, 
33,64], and, thus, not reiterated here. 

To rigorously assess the prediction performance of the RF model 
against the two testing datasets, this study used 5 unique statistical 
parameters: Person correlation coefficient (R); mean absolute percent
age error (MAPE); coefficient of determination (R2); root mean squared 
error (RMSE); and mean absolute error (MAE). Mathematical formula
tions for each of these parameters can be found elsewhere [27,33,64]. 

5. Results and discussion 

5.1. Prediction and optimization of AAC’s properties 

As described in section 4.0, the RF model was trained using 75% 
(randomly selected) of both databases: compressive strength database 
and slump flow database. Thereafter, prediction performance of the 
trained RF model was evaluated against the testing sets of the two da
tabases. To maximize the prediction performance of the RF model – or 
any other decision trees-based model for that matter – it is important to 
ascertain that: inputs-output correlations are properly established; out
liers are accounted for; and variance and bias among trees of the model 
are kept as low as possible. To accomplish these objectives, the two 
hyper-parameters of the RF model (i.e., number of trees in the forest; and 
number of leaves per tree) ought to be rigorously optimized based on the 

nature and volume of the database. In this study, for such optimizations, 
the grid-search method [70,71] was used. This method involves 
autonomous, iterative variations in the pair of hyper-parameters – while 
concurrently employing the 10-fold CV method [69] – to determine 
optimal values of both hyper-parameters that result in minimum devi
ation between RF model’s predictions and actual observations. The 
aforesaid deviation between predictions and observations is quantified 
using all five statistical parameters listed in section 4.2 (i.e., R; R2; MAE; 
MAPE; and RMSE). Simply put, hyper-parameters are determined to be 
optimal when R and R2 are at (or close to) their global maximum, while 
MAE, MAPE, and RMSE are at (or close to) their global minimum. 

Figs. 3 and 4 show representative (not all) results obtained from the 
grid-search method. Two of the five statistical parameters (i.e., R and 
MAE) – which were used as measures of deviations of predictions with 
respect to experimentally-measured values of slump flow and 
compressive strength – are shown in Figs. 3 and 4. As can be seen, 
optimal prediction performance of the RF model for both compressive 
strength and slump flow databases occurred for common values of the 
two hyper-parameters: that is, number of trees in the forest = 500; and 
number of splits in each tree = 9. When the number of splits was less than 9, 
logical splits in the databases were numerically inadequate and too 
simplistic to fully encompass the complex, underlying correlations be
tween inputs and output. When the number of splits was larger than 9, the 
complex structure of the trees (CARTs) heightened the likelihood of bias, 
which in turn resulted in overfitting. Likewise, when the number of trees 
was less than 500, the RF model did not have enough independent 
bootstraps to produce accurate predictions (for new AAC compositions). 
However, when excessive trees (i.e., >500) were used, while the 
computational complexity of the model indubitably increased, the pre
diction performance did not improve (akin to law of diminishing returns 
[66,72]). This is hypothesized to a result of redundancy among the trees. 
More specifically, it is expected that – in the forest with >500 trees, all of 
which ought to be distinct – several trees (that were forced to be grown 
from similar bootstraps) ended up having similar structures, and, 
therefore, produced similar predictions; as a result, there was little to no 
improvement in the RF model’s overall prediction accuracy. It is worth 
pointing out that results shown in Figs. 3 and 4 are in good agreement 
with prior studies that have also reported saturation or decline in pre
diction performance of RF model when the number of trees and/or 
number of splits are increased beyond certain thresholds (depending on 
the database) to very high values [33,66,67,72]. Lastly, on the bases of 
results shown in Figs. 3 and 4, in all subsequent applications of the RF 
model, the number of trees and the number of splits were fixed at 500 and 
9, respectively. 

Predictions of compressive strength and slump flow of AACs, as 

Fig. 2. 3D plots showing compressive strength of AACs (z-axis) in relation to: (a) fly ash type and water-to-fly ash mass ratio; and (b) fly ash type and alkali activator- 
to-fly ash mass ratio. In both plots, in addition to the input parameters listed in the x- and y-axes, there are variations in the other 18 other parameters. 

E. Gomaa et al.                                                                                                                                                                                                                                  



Cement and Concrete Composites 115 (2021) 103863

7

Fig. 3. Grid-search method used to optimize hyper-parameters (number of trees in the forest; and number of splits in each tree) of the RF model to improve its prediction 
performance against: (a) compressive strength database; and (b) slump flow database. The Person correlation coefficient (R) is used as a measure of deviation 
between predictions and observations. 

Fig. 4. Grid-search method used to optimize hyper-parameters (number of trees in the forest; and number of splits in each tree) of the RF model to improve its prediction 
performance against: (a) compressive strength database; and (b) slump flow database. The mean absolute error (MAE) is used as a measure of deviation between 
predictions and observations. 

Fig. 5. RF model’s predictions of: (a) compressive strength; and (b) slump flow compared against experimental measurements. Person correlation coefficient (R) of 
the predictions are shown in the legends. The dashed line represents the line of ideality and the solid lines represent a ±10% bound. 
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produced by the RF model, are shown in Fig. 5. Statistical parameters 
pertaining to the model’s prediction performances are itemized in 
Table 4. It should be noted that parameters listed in Table 4, collectively, 
provide quantitative measure of the model’s ability (after it is trained) to 
predict properties of AACs in the testing dataset (N⋅B.: data-records in 
the testing set were keep hidden from the model during its training). In 
Fig. 5, however, RF model’s predictions of properties of AACs from the 
testing set – as well as the training set – are shown. The purpose of 
including the training set in the figure is to confirm that during training 
of the model, underfitting and overfitting were minimized. Since R of 
both training and testing sets are similar in Fig. 5, it can indeed be said 
that underfitting and overfitting was avoided. 

As shown in Table 4, the RF model was able to produce accurate 
predictions of compressive strength of AACs; the root mean squared 
error (RMSE) was low (≈2 MPa), and the Pearson correlation coefficient 
(R) was high (0.97). Typical standard deviation in experimental mea
surements of compressive strength of AAC is ≈ 5 MPa [73]. Considering 
that the mean absolute error (MAE) of the RF model’s predictions was 
≈2 MPa – which is of the same order of magnitude as standard deviation 
of experimental measurements – it can broadly be said that the RF model 
can reliably predict compressive strength of AACs. Like predictions of 
compressive strength, predictions of slump flow were also accurate, 
albeit slightly inferior compared to compressive strength predictions. 
The root mean squared error (RMSE) of slump flow predictions was 0.95 
inches, and the Pearson correlation coefficient (R) was 0.95. Accurate 
predictions of both fresh (slump flow) and hardened (compressive 
strength) properties of AACs indicate that the methods (i.e., grid-search 
and 10-fold CV method) used for optimization of the RF model’s 
hyper-parameters were indeed advantageous in developing reliable 
composition-properties correlations without discounting the outliers, and 
reducing the probabilities of overfitting and underfitting. 

Regarding the point made above – that is, RF model’s predictions of 
compressive strength were slightly superior compared to predictions of 
slump flow (see Table 4 and Fig. 5) – there are two possible explanations. 
First, it is hypothesized that some physiochemical factors – for example: 
particle shape of aggregates; mixing speed; etc. – that could potentially 
influence the slump flow (e.g., small variations in parameters pertaining 
to the ASTM C143-15 testing procedure that was used) could not be 
represented in the database. Alternatively, it can be said that if all 
influential variables were to be exhaustively and accurately accounted 
for, predictions of slump flow would improve. Second, it is hypothesized 
that composition-slump flow correlations in AACs are inherently more 
complex than composition-compressive strength links. This hypothesis is 
reasonable considering that slump flow is a property measured at early 
ages – when multiple, mutually-interacting chemical processes (e.g., 
dissolution of fly ashes; and precipitation of Al-Si monomers, oligomers, 
and polymers) either occur simultaneously or in close temporal prox
imity of one another [13,74,75]. Such dynamic chemical processes 
occurring within the AAC’s microstructure can cause significant 
time-dependent variations in all early-age properties including slump 
flow. Furthermore, kinetics of such early-age chemical processes 
changes rapidly with respect to time [76,77], thus implying that small 
differences in the time of measurement of early-age properties (e.g., 
slump flow) could result in significant variability. In contrast, 
compressive strength, is a mature-state property – measured at > 24 h 

after mixing – when dissolution-precipitation processes (e.g., nucleation 
and growth of the reaction product) occurring within the AAC’s 
microstructure are expected to be at dynamic equilibrium and pro
gressing with slow kinetics [76,77]. Due to this, small errors in the time 
of measurement of compressive strength are expected to result in small – 
if at all perceptible – error in compressive strength. 

Overall, based on the results shown in Table 4 and Fig. 5, it can be 
said that the RF model is apposite of prediction of properties of AACs. 
High fidelity predictions of AACs’ properties, as produced by the RF 
model, are not surprising bearing in mind that several past studies have 
already reported that the RF model produces superior predictions of 
materials’ properties [27–29,33,64] – in general, with only a few ex
ceptions – compared to several other standalone ML models, including 
the most prevalently-used ones (e.g., artificial neural networks and 
support vector machines). This disparity in RF model’s prediction per
formance vis-à-vis other ML models can be traced back to the former 
model’s structure which lends several advantages [66,67]. In RF, a large 
number of trees (i.e., number of CARTs ≫100) are grown, one-by-one in 
a recursive manner by using randomly-selected bootstraps of identical 
volume; as such, generalization errors (likelihood of overfitting) are 
minimized [68]. As each tree is permitted to grow – and not pruned or 
smoothened at all – until it reaches it maximum size, RF is proficient at 
developing rational input-output correlations, while ensuring that 
seemingly anomalous data-records (i.e., outliers with respect to already 
established trends) are not ignored or removed during any stage of the 
training process. Furthermore, the RF model employs two-stage 
randomization, which goes a long way in ensuring that each of the 
deep unpruned trees, is distinct in its structure, and does not exhibit any 
dependency to the rest of the trees in the forest. Such independency 
among the trees is crucial because it ensures that predictions produced 
by the trees are truly independent of each other, which in turn results in 
low variance in the final predictions (i.e., average of predictions from all 
trees). Lastly, the RF model is easy to implement because the number of 
trees in the forest and number of splits in each tree are the only two 
hyper-parameters that are required as inputs from the user. Adjusting 
these parameters through trial-and-error is generally cumbersome and 
time-consuming, and could compromise prediction performance [69]. 
Therefore, in this study, we used to the grid-search method along with 
the 10-fold CV method (see Figs. 3 and 4) for such adjustments. Indeed, 
in our previous study [27], we have shown that such union of RF and an 
optimization algorithm produces a truly parameter-free model that can 
predict outputs with high accuracy even in highly complex 
data-domains (produced by using combination of trigonometric and 
decaying-exponential functions). In the same study [27], we have shown 
that artificial neural networks and support vector machines – while 
generally good at capturing cause-effect correlations – fail to accurately 
predict data points at (and around) the peaks and troughs of such highly 
complex data-domains. 

On the closing note of this section, it is worth emphasizing that the 
ability of the RF model to produce high-fidelity prediction of AACs’ 
properties makes the model apposite for optimization. Owing the 
limited volume and diversity of the database that was used in this study, 
we concede that carrying out all-encompassing optimizations is not 
feasible. Nevertheless, to demonstrate the proof-of-concept, we attemp
ted to capitalize on the excellent prediction performance of the RF model 
so as to optimize the mixture design of AAC to achieve an imposed (i.e., 
target) 7-day strength. Two scenarios were considered: (1) the Na2O 
content was varied, in step-wise manner, from 25-to-45 kg. m−3; and (2) 
the CaO content was varied, in step-wise manner, from 90-to-130 kg. 
m−3. In both scenarios, the remaining input parameters were fixed, and 
three different target 7-day compressive strengths (i.e., 20 MPa; 25 MPa; 
and 30 MPa) were imposed as inputs. All input parameters are 
enumerated in Table 5. Next, the RF model was used to perform “in
verse” predictions (as per the Bayesian optimization approach [28]) to 
reveal optimal values of water content (as output, in relation to the 
variable Na2O or CaO content and other fixed input parameters) of AACs 

Table 4 
Five statistical parameters (i.e., R, R2, MAE, MAPE, and RMSE) used to quantify 
accuracy of RF model’s predictions of AACs’ compressive strength and slump 
flow.   

R R2 MAE RMSE MAPE 

Compressive strength Unitless Unitless MPa MPa % 
0.972 0.944 2.013 2.650 13.644 

Slump Flow Unitless Unitless Inch Inch % 
0.947 0.897 0.897 0.949 19.546  
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that would exhibit the target 7-day compressive strength. Results of 
these optimizations are shown in Fig. 6. The trends that emerge are in 
excellent agreement with what is known from theory: (1) For any given 
Na2O or CaO content, compressive strength increases with decreasing 
water content. This is expected considering that lower water content 
ensures greater solid-to-solid phase connectivity within the micro
structure, thereby leading to improved load carrying capacity and 
compressive strength [74,78,79]; (2) Compressive strength increases 
with increasing alkali content. This is also reasonable considering that 
elevated Na content in the system facilitates polymerization of the re
action product, thereby leading to improved strength [7,11,14,78]; and 
(3) For a given target compressive strength, the optimal water content is 
slightly lower for Ca-rich fly ashes compared to those with lower cal
cium content. While the reasons for this are not clear, it is hypothesized 
that fly ashes with lower calcium content – on account of their inferior 
hydraulic nature – require slightly larger amount of water for the re
action product’s polymerization [80]. To be sure, such agreement be
tween theory and results of the optimization is encouraging, and 

suggests that more wide-ranging optimizations can be performed, pro
vided that a sufficiently large and diverse composition-properties database 
of AACs can be consolidate to train the RF model. 

5.2. Influence of input parameters on AAC’s properties 

In section 5.1, it was shown that the RF model can predict the 
compressive strength and slump flow of ACCs in relation to their 
composition and relevant process parameters (e.g., mixing procedure; 
curing conditions; etc.). In this section, the training of the RF model is 
leveraged to quantitatively determine the influence of each input 
parameter (e.g., composition; mixing procedure; curing conditions; etc.) 
on the resultant properties of the AACs. To this end, the decision-tree 
structure of the RF model – after it is trained, and fully validated 
against the test set – was analyzed to estimate and rank each attribute’s 
importance in accordance with the magnitude of influence it exerts on 
the AACs’ slump flow and compressive strength. The results obtained 
from these analyses are shown in Fig. 7. 

As shown in Fig. 7a, the mixing procedure and curing conditions 
exhibit strong influence on the evolution of AAC’s compressive strength; 
further description of these parameters is provided later in this section. 
Loss on ignition is also reckoned as very influential; presumably because 
compressive strength could be undermined if the unburned carbon 
content in the fly ash is high [8]. As would be expected, the age of testing 
is important; this is because with increasing age, compressive strength 
increases monotonically. Interestingly, the water content and composi
tional parameters are estimated to be substantially less important than 
the mixing procedure, curing conditions, and unburnt carbon content. 
This is likely due to the limited variation in, and range of, water contents 
and fly ashes’ compositions in the database used in this study – which 
impart little effect on a mature property like compressive strength that is 
measured at ≥24 h. 

Fig. 7b shows the ranking of input parameters in accordance with 
their influence on the slump flow of the AACs. As can be seen, water 
content is the most influential variable that affects slump flow. This is 
expected because water – based on its content in the AAC – can signif
icantly increase or reduce the viscosity of ACCs; thus, resulting in sub
stantial changes in the slump flow. Loss on ignition – like in the case of 
compressive strength – is shown to be an influential factor for slump 
flow; which suggests that the amount of unburnt carbon content can 
affect early-age reactivity of the fly ash, and thus the evolution of AAC’s 
microstructure and rheological behavior. Alkali content is also deemed 

Table 5 
Input parameters and target 7-day compressive strength used to optimize the 
mixture design (i.e., water content in relation to variable Na2O and CaO content 
and other fixed inputs) of AACs.  

Attribute Unit Scenario 1 Scenario 2 

Coarse Aggregate kg. m−3 959 959 
Fine Aggregate kg. m−3 799 799 
SiO2 Content kg. m−3 190 190 
Al2O3 Content kg. m−3 84 84 
Fe2O3 Content kg. m−3 22 22 
CaO Content kg. m−3 122 90-to-130 
MgO Content kg. m−3 33 33 
Na2O Content kg. m−3 25-to-45 35 
K2O Content kg. m−3 2.1 2.1 
TiO2 Content kg. m−3 5.5 5.5 
P2O5 Content kg. m−3 3.6 3.6 
MnO Content kg. m−3 0.09 0.09 
Loss on Ignition kg. m−3 2.7 2.7 
SSA of Fly ash m2. kg−1 2722 2722 
Mixing Procedure Unitless 7 7 
Curing Regime Unitless 1 (ambient) 1 (ambient) 
Curing Temperature ◦C 23 23 
Curing Time Days 7 7 
Testing Age Days 7 7 
Target compressive Strength MPa 20-to-30 20-to-30 
Water Content kg/m3 output output  

Fig. 6. Optimal value of water content produced by RF model to achieve target compressive strength – of 20 MPa; or 25 MPa; and 30 MPa – in relation to (a) variable 
Na2O content; and (b) variable CaO content, while keeping other input parameters relevant to the AACs fixed (shown in Table 5). 
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as important; this is seemingly because of its contribution on the kinetics 
of precipitation of Al-Si monomers, oligomers, and polymers – all of 
which dictate the solid-to-solid phase connectivity in the microstructure. 
In addition to the parameters discussed so far, fine aggregate content 
(but not coarse aggregate content), mixing procedure, and composition 
and SSA of fly ash were shown to affect the AACs’ slump flow; although 
to a lesser extent as compared to the influence of water content on AACs’ 
slump flow, and to a greater extent compared to their influence on AACs’ 
compressive strength. 

Upon comparing and contrasting the results shown in Fig. 7a and b, it 
is clear that slump flow – an early-age property – is affected by nearly 
every input parameter; whereas, compressive strength – a mature 
property – is largely affected by mixing procedure, curing conditions, 
and loss on ignition, and less so by other parameters. The mixing pro
cedure – which comprises the sequence of addition of various compo
nents of AAC and the mixing duration – exerts significant impact on both 
the slump flow and compressive strength of the AACs. In this study, it 
was found that AACs with highest slump flow were those in which water 

was added prior to adding liquid alkali activators. In these mixtures, 
water wets and subsequently lubricates the fly ash particulates; thus, 
reducing the localized concentration of the alkalis when the alkali 
activator is added. As the local concentration of alkali around a fly ash 
particulate increases, the dissolution of particulate initiates. If the 
dissolution of several fly ash particulates is rapid, agglomeration of the 
mixture in less than a minute becomes likely, which in turn results in 
poor slump ability. Based on observations from experiments involving 
different mixing procedures, it was found that gradually adding alkali 
activators (which accelerates fly ash dissolution in gradual, rather than 
abrupt, manner), and increasing mixing time – from less than a minute 
to at least 5 min – benefits not only workability but also compressive 
strength. The increase in mixing time ensures disaggregation of the 
floccules and agglomerates that may have formed; which contributes to 
the improvement of workability [81,82], acceleration of dissolution 
kinetics of fly ash (due to unlocking of surface area that was diminished 
due to flocculation and agglomeration) [42], increased rate of precipi
tation of polymers, enhanced solid-to-solid phase connectivity, and 

Fig. 7. The importance of input parameters in terms of their contributions towards: (a) compressive strength; and (b) slump flow of AACs. Parameters are ordered – 
from left to right – in relation to their decreasing influence on the property. 
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ultimately reduction of total porosity [41]. Based on results obtained 
from experiments conducted in this study, mixing procedure 8 was 
found to be optimal, as it resulted in both superior workability and 
compressive strength. 

Like mixing procedure, curing condition was also determined as an 
influential parameter for AACs’ properties (i.e., compressive strength). 
Based on our analyses of experimental results, we found – with just a few 
exceptions – that increasing the curing temperature resulted in 
improvement of compressive strength and slight reduction in slump flow 
(results not shown). This, however, is expected because at elevated 
curing temperatures, the dissolution kinetics of fly ash and precipitation 
kinetics of the reaction products are enhanced. As a result of these en
hancements: the development of the polymeric network (and its solid-to- 
solid phase connectivity) is faster, which manifests as lower slump flow; 
and the compressive strength is larger, because of the improved solid-to- 
solid phase connectivity. 

Lastly, alkali and water contents were also determined as influential 
parameters for AACs’ properties – especially the slump flow. In general, 
low water content aids solid-to-solid phase connectivity in the micro
structure, thereby improving load carrying capacity and compressive 
strength; but resulting in loss of workability [78,79,83]. For a given 
AAC, the optimal water content depends on the alkali content; wherein 
AACs with high alkali content require high water content to prevent 
flash setting and to improve workability. This is because compressive 
strength is directly proportional to, and slump flow is inversely pro
portional to, alkali content [48]. The aforesaid correlations are often 
observed in AACs, because with increasing alkali content, the ensuing 
enhancement in fly ash dissolution rate facilitates polymerization of the 
reaction product, thereby leading to lower workability at early ages (i.e., 
faster development of connected polymeric network) but improved 
strength at later ages [6,7,14,78]. Based on analyses of the database 
developed for this study, the optimum alkali-to-fly ash mass ratio was 
found to be 0.30 [83]. It was found that provision of additional alkali 
activator (i.e., exceeding the aforesaid ratio of 0.30) resulted in little – if 
any – improvement in compressive strength. 

6. Conclusion 

This study presented a random forest (RF) model – a classification- 
and-regression trees based machine learning (ML) model – to predict 
two properties of fly ash-based alkali-activated concretes (AACs) that 
are important from a compliance standpoint: slump flow (a fresh prop
erty); and compressive strength (a hardened property). The RF model 
was used to predict the aforesaid properties as functions of influential 
parameters pertaining to the AACs: composition of AAC precursors (i.e., 
fly ash; and alkaline activation solution); curing conditions; and mixing 
procedures. To the best of the authors’ knowledge, this is the first study 
that employs ML to predict properties of AACs that feature such a wide- 
range of variations in attributes, including significant disparities in the 
mixing procedure. This study also places emphasis on leveraging the 
training of the RF model to quantify the influence of each input 
parameter on the compressive strength and slump flow of ACCs. 

The RF model was rigorously trained using two separate databases: 
one that mapped physiochemical attributes of >200 different AACs with 
their slump flow; and one that mapped the same attributes with the 
concretes’ compressive strength. These physiochemical attributes – that 
were used as inputs within the model – comprised of chemical compo
sition and specific surface areas of six different fly ashes; chemistries of 
activation solutions prepared using different amounts of NaOH and 
Na2SiO3; different curing temperatures (ranging from 23-to-70 ◦C); and 
eight different mixing procedures. The main differences among the 
mixing procedures used in this study were: (i) the sequence of addition 
of various components of AAC; and (ii) the duration of mixing at each 
step of the sequence. During training of the RF model, emphasis was 
given to rigorously optimize the underlying hyper-parameters – using a 
combination of grid-search method and 10-fold cross-validation method 

– so as to: properly establish the inherent inputs-output correlations; 
account for (as opposed to ignoring or removing) outliers in the data
base, if any; and keep the variance and bias among trees of the model as 
low as possible. 

Results showed that the RF model – once meticulously trained, and 
after its intrinsic parameters were rigorously optimized – was able to 
produce high fidelity predictions (Pearson correlation coefficient, R ≳ 
0.95) of both slump flow and compressive strength of new AACs. 
Thorough analysis of the RF model’s prediction performance was pre
sented in light of prior studies (including ours) that have compared RF 
model with other prevalent ML models in terms of their abilities to 
predict properties of heterogeneous material systems and outputs of 
highly complex (e.g., periodic) functions. Based on such analysis, it was 
concluded that the RF model’s ability to produce accurate predictions of 
AACs’ slump flow and compressive strength can be attributed to two 
reasons: (1) The structure of the RF model (comprising of deep, un
pruned, uncorrelated CARTs) produces an ability to effectively capture 
the fundamental cause-effect relations, even when the database is highly 
complex; and (2) Implementation of the optimization procedure (i.e., 
grid-search method used in conjunction with the 10-fold cross- 
validation method) ensured that the hyper-parameters were tuned and 
optimized in relation to the nature and volume of the databases. 

The RF model was also used to examine the influence of input pa
rameters on the properties of AACs. It was found that mixing procedure 
and unburnt carbon content exert significant influence on both slump 
flow and compressive strength. Water content and curing conditions 
were determined as the most influential input variables for slump flow 
and compressive strength, respectively. Conversely, SiO2 content of the 
fly ash and coarse aggregate content of the AAC were determined as the 
least influential input variables for both slump flow and compressive 
strength. 

Overall, outcomes of this work show that the RF model – or other RF- 
based ML models – are apposite ML platforms that could be employed in 
the future to optimize AAC properties. Of course, for such optimizations 
to be robust, it is critical that the model be trained with a comprehensive 
database that not only has a large volume (1000s-to10,000s of unique 
data-records) but also encompasses tremendous diversity (i.e., sub
stantial variations in chemistries of fly ashes and alkaline activation 
solutions; curing temperatures; mixing procedures; etc.). Such RF 
model-based optimization tools could facilitate the materials–by–design 
approach – which is in alignment with the United States (U.S.) Materials 
Genome Initiative [84–86] – and expedite the design of AACs with 
desired properties. 
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