Computer Physics Communications Xxx (XXXX) XXX

EéMPUTER PHYSICS
COMMUNICATIONS

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein
covariation analysis™ "
Allan Haldane **, Ronald M. Levy "

2 Center for Biophysics and Computational Biology and Department of Physics, Temple University, Philadelphia, PA 19122, United States of America
b Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122, United States of
America

ARTICLE INFO ABSTRACT

Article history:

Received 7 November 2019

Received in revised form 23 March 2020
Accepted 1 April 2020

Available online xxxx

Inverse Ising inference is a method for inferring the coupling parameters of a Potts/Ising model based
on observed site-covariation, which has found important applications in protein physics for detecting
interactions between residues in protein families. We introduce Mi3-GPU (“mee-three”, for MCMC
Inverse Ising Inference) software for solving the inverse Ising problem for protein-sequence datasets
with few analytic approximations, by parallel Markov-Chain Monte Carlo sampling on GPUs. We also
provide tools for analysis and preparation of protein-family Multiple Sequence Alignments (MSAs) to
account for finite-sampling issues, which are a major source of error or bias in inverse Ising inference.
Our method is “generative” in the sense that the inferred model can be used to generate synthetic

Keywords:
Protein evolution
Covariation analysis

GPU computing MSAs whose mutational statistics (marginals) can be verified to match the dataset MSA statistics up to
E:Etg‘ggst the limits imposed by the effects of finite sampling. Our GPU implementation enables the construction

of models which reproduce the covariation patterns of the observed MSA with a precision that is not
possible with more approximate methods. The main components of our method are a GPU-optimized
algorithm to greatly accelerate MCMC sampling, combined with a multi-step Quasi-Newton parameter-
update scheme using a “Zwanzig reweighting” technique. We demonstrate the ability of this software
to produce generative models on typical protein family datasets for sequence lengths L ~ 300 with
21 residue types with tens of millions of inferred parameters in short running times.
Program summary
Program Title: Mi3-GPU
Program Files doi: http://dx.doi.org/10.17632/ftbcfy2p35.1
Licensing provisions: GPLv3
Programming languages: Python3, OpenCL, C
Nature of problem: Mi3-GPU solves the inverse Ising problem for application in protein covariation
analysis. The goal is to infer “coupling” parameters between positions in a Multiple Sequence
Alignment of a protein family, with many applications including protein-contact prediction and fitness
prediction.
Solution method: Mi3-GPU solves the inverse Ising problem with few approximations using Markov-
Chain Monte Carlo methods with Quasi-Newton optimization on GPUs. This problem previously has
been approached by more approximate methods using analytic approximations including “message
Passing”, “Susceptibility Propagation”, “mean-field” methods, pseudolikelihood approximations, and
cluster expansion. The software leverages GPU to accelerate MCMC sampling and a histogram
reweighting technique to accelerate parameter optimization.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The inverse Ising problem consists of finding the set of “cou-

= The review of this paper was arranged by Prof. Stephan Fritzsche. p]ing" parameters of an lsing or Potts model which reproduce

YN This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).
* Corresponding author.
E-mail address: allan.haldane@temple.edu (A. Haldane).

https://doi.org/10.1016/j.cpc.2020.107312
0010-4655/© 2020 Elsevier B.V. All rights reserved.

observed site-covariation of the Potts system in thermodynamic
equilibrium. It has many practical applications in computer vi-
sion, machine learning and biophysics to detect interaction net-
works among large collections of covarying components, each

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

https://doi.org/10.1016/j.cpc.2020.107312
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://dx.doi.org/10.17632/ftbcfy2p35.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:allan.haldane@temple.edu
https://doi.org/10.1016/j.cpc.2020.107312

2 A. Haldane and RM. Levy / Computer Physics Communications Xxx (XXXx) XXx

of which can take on a set of discrete values, and the Potts
or Ising models parameterized by this method are also known
by the names of Markov Random Fields and graphical mod-
els. An important application of inverse Ising inference is for
“protein covariation analysis", by which one detects interactions
between residues within proteins based on observed mutational
covariations in multiple sequence alignments (MSAs) of proteins
from a common protein family, which arise during the course
of evolution through compensatory effects [1-7]. These predicted
interactions have been found to correspond well to physical con-
tacts within the 3D structure of proteins, and models inferred
from protein sequence data have shown great promise for eluci-
dating the relationship between protein sequence, structure and
function [8-12].

The inverse Ising problem is a difficult computational chal-
lenge. A Potts model describes the likelihood of configurations
S = s1,5;....5; of L “sites” or positions, each of which can take
one of g states. Solving the inverse problem exactly by naive
means involves sums over all g* possible configurations, which
quickly becomes computationally infeasible for increasing val-
ues of L. This has motivated a variety of approximate solution
methods including message passing [13], mean-field approxima-
tions [14], pseudolikelihood approximations [10], and adaptive
cluster expansion [15,16]. However, these approximations often
introduce biases into the inferred model parameters which can
cause the site-covariances of sequences or MSAs generated by the
model to differ from those obtained using inference approaches
that employ fewer approximations, meaning the model is not
“generative" and cannot be used in certain applications involv-
ing evaluation of sequence-by-sequence statistical predictions
[16,17]. The inverse Ising problem can be solved with fewer an-
alytic approximations using Markov-Chain Monte Carlo (MCMC)
sampling methods [2,18,19], but these are limited by the require-
ment of Markov-Chain convergence and by the effects of finite
sampling error due to limited configuration sample size, and this
approach is typically much more computationally demanding.

The software presented here provides a GPU-accelerated
MCMC inverse Ising inference strategy (“Mi3", for MCMC Inverse
Ising Inference), focusing on the application of protein covaria-
tion analysis with high statistical accuracy, and is implemented
in the Python and OpenCL programming languages. It uses large
Monte Carlo sample sizes to limit finite-sampling error and bias.
The main components of this method are a GPU-optimized al-
gorithm for MCMC sampling, combined with a multi-step Quasi-
Newton parameter-update scheme [20] using a “Zwanzig
reweighting” strategy [21-24] which allows many parameter
update steps to be performed after each MCMC sample. With
this method we can obtain statistically accurate and generative
models for large Potts systems, allowing detailed analysis of
sequence and MSA statistics which is otherwise difficult [24-27].
We demonstrate its performance by fitting a protein family with
sequences of length L = 232 and q = 21 residue types (20 amino
acids plus gap), to parameterize a Potts model with 12 million
parameters in a reasonable running time. This problem size is
typical of protein family datasets for covariation analysis from the
Pfam database, which are commonly L ~ 200 and q = 21.

The statistically accurate model and marginals produced by
this method are particularly suited for studying sequence varia-
tion on a sequence-by-sequence basis and detailed MSA statis-
tics related to higher order marginals, but can also be used
in other common applications of covariation analysis. We illus-
trate some applications in Fig. 1. We have previously used initial
versions of the Mi3-GPU software to perform analysis difficult
using more approximate methods. For instance, we have used
this method to test whether pairwise terms are necessary and
sufficient to model sequence higher-order marginals, by showing

that sequences generated by the model have similar higher-order
marginals as those of the dataset [25] using our accurate marginal
estimates, as in Fig. 1B, bottom. We have also used it to show
how mutations leading to drug resistance in HIV can become
highly favored (or entrenched) by the complex mutation patterns
arising in response to drug therapy despite being disfavored in
the wild-type sequence background [26], and we used these sta-
tistically accurate models to predict which mutations a particular
background will support and how conducive that background is
towards that mutation [29], as illustrated in Fig. 1D. This fitting
procedure was also key to an analysis on the effects of overfitting
and the statistical power of Potts models [27], in which we
demonstrated the resilience of the inference procedure to the sta-
tistical error caused by finite-sampling effects due to the limited
size of the dataset MSA, and estimated how many sequences are
necessary to accurately construct a model, as illustrated in Fig. 1C.
The statistical accuracy of the method allowed estimation of the
statistical error of various model predictions, such as prediction
the effects of point mutations and double mutant effects.

We also address the sources of error and bias in the inference
procedure and describe MSA preprocessing tools we provide to
account for them. Finite sampling error caused by limited dataset
size is a fundamental source of error in protein covariation analy-
sis and more generally for inverse Ising inference on real datasets,
and causes various problems including overfitting [27]. A careful
understanding of the effects of finite sampling error is particularly
important when using MCMC methods and Zwanzig reweight-
ing as these explicitly use finite samples of synthetic sequences
[15,27,30,31].

2. Background: Inverse ising inference

A Potts model describes configurations of sets of L elements
{s;} taking q possible values. In models representing ferromag-
nets, ¢ = 2 and the elements represent “spins”, while in protein
covariation analysis each configuration represents a protein se-
quence S of length L where each character is one of ¢ = 21
amino acids or gap characters. The Potts system is described by
the Hamiltonian

E(S)=) h+) Ji (1)

i<j

with “coupling” parameters]g 8 between all pairs of positions i, j
for all characters «, 8 and “field" parameters h; for all positions.
The probability of observing the sequence S in equilibrium is
P(S) = 1e7f) with normalization constant Z = Y ¢e~F®).
This model is in principle “infinite range", meaning all pairs of
elements may be coupled, and each of the coupling and field
values may be different.

The Potts model can be motivated by the fact that it is the
maximum-entropy model for the probability distribution P(S) of
sequences in a protein-family with the constraint that the pair-
wise (bivariate) amino acid probabilities ;]ﬂ =Y Sgéij(S) pre-
dicted by the model are equal to frequencies f;jﬁ =% D semsa 02 85
measured from a dataset MSA of N sequences. By capturing
the bivariate marginals, we also capture the pairwise residue
covariances C,, = f,; — fif}. The fact that there are no third or
higher-order terms in the Hamiltonian of Eq. (1) is a consequence
of the choice to only constrain up to the bivariate amino-acid
probabilities, and this effectively assumes there are no interaction
terms higher than second order. There is evidence this assump-
tion is both necessary sufficient to model some protein-sequence
data [25]. Given an MSA of sequence length L and alphabet of g
letters, there are (;)q2 bivariate frequencies used as model con-

straints, although because the univariate frequencies foi =y s f;jﬁ

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

A. Haldane and RM. Levy / Computer Physics Communications xxx (XXXx) Xxx 3

Unknown residue at position i
++ Dataset o J N
0 — 2
2 Potts Model w 8 . Background ?
I Indep. Model < ' Classifier 7
. oo | 2
£ <) v
> = 8 & / Pla) \ P(o)
=4 g 2 0.15 ? 0.95
? 0.09 ? 0.86
2 0.01 ? 0.78
. b - ~700 _6'00 _5'00 Low probability of o High Probability of a
0.2 0.3 0.4 . Predicted Freq : 2% Predicted Freq a: 96%
. Reference Fitness Observed Freq a: 1.9% Observed Freq a: 97%
Sequence Identity
- © z 10
cN - g n A w
< e
= ST 2 54]
Q O o g
c21g| A [ca
© Ao =1 [
5 2 ci © 0 > H 1
2 aB — Potts Model oo g—s B
2 Data Indep. Model g_ o]
o - - T T o T T —10 -+ T T T T
©2 3 4 5 6 7 0 5 0 4 8 12 16

Subsequence Length Potts AE number of drug-associated mutations

Fig. 1. Example applications of covariation analysis possible using Mi3-GPU. (A) Example of contact prediction in protein structure for the protein family used in
this study. Dark points in the upper triangle of this contact map are i,j pairs with a strong Potts interaction score predicted using Mi3-GPU. The lower triangle
shows contact frequency observed in structures in the PDB with a 6A side-chain cutoff distance, with excellent agreement. (B) The models inferred by this method
accurately reconstruct MSA statistical properties which are not directly fit. Top: The distribution of Hamming distances between all pairs of sequences in an MSA
generated by the model is the same as for the dataset MSA and unlike that of an MSA generated using a site-independent model. Bottom: MSAs generated from
the model reproduce the higher-order marginals (subsequence frequencies) in the data as far as finite-sampling limitations allow us to verify. This suggests the
sufficiency of pairwise Potts models to model protein sequence variation, as discussed in Ref. [25]. The y-axis reflects the average Pearson correlation in model
marginal predictions with dataset marginals. The estimated finite-sample verification limit is shown in black as in Ref. [25]. Inset: The pairwise residue covariations
Cgﬂ are very accurately reproduced in generated sequences. (C) Top: A Potts model fit to only 10,000 sequence generated from a “reference” model predicts their
fitnesses (statistical energy) compared to the reference fitness, showing that our method is resilient to finite-sampling errors as discussed in ref [27]. Bottom: Potts
computations of mutation effects in HIV protease predict experimental replicative capacity measurements from Ref. [28] as discussed in Ref. [26]. (D) Potts models
predict complex background-dependent statistics of individual sequences. Top: The Potts model can classify which sequences are likely to have a particular residue at
a position based on knowledge of the rest of the sequence, discussed in Ref. [29], and accurately predicts the observed residue frequencies in each classified sequence
group. Bottom: The Potts model predicts the bias for of reversion of a primary drug-resistance mutants in HIV protease sequences due to accessory drug-resistance
mutations by computing the statistical energy change AE caused by reversion, as discussed in Ref. [26]. In sequences with AE > 0 the drug-resistance mutation is

“entrenched" and difficult to revert.

must be consistent across all pairs and sum to 1 the constraints
are not independent, and can be reduced to (é)(q — 1)? bivariate
plus L(g — 1) univariate independent constraints. Maximizing the
entropy with these constraints leads to an exponential model
with the Hamiltonian of Eq. (1). We refer to Refs. [2,8,10,32]
for additional development and motivation for this maximum
entropy derivation.

There is a convenient simplification of Eq. (1), which is mo-
tivated through the maximum entropy derivation of the Potts
model. The number of independent constraints on the marginals,
0 = (%)(q — 1) + L(g — 1), must equal the resulting number of
free parameters of the model, yet in the formulation of Eq. (1) we
defined (;)¢* + Lq model parameters J,,, hi, which means that
(;)(Zq — 1) + L of these must be superﬂuous Indeed one can
apply “gauge transformations" (hi,,]aﬁ) — (hi +d +d,]aﬂ
b+ d — djx) for arbitrary constants a, b', ¢/, dfx and this only
results in a constant energy shift of all sequences and does not
change the probabilities P(S). The model can be fully specified
using the same number of parameters 6 as there are independent
marginal constraints by fixing the “gauge” and eliminating certain
coupling and field parameters. In particular it is possible to apply
gauge transformations which set all fields hi to 0 by the gauge
transformations with d, = —h,. This simplifies the mathematical
formalism of the Potts model and allows simpler and shorter
implementation of the MCMC inference algorithm, and from this
point we will drop the field terms from all equations and com-
pute the statistical energy as E(S) ZK]]515] and we avoid
having to store and handle the field parameters in our implemen-
tation. This “fieldless" gauge transformation only eliminates Lq of
the superfluous parameters and further elimination is possible,
however in practice we find the remainder is difficult to eliminate
in such a convenient way. The Mi3-GPU software includes a
helper script to transform model parameters between a number
of commonly used gauges.

The “inverse" problem of solvmg for the Potts parameters

ij)
]aﬁ which satisfy the constraints aﬁ = fup with given f B is

challenging because of the notoriously difficult problem of cal-
culating the partltlon functlon Z or of performing the “forward"
computation of f = 7 13 8255 e‘E $) = 3l°gz , since these both
involve a sum over g* sequences S (unique ci)nﬁgurations). This
has motivated the various approximate inference strategies noted
above, for instance in the pseudolikelihood method the partition
function is replaced by an approximate partition function which
is analytically tractable. Monte Carlo methods are another popu-
lar approach to estimating partition functions and average values
such as fo? , and there is a long history and a wealth of literature
on using MCMC for this purpose for Ising/Potts systems [33].
MCMC has the advantage noted above that it does not involve
analytic approximations, but it is computationally costly. A goal
of our inference software is to optimize inverse Ising inference by
MCMC.

3. Algorithm overview

The goal of the Mi3-GPU software is to identify the coup_l_ing
parameters J, v Wthh satisfy the constraint equations Af = f v

f Uﬁ =0 where ZS 80‘85 are the model blvarlate

marginals and f]ﬂ are the fixed bivariate marginals computed
from the dataset MSA. Using a quasi-Newton method we solve
for the root of the constraint equations, which we show below
leads to a coupling-update relation

Y Af;]ﬁ

s
in the fieldless gauge, where y is a parameter controlling the
step size and (]3 8) are the updated coupling parameters, and jg 5
are the trial coupling parameters. Iterating this coupling-update
equation leads to values of the coupling parameters which satisfy

the constraint once the algorithm converges. The model bivari-
ate marginals f wp are needed to evaluate the coupling-update,

Ugﬁ), 213}; - (2)

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

4 A. Haldane and R.M. Levy / Computer Physics Communications Xxx (XXXx) Xxx

MCMC with parallel GPU replicas

Initial couplings

{7} >

\

Gz

Quasi-Newton Optimization

Histogram Reweighting

~

12

% "Model"
Quasi-Newton Step

- x~7

l

Synthetic MSA

1}

{f} =—

"Target"

Dataset MSA

Fig. 2. Schematic of the computational strategy used by Mi3-GPU for inverse Ising inference. The algorithm alternates between a sequence generation phase (top of

diagram) and a parameter-update phase (bottom of diagram). See text for details.

which we estimate by Monte Carlo sampling given the trial cou-
plings. The Mi3-GPU software performs these computations in
two phases as outlined in Fig. 2: First, a sequence generation
phase in which a “synthetic" MSA is generated by MCMC given
a set of trial couplings, from which we calculate foi’ . Second, a
parameter update phase in which the trial couplings are updated
using Eq. (2). The algorithm is initialized with an initial guess
for the trial couplings J° based on the dataset MSA and the
two phases are iterated until parameter convergence, which is
detected using diagnostics we describe below. We will give a high
level overview of these two phases here, and we will elaborate
with details in subsequent sections.

In the MCMC phase of the inference we aim to efficiently
generate a set of N sample sequences from the distribution P(S|J)
given trial model parameters J. The MCMC phase is the main
bottleneck of the overall algorithm, and the typical number of
samples N is large, on the order of N = 10 to 107, for statis-
tical accuracy of the estimated bivariate marginals. The underly-
ing MCMC methodology is a straightforward application of the
Metropolis—Hastings algorithm using attempted point-mutations
(single-character changes), but accelerated for GPUs. A GPU is
able to run a large number of “threads"” in parallel, and we arrange
for each thread to carry out a Markov chain walk for a single
sequence, so that the number of generated sequences equals the
number of threads. In each MC step each GPU walker attempts a
random single-character change causing a change in Potts statis-
tical energy AE between the initial sequence and the modified
sequence, which is used to calculate the Metropolis-Hastings
acceptance probability, min(1, e~2F). All threads on the GPU per-
form an equal number of Markov steps until we have detected
that the Markov chains have converged to the equilibrium dis-
tribution, using a convergence diagnostic described below which
tests for mixing of the chain energies E(S) relative to each other at
two time-points. The output of this phase is a set of N statistically
independent sequences drawn from the distribution P(S|J), from
which we estimate f}; = & Y0 50 8260

In the second phase we update the trial coupling parameters
J based on the discrepancy between the dataset MSA bivariate
marginals and those of the synthetic MSA, using Eq. (2). After
updating the couplings we could use these in the next phase

of MCMC sequence generation, but this would be computation-
ally prohibitive because of the computational cost of the MCMC
sequence generation. Instead we use a “Zwanzig reweighting"
method to repeatedly compute updated bivariate marginals based
on the new couplings without generating a new synthetic MSA.
In this method the updated couplings Ugﬁ)’ are used to assign
weights w, to each sequence in the synthetic MSA based on
the energy of that sequence under the new Hamiltonian, chosen
so that weighted averages approximate thermodynamic aver-
ages under the updated Potts Hamiltonian. This allows us to
estimate the marginals under the new Hamiltonian. This allows
many coupling-update steps to be computed per MCMC sequence
generation run, in practice for hundreds or thousands of iter-
ations. This reweighting technique becomes less accurate once
the updated coupling parameters become different enough from
those used to generate the synthetic MSA according to criteria we
discuss below, at which point we generate a new synthetic MSA
using MCMC.

3.1. MCMC Sequence generation

Here we describe the MCMC algorithm for GPUs in more
detail. A GPU contains many cores which can run a large num-
ber of “threads" in parallel to perform a computation, and as
described above we have each thread carry out a MCMC walk for
a single sequence using the Metropolis-Hastings algorithm. Mi3-
GPU can use multiple GPUs in parallel across multiple compute-
nodes using the MPI (Message Passing Interface) standard. We
use the mwx64x random number generator library for OpenCL
to generate trial mutant residues and evaluate acceptance [34].

The main optimization of our implementation is to harness
GPU hardware for increased parallelization in calculating AE for
all sequences in each MC step needed to evaluate the Metropolis
probability, as this is the computational bottleneck of our algo-
rithm. GPUs have a much larger number of parallel processors
than CPUs, but also have much higher memory bandwidth to feed
data to the processors and increased opportunity for data-sharing
among processors. When implementing a parallel algorithm for
GPUs one can make choices which rebalance processor workload

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

A. Haldane and RM. Levy / Computer Physics Communications xxx (XXXx) Xxx 5

versus data transfer requirements, for instance by tuning data-
sharing among processors and arranging for optimized memory
access patterns, and this is what we have done for the AE cal-
culation. As is typical of GPU software, ours is limited by the
memory access speed rather than by the arithmetic processor
speed, and our main optimizations are in memory access. Our
implementation does not change the computational complexity
of the MCMC algorithm, rather it is a parallelization using GPU
hardware.

To perform a MCMC step for all N sequences, for each se-
quence S the value of AE is computed in a fieldless gauge as a
sum over L — 1 coupling change values as

AE(S, i, o) = E(S)) — E(S) =) Ul —Ji;) (3)
J#i

for a mutation to residue « at position i. In order to evaluate AE

for all N sequences in each MCMC step, a naive implementation

would require loading L — 1 coupling parameters]313, which are

semi-randomly distributed among all (é)q2 couplings, and L se-
quence characters s; for all N walkers, which can add up to many
Gb. We mitigate this on the GPU through optimized memory
access. A GPU contains memory locations including a large pool
of “global” memory (often many Gb) with high memory-access
latency and small amount of “local" memory (often less than 100
Kb) with much lower access latency which can be shared among
GPU processors. Parameters such as the J; p values must be loaded
from global memory before they can be used in computations.

Key to our GPU implementation’s performance is the choice
to simultaneously mutate the same position in all sequences
in each step, rather than mutate different random positions in
each sequence, as this allows for significant data-sharing between
processors as well as other memory-access optimizations. Specif-
ically, this allows threads on a GPU to share the coupling values
involving the mutated position in GPU local memory. For each
of the L — 1 terms of the sum in Eq. (3) only the ¢? coupling
values corresponding to position-pair i, j are needed to evaluate
all sequences at once, which is small enough to share in the
GPU'’s local memory to share among processors. Additionally, this
data-sharing strategy allows a GPU memory-access optimization
known as “latency hiding". GPU threads are divided into “work
groups”, in our case into 512 threads per group. When the local
memory requirement per work-group is low, as it is here, the GPU
can run more work-groups in parallel at once leading to higher
“GPU occupancy" and the GPU can interleave memory transfers
from the GPU'’s global memory to local memory for some work-
groups with computation by other work-groups, which hides
the global memory access latency. Another important GPU opti-
mization is “memory coalescing" which reduces memory latency
when consecutive threads in a work-group load consecutive el-
ements of global memory to local memory. By using a fieldless
gauge and appropriate memory layout, our data-sharing strategy
allows the memory transfer of the coupling parameters to be
carried out in a highly coalesced manner. The character s; in
Eq. (3) can also be loaded in a coalesced manner by all work-
units after transposing the MSA in memory so that consecutive
memory addresses represent the same position in all sequences,
i.e. the MSA is represented as an L x N buffer where the N axis is
the “fast” (consecutive) axis.

The fact that the same position is mutated in all walkers
raises the question of whether statistical coupling is introduced
between the walkers, which would bias our results if this led
to non-independent samples of the distribution P(S). It can be
seen that there is no such statistical coupling by considering two
walkers evolving over the joint sequence state-space (Sy, S;) by
point mutations. In each step each walker individually attempts
a mutation at the same random position i to a different random

residue with g possibilities, and the two moves are separately
accepted using the Metropolis-Hastings criterion. The joint-state
of the outcome may be (51, S2), (S, S,), (S1,S¥), or (5,) for
all g* possible values of o and 8, where Sﬁ"‘ is the first walker’s
sequence mutated at position i to residue «. This is a subset of the
possibilities if the two walkers were allowed to mutate different
positions i, j with outcome states (Si, S,), (SY*, S2), (51,87), or
(s, s for all «, B, and one finds that the ratio of the for-
ward and backward Metropolis rates from each of the restricted
(same-position) final states to the initial state is the same in
both schemes. Since we have a conservative potential and both
schemes are ergodic, they reach equilibrium satisfying detailed
balance with equal rate-ratios and therefore equal equilibrium
probabilities, which in the second scheme clearly involves no
correlations between walkers.

The MCMC step is Input-Output-bound by the memory trans-
fers of the coupling parameters and sequence characters from
GPU global to local memory. In order to evaluate a single MCMC
step for all sequences a total of LN sequence characters (1 byte
each) are loaded using coalesced loads of 4-byte words, and
Lg? coupling values (4 bytes each) are loaded per work-group
using coalesced loads, and the number of work-groups is N/w
for work-group size w, for a total transfer of 4NLg?/w bytes for
the coupling parameters. The value of w affects GPU performance
independently of this Input-Output analysis by controlling GPU
data-sharing and occupancy, and due to program constraints we
require it to be a power of 2. We find w = 512 is optimal in
our tests. This gives a total transfer requirement amortized per
GPU-walker (divided by N) of L 4+ 4Lg?/w bytes per MCMC step.

In Fig. 3 we benchmark the MCMC sequence generation phase
for varied combinations of L, g, N on a single NVidia V100 GPU.
We use randomly generated coupling parameters, but have tested
with other coupling parameters and find this choice does not
noticeably affect the running time. We fit these data by least-
squares to the functional al + b(4Lq?/w) with two free scaling
parameters a, b reflecting the speed of the sequence character
transfers and coupling-parameter transfers respectively, which
we expect to be differently affected by GPU memory access
behavior. We find an excellent fit with a = 4.2 x 10712 s/step,
b = 3.1 x 1012 s/step. There is some variation due to difficult-
to-predict GPU occupancy and caching effects for different system
sizes.

Additionally, for large number of walkers N we expect GPU
occupancy will be high and the amortized time per walker will
not depend on the number of walkers N, which we observe in
Fig. 3C. At small N the amortized time per walker increases,
suggesting lower occupancy and inefficient use of the GPU. This
has implications for how to divide work among GPUs when mul-
tiple GPUs are available. Distributing a fixed amount of walkers
among a greater number of GPUs allows more walkers to be
iterated in parallel, but there are diminishing returns to using
more GPUs as the number of walkers per GPU becomes low and
GPU occupancy decreases. For typical protein lengths, Fig. 3C
suggests that using about 104 or fewer walkers per GPU leads
to inefficient GPU usage. Because it is best to use a number of
walkers which are a power of 2 to maximize GPU occupancy, we
recommend arranging to use 2> or more walkers per available
GPU.

We compare these running times to equivalent running times
on CPUs. For the same sets of parameters, we run MCMC with
a nearly identical parallelized algorithm on CPUs, including the
same-position optimization using shared memory which also op-
timizes memory access on CPUs. Running on a 20-core Intel(R)
Xeon(R) CPU E5-2660 v3 @ 2.60 GHz using 2133 MHz DDR4
memory, we find an average speedup of 90x in amortized s/step
on the GPU compared to the CPU (Fig. 4). The smallest speedup

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

6 A. Haldane and R.M. Levy / Computer Physics Communications Xxx (XXXx) Xxx

31 == L=x0
- 100
- 150

w
1

o
1

s/step (x107%)
s/step (x107%)

—
1

L=50
100
150

HH

T T
50 100 150 200
L

T
i 0.5 1.0 1.5 2.0
q N x 100

Fig. 3. Performance of MCMC sequence generation as a function of L, ¢ and N on an NVidia V100 GPU, measured as the amortized MCMC step running time per
GPU-walker. Each datapoint (colored lines) is an average of 3 runs, and the error bars are too small to see. The dotted black lines show a least-squares fit to the
expected memory transfer requirements (see text). (A) The running time per walker increases linearly with L, and (B) weakly quadratically with g, where in these
panels N is held fixed at N ~ 2 x 10°, and very similar results are obtained for smaller values of N. (C) The amortized running time per walker levels off to its
minimum for large N with where the MCMC generation is most efficient, using ¢ = 16.

= L=50

200 4 —— 100

5 — 150
2 150 - 200
S

~

g 100 -

= 50

S

Fig. 4. Performance of the MCMC phase of the algorithm on the GPU compared
to the CPU, computed as the CPU to GPU ratio of the amortized MCMC step
running times, using N ~ 2 x 106.

was 46x for the smallest system for ¢ = 4, and the largest
speedup was 247x for ¢ = 21,L = 200, which is more typical
of systems studied using protein covariation analysis. The CPU
timings increase dramatically for certain large g and L such as
L = 200,q > 12, which may be due to caching issues as the
storage size of the coupling parameters begins to exceed the size
of the caches on the processor used in these tests. These large
system sizes are the ones commonly of interest for protein family
analysis.

3.2. MCMC convergence

In order to obtain independent samples from the distribution
P(S) from each GPU walker, we must run enough MCMC steps for
the system to reach a Markov equilibrium. Determining how long
to run an MCMC simulation so that it has converged is a difficult
problem [35-38]. We estimate MCMC convergence by measuring
the inter-walker lag-t/2 autocorrelation of the walker energies,
o({E(t)}, {E(t/2)}), where {E(t)} is the vector of N walker energies
at time t, as illustrated in Fig. 5. We stop when the p-value of the
null (uncorrelated) expectation of p estimated using a Gaussian
approximation is greater than a cutoff, of 0.2 by default. This
strategy takes advantage of the fact that our implementation runs
a large number (often 10* to 107) MC walkers in parallel, and
involves both within-chain contrasts (the energy of a MCMC chain
at two different points) and between-chain contrasts (the energy
of different chains) which helps avoid issues with convergence
diagnostics that only depend on one of these [36]. Convergence
is detected when the p-value is high, so that the within-chain
energy variations are similar to the cross-chain variations. This

1.0 7

0.8 1

0.6 1

0.4

p(E(1), E(t/2))

0.2

0.0

T T T
4000000 6000000 8000000

MC step

T
0 2000000

Fig. 5. Autocorrelation p({E(t)}, {E(t/2)}) of the walker energies for a Kinase
Potts model as a function of Monte Carlo step, which we use a convergence
diagnostic. Convergence is detected once the p-value of the correlation reaches
0.2, which occurs at the right end of this plot. The number of sequence energies
is N ~ 106,

diagnostic imposes negligible additional computational cost and
only requires recording the sequence energies at half the number
of steps.

We note that our MCMC-sampling scheme does not use
enhanced-sampling methods such as parallel-tempering or
Swendsen-Wang algorithm which can be important for obtaining
convergence of Ising systems near or below a critical effective
temperature. We have found that protein-family sequence data
such as obtained from the Pfam database can be accurately fit to
Potts models in the high-temperature phase.

4. Quasi-Newton optimization

After a synthetic MSA has been generated by MCMC, in the
parameter update phase we update the coupling parameters of
the model using Eq. (2), which we derive here. We use a quasi-
Newton approach to find the root of the constraint equation Af =
0, following previous methodology [20,24] but using a different
“pairwise" approximation leading to the new coupling update
equation in Eq. (2). The expected change in marginals df due to
a change in couplings dJ is given to first order by

) ofy
i af
dfaﬂ - Z ajkl
k<lpy OV

and by inverting this linear equation we can solve for the step dJ
which would give a desired df, as d] = [%]‘Hf. This requires

diy, (4)

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

A. Haldane and RM. Levy / Computer Physics Communications xxx (XXXx) Xxx 7

inverting the Jacobian matrix whose elements can be found from
the definition of f’ wp O be

Bf” ;

ijkl
all, = fupfy — Sapow ()
where f” K is a 4th-order marginal, which reduces to lower

order margmals in the cases where the upper indices are equal
to each other, and equals 0 in the case that two upper indices
are equal but the corresponding lower indices are different. This
Jacobian is a non-sparse (5)g? by (%)q? matrix, and is too large to
invert numerically in a reasonable time.

To invert it we resort to a pairwise approximate inversion, by
assuming that residues at each pair of positions vary indepen-
dently of other position-pairs so that each bivariate marginal f;jﬁ

depends only on the couplings at the same positions]gﬂ for all
a, B, and all other off-diagonal elements in the Jacobian are 0.
This reduces the problem to a set of independent pair (L = 2)
systems, and in this section we drop the i, j indices. In the L = 2
system there are ¢*> — 1 independent marginals (i.e., all but one
of the bivariate marginals due to normalization) f,z = 1),
and in the fieldless gauge there are g? couplings, and thus one
superfluous parameter. Then Egs. (4) and (5) simplify to

dfup ~ Y upfon — fupdys])dlpy (6)
(44

and by rearranging we find this is solved (up to a constant due to
the gauge freedom) by

B
faﬂ '

We setdfys = y(fup —faﬂ) with step-size factor y chosen small
enough for the linear approximation to be valid. This step will
reduce the discrepancy between the dataset bivariate marginals
and the model marginals, and will lead to the optimized so-
lution when iterated. Substituting this into Eq. (7) gives the
coupling-update relation of Eq. (2).

In practice, we also modify the step direction by adding an
extra damping parameter to Eq. (2) to prevent large step-sizes for
coupling parameters corresponding to small sampled values of f, 4
in the denominator, as Eq. (7) diverges as f,g — 0. Such large
steps would move the parameters outside the range of linear
approximation we are using, and can prevent smooth progress
towards the solution. The damping modification is equivalent to
adding flat pseudocount p to the bivariate marginals, giving pseu-
docounted marginals f,g = (fup +p)/(1 + pg?), and substituting
these for f,4 in Eq. (7) to obtain a modified step direction

= L0 = ®)
faﬁ faﬂ +p

This damped step direction leads to the same solution as the
undamped step direction, since if Af,g = 0 then Af,g = 0 and
dJop = 0, and the inferred solution J,g will be independent of p.
This damping reduces the step size for couplings corresponding
to small marginals where divergence of Eq. (7) is more likely. We
find that it is useful to use a higher value for p such as 0.01 when
the system is far from the solution, and as the system approaches
the solution and the typical step sizes become smaller p can be
decreased.

dlop = — (7)

4.1. Zwanzig reweighting

The marginals required in the update step of Eq. (2) must be
determined from a computationally demanding MCMC sequence-
generation run, but using a Zwanzig reweighting approach we

evaluate the marginals for small changes in couplings without
regenerating a new set of sequences, allowing many more ap-
proximate coupling update steps per round of MCMC genera-
tion [21-24]. Zwanzig reweighting methods use the fact that a
thermodynamic average under one Hamiltonian is equal to a
weighted thermodynamic average under a different Hamiltonian.
For instance, the model bivariate marginals f‘fﬁ are a thermody-
namic average over sequences under a Potts Hamiltonian with
parameters J, but they are also equal to a weighted thermody-
namic average over a modified Hamiltonian with parameters J’
through the relation

£y = Zs“aﬂp(su (9)
= Z se5f 2 oW pisyy (10)
' fP(su
- Z (susgessv-E0) pisy'y (11)
S

where the last sum can be seen as a thermodynamic average
under Hamiltonian parameters J* where each sequence is given
a weight w, = e4E = eESU-EGU),

In Zwanzig reweighting methods, we replace these exact ther-
modynamic averages by approximate averages based on Monte
Carlo sampling. Then estimated bivariate marginals correspond-
ing to couplings J’ can be computed from a sample of sequences
generated using couplings J as

Z 5288 ESUN—ES) (12)

si s
SeMSA

where N’ = Y8, e¥SU)~ESU) is a normalization factor. After
computing a coupling update using Eq. (2), we can use this
relation to compute updated bivariate marginals, and then iterate
to perform many coupling update steps. Eq. (12) is implemented
on the GPU by standard histogram or “reduction” techniques.

The accuracy of this approximation decreases as the coupling
perturbation increases and the overlap between the sequences
generated under the original Hamiltonian parameters J and se-
quences which would be generated under J' becomes small. We
estimate this overlap using a quantity reflecting the “effective”
number of sequences contributing to the average in Eq. (12),
based on analysis of finite-sampling error. Eq. (12) can be seen
as a weighted sum of the result of N Bernoulli trials, each trial
having a weight w;. The statistical variance in such a sum can be
shown to be f(1 — f)/N where N = (s ws)? /(3 -g w2), which
is the same as the result for an unweighted Bernoulli sum with
effective number of sequences N, and N also has the desirable
property that it is not affected by the gauge transformations of
the parameters described previously. We iterate Eqs. (2) and (12)
while the heuristic condition N > 0.9N holds by default, meaning
effective number of effective sequences N must be at least 90% of
N. In practice we find this allows for large numbers of coupling-
update steps, particularly when the parameters J used to generate
the sequences are close to satisfying the constraint Af = 0.

5. Parameter convergence and statistical accuracy

As phases 1 and 2 of the algorithm are iterated the residuals
AfY wp corresponding to the constraint equation will decrease but
in practice will not reach 0, and so we use parameter conver-
gence diagnostics to decide when to stop the inference procedure.
Initially, the residuals will correspond to the initial guess for the
Hamiltonian parameters, J°. By default, the Mi3 software will set
the initial J° to correspond to a “site-independent" model which

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

8 A. Haldane and RM. Levy / Computer Physics Communications Xxx (XXXx) XXx

captures the univariate marginal statistics of the dataset MSA but
not the pairwise site covariances. This can be computed by choos-
ing field parameters hfx = —log foi and then performing a gauge
transformation to a fieldless gauge, and this produces a Potts
model where the bivariate marginals of generated sequences will
be (f,;)" = f.f;, which are different from the dataset bivariate
marginals f(fﬂ The initial residuals are then Af,, = f:}fg - ffﬂ
which will reduce in magnitude upon iteration of the algorithm.
Our software keeps track of different statistics to help judge
whether the Potts parameters have converged to a solution to the
constraint equation, which we describe here.

A simple measure of parameter convergence is the sum-of-
squares of the residuals, SSR = Zij‘aﬁ(Afa'j‘9)?. Another common
measure is the average relative error for the bivariate marginals
above 1%, as these correspond to values which are determined
from the dataset MSA with low relative statistical error, or Fer; =
(|Af)s1/fs)r>001. Our software tracks both of these. However,
these measures of the model error based on estimated bivariate
marginals are limited by finite-sampling effects. When estimated
from a sample of N sequences, the estimated marginal O'fﬁ has sta-
tistical variance f,,(1 — f,;)/N, reflecting multinomial sampling,
and this variance affects our algorithm in two ways: First, the
bivariate marginals of the dataset MSA we wish to fit often have
finite-sampling error. This causes modeling error and overfitting
which we account for in preprocessing steps described further
below, but otherwise does not affect our parameter convergence
diagnostics. Second, the bivariate marginals estimated from the
synthetic MSAs we generate in phase 1 have finite sampling error.
The size N of the synthetic MSAs, which is equal to the number
of GPU walkers, sets a limit on how accurately we can evaluate
the residuals Af. For instance we can estimate that the smallest
achievable SSR using the chosen number of walkers N and the
dataset bivariate marginals f,, is min(SSR) ~ Y ., fys(1 —

f(fﬂ)/N, once the model bivariate marginals f,, are approximately
equal to the dataset marginals :fﬁ. Likewise, one can approximate
min(Fery) & {(2(1 —f)/an)l/z)f>0_0], which for example for our
kinase dataset is 5.6% for N = 10000, which is a large fraction
of the initial site-independent F2 of 9.6%. This shows why it is
desirable to generate synthetic datasets with larger N, and shows
the limitation of parameter convergence diagnostics based on
sampled bivariate marginals.

Additionally, we find that parameter convergence diagnostics
based on the bivariate marginals can be relatively insensitive to
changes in the model parameters, so that small relative changes
in the bivariate marginals, for example of 1%, correspond to
relatively large changes in the coupling parameters and in the
predicted statistical energies of sequences in the dataset MSA.
This motivates a convergence diagnostic which more directly
tracks the values of the coupling parameters and sequence ener-
gies E(S). One method we have developed for this purpose uses
a quantity we have previously described called the “covariance

energy" given by X = ZUXU, which is a sum of “covariance

energy terms" given by

Xi==%"Jl.cl (13)
af

for each position-pair i,j [27]. Here Cj; = f; — fif; are the
residue-covariances, which equal 0 if the two positions i, j vary
independently. The covariance energy can be interpreted as the
average statistical energy gained by sequences in the dataset
MSA due to mutational covariances: It is the average difference
in statistical energy between the sequences in the dataset MSA
and those of a “shuffled” or “site-independent” MSA created by
randomly shuffling each column of the dataset MSA, thus break-
ing any covariances between columns. Mathematically ZUX" =

(_ Z,’jaﬁjgﬂfo'[]ﬁ) - (—Z,-ja,g]gﬁfifé) = (E(S)')‘corr - (E(S)>indepv
using a fieldless gauge. The pairwise terms XY can similarly be
interpreted as the statistical energy gained due to covariances
between columns i and j only, and all covariance energy terms are
gauge-independent. Because this convergence diagnostic involves
average sequence energies we expect it to be more sensitive than
Ferr, and indeed we find that the total covariance energy continues
to change significantly even as changes in the SSR or Fe;; become
relatively small (Fig. 6). Thus, convergence of the model param-
eters may be better detected by observing convergence of X to a
fixed value after many iterations of the MCMC algorithm.

Another convergence diagnostic which depends on the se-
quence energies rather than the bivariate marginals involves the
statistical energies of the sequences in the dataset MSA. If the
inference has converged, then the relative statistical energies of
the sequences in the MSA should not change significantly upon
further updates to the couplings. We measure this by the cor-
relation p(E!, E) between the dataset MSA energies E computed
with the final coupling values and those computed with couplings
from previous iterations E, a computation which is insensitive to
constant shifts in energy due to gauge transformations. These are
shown in Fig. 6C, showing that our model converges to consistent
predictions of sequence energy, and that this correlation contin-
ues to change even when the bivariate marginals appear to have
converged.

The inference is complete once parameter convergence is de-
termined using these diagnostics, and the Potts couplings can
be then used in various applications, including contact predic-
tion, prediction of mutant fitness effects, and more. In Fig. 6
we show different measures of parameter convergence for our
L = 232,q = 21 kinase model. The rate of parameter conver-
gence depends on model parameters L, g, N and other statistical
properties of the data which depend on the protein family being
fit as described in Ref [27].

6. Error analysis and preprocessing tools

In the description of the inference procedure above we took
the dataset MSA bivariate marginals as given, without specifying
how they were determined. While the inference procedure can
be applied to bivariate marginals obtained from arbitrary sources,
specific types of preprocessing may be necessary for different
types of data and to account for different forms of statistical
error. Mi3-GPU includes helper tools for preprocessing of protein-
family data for use in protein covariation analysis in particular,
to account for biases and statistical error in the sequence data.
Some preprocessing steps may only be applicable to certain types
of sequence data, for instance the phylogenetic corrections de-
scribed below may be needed in analysis of “ancient” protein
families, but are often not used for single-species viral datasets.
For this reason, Mi3 implements such functionality as a set of
optional helper scripts. The helper scripts include methods to
compute MSA statistics including bivariate marginals with se-
quence weights accounting for phylogenetic structure, and to
compute pseudocounts to account for finite sampling error.

6.1. Sequence weighting and histogramming

For inference we assume that the sequences in the MSA are
independently generated by the evolutionary process, but this
assumption is violated for certain types of datasets, for instance
protein-family MSA datasets cataloged in the Pfam database
which have phylogenetic relationships. A popular method to
account for phylogeny by downweighting similar (likely related)
sequences in the dataset was introduced in the earliest Potts-
covariation analysis implementations, for instance in Ref. [8]. For

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

A. Haldane and RM. Levy / Computer Physics Communications xxx (XXXx) Xxx 9

10.0 A 0 4 1.0 4
0.08
7.5 1 50 4 0.9 1
006 y . N
5.0 & 08 4
1 —100 - ~
0.04 5
25 0.7
0.02 A _150 4
0.0 T T 0.00 T T T T 0.6 1 T T
0 100 200 0 100 200 0 100 200 0 100 200

MCMC step MCMC step

MCMC step MCMC step

Fig. 6. Comparison of parameter convergence diagnostics, as a function of MCMC step for the kinase model inference. This inference was done in two stages: First,
a smaller synthetic MSA of size N = 2'7 ~ 1 x 10°> was used until MCMC step 192, after which N was increased to 2'° ~ 5 x 10°. ¢; regularization was used with a
strength of A = 0.00025. (A) The SSR. This levels off to a value of ~ 0.6 until we increase the synthetic MSA size where it lowers to 0.3. (B) Ferr (C) The covariance
energy X. This continues to decrease even after the bivariate diagnostics from panels A and B have leveled off. (D) Dataset energy correlations p(E', E) (see text),

which level off suggesting parameter convergence.

each sequence in the dataset one computes the number of other
sequences ns with sequence identity above a given threshold
Oident, Which is commonly taken as 20% to 40% of the sequence
length. That sequence’s weight is then ws = 1/ns, and one
interprets Nesr =) s ws as the “effective” number of sequences
in the dataset. This strategy is used by most covariation analyses
of protein-families.

A naive implementation of such pairwise Hamming distance
computations requires (g’)L residue comparisons for N sequences
with sequence length L, which in practice can take longer than
the inverse Ising inference itself for large N. As an optimization,
we note that one can arrange the evaluation order such that after
computing all distances to a sequence S one computes distances
to the sequence S’ most similar to S. Then the sequence identities
for S’ to the MSA can be computed by updating those for S
based only on the positions which differ between S and S’. This
reduces the number of residue comparisons to (';’)LI where [
depends on the range of sequence identities of sequences in the
MSA. For our kinase dataset this gives a speedup of 7.7x. We
provide scripts using this method to more efficiently compute
sequence weights, pairwise sequence similarity histograms and
mean sequence identities for an MSA.

6.2. Pseudocounts and regularization

Finite sampling error is a fundamental source of error or bias
in inverse Ising inference, as in other inference problems, and
is the cause of overfitting [15,27,30]. It arises in inverse Ising
inference when estimating bivariate marginals from finite sam-
ples of sequences of size N, as described above. Finite sampling
causes two different problems we distinguish here: 1. Unsampled
residue types (the small-sample case), and 2. Overfitting of the
training MSA sequence energies. We address these two problems
using regularization and with pseudocounts.

6.3. Covariation-preserving pseudocount

The first problem of unsampled or poorly sampled residues
types or characters (low counts) causes the relative statistical er-
ror to become very large or formally infinite for the corresponding
couplings, since the relative binomial sample variance (1 — f)/Nf
diverges for small f. This causes division-by-zero errors when
evaluating Eq. (2) and unrealistically makes the model predict
that such residues are never observed or generated. Similar small-
sample problems arises in many statistical contexts, and are
commonly accounted for using pseudocounts.

Here we motivate a particular form of pseudocount suited for
covariation analysis. The main advantage of this method is that it
does not introduce spurious covariances into the data where none

were present before pseudocounting, as happens with simpler
pseudocount methods, and that it has a Bayesian interpretation.
Avoiding spurious correlations is particularly important in pro-
tein covariation analysis as detecting the presence or absence of
covariance is one of the main goals.

This pseudocount is derived as follows. Consider creating a
modified sequence dataset composed of the original sequences
but with a small per-position chance y of mutating to a random
residue at each position. For each pair of positions, the probability
of mutating both positions is 2, of mutating only the first posi-
tion x(1—), and of no mutation is (1 —)?, and so the modified
bivariate marginals, which we will use as our pseudocounted
marginals, are

N

; G (=) :
(fol,]ﬂ)pc =(1- M)z (L]ﬁ + —

’“‘(f;+fg)+’;—2 (14)
and by summing over 8 the pseudocounted univariate marginals
are

2 i M
(e = (1= g + (15)
This pseudocount uniformly scales down the pairwise covariances
as we obtain (Cy,)pe = (1—p)*Cpy, Where Cyy = f,)s—f.f3, and so
it preserves the relative strength of all covariances, and any pairs
whose covariance was previously 0 remains 0.

We choose the pseudocount parameter w based on a Bayesian
analysis of the univariate marginals. Eq. (15) can be rewritten
as (f)pe = Z:f:;g where N is the sample size, n, = Nf! is the
sample count for residue i, o, and p is a pseudocount, using the
transformation u = qp/(N+qp). This is the formula used to apply
a flat pseudocount p to all the univariate counts and renormalize
so the marginals sum to 1. It is also the expected value of the
conjugate prior distribution of the multinomial distribution (the
Dirichlet distribution) resulting from N Bernoulli trials with p
“pseudo-observations”, which models the finite-sampling proce-
dure which produced the MSA. In Bayesian analysis, different
choices of p correspond to well-known prior distributions on the
marginals, for instance p = 1 is known as the “Bayes" prior and
p = 0.5 is a “Jeffrey’s" prior. Choosing one of these priors with
corresponding u, Eq. (14) yields a set of pseudocounted bivariate
marginals whose univariate marginals are statistically consistent
with the MSA and Bayesian prior, and which also preserve the
covariance structure of the MSA.

We contrast this method with that of adding a small flat
pseudocount (e.g. of 1/N) to the bivariate marginals, which is
equivalent to adding a small number of completely random se-
quences to the original sequence dataset. Such a flat pseudocount
will modify the relative strength of covariances in the MSA among
different residues and positions and can introduce covariances

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

10 A. Haldane and R.M. Levy / Computer Physics Communications Xxx (XXXx) Xxx

1 1 _ 1
<

=] -2 -2 S -2 |
% 1077 B 1072 4 = 10
g = = =
= = E}
< 1074 // 5 101 // S 101
g [A—
2 ‘ E ¢

Vs N &
2 4] /’
= Vil - Vil 3 Y —
= e — = Y A R 5 Y ————

047" = - = 047 3 04~
T T T T T T | Q-‘ T T T
1078 107* 1072 1 1078 107 107? 1 1078 107* 1072 1

Reference marginal

Reference marginal

Reference marginal

Fig. 7. Comparison of pseudocounting strategies to estimate bivariate marginals from a small sample of 1000 sequences, compared to the “exact” or true value of
the marginal. Histogram bins are colored according to the logarithm of the bin count. Left: Marginals computed without pseudocounts. Middle: Marginals computed
using a flat pseudocount of 0.5/gN, which also function as a Jeffrey’s prior on the univariate marginals. Right: Marginals computed using the covariant pseudocount
of Eq. (14) with p = 0.5 which also function as a Jeffrey’s prior on the univariate marginals, showing ability to reconstruct bivariate marginals corresponding to
unsampled residue-pairs. In all panels, the Wilson score interval is shown in red for 2 standard deviations to illustrate the magnitude of finite-sampling error for
1000 sequences. Marginals corresponding to O counts are shown below the dotted gray line. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

where there were none before. In Fig. 7 we compare how different
pseudocount strategies help correct for finite sampling error in
marginals estimated from a small sample of 1000 sequences from
out Potts model, compared to “exact" or reference marginals
estimated from a sample of 4 x 10° sequences with very low
sampling error. When no pseudocount is used (left panel), 62% of
the estimated marginals are measured to be exactly 0, or never
observed. When using either a flat pseudocount or our covariant
pseudocount, these marginals now have a small but nonzero
value, which helps fix issues with 0 observed counts. Further-
more, the pseudocount of Eq. (14) more accurately estimates the
value of small bivariate marginals in the lower left area of the
plot (right panel).

6.4. Regularization

The other finite-sampling problem is due to ill-conditioning of
the inverse Ising problem and to overfitting of the sequence like-
lihoods P(S) of sequences in the dataset MSA. This problem can
occur even if there are no “small sample" problems as described
above, and arises due to the collective effect of statistical biases
in each model parameter.

Finite sampling and overfitting occur when the dataset MSA
has too few sequences, and in Ref. [27] we found that the mag-
nitude of this effect can be measured by a parameter called
the “signal-to-noise" ratio (SNR) which can be approximated as
SNR ~ Nx?/6, where @ is the number of model parameters
as described above, which depends on the sequence length L,
alphabet size g, dataset MSA depth (number of sequences) N, and
a measure of sequence conservation y. This value may be large
(meaning little overfitting) even if the number of sequences N is
much smaller than the number of model parameters 6.

Finite sampling error and overfitting can be corrected by vari-
ous strategies collectively called “regularization”. Often the choice
of regularization strategy depends on prior beliefs about the
structure of the data, for example some forms of regularization
should be used if the interactions are expected to be “sparse” [15].
A common regularization strategy is to add £, or ¢, regularization
terms on the coupling parameters to the loss function implicitly
used in our derivation above, which is £ = (1/N)log [[usa P(S)
and which is minimized when the constraint equation is zero
as a‘;f = Af)y = 0. Our software implements both of these
regulaarizatiop strategies as options by either adding an ¢; term
R =Y Usgl or an € term R = 3~ ,(J,,)° to the likelihood.

These regularization terms are gauge-dependent, and our soft-
ware implements them in the “zero-mean" gauge which satisfies
Za]gﬁ = 0 as in previous publications [10,16,39].

Here we also summarize a different regularization strategy
which we have previously developed [27], which is to add a
regularization term R = Zij yliX¥ to the loss function, for reg-
ularization strengths ¥ which may differ for each position-pair.
This strategy has the advantage that it is gauge-independent,
and we can tune it to match the expected statistical error in
our datasets due to finite sampling. This strategy can be shown
to be equivalent to performing MCMC inference using biased
bivariate marginals as f,, = (1 — y¥)f), + yi’foﬂfé where f,
refers to the marginals sampled from the MSA, f,); to the biased
marginals, and f;jﬂ to the marginals of the Potts model. Varying
v from 0 to 1 interpolates between the MSA bivariate marginals
and the corresponding site-independent bivariate marginals. This
bias, which behaves effectively like a pseudocount proportional to
the univariate marginals, preserves the univariate marginal con-
straints while weakening potentially spurious correlations caused
by finite sampling error since Cgﬁ becomes 0 when y¥ = 1, and
can be implemented as a preprocessing step without needing to
modify the MCMC algorithm.

We choose ¥ such that the discrepancy between the observed
marginal and biased marginal is equal to that expected due to
sampling error, if one were to take a sample of size N from
the biased marginals. That is, based on the discrepancy between
the observed marginals fo'fﬁ and the biased marginals fo’fﬁ, mea-

sured using the “Kullback-Leibler" (KL) divergence KL(fup, fup) =
Zaﬁ fup 108(fup /fup)- We choose the highest value y¥ such that

the expected discrepancy E[KL(Fg, faﬂ)] > I(L(ﬁ,ﬂ, faﬂ), where
F,p are sample marginals drawn from a multinomial distribution
around faﬁ with sample size N. This inequality can be solved
numerically for y¥ by various means, as discussed in Ref. [27].
This should produce a regularized model which has statistical
consistency with the observed MSA.

6.5. Conclusions

We have presented a GPU-optimized method for solving the
inverse Ising problem using Markov-Chain Monte Carlo with fo-
cus on its application to protein-covariation analysis. The method
involves two components: First, a parallel MCMC simulation on
the GPU to generate synthetic MSAs given a set of trial Potts
Hamiltonian parameters]gﬁ, and second, a parameter-update

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

A. Haldane and R.M. Levy / Computer Physics Communications Xxx (XXXx) Xxx 11

method accelerated using Zwanzig reweighting techniques. The
implementation of the MCMC on the GPU gives a large speedup
of 247x compared to a multicore CPU for the GPU and CPU we
tested, for datasets most similar to those examined in practice
such as protein families cataloged in the Pfam database. Using
Zwanzig reweighting techniques, we accelerate parameter con-
vergence by allowing large numbers of coupling updates to be
performed for each round of MCMC sequence generations. We
developed diagnostics to detect the convergence of the MCMC
phase of the inference, as well as convergence of the model
parameters to the solution of the inverse Ising problem as the
algorithm is iterated. We also provide helper scripts for prepar-
ing datasets for use in protein covariation analysis. While our
method is designed to model protein family datasets for which
enhanced-sampling techniques appear to be generally unnec-
essary, the software could be improved in the future to use
techniques such as parallel tempering to allow inference in more
challenging parameter regimes or types of datasets where these
are necessary.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been supported by grants from the National
Institutes of Health (U54-GM133068, R35-GM132090),National
Science Foundation (193484), and includes calculations carried
out on Temple University’s HPC resources supported in part by
the National Science Foundation (1625061) and by the US Army
Research Laboratory (W911NF-16-2-0189).

References

[1] RM. Levy, A. Haldane, W.F. Flynn, Curr. Opin. Struct. Biol. 43 (2017) 55-62.

[2] AS. Lapedes, B. Giraud, L. Liu, G.D. Stormo, F. Seillier-Moiseiwitsch, Stat.
Mol. Biol. Gene. 33 (1999) 236-256.

[3] S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson, M. Weigt, Rep. Progr. Phys.
81 (2018) 032601.

[4] R.R. Stein, D.S. Marks, C. Sander, PLoS Comput. Biol. 11 (2015) e1004182.

[5] D. de Juan, F. Pazos, A. Valencia, Nat. Rev. Genet. 14 (2013) 249-261.

[6] A.W. Serohijos, E.I. Shakhnovich, Curr. Opin. Struct. Biol. 26 (2014) 84-91.

[7] M. Mézard, T. Mora, J. Physiol. Paris 103 (2009) 107-113.

[8] M. Weigt, R.A. White, H. Szurmant, J.A. Hoch, T. Hwa, Proc. Natl. Acad. Sci.
USA 106 (2009) 67-72.

[9] J.I. Sukowska, F. Morcos, M. Weigt, T. Hwa, J.N. Onuchic, Proc. Natl. Acad.
Sci. 109 (2012) 10340-10345.

[10] M. Ekeberg, C. Lovkvist, Y. Lan, M. Weigt, E. Aurell, Phys. Rev. E 87 (2013)
012707.

[11] S. Ovchinnikov, L. Kinch, H. Park, Y. Liao,]. Pei, D.E. Kim, H. Kamisetty,
N.V. Grishin, D. Baker, Y. Shan, eLife 4 (2015) e09248.

[12] D.D. Pollock, W.R. Taylor, Protein Eng. 10 (1997) 647-657.

[13] M. Weigt, R.A. White, H. Szurmant, J.A. Hoch, T. Hwa, Proc. Natl. Acad. Sci.
106 (2009) 67-72.

[14] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D.S. Marks, C. Sander, R.
Zecchina, J.N. Onuchic, T. Hwa, M. Weigt, Proc. Natl. Acad. Sci. 108 (2011)
E1293-E1301.

[15] S. Cocco, R. Monasson,]. Stat. Phys. 147 (2012) 252-314.

[16]].P. Barton, E.D. Leonardis, A. Coucke, S. Cocco, Bioinformatics 32 (2016)
3089-3097.

[17] H. Jacquin, A. Gilson, E. Shakhnovich, S. Cocco, R. Monasson, PLoS Comput.
Biol. 12 (2016) e1004889.

[18] L. Sutto, S. Marsili, A. Valencia, F.L. Gervasio, Proc. Natl. Acad. Sci. 112
(2015) 13567-13572.

[19] T. Mora, W. Bialek, J. Stat. Phys. 144 (2011) 268-302.

[20] A. Ferguson, J. Mann, S. Omarjee, T. Ndung'u, B. Walker, A. Chakraborty,
Immunity 38 (2013) 606-617.

[21] RW. Zwanzig,]. Chem. Phys. 22 (1954) 1420-1426.

[22] T. Broderick, M. Dudik, G. Tkacik, R.E. Schapire, W. Bialek, Faster solutions
of the inverse pairwise Ising problem, 2007, arxiv.org.

[23] A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635-2638.

[24] A. Haldane, W.F. Flynn, P. He, R. Vijayan, RM. Levy, Prot. Sci. 25 (2016)
1378-1384.

[25] A. Haldane, W.F. Flynn, P. He, R.M. Levy, Biophys. J. 114 (2018) 21-31.

[26] W.F. Flynn, A. Haldane, B.E. Torbett, R.M. Levy, Mol. Biol. Evol. 34 (2017)
1291-1306.

[27] A. Haldane, R.M. Levy, Phys. Rev. E 99 (2019) 032405.

[28] GJ. Henderson, S.-K. Lee, D.M. Irlbeck, J. Harris, M. Kline, E. Pollom, N.
Parkin, R. Swanstrom, Antimicrob. Agents Chemother. 56 (2012) 623.

[29] A. Biswas, A. Haldane, E. Arnold, R.M. Levy, P.J. Wittkopp, eLife 8 (2019)
e50524.

[30] S. Cocco, R. Monasson, Phys. Rev. Lett. 106 (2011) 090601.

[31] S. Cocco, R. Monasson, M. Weigt, PLoS Comput. Biol. 9 (2013) e1003176EP.

[32] Y. Tikochinsky, N.Z. Tishby, R.D. Levine, Phys. Rev. A 30 (1984) 2638-2644.

[33] M. Newman, G. Barkema, Monte Carlo Methods in Statistical Physics,
Oxford University Press, New York, USA, 1999.

[34] D. Thomas, 2011, The MWC64X Random Number Generator, URL: http:
/[cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html.

[35] M.K. Cowles, B.P. Carlin, J. Amer. Statist. Assoc. 91 (1996) 833-904.

[36] A. Gelman, D.B. Rubin, Bayesian Statist. 4 (1992) 625-631.

[37] S.P. Brooks, G.O. Roberts, Stat. Comput. 8 (1998) 319-335.

[38] A. Gelman, D.B. Rubin, Statist. Sci. 7 (1992) 457-472.

[39]]J.P. Barton, S. Cocco, E.D. Leonardis, R. Monasson, Phys. Rev. E 90 (2014)
012132-.

Please cite this article as: A. Haldane and R.M. Levy, Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis, Computer Physics Commu-

nications (2020) 107312, https://doi.org/10.1016/j.cpc.2020.107312.

http://refhub.elsevier.com/S0010-4655(20)30119-3/sb1
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb2
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb2
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb2
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb3
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb3
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb3
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb4
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb5
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb6
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb7
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb8
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb8
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb8
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb9
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb9
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb9
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb10
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb10
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb10
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb11
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb11
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb11
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb12
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb13
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb13
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb13
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb14
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb14
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb14
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb14
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb14
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb15
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb16
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb16
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb16
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb17
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb17
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb17
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb18
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb18
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb18
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb19
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb20
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb20
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb20
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb21
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb22
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb22
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb22
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb23
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb24
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb24
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb24
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb25
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb26
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb26
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb26
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb27
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb28
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb28
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb28
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb29
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb29
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb29
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb30
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb31
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb32
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb33
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb33
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb33
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb35
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb36
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb37
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb38
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb39
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb39
http://refhub.elsevier.com/S0010-4655(20)30119-3/sb39

	Mi3-GPU: MCMC-based inverse Ising inference on GPUs for protein covariation analysis
	Introduction
	Background: Inverse ising inference
	Algorithm overview
	MCMC Sequence generation
	MCMC convergence

	Quasi-Newton optimization
	Zwanzig reweighting

	Parameter convergence and statistical accuracy
	Error analysis and preprocessing tools
	Sequence weighting and histogramming
	Pseudocounts and regularization
	Covariation-preserving pseudocount
	Regularization
	Conclusions

	Declaration of competing interest
	Acknowledgments
	References

