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Abstract. This work examines the issue of password length leakage via encrypted traffic i.e., bicycle attacks. We aim to quantify
both the prevalence of password length leakage bugs as well as the potential harm to users. We discuss several ways in which an
eavesdropping attacker could link this password length with a particular user account e.g., a targeted campaign against a smaller
group of users or via DNS hijacking for larger scale campaigns. We next use a decision-theoretic model to quantify the extent
to which password length leakage might help an attacker to crack user passwords. In our analysis, we consider three different
levels of password attackers: hacker, criminal and nation-state. In all cases, we find that such an attacker who knows the length
of each user password gains a significant advantage over one without knowing the password length. As part of this analysis, we
also release a new differentially private password frequency dataset from the 2016 LinkedIn breach using a differentially private
algorithm of Blocki et al. (NDSS 2016) to protect user accounts. We advocate for a new W3C standard on how password fields
are handled which would effectively eliminate most instances of password length leakage.
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1. Introduction

In any efficient encryption scheme there is necessarily some relationship between plaintext length and
ciphertext length e.g., consider encrypting a 2MB jpeg image vs encrypting a 2GB mp4 movie. Vincent
Guido [75] observed that (unpadded) SSL traffic can leak information about password lengths, and
introduced the name “bicycle attack™ in reference to the fact that a gift-wrapped bicycle still looks like
a bicycle. Thus, whenever plaintext-length might be viewed as a sensitive attribute it is recommended
that an application developer should pad the plaintext message before encryption [30]. For example, the
RFC for TLS 1.2 includes the following caveat:

Note in particular that type and length of a record are not protected by encryption. If this information
is itself sensitive, application designers may wish to take steps (padding, cover traffic) to minimize
information leakage.
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Authenticated Encryption with Associated Data (AEAD) ciphers simultaneously guarantees both mes-
sage integrity and confidentiality. A recent longitudinal study of TLS Deployment found a dramatic rise
in the percentage of TLS connections using AEAD cipher such as AES128-GCM, AES256-GCM and
ChaCha20-Poly 1305 since 2013 [56] i.e., roughly 80% of TLS connections used either AES128-GCM
or AES256-GCM in April, 2018. In all three AEAD schemes there is a one to one relationship between
the length of some ciphertext and the length of the original plain text message. This 1-1 relationship can
be viewed as a feature of the cipher as it allows for significantly shorter ciphertexts i.e., a 2 byte mes-
sage would not need to be padded to a 16-byte (AES128-GCM) or 32-byte message (AES256-GCM)
before encryption. However, the 1-1 relationship means that an eavesdropping attacker to infer the exact
length of each transmitted message from the intercepted ciphertext. The responsibility of identifying
cases where the length of a plaintext message is potentially sensitive and ensuring that such messages
are appropriately padded is left to the application developer.!

Arguably, passwords provide a clear example where the message length is a sensitive attribute. Broadly
speaking there are two categories of password guessing attacks: online attacks and offline attacks. In both
attacks, the adversary attempts to gain access to some user’s account by repeatedly guessing different
possible passwords from a password cracking dictionary. While offline attacks are more dangerous they
require the attacker to first hack into an authentication server to steal the password hash whereas online
attacks can be mounted at any time. An online attacker might also adopt a strategy called password spray-
ing in which the attacker cycles through many different accounts with a few commonly used passwords
e.g., the attacker might try 3 guesses per day per user account while still submitting thousands/millions
of popular password guesses per day in aggregate against a variety of different user accounts. Even
though an online attacker is rate-limited these attacks can be surprisingly effective, especially when the
attacker has targeted background information about each user e.g., DOB, address, phone number [76].
One defense is to rate limit the attacker by locking the account after several incorrect guesses within
a fixed time window [1] or by requiring the user to solve CAPTCHA challenges [53] in between con-
secutive incorrect guesses. However, a stricter policy is more likely to inconvenience honest users who
might forget/mistype their password. An online/offline password attacker who knows the length of a
user’s password can potentially obtain a significant advantage in eliminating guesses from the cracking
dictionary of the wrong length.

In this paper we aim to answer two key research questions: 1) How many web sites are potentially
vulnerable to bicycle attacks? 2) How does password length leakage impact the fraction of passwords
that an attacker would crack in an online/offline attack?

2. Contributions

Observational Study. We conducted an observational study of AES-GCM traffic to see if application
designers took appropriate steps (padding) to prevent password length leakage > In our observational
study we find that there is a widespread failure to pad passwords before encryption e.g., at least 84 of
the Alexa Top 100 pages are vulnerable to bicycle attacks. As a concrete example, we demonstrate how

For example, the RFC for TLS 1.3 [64] explicitly says “Selecting a padding policy that suggests when and how much to
pad is a complex topic and is beyond the scope of this specification.”

2There are of course several other ciphers with a 1-1 relationship between message length and ciphertext length. We chose to
focus on AES-GCM as the cipher already accounts for over 80% of TLS connections [56] and this number is likely to increase
as the Internet continues to transition to TLS version 1.3.
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an eavesdropping attacker can infer the exact lengths of Gmail passwords and Chase Bank passwords
by monitoring encrypted traffic between the user and the authentication server.

One challenge an eavesdropping attacker might face in exploiting this vulnerability is linking specific
usernames to IP addresses. For example, an eavesdropping attacker can easily extract the length of a pass-
word from the encrypted packets exchanged between a client (e.g., user) and server (e.g., Gmail/Chase
Bank), but this information is less useful to an attacker if the packet (from which password length can
be inferred) cannot be linked to a specific user account. A targeted eavesdropping attacker might choose
to target specific users (e.g., by sniffing traffic on the home WiFi network), but for a password spraying
attacker, this approach will not scale. If an eavesdropping attacker can exploit some other vulnerability
to link usernames with client IP addresses in bulk then a password spraying attacker will also be able
to infer the length of each user’s password. We discuss how a sophisticated attacker could use DNS hi-
jacking to extract usernames from unencrypted traffic and then associate those user names with client IP
addresses in bulk. Similarly, a malicious or compromised internet service provider (ISP) would be ide-
ally posititioned to link users to leaked password lengths in bulk. We provide a more in-depth discussion
of these linking strategies in Section 5.3.

Quantifying the Damage of Bicycle Attacks. Motivated by the observation that many high profile web
sites are vulnerable to bicycle attacks we aim to quantify the severity of this vulnerability by estimating
how many additional user passwords an adversary might successfully guess before/after obtaining the
lengths of each password. To answer this question we adapt a decision-theoretic model of a password
cracking adversary of Blocki et al. [11, 13] which was used to analyze the behavior of a rational offline
password cracking adversary. A rational password cracking adversary will continue attempting to crack
the user’s password until the marginal cost of one more password guess (k) exceeds the marginal reward
i.e., the value of the cracked password (v) times the probability (p;) the next password guess is correct.
In the context of an offline attack, the marginal guessing cost (k) is given by the cost of computing the
password hash function, while in the context of an online attack the cost k£ might be dominated by the
cost of solving a CAPTCHA challenge.

Given a probability distribution p; > ps ... over user-selected passwords (here p; is the probability
of the i’th most popular password) as well as the cost/value the parameters v and k the model allows
us to predict how many passwords a rational attacker would crack. Of course, if the attacker learns the
length ¢ of the user’s password then we obtain a different prediction based on the updated probability
distribution p{ > pi,.... Here, p! is the probability of the i’th most popular password of length ¢. Our
model also allows us to estimate the attacker’s expected utility (reward minus guessing cost) with and
without knowledge of the password length.

Differentially Private LinkedIn Password Frequency Corpus. In order to run the analysis we need to
obtain empirical estimates of p; > po...and of p{ > pi,... for each length ¢. The RockYou dataset
(32.6 million passwords) allows us to estimate these values, but the passwords in the dataset might
have lower entropy since the account is arguably low-value. The larger differentially private Yahoo!
frequency corpus (70 million passwords) [12] is not split by length and as such will not allow us to
estimate how many passwords the attacker will crack when the length ¢ is known. We address this
problem by using a differentially private algorithm of Blocki et al. [12] to publish a frequency corpus
based on 174+ million cracked password hashes from the LinkedIn breach [47]. The frequency corpus
contains several frequency lists f; > fo > ... and ff > ff > ... for each length ¢ where f; (resp. ff)
is the number of user who selected the i’th most popular password of any length (resp. most popular
password of length £). The frequencies are perturbed slightly to satisfy the mathematically rigorous
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notion of differential privacy [33, 34]. We use the LinkedIn frequency to obtain empirical estimates for
the password distribution e.g., p¢ = f;/N; where N, is the total number of passwords of length ¢. This
allows us to estimate both the number of additional user accounts that would be vulnerable to cracking
when password lengths are leaked as well as the utility gain from to password length leakage. We believe
that the frequency corpus will have tremendous independent value for password security researchers as
it is more than twice as large as the Yahoo! corpus.

Our Analysis. We consider three categories of attackers with different value to cost ratios (v/k): a
hacker (v/k) € {102,103}, a criminal (v/k) € {10% 10°} and a nation-state (v/k) € {105,107}. In all
cases we find that password length leakage significantly increases the fraction of accounts vulnerable to
an online attack. For example, our model predicts that a hacker with value to cost v/k = 10? will crack
2.8% of passwords without knowledge of the password length, but this number jumps to 5.8% when
the length of a password is leaked — an increase of 3%! For a nation-state attacker with a higher ratio
v/k = 10° we find that an attacker who knows the length of user passwords will crack an additional
19.5% of user passwords! Similar results hold for the RockYou distribution.

We also analyze the attacker’s utility gain when the password length is leaked, which gives us an esti-
mate on the value of the leaked length information. For example, for a criminal attacker with value/cost
ratio (v/k) = 10° we find that the attacker’s utility increases by 7203 x k where k is the cost of each
password guess and this gain increases to 1.3 x 10° x k for a nation-state with (v/k) = 10°. Thus, if
we estimate that k ~ $0.001 (e.g., the cost to pay a human user to solve a CAPTCHA [61]) the criminal
(resp. nation state) would choose to exploit the bug if the amortized cost of obtaining each target user’s
password length was at most $7.2 (resp. $130). Given that the value of leaked length information is quite
high we conclude that it would most likely be worthwhile for a criminal or nation-state attacker to obtain
this information in an eavesdropping attack.

Solutions. 'We demonstrate that leaking password lengths can significantly help a password cracking
attacker. Nevertheless, the problem of password length leakage remains widespread. Given the severity
of the bicycle attack vulnerability as indicated by our analysis above we argue that it is important to patch
this bug quickly. Thus, we conclude by discussing potential solutions to the problem of widespread
password length leakage. On an individual level, the solution is straightforward — developers should
always ensure that passwords are padded before they are encrypted. For example, one could use the
padding scheme described in PKCS7 [49, Section 6.3] to ensure that all passwords to a multiple of
k = 30 bytes. In this case to pad a 27 character password (ASCII) we would append the byte 00000011
(the binary encoding of 3 = k — 27) three times to obtain a padded 30 character string. The padding can
later be removed unambiguously. We provide a generic Javascript patch which could be implemented
immediately by many web services. However, we also acknowledge patching a bug can be a slow process
(e.g., see Heartbleed [32]), and that oftentimes patches introduce their own vulnerabilities.

In general, we contend that it is inherently problematic to push the responsibility of padding plaintext
messages entirely to the application developer whenever message length might be sensitive. We advo-
cate for changes to W3C standards which could effectively eliminate bicycle attacks on passwords. In
particular, we argue that web browsers should pad password fields by default before a web form is ever
submitted. We also argue that other text input fields should take an optional parameter which specifies
that the input length is sensitive.
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3. Related Work

Vincent Guido [75] previously introduced the name “bicycle attacks” in reference to his observation
that unpadded SSL traffic can leak information about the length of a password. Our contribution is
an observational study which demonstrates that such leakage is widespread across the internet, and an
empirical analysis of leaked password datasets to quantify the advantage of a password cracking who
knows the length of a user’s password.

The phenomena of information leakage from encrypted traffic has a rich history (e.g., [26], and Dyer et
al. observed that, in practice, efficient countermeasures fail to prevent traffic analysis attacks [37]. In past
observational studies, attacks against encrypted VoIP communications were conducted by Wright et al.
[79, 80]. Knowledge of the underlying variable bit encoding and length preserving ciphers were used to
derive intelligence on the language spoken and known phrases. Specifically, machine learning techniques
were used to gain specific information about a ciphertext. Further research by White et al. attempted to
build upon this research to gain more generalized information about VoIP traffic [78]. Goldberg et al.
use the Gaussian-like unimodal distribution to retrieve latency between keystrokes and ultimately derive
their variance [45]. Separately, Frosch et al. used the total source-destination metric, edit-distance metric,
and random metric to identify differences in encrypted traffic for health care websites [42]. Unger and
Goldberg discovered techniques to identify common user actions such as clicking a send button by
analyzing the size of cipher messages on popular social networking sites like Facebook and Twitter [72].

Other pertinent research includes Paul Kocher’s investigation of timing attacks on public key crypto
[54], analysis of SSH keystrokes and timings by Song et al. [70], efforts by Fiore and Abadi in the
exploration of symbolic techniques for examining cryptographic protocols [39], and later work in cryp-
tographic protocols by Doghmi et al. [31]. Also relevant is work by Borisov et al. involving "off the
record" protocols [20] and Chapman and Evans [25] pertaining to blackbox detection of side-channel
vulnerabilities. Additionally, vulnerabilities in mobile apps have been the foci of several researchers
including [27, 28, 44, 71]. Information leakage has also been a significant concern in Searchable En-
cryption as discussed by [24] among others.

AlFardan et al. [6] showed how an eavesdropping attacker could recover cookies via Bayesian analysis
exploited weaknesses in the RC4 cipher, though the eavesdropping attacker must intercept 234 encryp-
tions of the cookie to succeed. Garman et al. [? ] later improved these attacks and showed how an attacker
can recover passwords from 226 encryptions with RC4. Both attacks exploit weaknesses in the underly-
ing RC4 cipher. While bicycle attacks only reveal the length of a password an eavesdropping attacker
only needs to intercept one encryption of a password to infer the length. The attack does not rely on
any underlying weakness of the underlying cipher (e.g., AES), but instead relies on the assumption that
passwords are not being automatically padded before encryption.

In addition to the previously mentioned research, the human propensity to select low-entropy pass-
words has been consistently documented over several decades [16, 60]. Empirical studies have shown
that complex password policies requiring users to use capital letters, numbers and special symbols in
their passwords largely fail to produce stronger passwords [55, 67], and complex policies adversely
impact usability [5, 40, 50]. Wang et al. [76] recently found that online attacks can be unexpectedly dan-
gerous especially if an attacker has background knowledge (e.g., DOB, name, address) about the target
user.

Previous studies have explored the relationship between password length and password strength (e.g.,
[52, 73] . By contrast, we are interested in studying how much damage occurs when this length is leaked
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to an attacker. To the best of our knowledge, this is the first paper to rigorously quantify the damage due
to password length leakage.

4. Prevalence of vulnerability

A significant question to answer is just how prevalent password length leakage is in practice, and
whether or not it is prevalent enough to be of concern. Our team first noted the issue during an obser-
vational study focusing on samples of network traffic captured from a VPN. During this observational
study, it was noted that there was a 1-1 correspondence between the length of a plaintext message being
sent and the ciphertext length. This was (in part) due to the use of the AES-GCM cipher, where the
length of a ciphertext is in 1:1 correspondence with the length of the underlying plaintext. As we have
remarked previously this relationship is an intentional feature of the AES-GCM cipher as it allows for
shorter ciphertexts and it is the developer’s responsibility to pad sensitive data (e.g., passwords) when
length leakage is a concern i.e., see [30].

Initial Experiment: CiscoASA 5506. In our first experiment collected and analyzed network traffic
produced from the Cisco ASA 5506 appliance, one of the most popular VPN devices used for connecting
organizations around the world. The Cisco ASA VPN device was configured to use TLS version 1.2 to
connect AnyConnect clients for remote access to the internal network. During collection, it was observed
that the Cisco ASA 5506 switched from an encrypted TLS connection and used the Quick UDP Internet
Connection (QUIC) protocol developed by Google to improve performance (the use of QUIC was absent
in the Cisco documentation).

During this observational study it was noted that there was a 1-1 correspondence between the length
of a plaintext message being sent and the ciphertext length. This was (in part) due to the use of the AES-
GCM cipher in QUIC. In particular, the Cisco ASA VPN device was not padding plaintext messages
which allowed us to easily identify specific events in an encrypted IRC chat session i.e., client connec-
tion/disconnection and to derive the length of individual IRC chat messages and discriminate between
web traffic and ftp traffic. One can easily imagine a setting in which such leakage over a VPN network
might be highly sensitive e.g. linking two political dissidents who are chatting on IRC.

Experiment 2: Password Length Leakage in Gmail. Motivated by the first observational study we
sought to determine whether any prominent web pages might be vulnerable to bicycle attacks. In this
study, we used the Chrome web browser, because, by default, QUIC is enabled with Chrome. We em-
ployed a collection platform using WireShark and allowed simultaneous collection on the internal and
external interfaces to easily compare the encrypted and unencrypted traffic. We then used our automated
process to login to Google Mail three times increasing the password length by one character every ten
seconds. We had a ten-second delay between passwords entered as resulted in a pronounced signature
when reviewing QUIC network traffic in WireShark. Google Mail uses reCAPTCHA to rate limit attack-
ers after a number of incorrect login attempts. The ten-second delay allows us to manually solve each
CAPTCHA challenge within the ten second time delay built into our observational study. We found that
passwords were not being padded before encryption as there was a trivial 1:1 correspondence between
password length and ciphertext length — see figure 6.

We then conducted a similar observational study for the banking website for JP Morgan Chase using
Apple’s Safari web browser to observe TLS version 1.2 traffic. In all of our experiments, the AES-GCM
cipher was selected when we connected to JP Morgan Chase. The results were similar to Gmail except
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that there was a 1:2 correspondence between the number of characters in the password and the length of
the ciphertext — due to the use of Unicode encoding instead of ASCII.

Alexa Top 100 Web Sites.. Having found several prominent instances where password lengths were
being leaked we set out to do a more comprehensive review of the Alexa Top 100 web sites [4]. The
results were concerning. Gmail and JP Morgan Chase were not isolated examples. Instead, we found
that at least 84 out of the top 100 Alexa web pages at the time were vulnerable to bicycle attacks as they
failed to properly pad password fields when using the AES-GCM cipher. In most instances, there was
a direct 1:1 relationship between password length and packet size (ASCII), but even in other instances
(e.g., UNICODE) we are able to infer the exact password length from the ciphertext. The full details of
this observational study including equipment, setup, and details about ciphertext / plaintext size ratios
are located in the Appendix.

Exploiting the Vulnerability.. The ease of conducting such an attack makes it particularly concerning.
It is quite possible to obtain ciphertext length for particular users by observing wireless network traffic
in public places. Even more concerning is that we find that 84 of the Alexa top 100 sites leak plaintext
length for password fields. Given that these sites comprise a significant portion of a typical user’s online
activity this attack becomes even easier to carry out. All an adversary needs to do it sit in a public
area and collect wireless traffic. They can then identify which site a user is trying to access, look up
the plaintext password length, and then use that knowledge to assist them in other attacks, e.g., online
password attacks.

There may be additional difficulties in running an attack like this e.g. without prior knowledge it
may be difficult to identify which usernames are associated with which password lengths. These can
still be overcome in the context of more targeted online attacks. As an example, an adversary targeting
someone specific may be able to send some traffic (like an email) to a user and see if they can spot
them receiving the message. They may also be listening in at a more specific location (such as a home)
where they already know the usernames of those inside. Because the username and password length
combination must be associated to make any attacks feasible we will be primarily focused on targeted
online password guessing attacks, rather than more general attacks such as an offline password attack
following a password breach (even though length data is also useful to adversaries in these situations).

Disclosure. This vulnerability was reported to the United States Computer Emergency Response Team
(US-CERT), Cisco, Google, Apple, Microsoft, and JP Morgan Chase bank. Apple will use this informa-
tion to inform decisions about security transport protocols in future products. Google is working with the
Internet Engineering Task Force (IETF) to look at ways to stop information leakage through the HTTP/2
standards forum and have notified the companies supporting the development of major web browsers.

5. Exploiting Length Leakage

In this section, we describe how a password attacker might exploit bicycle attacks to gain an ad-
vantage. To fully exploit the vulnerability an attacker needs to be able to eavesdrop on encrypted TLS
traffic, identify which packet(s) contain encrypted passwords and link the source IP addresses in a packet
header with a particular username. We use Google Mail to illustrate how an eavesdropping attacker can
easily identify which packet contains the encrypted password. This allows the attacker to infer that some
Google Mail user with a given source IP address has a password of length £.

In Section 5.1 we describe the attack setup under the assumption that the attacker has a target Google
Mail user in mind and is able to link the source IP address with the target user name e.g., a targetted
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attacker might intentionally sniff traffic on a public WiFi network at a small coffee shop when the target
user arrives. In Section 5.4 we describe how a password attacker will proceed once he learns the length
of the target user’s Google Mail password i.e., by eliminating passwords from a cracking dictionary with
the wrong length. In Section 5.4 we discuss how a sophisticated attacker might exploit the vulnerability
on a more wide spread scale by using DNS Hijacking to pair username with password lengths at scale
e.g., as part of a password spraying campaign.

5.1. Setting up the Attack

Attacker Capabilities. We first highlight the capabilities an attacker must have to infer password
lengths from encrypted Google Mail traffic by exploiting padding failures. First, an adversary needs
access to a transit point between the client and server to collect network traffic for analysis. Furthermore,
the adversary must be capable of determining the password length using signature-based detection from
different transport security protocols: TLS version 1.2, 1.3, and QUIC. Because these signatures could
be computed offline this is not a limiting assumption.

We setup our experiment by registering for a dummy Gmail account with a randomly chosen password,
and then simulate a targeted eavesdropping adversary by logging into the account while sniffing network
traffic on WireShark. A video demo of the attack is available at https://youtu.be/TRklymYJmzY.

Step 1 - We start with a dictionary of common user passwords and choose a password at random from
the dictionary subject to the constraint that the password is consistent with Gmail requirements, e.g.,
each password is between 8 and 60 characters.

Step 2 - We sign-up for a dummy Gmail account using the password selected in step 1. This simulates
in a safe manner a user using one of the common passwords in the real-world.

Step 3 - We sniff the network with WireShark and sign-in with our newly created Gmail dummy
account with the password used in Step 2. We developed a signature that looks for the first QUIC packet
under 300 bytes i.e., the packet which contains the encrypted password. The signature then determines
the password length ¢ by subtracting any overhead. After subtracting any overhead, we identify that for
every increase in 1 character in the password length the encrypted traffic increased by exactly 1 byte or
has a 1:1 ratio.

5.2. Running the Attack

After the attacker learns the length ¢ of a user’s password, the attacker selects a dictionary containing
the B most popular length £ passwords. The attacker can now run an automated script to crack the user’s
password. This automated attack is possible whether or not the attacker knows the length ¢ of the user’s
password. However, an attacker who knows the length ¢ can potentially crack the password much faster.

The particular way in which the attacker will exploit this leaked information will depend on the par-
ticular lockout mechanism adopted by the server. GMail uses CAPTCHAs [74] to rate limit an online
attacker i.e., by requiring the attacker to solve a CAPTCHA challenge? after one or more incorrect lo-
gin attempts. In all of our experiments, we never encountered a scenario where we were locked out even

3A CAPTCHA is a puzzle that should be easy for a person to solve, but infeasible for a computer to solve using state of the
art techniques. In a text CAPTCHA the user might be challenged with an image consisting of moderately distorted numbers and
letters along with the instructions “You must type those letters manually to prove you are not a robot.” Pinkas and Sander [63]
proposed to mitigate the risk of online guessing is to require the client to provide a proof-of-work (e.g., the solution to a
CAPTCHA puzzle) along with each login attempt [63]. There is a delicate balance between ensuring that most human users
can solve the puzzles consistently [22, 23], and ensuring that a computer cannot solve the challenge. Advances in machine
learning and neural networks [43, 82] have made it harder to strike this balance.
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when running a script that continuously attempts. This solution has the advantage that it is not susceptible
to denial-of-service attacks [3] wherein a malicious party attempts to lock an honest user by repeatedly
attempting to login with incorrect passwords. On the negative, a determined attacker may continue trying
to crack the password for as long as s/he is willing to continue solving CAPTCHA puzzles (or paying
other humans to solve them).

Step 2 - We have an automated bot that iterates through each password in the (pruned) dictionary and
repeats the following steps:

Step 2.A - Our script checks the page to see if there is a CAPTCHA challenge. When CAPTCHA oc-
curs, we use an online CAPTCHA solving service to pay real humans to solve the CAPTCHA challenge
and copy the solution into the web form. In our demo, we used the Rumola service to bypass Google’s
reCAPTCHA service. Rumola’s prices range from $1 per 50 CAPTCHAS to $1 per 500 depending which
seems to be consistent with other services. A prior economic study of CAPTCHA solving services found
that prices have ranged from as low as $1 per 2,000 to as high as $1 per 50 [61].

Step 2.B - Our script enters the current password guess in the password field and we submit the web
form to check for a successful login. The script repeats Step 2 until the login is successful. We remark
that in all of our experiments we never encountered a scenario where our attack script was locked out.

Other Defenses Against Online Attacks. There are several different ways that an organization might
defend against online attacks on user passwords. One defense is to lock an account after several con-
secutive incorrect login attempts. Lockouts can either be hard or soft. A hard lockout requires the user
to authenticate via an additional factor, e.g., a security code sent via e-mail/text message, a phone call
and/or answering a few security questions. A soft lockout expires after a fixed period of time, e.g., one
hour or day. Stricter lockout policies are associated with usability problems [21], and are more vul-
nerable to denial-of-service attacks (e.g., an attacker can lock a user out of his account by repeatedly
attempting incorrect logins) [3].

Pinkas and Sander [63] observed that an untargeted attacker with many usernames may avoid lock-
outs by alternating guesses between different accounts, and a determined attacker targeting a particular
individual facing a soft lockout policy can avoid a lockout by rate limiting guessing attempts. We remark
that if successful login attempts are visible to an attacker (e.g., via posts to social media) then even an
attacker facing a hard lockout policy can avoid lockouts by only attempting to login after each successful
user login. We stress that in either case (soft/hard lockout or CAPTCHAS ) the attacker will benefit if s/he
knows the length of the user’s password.

5.3. Linking Usernames and Password Lengths

To run the attack in Section 5.4 an attacker would need to associate a user name for a specific website
domain (gmail.com) with a specific client IP address. In this section, we demonstrate a plausible scenario
in which a sophisticated attacker could link usernames and passwords with Google Mail using DNS
Hijacking. This is simply one plausible scenario in which an intruder can pair username and password
length pairs at scale e.g., as part of a password spraying attack.

We remark that user ids often follow a predictable pattern e.g., jsmith for John Smith or jdoe for Jane
Doe. Thus, any vulnerability that allows an attacker to link IP addresses to a name (or user id) will often
allow the attacker to directly link the IP address to a specific user id. Nation-state attackers might coerce
an internet service provider (ISP) to reveal this information directly, and a criminal might be able to
extract this information by infiltrating the ISP.

DNS Hijacking. An attacker would start by creating a DNS redirector by hijacking a legitimate DNS
server:
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The DNS Redirector is an attacker operations box which responds to DNS requests.

Step 1: The attacker would compromise legitimate DNS servers through already stolen credentials [2].

Step 2: The attacker logs into a proxy box used to conduct non-attributed browsing and as a jumpbox
to other infrastructure.

Step 3: A DNS request for target[.Jcom is sent to OP1 (based on previously altered A Record or NS
Record).

If the domain is part of target[.]Jcom desired domain, OP1 responds with an attacker-controlled IP
address, and the user is redirected to the attacker-controlled infrastructure.

Step 4: The attacker would then install a signature rule (e.g., SNORT rule) on OP1 to harvest cookies
in unencrypted HTTP traffic [38, 69] and record the associated client IP address with each individual
cookie. The attacker would then perform offline analysis to discover usernames within the harvested
cookies. The attacker would then be able to build a list of associated user names with their client IP
addresses.

Step 5: The attacker would intercept on OP1 all HTTPS traffic for target[.]Jcom/login. In this, the
attacker would then analyze encrypted AES-GCM traffic to discover the password length. The attacker
would record the password length with the client IP address.

Step 6: The attacker would perform offline analysis to associate the user name from Step 4 and the
password length from Step 5.

Discussion. A 2016 study from Columbia researchers conducted an IRB-approved 30-day observa-
tion of their public wireless campus network and were able to intercept cookies containing 282K ac-
counts [69]. At that time the researchers found that all top Alexa websites exposed usernames in unen-
crypted HTTP traffic. The researchers found functionality across multiple cookies with different scopes
between encrypted HTTPS and unencrypted HTTP traffic is complicated creating opportunities for ex-
posure of private information such as usernames over unencrypted HTTP traffic [69]. Despite the im-
pressive progress of the “Encrypt Everywhere” movement over the last 4 years a substantial fraction
(i.e., at least 20%) of global web traffic is still unencrypted [38].

5.4. An Improved Online Attack

Suppose that our eavesdropper has inferred the length ¢ of an encrypted password and linked that
length with a specific user account. Our password attacker can immediately prune his cracking dictionary
to remove any password that does not have length ¢.

In our observational study we found that GMail uses CAPTCHAs [74] to rate limit an online attacker
i.e., by requiring the attacker to solve a CAPTCHA challenge after each incorrect login attempt.

We wrote a simple proof of concept script which automates the process of an online attack against
gmail. After the attacker learns the length £ of a user’s password, the attacker prunes his cracking dictio-
nary to focus on the most popular passwords of length £*. Before submitting each password guess our
script checks the page to see if there is a CAPTCHA challenge® . Whenever CAPTCHA occurs, the at-

40f course the same automated online attack is feasible whether or not the attacker knows the length £ of the user’s password.
However, an attacker who knows the length ¢ can potentially crack the password much faster.

>A CAPTCHA is a puzzle that should be easy for a person to solve, but infeasible for a computer to solve using state
of the art techniques. In a text CAPTCHA the user might be challenged with an image consisting of moderately distorted
numbers and letters along with the instructions “You must type those letters manually to prove you are not a robot.” There is
a delicate balance between usability and security i.e., ensuring that a human can solve the challenge easily while a computer
program cannot. Advances in machine learning and neural networks [43, 82] have made it harder to strike this balance. Several
empirical studies have demonstrated that CAPTCHA challenges are often difficult for human users to solves [22, 23].
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tacker can use an online CAPTCHA solving service to bypass Google’s reCAPTCHA service by paying
human users to solve each challenge — we used the Rumola service in our demo. The script continues
to submit guesses until authentication is successful or until the cracking dictionary is exhausted.

We remark that in our experiments, we never encountered a scenario where we were locked out when
running our attack script. Pinkas and Sanders [63] suggested the use of proof of work puzzles (such as
CAPTCHAs [74]) to rate limit an online attacker. One of the advantages of this approach (in comparison
to a soft/hard lockout policy) is that it is not susceptible to denial-of-service attacks [3] e.g., a malicious
party might attempt to lock an honest user’s account by repeatedly submitting incorrect login attempts.
The downside is that a sufficiently determined attacker might continue trying to crack the password by
paying humans to solve the CAPTCHA challenges.

6. Attacker Model

We consider three types of attackers, their capabilities, and motivations to compromise an account.
This will help us create a threat model before gaining information leaked from GCM. We then can
compare any increases in capability or willingness to understand the severity of the information leakage.

e Hacker The first attacker is a hacker and is capable of controlling local networks, either on the
Sender or Recipient side of the connection. The hackers are motivated by the challenge of compro-
mising an account and does not look to directly profit from the hack. The hacker’s willingness to
compromise an account waivers in the face of systems with multiple security controls or a mone-
tary cost of more than 0-100 (USD), because the account’s perceived value to hacker’s ego does not
exceed its cost of 100.

e Criminal The second attacker is a criminal with the capability to control local networks and several
organizational wide networks. The criminal is financially motivated to only compromise accounts
whereby the payoff is at least ten times the cost [51]. In most cases, the criminal will spend between
100-1,000 (USD) to compromise an individual account, because its perceived value to financially
profit does not exceed its cost of 1,000 (USD).

o Nation-State The third attacker is a nation-state. The nation-state can compromise local and or-
ganizational networks and also control large segments of the Internet such as Internet Service
Providers. The nation-state is primarily motivated by understanding threats to its citizens or in-
terests and is only willing to conduct multi-year campaigns against accounts threatening its security
or sovereignty. In most cases, we assume the nation-state is willing to spend between 1000-10,000
(USD) to compromise an individual account because the perceived value in the information gained
from the compromised account does not exceed its cost of 10,000. While we do not know the tar-
geted account’s subjective worth, we assume a rational adversary is not willing to pay more than its
perceived value.

A nation-state (and perhaps a sophisticated criminal) might have the capability to eavesdrop on net-
work traffic on a broader scale to obtain (username, password length) pairs at scale e.g., using DNS
Hijacking attack as discussed in Section 5.3. Similarly, a nation-state (and perhaps a sophisticated
criminal) might have the ability to coerce an internet service provider to reveal logs associating
specific users with the different IP addresses they were assigned over time.

Password spray campaigns typically target single sign-on (SSO) and cloud-based applications using
federated authentication. For example - in February 2018, the United States Department of Justice
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indicted nine Iranian nationals a part of the Mabna Institute for computer intrusions using pass-
word spraying [2]. While nation-states might be intrinsically motivated to conduct persistent and
long-term campaigns, would an extrinsically motivated attacker being as willing to use a password-
spraying technique? To help answer this question, we conduct an economic analysis. If the informa-
tion leaked doubles an attacker’s capability or willingness to conduct the attack, then we consider
the information leak to be severe, because our data suggests doubling the adversarial advantage be-
gins to show a clear change in the related monetary, decision-making, and temporal characteristics.
We want to create a threat model whereby the attackers have a spectrum of capabilities and willing-
ness to compromise targets of interest. Examples of severe information leakage might include the
compromise of the session key, allowing an attacker to understand the underlying plain text without
decryption, or increasing the capability beyond their stated initial set of capabilities to bypass a
security control.

7. LinkedIn Password Frequency Corpus

We are releasing several differentially private frequency lists derived from N = 174+ million cracked
passwords from the LinkedIn breach in 2012. The protocol was reviewed by the ethics board at our
institution. In this section, we describe the LinkedIn dataset, the published frequency corpus and the
differentially private algorithm that was used to release it. The frequency corpus is available through the
(currently anonymous) link https://figshare.com/articles/linkedin_files_zip/7350287.

We remark that the Yahoo! frequency corpus [12, 16] is significantly smaller (N ~= 70 million) and
is not suitable for our analysis in Section 8 because the password frequencies cannot be linked with the
length of each password. We use the LinkedIn dataset in Section 8 to quantify the damages of password
length leakage. We also anticipate that the LinkedIn dataset will be of independent research interest for
password analysis (e.g., see [13]) as it is significantly larger than the Yahoo! frequency corpus.

Background on LinkedIn Password Breach:. 1In 2012 hackers were able to compromise LinkedIn’s
systems and stole over 177.5+ million unsalted SHA-1 password hashes as well as other confiden-
tial user data. LinkedIn responded to the leak by releasing a public statement saying that they had
invalidated compromised users’ passwords, requiring them to be changed and by encouraging users
to adopt two-factor authentication (see https://blog.linkedin.com/2016/05/18/protecting-our-members).
Because the passwords were stored in unsalted form and LinkedIn was not using key-stretching
tools such as PBKDF2 or Argon2 [8] at the time of the breach the passwords were significantly
easier to crack. KoreLogic, a cybersecurity company, cracked over 98% of these password hashes
https://blog.korelogic.com/blog/2016/05/19/linkedin_passwords_2016, and agreed to allow us to gener-
ate an anonymized frequency corpus based on these cracked passwords using the differentially private.

Password Frequency List: . A password frequency list is a non-negative list of integers fi > fo >
... = 0 where f; denotes the number of users in a dataset who selected the i most popular password
and N = Y f; denotes the total number of users in the dataset. We also use f{ > ff > ... > 0 to
denote the frequency list for length ¢ passwords, and Ny = Y f¢ to denote the total number of users
who selected a password of length £. Here, f! denotes the number of users who selected i" most popular
password with length £.

As an example consider a toy scenario in which 12 users create LinkedIn passwords. Suppose that
fi = 5 users select the password “123456,” fo = 3 users select the password “password” and f3 = 2
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users select the password “abc123” and f; = 2 users select the password “letmein.” In this case the
overall frequency list would be (f1, f2, f3, f1) = (5,3,2,2) with N = 12, but the frequency list for
length ¢ = 6 passwords would be (¢, £9) = (5,2) with Ng = 7 total passwords of length 6.

Security Risks:. We first discuss the potential risk of releasing password frequency lists without any
noise. In the example above the attacker happened to know the passwords for eleven of these users. If
only four of these eleven users selected the password “123456” then the attacker who obtains the exact
frequency list (f1, fa2, f3, f1) = (5,3,2,2) above would be able to infer the password of the remaining
user. While this scenario may seem a bit far-fetched there are many examples of supposedly anonymized
datasets that were later de-anonymized when the attacker has some background knowledge about the
datae.g., [62].

Differential Privacy. We use the notion of differential privacy [35, 57] to ensure that the password
statistics we release will not harm individual users. Differential privacy provides a strong information-
theoretic privacy guarantees to each individual in a dataset, and it has been an active area of research
in the last decade (e.g., see [58]). Informally, a differentially private mechanism for releasing statistics
about a dataset D ensures that an adversary cannot use the output to make inferences about any individual
in the dataset except inferences that the adversary would have been able to make without that individual’s
data. Formally, a mechanism .4 which takes as input a frequency list fi, fa, ... with f; > fi11 and outputs
a noisy frequency list is (¢, ¢)-differentially private if for all subsets S of output frequency lists we have

PrA(f)eS]<ePr[A(f)eS]+6,

whenever f and f’ are neighboring frequency lists which satisfy the condition ) _, |f; — f/| <1

Here we can think of f as the original frequency list and f” as denoting the frequency list after a partic-
ular user’s password is removed. Differential Privacy cannot promise users that an attacker won’t crack
their password after we release the frequency list i.e., it is possible that the user picked a weak password
that would have been cracked in any case. However, we can promise each user that the probability of
this outcome wouldn’t have changed much even if we excluded their data entirely.

Exponential Mechanism for Differentially Private Frequency Lists. We used a differentially private al-
gorithm & s developed by Blocki et al. [12] to release the LinkedIn frequency corpus. The mechanism is
highly accurate and guarantees that (whp) L1 distortion is very small. In particular, with high probability
it holds that

Z\f fl<o <\F+1n(;)>7

where f Ees(f) is the output frequency list and f is the original frequency list.

We used the algorithm to publish f (the original frequency list) as well as £ (the frequency list for
passwords of length ¢) for each password length value €. Each individual password can contribute to
exactly two of these frequency lists. Thus, we used the privacy parameter € = 0.25 to release each
individual frequency list to give an aggregate privacy value of € = 0.5. In all cases, we set § < 27190 so
that this term was negligibly small.
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8. Security and Privacy Impact of Password Length Leakage

In this section, we aim to quantify the damages of password length leakage. In our analysis, we sup-
pose that an online password attacker attempts to crack the user’s password by repeatedly attempting
the most popular passwords from a dictionary. We assume that the authentication server uses secure
CAPTCHAS to rate limit the attacker (e.g., Gmail authentication). Thus, an attacker must pay human
workers to solve a CAPTCHA after each incorrect guess. If the attacker knows the length of the password
in advance then the attacker can eliminate passwords from the dictionary.

We aim to answer the following questions: (1) How many additional passwords will an online attacker
crack when given the length of each password? (2) How much does password length leakage monetarily
benefit the attacker? We stress that questions (1) and (2) actually ask very different questions. The answer
to the first question tells us how many additional user accounts will be compromised if password lengths
are revealed to a rational attacker. The answer to the second question allows us to predict whether or not
the cost of eavesdropping (equipment, manpower) on network traffic outweighs the benefit of learning
password lengths. To address these questions, we adapt a game-theoretic model introduced by Blocki
and Datta [11] to model an offline password attacker.

8.0.1. Constrained Attacker

Before introducing our decision-theoretic model, we first consider a constrained online password at-
tacker who either gives up or gets locked out after B incorrect guesses. This will give us the chance to
introduce key notation.
Notation Let D denote the distribution over user selected passwords P and we let p; = Pr,,,scp[pwd =
pwd] denote the probability that a user selects the i’th most popular password pwd; € P e.g. ,p; = pit1-
We also P! = {x € P : |x| = ¢} C P denote the set of all passwords with length £ and

pl= [JW:CE)(ED [pwd = pwd,, ‘pwd € Pq

where i/ is the index of the i’th most popular password in the set P‘. Observe that we have p§ > p5 > ...
for each € > 1. For notational convenience we also write Pr [Pq = Pr,yacp [pwd € Pf] .

8.0.2. Experiment 1: Unknown Lengths with B Guesses.

A user selects a random password pwd <— D and an attacker attempts to guess the password online.
We assume an attacker who knows the distribution D, but not the specific password and that the attacker
either gives up or gets locked out after B guesses. The attacker best strategy is to try the B most likely
guesses in the distribution pwd,, ..., pwdg. The attacker will succeed with probability g = Zf}: 1 Pi-
Conditioning on the event that the user’s password has length ¢ (i.e., pwd € P’) and that the length ¢ is
unknown to the attacker, the attacker will succeed with probability

B

Age= P d d.; d e P’
pe= Proipw EiUI{pw Y pwd € P

8.0.3. Experiment 2: Known Lengths with B Guesses
This experiment is exactly like experiment one except that after we sample pwd < D the length
|pwd| of the password is revealed to the attacker. If the attacker knows the password length is ¢ (i.e.,
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pwd € PY), then the attacker succeeds with probability

B
Age = Z Pig .
i=1
If the attacker attempts the B most likely guesses before giving up then he will succeed with probability

Ay => P[P A5,
t

Analysis. Table 1 compares the success rate of the attacker with (13) and without (1z) knowledge
of the passwords length for various guessing limits B. The results show that the attacker’s success rate
increases significantly when the password length is known, e.g., a criminal attempting B = 10° guesses
per user using the LinkedIn distribution would crack nearly 35% of passwords with knowledge of pass-
word length compared to 24% without this knowledge, or about 50%. Table 2 compares the attacker’s
conditional success rate with (A3 ,) and without (1) knowledge of the passwords length conditioning
on the event that the user’s password has length £°. Surprisingly, even for longer lengths such as £ = 30
an attacker still may have a reasonably high success rate with a smaller guessing limit B. For example,
A, ~ 4.5% at just B = 10 guesses against the Rockyou list when password length is a large as £ = 30.7
By contrast, when the attacker does not know the length we have Az, = 0 when ¢ = 30 even if the
attacker tries up to B = 288,046 guesses! This is because there are 288,046 passwords with length
€ # 30 that are more popular than the most popular password of length 30.

Limitations of the LinkedIn and Rockyou Datasets.. A general limitation of empirically defined pass-
word distributions is that they almost certainly overestimate the probability of passwords at the tail of
the distributions, e.g., for any password pwd; that was observed once in the Linkedin dataset we estimate
that p; is at most p; = 1/N > 5.73 X 10~9. The Linkedin dataset contains 1.7 x 10% unique passwords and
about 2.1 x 107 of these passwords are observed exactly one time. Unfortunately, there is no way to be
confident about the true probability of an event that has only been observed once. Thus, for B > 1.5 x 107
our estimate of Az may be too high, and for B > 3.1 x 10° our estimate for A ¢ may be too high (there
are about 3.1 x 10° length six passwords that were observed more than once so our estimate of p¢ may
be too high for i > 3.1 x 10°). When B < 10° we believe the estimate for A} is reasonable®. This means
that there is some uncertainty about our estimates of 1} for a nation-state attacker (B € [10°%,107]). In
our analysis, we use the symbol /A to indicate that it is affected by uncertainty about the tail of the
password distribution.

STable 2 only shows information from the Rockyou leak. This is because the calculation of Ap ¢ requires a list showing the
exact order of passwords as well as their frequencies. It is not enough to know something like “there are 5 passwords picked
with frequency 100". While you could identify which lengths made up those 5, we do not have the specific order. It is possible
to construct an estimated list by arbitrarily ordering those 5 passwords, but this would produce a noisy estimate. Thus we do
not have accurate values of Ap ¢ for the LinkedIn data

70f the 1,052 users in the RockYou dataset with length £ = 30 passwords eight users selected “bebeli-
couz_05_mistme @yahoo.com” and seven users selected “111111111111111111111111111111.” Another popular password
of length £ = 30 was the url http://www.rockyou.com/tos.php — selected by five users.

8For each ¢ € [6,10] we have more than 1.6 x 10% (2 x 10%) passwords of that length that were observed multiple times.
These lengths account for 2}26 Pr[P!] ~ 81.4%(86.5)% of all passwords in the Linkedin (Rockyou) dataset. If we include

¢ = 5,11 then we have Z}i5 Pr[PY] > 85.9%(94.1%) and for both lengths £ = 5,11 we have over 7.8 x 10° (8.75 x 10%)
passwords of that length that were observed multiple times.

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O


http://www.rockyou.com/tos.php

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

16

Table 1
Attacker Success Rate at Various Guessing Limits with and without knowledge of the password length (LinkedIn)
LinkedIn

Adversary type Hacker Criminal Nation-state

Guess limit B 10% | 10° 10* | 10° 10° | 107 A

A5 0.058 | 0.119 0.214 | 0.352 0.571 | 0.973

A5 — Ap 0.030 | 0.048 0.072 | 0.112 0.195 | 0.394

A5/ 2.074 | 1.672 1.505 | 1.466 1.517 | 1.682

Rockyou

Adversary type Hacker Criminal Nation-state &

Guess limit B 107 | 10° 107 | 10° 10% | 107

Ay 0.089 | 0.192 0.330 | 0.519 0.796 | 1.000

A5 — Ap 0.043 | 0.080 0.107 | 0.153 0.255 | 0.133

A5/ 1.938 | 1.712 1.479 | 1.418 1.471 | 1.154

Table 2
Attacker Conditional Success Rate at Various Guessing Limits with and without knowledge of the password length

Lengths /127[ /lg,g — gy /12,[//131
limit 102 | 10* [10SAA | 102 | 10* [ 105A | 102 | 10* | 1064\
5 0.228 | 0.670 | 1.000 | 0.183 | 0.447 | 0.458 | 5.067 | 3.004 1.845
6 0.116 | 0.430 | 0.888 | 0.071 | 0.207 | 0.346 | 2.578 | 1.928 1.638
7 0.077 | 0353 | 0.760 | 0.032 | 0.130 | 0.218 1.711 | 1.583 1.402
8 0.080 | 0.281 0.698 | 0.035 | 0.058 | 0.156 1.778 | 1.260 1.288
9 0.083 | 0.262 | 0.698 | 0.038 | 0.039 | 0.156 1.844 | 1.175 1.288
A 0.045 | 0.223 | 0.542

As part of our analysis, we used empirical data from the RockYou dataset [29], released in 2009, to
define our password distribution. The dataset was released in 2009 by hackers and remains one of the
largest available plaintext password datasets. One potential downside is that many RockYou users may
have viewed their account as low-value. While Bonneau [17] found that account value did not appear
to be correlated with password strength in his analysis of Yahoo! passwords, we cannot rule out the
possibility that RockYou users were less motivated to pick strong passwords because the account had
low-value. However, we remark that it is possible that a stronger password distribution would result in
an even bigger advantage A} — Ap for an attacker who learns the password length since both A% and Ap
would decrease.

8.1. Decision Theoretic Model

Experiments 1 and 2 consider an attacker that gives up after a fixed number B of incorrect guesses.
While this model may be appropriate in some scenarios where the attacker is eventually locked out, it
does not model scenarios in which guessing is throttled using CAPTCHA puzzles (e.g., Gmail). This
approach has the advantage in that legitimate users will never be locked out (at worst they will be
bothered to solve a CAPTCHA puzzle). In this section, we model a rational online attacker who will
select a threshold B°”" which maximizes his expected gain (expected reward minus expected guessing
costs). In other words, the attacker will continue attacking as long as marginal reward exceeds marginal
guessing costs.
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Marginal Guessing Reward. Suppose that a rational attacker has value v for a cracked password. The
attacker’s expected reward is v times the probability he successfully cracks the password. If, as in ex-
periment 1 (resp. experiment 2), the attacker doesn’t (resp. does) know the password length ¢ then
the expected reward after B guesses is R(v, B) = vdp (resp. R‘(v, B) = vA},). The marginal reward
of one more guess when the attacker doesn’t (resp. does) know the password length is MR(v, B) =
R(v,B+1) — R(v, B) = vpp41 (resp. MR'(v,b) = R (v, B+ 1) — R‘(v, B) = vpl. ).

Marginal Guessing Costs. Assume that the cost of each additional password guess is k (e.g., the amor-
tized cost of paying a human to solve one more CAPTCHA puzzle). If, as in experiment 1 (resp. exper-
iment 2), the attacker doesn’t (resp. does) know the password length ¢ then the expected guessing cost
is

B
C(k,B) = (1— Ap)Bk+ k> ixp;,
i=1

or if password length is known

B
C'(k,B) = (1— A5,)Bk+k> ix p|.
i=1

To understand this formula, we first observe that the attacker incurs maximum guessing cost Bk when he
fails to crack the password, which happens with probability 1 — Ap (resp. 1 — A3 ) when the attacker is
not told (resp. is told) the password length . If the attacker is successful on guess i < B then the attacker
only incurs cost ik and this happens with probability p; (resp. p¢) when the attacker is not told (resp. is
told) the password length ¢.

Attacker Gain. We G(v,k, B) = R(v, B) — C(k, B) (resp. G‘(v,k, B) = R‘(v, B) — C(k, B)) to denote
the attackers expected gain (guessing reward minus guessing cost) when the attacker is not told (resp.
is told) the password length ¢. If the attacker is rational the attacker will select a guessing threshold B
which maximizes his gain. We use B} = arg maxp G(v,k, B) resp. B, = argmaxp G'(v,k, B) to
denote the attackers optimal guessing threshold when not told (resp. is told) the password length £. We
use G(v, k) = G(v,k, B(v)f,f) denotes the expected gain of a rational attacker in experiment 1. Finally, we

use
ZPr PG (v.k, B

the expected gain of a rational attacker in experiment 2.

Attacker’s Monetary Benefit when Learning Password Lengths: We remark that G* (v, k) —G(v, k)
denotes the expected (per user) benefit to the online attacker when learning the password length £. If this
benefit #(AttackedUsers x (G*(v,k) — G(v,k)) exceeds the cost of eavesdropping on network traffic
then it will be worthwhile for the attacker to exploit the password length-leakage attacks described
earlier. Table 3 plots the value G*(v,k) — G(v, k) for different v/k ratios. Tables showing the optimal
thresholds B°FT which maximize gains at various v/k ratios can be found in Table 4. From Table 3 we
can see that the monetary benefit of learning password length can be quite substantial. The increased
monetary benefit might entice additional criminals to entire the password cracking game provided that
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Table 3
Attacker gains for various account value to marginal guessing cost ratios
LinkedIn
Adversary type Hacker Criminal Nation-state
v/k ratio 102 | 10° 10* 10° 100 | 107 A
G* [k 0.511 | 17.89 605.63 14652 | 296826 | 8024681
G/k 0.000 | 5.803 187.67 | 7448.19 | 165335 | 3085617
(G* —G) [k 0.511 | 12.097 | 417.96 | 7203.81 | 131491 | 4939064
G*/G 00 3.083 3.227 1.967 1.795 2.600
Rockyou
Adversary type Hacker Criminal Nation-state /N
v/k ratio 107 10° 107 10° 10° 107
G* [k 0.959 | 30.168 | 1225.5 27053 | 552447 9.5E6
Glk 0.000 | 12.141 | 428.182 14576 | 297611 6.7E6
(G* —G) [k 0.959 | 18.026 | 797.31 23577 | 254836 2.8E6
G*/G 00 2.485 2.862 1.856 1.856 1.422
Table 4

Optimal Attacker Guessing Limit for various account value to marginal guessing cost ratios

LinkedIn
Adversary type Hacker Criminal Nation-state
v/k ratio 102 [ 10° | 10* | 10° 106 10" A
BOrT 1 | 10 | 736 | 10327 | 271903 | 5418647
BT 0 [ 4 | 570 | 8818 | 134534 | 6672366
BT 0 | 4 | 199 | 4771 | 107888 | 14886616
BITY 1 | 2 | 168 | 4164 | 81901 | 8750881
BOrT 0 | 3 | 164 | 3537 | 58638 | 1063939
Rockyou
Adversary type Hacker Criminal Nation-state /N
v/k ratio 102 [ 10° | 10" | 10° 10° 107
BIFT 1| 121 | 1928 | 259169 | 259169 | 259169
BOrT 1 | 30 | 981 | 20963 | 1947797 | 1947797
BT 0 | 18 [ 759 | 11077 [ 227299 [ 2506271
BT 0 | 15 | 417 | 7919 | 168816 | 2966037
BOrY 1 [ 20 | 366 | 6708 | 2191039 | 2191039
BOIT 0 | 7 | 320 [ 6327 | 114760 | 14344391

increased monetary benefit outweighs the cost of eavesdropping and linking IP addresses to user ids. As
Rob Joyce, Chief of Tailored Access Operations at NSA, said, “Don’t assume a crack is too small to be
noticed, or too small to be exploited.” [83]

Example. Suppose that it costs k = $0.001 (the approximate cost of paying a human to solve a
CAPTCHA puzzle [61]) per password guess and the value of each cracked password to a criminal is
v = 10% = $100. We have a v/k ratio of 10%, and can look up the value (G* — G/k) = 7203 in Table 3
(using estimates derived from the LinkedIn frequency corpus). We can convert this to a monetary value
by multiplying by our k value. Here we see that knowing password length gains us an average of $7.23
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Table 5
Advantages for several guessing limits
LinkedIn
Adversary type Hacker Criminal Nation-state
Guess limit 102 | 103 | 10 | 105 | 105 [ 107 A
j:ik 0.007 | 0.028 | 0.090 | 0.191 | 0.378 1.000
]j,k — Aok 0.000 | 0.019 | 0.055 | 0.084 | 0.164 0.619
it,k/iv,k o0 3.182 | 2.586 | 1.785 | 1.766 2.625
Rockyou
Adversary type Hacker Criminal Nation-state /N
Guess limit 102 [ 103 | 10* [ 10° | 10° 107
ﬁj,k 0.014 | 0.052 | 0.177 | 0.363 | 0.823 1.000
ﬁ‘ik — Aok 0.014 | 0.034 | 0.104 | 0.163 | 0.446 0.000
ﬁik/ﬁv,k o0 2.874 | 2417 | 1.817 | 2.183 1.000
Table 6

Cracking estimates for attacks over time (LinkedIn)

LinkedIn
Days | 1 guess/day | 10 guesses/day | 100 guesses/day (LinkedIn)
30 0.04(0.02) 0.08(0.05) 0.16(0.10)
90 0.06(0.03) 0.11(0.07) 0.21(0.14)
180 0.7(0.04) 0.14(0.09) 0.24(0.16)
360 0.9(0.5) 0.17(0.11) 0.28(0.19)
Rockyou
Days | 1 guess/day | 10 guesses/day | 100 guesses/day (Rockyou)
30 0.06(0.03) 0.13(0.07) 0.26(0.16)
90 0.09(0.04) 0.19(0.11) 0.32(0.22)
180 0.11(0.06) 0.23(0.14) 0.37(0.26)
360 0.14(0.08) 0.27(0.17) 0.43(0.30)

per password. Say an attacker is targeting 100 people. So long as the cost of sniffing network traffic is
< $723 and it is possible for the attacker to link user ids with each IP address it is worth the attacker’s
time to run the attack.

Number of Compromised User Accounts: We now seek to quantify the damages of leaking pass-
word lengths to a rational attacker. In particular, we use A,; = 4 B (resp. Zikf = /IZ”’]’(’K, ;) to denote the

probability a rational value v attacker succeeds without (resp. with) knowledge of the password length
¢ and given guessing costs k. We use ﬁ:’k =>, Pr[Pf]iiik’f to denote the probability that a password is
cracked in experiment 2 (We will also use 4,4, = A B 10 denote the probability that an attacker cracks
the user’s password without knowledge of password length conditioning on the event that the user’s
password has length £.). Finally, we note that ﬁik — A, denotes the increase in the attacker’s success
rate when the attacker learns the password length.

Table 2 compares the attackers success rate with (Z:’k) and without (ZV,M) knowledge of the password
length for various v/k ratios, and Table 7 compares the attacker’s success rate conditioning on the event
that the the password has length ¢ (Table 4 shows the optimal thresholds B{” as well as BS;; for various
lengths ¢). These tables show that a rational attacker will crack many more passwords when given the
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password length. For example, a criminal attacker with v/k = 10° who knows the password length will
crack over 19% of targets from the Linkedin data compared to just 10.7% of targets without knowledge
of password length. As another example consider a hacker using the Rockyou data with v/k = 102, If the
attacker does not know the password length then his optimal strategy is to give up immediately without
attempting any password guesses. However, if the attacker does know the length then he will crack
about 1.4% of passwords. We once again wish to stress the A symbol towards higher v/k ratios, which
denotes situations where overestimates are likely - especially where values show the adversary would
guess 100% of passwords. We remark that if the price k of a CAPTCHA solving services increase (resp.
decrease) by an order of magnitude then the value to cost ratio v/k will also increase (resp. decrease)
correspondingly and we can still refer to Table 4 to infer how many passwords a rational attacker will
crack with and without knowledge of the password length. .

Online time-delayed attacks The models we have introduced are based on the notion that an attacker
can continuously try passwords. However, in many situations, there is some sort of lockout that limits
the number of attempts that can be made. In this case, the adversary can run an attack over time to bypass
lockout mechanisms. Rather than being rate limited by a service like CAPTCHA, a set number of guesses
may be run per day. The models introduced also provide insight into these types of attacks. To provide
an idea of what sort of advantage an adversary may have in this case, we take Brostoff and Sasse’s
recommendations that 10 attempts should be allowed [21], however, we note that Bonneau and Preibusch
found that the vast majority of sites they surveyed allowed over 100 guesses with no restrictions [18]. In
addition, the National Institute of Standards and Technology recommendations allow for no more than
100 consecutive failed login attempts before a lockout [46]. Table 6 shows the estimated proportion of
passwords that would be cracked over set periods of time given 1, 10, and 100 daily guesses.

Notation Remark: We use the notation A when considering a rational (utility optimizing) attacker
and A4 when considering an attacker that is either locked out or gives up after a fixed number of guesses.
We also remark that we use * to indicate an experiment in which the attacker knows the length, and we
use £ when conditioning on the event that the user’s password has length ¢ (whether or not this length
is known to the attacker). Thus, Zv,k,g denotes the conditional success rate of a rational attacker who
does not knows the password length conditioning on the event that the users password is length ¢ and
Ay denotes the success rate of an attacker who knows the password length and tries exactly B guesses
(without conditioning on the event that the users password is a particular length).

Differences Between Our Model and Previous Work[11, 13]. Blocki and Datta [11] and Blocki et
al. [13] to model an offline password attacker. By contrast, we consider online attacks. Blocki and
Datta [11] were focused on predicting A, to estimate the probability that a rational attacker cracks
each password. While we are still interested in this quantity we are also interested in understanding the
attackers gain so that we can predict whether or not it is worthwhile for the attacker to eavesdrop on
encrypted network traffic.

9. Solutions

At a conceptual level, the solution to the problem of password length leakage is straightforward. Make
sure that passwords are always padded before they are encrypted e.g., by using PKCS7 padding to pad
the password to multiples of £ = 30 bytes. However, at a practical level, the problem defies an easy
solution because any solution will require updates to web pages, browsers, and/or servers. We contend

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

21

that a large part of the problem is that the responsibility of identifying and padding length-sensitive data
such as passwords has been largely pushed to the application developer.

The issue is increasingly pressing as the Internet increasingly moves to AES-GCM with the advent
of QUIC and TLS 1.3. In 2015 CBC mode was previously one of the most popular modes of operation
in TLS connections [56], but as of 2018, over 80% of connections use AES-GCM. While AES-GCM
has many advantages over CBC mode in terms of both efficiency and security?, CBC mode provides
natural padding i.e., messages are padded to 16-bytes blocks in CBC mode while where there is a 1-1
correspondence between plaintext and ciphertext length in AES-GCM.

Our immediate goal is to increase security for individual privacy without requiring new transport
protocol design or changing cipher suites. Our solutions are focused around the Hypertext Transfer
Protocol layer (HTTP) to limit changes that could disrupt this eco-system: 1) For HTTP 1.1 developers,
we outline a framework to change web pages alleviating some changes to back end servers. 2) For future
development, we recommend developers use the HTTP/2 standard and use its extension to implement
padding. 3) We also advocate that W3C be updated to specify that password fields must be padded by
default.

Our immediate goal is to increase security for individual privacy without requiring new protocol de-
sign or changing cipher suites and to do this, we believe developing a software solution at the Hypertext
Transfer Protocol layer is the best way to achieve these goals.

It is important to develop a solution with compatible technologies. Since TLS version 1.2 and QUIC
have been in existence since at least 2013, we believe that using a client and server software solution
in JavaScript with the AJAX framework and JSON files will meet our compatibility requirements for
most servers and web browsers. This will allow for an immediate fix to increase individual privacy and
security to websites containing sensitive identifiers commonly found in web forms. Our general scheme
is as follows with three password transformation processes (hashing, padding) options: The server will
first identify web forms with sensitive form fields and send the web form with a client-side script. The
client-side script will transform the password by either hashing it or padding it. The client will submit the
web form with the transformed password to the server. The server will then decrypt the information from
the previously established secure channel (i.e. TLS version 1.2, 1.3 or QUIC). Finally, the server will
transform the padded password back into the real password (or work directly with the hashed password).

Hashing. Hashing the password on the client-side is the most straight-forward approach. Instead of
sending the server the user’s actual password pwd, we would instead send the hash value H(pwd,)
or H(u, pwd,). Hashing the password has the benefit of being easy to implement on client side and
immediately protects the password on the client and server to ensure some security protections from
both online and offline attacks. Intel and AMD processors both support hardware acceleration for the
SHA family of hashing algorithms via the Intel SHA Extensions to the x86 instruction set architecture so
the solution could be made to be efficient. However, this approach would require server-side changes!®.

Note: It would be recommended that the server select a strong password hash function H which is
moderately expensive to compute to protect against offline attackers [46]. PBKDF?2 uses hash iteration

As an Authenticated Encryption with Associated Data cipher AES-GCM provides both confidentiality and integrity. By
contrast, CBC mode only provides confidentiality meaning that additional steps (e.g., MACs, signatures) must be taken to
guarantee message integrity — a step that turns to be quite challenging to get right in practice. There have been several attacks
against TLS implementations of CBC mode including BEAST (CVE-2011-3389), LUCKY 13 [7] and POODLE [59].

07nstead of storing the salted hash of a user’s password the server would have to store the hash of the hash e.g.,
(uty Su, H(u, S HA3(u, pwdy))) instead of (u, su, H(su, pwdy)). Until the user u provides the password pwd,, there is no way
to directly obtain the new record (u, sy, H(su, S HA3(u, pwd,))) from the current record (u, sy, H(su, pwdy)) which is already
stored on the server.
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to increase guessing costs but is not memory-hard. Blocki et al. [13] argued that functions like PBKDF2
which are not memory hard provide insufficient protection for low-entropy secrets such as passwords.
While the National Institute of Standards and Technology has yet not vetted and approved any memory
hard function [46], the Memory Hard Function Argon?2 [8] was selected as the winner of the password
hashing competition in 2015 [77].

The use of a memory-hard function such as Argon2 would be best against offline attacks while pro-
tecting the length. A memory hard function has yet to be vetted and approved by the National Institute of
Standards and Technology. Just In Time hashing (JIT hashing) is an another alternative to hashing that
does not deter from the online experience of the user. As soon as the user types in the first character(s)
of their password, the JIT algorithm fills in memory with the hash values for the characters the user
has typed [48]. JIT is not widely implemented in web scripting languages and may be more difficult for
common developers to implement widely.

Padding. Similar to hashing, padding can help hide the length of the password. TLS (v1.2 and v1.3)
and QUIC both support optional padding parameters. In our solutions, the client-side script provided
by the server will use this option to ensure that the password field is padded. This approach has the
benefit of requiring minimal server-side changes (apart from identifying web forms with passwords and
sending the appropriate client-side script) as TLS/QUIC will automatically discard the padding on the
server. The process is opaque to both the developer and the user.

Note: Block cipher modes such as CBC would provide natural padding, but CBC mode does not
guarantee message integrity and there have been several attacks against TLS implementations of CBC
mode including BEAST (CVE-2011-3389), LUCKY 13 [7] and POODLE [59]. We also find that GCM
is much more efficient due to native acceleration.

HTTP/2: For developers moving to HTTP/2, we recommend using the HTTP/2 padding flag con-
tained with the DATA frames. DATA frames convey arbitrary, variable-length sequences of octets asso-
ciated with a stream. One or more DATA frames are used to carry HTTP request or response payloads.
DATA frames may also contain padding. Padding can be added to DATA frames to obscure the size
of messages. It should be noted padding within HTTP/2 is not intended as a replacement for general
purpose padding such as with TLS version 1.2. It is recommended intermediaries should retain padding
for data frames and drop padding for HEADERS and PUSH PROMISE frames because an intermediary
can change the protections padding provides. This offers minimal protection for HTTP/2 environments.

Long-Term Solutions. As for less immediate solutions, we suggest the consideration of changes to
future versions of standards and protocols. In the case of W3 standards, they specify a special input type
for passwords in web forms. For example, the login form for a well known banking website includes the
following code snippet:

<input id="usr_password_home" ... type="password" maxlength="32"...>

As the above example illustrates a password input box allows for an (optional) property called
maxlength. We advocate for an update to W3 standards to include a boolean “length-sensitive” attribute
for all input types. If this attribute is set to true then the browser will pad the input value to maxlength,
or in the event that the maxlength attribute is not specified the browser could pad the input value, e.g.,
to ensure that the plain text length is a multiple of 30. An update to W3 standards would be easy to
implement at the browser level. Ideally, it would be nice to set the “length-sensitive” attribute to true by
default for the password input type. The advantage of setting the attribute to true by default is that we
would no longer rely on a web developer to remember to set this attribute to true for passwords. On the
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downside setting the attribute to true by default may create backward compatibility issues with any web
server using an older version of the W3 standard.

Protecting Against Online Attacks. Organizations should align password policies with NIST guide-
lines [46] and adopt measures to throttle an online attacker. Even if CAPTCHASs are used as a throttling
mechanism we would still suggest tracking incorrect logins and requiring a second authentication factor
whenever too many incorrect guesses have been attempted e.g., an authentication code sent by e-mail or
SMS or generated using a hardware token. Recent defenses like DALock [15] and StopGuessing [66]
allow for a better balance between security and usability by additionally basing lockout decisions on the
popularity of the incorrect password guesses. It is unlikely that an honest user who misstypes his pass-
word will end up submitting a popular password. By contrast, an online attacker wants to submit popular
password guesses to maximize his success rate. Thus, defenses like DALock [15] and StopGuessing [66]
can quickly lock down an account when a online attacker repeatedly submits popular guesses without
penalizing honest users when they misstype their password. Some companies are adding new detection
and prevention tools such as IP lockout when analyzing sign-ons to the same account from different IP
addresses [68]. We also recommend enabling multi-factor authentication for all internet facing applica-
tions.

10. Conclusions

In TLS 1.3 and TLS 1.2 (some ciphers) there is a 1-1 relationship between the length of a ciphertext
and the length of the corresponding plaintext. The responsibility of identifying and padding length sen-
sitive data is pushed to the application developer. We conducted an observational study of AES-GCM
traffic (the most commonly used cipher in TLS) which uncovered a widespread failure to pad pass-
words. In particular, we found multiple high profile instances where password lengths can be directly
inferred from encrypted web traffic. If an eavesdropping attacker is able to link the source IP address
with a particular user name (e.g., via unencrypted traffic) then the attacker can directly infer the length of
that user’s password. We used a decision-theoretic model to analyze the advantage a password attacker
obtains by learning the length of a user’s password. Our analysis shows that the advantage is substantial.

While there are good metrics about how much a particular cipher reduces latency, there are fewer
reliable models to help security professionals quantify how many users might be susceptible to intrusions
and from which class of intruders (i.e. nation-states, criminals, or hackers). Without this information, it
will be difficult for security professionals to make informed decisions about the trade-offs between speed
and security. As a necessary first step, this research begins to quantify the cost an intruder would incur
to perform an online attack. This helps better understand which intruders might be willing to endure the
cost to intrude on when conducting a campaign against a set of targeted accounts. As the push for faster
security transport security protocols continues to grow, researchers will be challenged to balance the
need for speed and security. Ultimately, this research adds value by helping security researchers better
quantify and compare the specific trade-offs between speed and security for a particular cipher suite used
for a security transport protocol.

10.1. Future Work

We have begun to quantify the risks of leaking password lengths. There is a need to quantify the risks
of leaking plain text lengths in other contexts (e.g., short chat communications). In general, it would
be helpful to formulate clear guidelines to help developers evaluate when plain text length should be
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viewed as a sensitive attribute. When plain text length is sensitive there is a need to provide developers
with an easy method to obfuscate sensitive data lengths, and there is a need to develop automated tools
which could audit code and identify instances where length-sensitive data might not be hidden.

10.2. Recommendations for Users

We offer the following suggestions to users to protect themselves against password length leakage
attacks'!. First, enable two-factor authentication whenever possible. Strong two-factor authentication
will prevent an attacker from mounting an online attack whether or not the attacker knows the length
¢ of your password. Second, we recommend that users select strong passwords which don’t occur in a
password cracking dictionary. We recognize that this advice, while easy to give, can be challenging to
follow since users typically have many password protected accounts [41]. However, the additional risks
from password length leakage may justify the extra effort for many users. Mnemonic techniques [10, 81]
and spaced repetition [14, 19] may help to reduce the extra user burden. Finally, users could also begin
to use a password manager to generate unique passwords from one master password. This solution
potentially reduces user burden since the user will now only need to remember a few master passwords.
Second, the length of the derived password for each domain is not necessarily correlated with the length
of the user’s master password. For example, PwdHash [65] derives a unique fixed-length password for
each domain based on the cryptographic hash of the user’s master password along with the domain itself.

11. Acknowledgments

The authors wish to express their appreciation for the support that they received from the INSuURE
(Information Security Research and Education) program as INSuRE provided the venue for the initial
inquiry; INSuRE has been supported in part by the National Science Foundation under a variety of grants
including an Eager grant (1344369) as well as supplements to several SFS and other grants (1241576,
1433753, 1433690, 1241668, 1433795, 1241576, 1241668). INSuRE also received support from the
National Security Agency via grants H98230-15-1-0298, H98230-15-1-0299, H98230-15-1-0300, and
H98230-17-1-0314. The work was also supported in part by NSF CNS#1704587 and Ben Harsha was
supported by a Rolls Royce Doctoral Fellowship. We would also like to extend a special thanks to
KoreLogic for their assistance with the LinkedIn password frequency corpus.

References

[1] 2018. If you forgot the passcode for your iPhone, iPad, or iPod touch, or your device is disabled. https://support.apple.
com/en-us/HT204306

[2] 2019. Brute Force Attacks Conducted by Cyber Actors, Alert (TA18-086A).  https://www.us-cert.gov/ncas/alerts/
TA18-086A

[3] 2019. Hackers find new way to bilk eBay users - CNET. https://www.cnet.com/news/
hackers-find-new-way-to-bilk-ebay-users/

[4] 2019. The top 500 sites on the web. https://www.alexa.com/topsites

[5] Anne Adams and Martina Angela Sasse. 1999. Users are not the enemy. Commun. ACM 42, 12 (1999), 40-46.

[6] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering, and Jacob C. N. Schuldt. 2013. On
the Security of RC4 in TLS. In USENIX Security 2013, Samuel T. King (Ed.). USENIX Association, 305-320.

""Even in the absence password length leakage attacks the following advice can help a user to secure his accounts. However,
the advice takes on a greater urgency due to the stronger threat of online attackers.

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O


https://support.apple.com/en-us/HT204306
https://support.apple.com/en-us/HT204306
https://www.us-cert.gov/ncas/alerts/TA18-086A
https://www.us-cert.gov/ncas/alerts/TA18-086A
https://www.cnet.com/news/hackers-find-new-way-to-bilk-ebay-users/
https://www.cnet.com/news/hackers-find-new-way-to-bilk-ebay-users/
https://www.alexa.com/topsites

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

25

Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols.
In 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 526-540. https://doi.org/10.1109/SP.
2013.42

Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2016. Argon2: new generation of memory-hard functions for
password hashing and other applications. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 292-302.

Jeremiah Blocki. 2016. Differentially Private Integer Partitions and their Applications. Theory and Practice of Differential
Privacy (2016).

Jeremiah Blocki, Manuel Blum, and Anupam Datta. 2013. Naturally Rehearsing Passwords. In ASIACRYPT 2013,
Part Il (LNCS, Vol. 8270), Kazue Sako and Palash Sarkar (Eds.). Springer, Heidelberg, 361-380. https://doi.org/10.
1007/978-3-642-42045-0_19

Jeremiah Blocki and Anupam Datta. 2016. CASH: A Cost Asymmetric Secure Hash Algorithm for Optimal Password
Protection. In 2016 IEEE 29th Computer Security Foundations Symposium (CSF). IEEE, 371-386. https://doi.org/10.
1109/CSF.2016.33

Jeremiah Blocki, Anupam Datta, and Joseph Bonneau. 2016. Differentially Private Password Frequency Lists. In
NDSS 2016. The Internet Society.

Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. 2018. On the Economics of Offline Password Cracking. In 2018
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 853—-871. https://doi.org/10.1109/SP.2018.
00009

Jeremiah Blocki, Saranga Komanduri, Lorrie Faith Cranor, and Anupam Datta. 2015. Spaced Repetition and Mnemonics
Enable Recall of Multiple Strong Passwords. In NDSS 2015. The Internet Society.

Jeremiah Blocki and Wuwei Zhang. 2020. DALock: Distribution Aware Password Throttling. arXiv preprint
arXiv:2005.09039 (2020).

Joseph Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords. In 2012
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 538-552. https://doi.org/10.1109/SP.2012.49
Joseph Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords. In Pro-
ceedings of the 2012 IEEE Symposium on Security and Privacy (SP ’12). IEEE Computer Society, Washington, DC, USA,
538-552. https://doi.org/10.1109/SP.2012.49

Joseph Bonneau and Soren Preibusch. 2010. The Password Thicket: technical and market failures in human authentication
on the web. In WEIS 2010.

Joseph Bonneau and Stuart Schechter. 2014. Towards Reliable Storage of 56-bit Secrets in Human Memory. In Proceed-
ings of the 23rd USENIX Conference on Security Symposium (San Diego, CA) (SEC’14). USENIX Association, Berkeley,
CA, USA, 607-623. http://dl.acm.org/citation.cfm?id=2671225.2671264

Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-record communication, or, why not to use PGP. In Pro-
ceedings of the 2004 ACM workshop on Privacy in the electronic society - WPES ’04. ACM Press, New York, New York,
USA, 77. https://doi.org/10.1145/1029179.1029200

S Brostoff and MA Sasse. 2003. “Ten strikes and you’re out”: Increasing the number of login attempts can improve
password usability. (apr 2003). http://discovery.ucl.ac.uk/19826/

Elie Bursztein, Steven Bethard, Celine Fabry, John C. Mitchell, and Daniel Jurafsky. 2010. How Good Are Humans at
Solving CAPTCHAs? A Large Scale Evaluation. In 2010 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 399-413. https://doi.org/10.1109/SP.2010.31

Elie Bursztein, Matthieu Martin, and John C. Mitchell. 2011. Text-based CAPTCHA strengths and weaknesses. In ACM
CCS 2011, Yan Chen, George Danezis, and Vitaly Shmatikov (Eds.). ACM Press, 125-138. https://doi.org/10.1145/
2046707.2046724

David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-Abuse Attacks Against Searchable En-
cryption. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security - CCS '15.
ACM Press, New York, New York, USA, 668—679. https://doi.org/10.1145/2810103.2813700

Peter Chapman and David Evans. 2011. Automated black-box detection of side-channel vulnerabilities in web applica-
tions. In Proceedings of the 18th ACM conference on Computer and communications security - CCS "11. ACM Press,
New York, New York, USA, 263. https://doi.org/10.1145/2046707.2046737

Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-Channel Leaks in Web Applications: A Reality
Today, a Challenge Tomorrow. In 2010 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 191—
206. https://doi.org/10.1109/SP.2010.20

Yangyi Chen, Tongxin Li, XiaoFeng Wang, Kai Chen, and Xinhui Han. 2015. Perplexed Messengers from the Cloud. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security - CCS ’15. ACM Press,
New York, New York, USA, 1260-1272. https://doi.org/10.1145/2810103.2813652

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O


https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1007/978-3-642-42045-0_19
https://doi.org/10.1007/978-3-642-42045-0_19
https://doi.org/10.1109/CSF.2016.33
https://doi.org/10.1109/CSF.2016.33
https://doi.org/10.1109/SP.2018.00009
https://doi.org/10.1109/SP.2018.00009
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.49
http://dl.acm.org/citation.cfm?id=2671225.2671264
https://doi.org/10.1145/1029179.1029200
http://discovery.ucl.ac.uk/19826/
https://doi.org/10.1109/SP.2010.31
https://doi.org/10.1145/2046707.2046724
https://doi.org/10.1145/2046707.2046724
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2046707.2046737
https://doi.org/10.1109/SP.2010.20
https://doi.org/10.1145/2810103.2813652

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

26

(28]

[29]
[30]

(31]

[32]

(33]

[34]

(35]
[36]

[37]

[42]
[43]

[44]

[45]

[46]

[47]
(48]

[49]

Mauro Conti, Luigi V. Mancini, Riccardo Spolaor, and Nino Vincenzo Verde. 2015. Can’T You Hear Me Knocking:
Identification of User Actions on Android Apps via Traffic Analysis. In Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy (San Antonio, Texas, USA) (CODASPY ’15). ACM, New York, NY, USA, 297-304.
https://doi.org/10.1145/2699026.2699119

Nick Cubrilovic. 2009. RockYou Hack: From Bad To Worse. https://techcrunch.com/2009/12/14/
rockyou-hack-security-myspace-tfacebook-passwords/

T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246. RFC Editor.
http://www.rfc-editor.org/rfc/rfc5246.txt

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. 2007. Searching for Shapes in Cryptographic Protocols.
In Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (Braga, Portugal) (TACAS’07). Springer-Verlag, Berlin, Heidelberg, 523-537. http://dl.acm.org/citation.cfm?id=
1763507.1763561

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer, Nicolas Weaver, David
Adrian, Vern Paxson, Michael Bailey, and J. Alex Halderman. 2014. The Matter of Heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Conference (Vancouver, BC, Canada) (IMC ’14). ACM, New York, NY, USA,
475-488. https://doi.org/10.1145/2663716.2663755

Cynthia Dwork. 2006. Differential Privacy (Invited Paper). In ICALP 2006, Part Il (LNCS, Vol. 4052), Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener (Eds.). Springer, Heidelberg, 1-12.  https://doi.org/10.
1007/11787006_1

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating Noise to Sensitivity in Private Data
Analysis. In TCC 2006 (LNCS, Vol. 3876), Shai Halevi and Tal Rabin (Eds.). Springer, Heidelberg, 265-284. https:
//doi.org/10.1007/11681878_14

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography. Springer, 265-284.

Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differential Privacy. Foundations and Trends in
Theoretical Computer Science 9, 3-4 (2014), 211-407. https://doi.org/10.1561/0400000042

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012. Peek-a-Boo, I Still See You: Why
Efficient Traffic Analysis Countermeasures Fail. In 2012 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 332-346. https://doi.org/10.1109/SP.2012.28

Let’s Encrypt. 2019. Let’s Encrypt Stats. https://letsencrypt.org/stats/. Retrieved 5/14/2019.

M Fiore and M Abadi. 2001. Computing symbolic models for verifying cryptographic protocols. In Proceedings of 14th
IEEE Computer Security Foundations Workshop, 2001. IEEE, 160-173.

Dinei Floréncio, Cormac Herley, and Paul C. Van Oorschot. 2014. An Administrator’s Guide to Internet Password Re-
search. In Proceedings of the 28th USENIX Conference on Large Installation System Administration (LISA’14). 35-52.
Dinei Floréncio, Cormac Herley, and Paul C. Van Oorschot. 2014. Password Portfolios and the Finite-effort User: Sustain-
ably Managing Large Numbers of Accounts. In Proceedings of the 23rd USENIX Conference on Security Symposium (San
Diego, CA) (SEC’14). USENIX Association, Berkeley, CA, USA, 575-590. http://dl.acm.org/citation.cfm?id=2671225.
2671262

Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jorg Schwenk, and Thorsten Holz. 2016. How
Secure is TextSecure?. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 457-472.
Haichang Gao, Jeff Yan, Fang Cao, Zhengya Zhang, Lei Lei, Mengyun Tang, Ping Zhang, Xin Zhou, Xuqin Wang, and
Jiawei Li. 2016. A Simple Generic Attack on Text Captchas. In NDSS 2016. The Internet Society.

Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and Michael Rushanan. 2016. Dancing on the Lip of
the Volcano: Chosen Ciphertext Attacks on Apple iMessage. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 655-672. https://www.usenix.org/conference/usenixsecurity 16/technical-sessions/
presentation/garman

Ian Goldberg, Berkant Ustaoglu, Matthew D. Van Gundy, and Hao Chen. 2009. Multi-party off-the-record messaging. In
Proceedings of the 16th ACM conference on Computer and communications security - CCS '09. ACM Press, New York,
New York, USA, 358. https://doi.org/10.1145/1653662.1653705

Paul A Grassi, James L Fenton, Elaine M Newton, Ray A Perlner, Andrew R Regenscheid, William E Burr, Justin P
Richer, Naomi B Lefkovitz, Jamie M Danker, Yee-Yin Choong, Kristen K Greene, and Mary F Theofanos. 2017. Digital
identity guidelines: authentication and lifecycle management. https://doi.org/10.6028/NIST.SP.800-63b

Robert Hackett. 2016. LinkedIn Lost 167 Million Account Credentials in Data Breach. http://fortune.com/2016/05/18/
linkedin-data-breach-email-password/

Benjamin Harsha and Jeremiah Blocki. 2018. Just In Time Hashing. In 2018 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 368-383.

R Housley. [n.d.]. RFC 5652-Cryptographic Message Syntax (CMS). September 2009.


https://doi.org/10.1145/2699026.2699119
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://www.rfc-editor.org/rfc/rfc5246.txt
http://dl.acm.org/citation.cfm?id=1763507.1763561
http://dl.acm.org/citation.cfm?id=1763507.1763561
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.1109/SP.2012.28
https://letsencrypt.org/stats/
http://dl.acm.org/citation.cfm?id=2671225.2671262
http://dl.acm.org/citation.cfm?id=2671225.2671262
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garman
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garman
https://doi.org/10.1145/1653662.1653705
https://doi.org/10.6028/NIST.SP.800-63b
http://fortune.com/2016/05/18/linkedin-data-breach-email-password/
http://fortune.com/2016/05/18/linkedin-data-breach-email-password/

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]
[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

27

Philip G. Inglesant and M. Angela Sasse. 2010. The True Cost of Unusable Password Policies: Password Use in the Wild.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10).
ACM, New York, NY, USA, 383-392. https://doi.org/10.1145/1753326.1753384

Internet Crime Complaint Center. 2015. 2015 Internet Crime Report. Technical Report. https://pdf.ic3.gov/2015_
ic3report.pdf

Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, and Julio Lopez. 2012. Guess Again (and Again and Again): Measuring Password Strength
by Simulating Password-Cracking Algorithms. In 2012 IEEE Symposium on Security and Privacy. IEEE Computer Soci-
ety Press, 523-537. https://doi.org/10.1109/SP.2012.38

Jeremy Kirk. 2014. Amazon.com security slip allowed unlimited password guesses. https://www.pcworld.com/article/
2102640/amazoncom-security-slip-allowed-unlimited-password- guesses.html

Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Advances
in Cryptology — CRYPTO ’96: 16th Annual International Cryptology Conference Santa Barbara, California, USA August
18-22, 1996 Proceedings, Neal Koblitz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 104—113. https://doi.org/
10.1007/3-540-68697-5_9

Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L Mazurek, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, and Serge Egelman. 2011. Of passwords and people: measuring the effect of password-composition policies. In
CHI. 2595-2604. http://dl.acm.org/citation.cfm?id=1979321

Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson, Narseo Vallina-Rodriguez, and Juan Ca-
ballero. 2018. Coming of Age: A Longitudinal Study of TLS Deployment. In Proceedings of the Internet Measure-
ment Conference 2018 (Boston, MA, USA) (IMC ’18). ACM, New York, NY, USA, 415-428. https://doi.org/10.1145/
3278532.3278568

Frank McSherry and Kunal Talwar. 2007. Mechanism design via differential privacy. In Foundations of Computer Science,
2007. FOCS’07. 48th Annual IEEE Symposium on. IEEE, 94-103.

Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential Privacy. In 48th FOCS. IEEE Computer
Society Press, 94—103. https://doi.org/10.1109/FOCS.2007.41

Bodo Moller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites: exploiting the SSL 3.0 fallback. Security
Advisory (2014).

Robert Morris and Ken Thompson. 1979. Password security: A case history. Commun. ACM 22, 11 (1979), 594-597.
Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon McCoy, Geoffrey M. Voelker, and Stefan Savage. 2010. Re:
CAPTCHAs-Understanding CAPTCHA-Solving Services in an Economic Context. In USENIX Security 2010. USENIX
Association, 435-462.

Arvind Narayanan and Vitaly Shmatikov. 2009. De-anonymizing Social Networks. In 2009 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, 173—187. https://doi.org/10.1109/SP.2009.22

Benny Pinkas and Tomas Sander. 2002. Securing Passwords Against Dictionary Attacks. In ACM CCS 2002, Vijayalak-
shmi Atluri (Ed.). ACM Press, 161-170. https://doi.org/10.1145/586110.586133

Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. https://doi.org/10.17487/
RFC8446

Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C. Mitchell. 2005. Stronger Password Authentication Us-
ing Browser Extensions. In Proceedings of the 14th Conference on USENIX Security Symposium - Volume 14 (Baltimore,
MD) (SSYM’05). USENIX Association, Berkeley, CA, USA, 2-2. http://dl.acm.org/citation.cfm?id=1251398.1251400
Stuart Schechter, Yuan Tian, and Cormac Herley. 2019. StopGuessing: Using guessed passwords to thwart online guess-
ing. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 576-589.

Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L. Mazurek, Sean M. Segreti,
Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2014. Can Long Passwords Be Secure and Usable?. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14).
ACM, New York, NY, USA, 2927-2936. https://doi.org/10.1145/2556288.2557377

Alex  Simons. 2018. Azure AD and ADFS best practices: Defending against pass-
word spray attacks. https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/
azure-ad-and-adfs-best-practices-defending-against-password-spray-attacks/

Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. 2016. The Cracked Cookie Jar: HTTP Cookie Hijacking
and the Exposure of Private Information. In 2016 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 724-742. https://doi.org/10.1109/SP.2016.49

Dawn Xiaodong Song, David Wagner, and Xuqing Tian. 2001. Timing Analysis of Keystrokes and Timing Attacks on
SSH. In Proceedings of the 10th Conference on USENIX Security Symposium - Volume 10 (Washington, D.C.) (SSYM’01).
USENIX Association, Berkeley, CA, USA, Article 25. http://dl.acm.org/citation.cfm?id=1251327.1251352

O 0 J o U w N

B W W W W W WwWw WD R R R R R R
w N PO VW 0 J o OB W NP O VW 0 Jd o OB W NP O VW 0 J o b W ND P o

44
45
46


https://doi.org/10.1145/1753326.1753384
https://pdf.ic3.gov/2015_ic3report.pdf
https://pdf.ic3.gov/2015_ic3report.pdf
https://doi.org/10.1109/SP.2012.38
https://www.pcworld.com/article/2102640/amazoncom-security-slip-allowed-unlimited-password-guesses.html
https://www.pcworld.com/article/2102640/amazoncom-security-slip-allowed-unlimited-password-guesses.html
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
http://dl.acm.org/citation.cfm?id=1979321
https://doi.org/10.1145/3278532.3278568
https://doi.org/10.1145/3278532.3278568
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/SP.2009.22
https://doi.org/10.1145/586110.586133
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
http://dl.acm.org/citation.cfm?id=1251398.1251400
https://doi.org/10.1145/2556288.2557377
https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/azure-ad-and-adfs-best-practices-defending-against-password-spray-attacks/
https://www.microsoft.com/en-us/microsoft-365/blog/2018/03/05/azure-ad-and-adfs-best-practices-defending-against-password-spray-attacks/
https://doi.org/10.1109/SP.2016.49
http://dl.acm.org/citation.cfm?id=1251327.1251352

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

28

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, lan Goldberg, and Matthew Smith. 2015. SoK:
Secure Messaging. In 2015 IEEE Symposium on Security and Privacy. IEEE, 232-249. https://doi.org/10.1109/SP.2015.
22

Nik Unger and Ian Goldberg. 2015. Deniable Key Exchanges for Secure Messaging. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security - CCS ’15. ACM Press, New York, New York, USA,
1211-1223. https://doi.org/10.1145/2810103.2813616

Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle L Mazurek, Timothy Passaro,
Richard Shay, Timothy Vidas, Lujo Bauer, et al. 2012. How does your password measure up? The effect of strength
meters on password creation.. In USENIX Security Symposium. 65-80.

Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. 2003. CAPTCHA: Using Hard Al Problems for
Security. In EUROCRYPT 2003 (LNCS, Vol. 2656), Eli Biham (Ed.). Springer, Heidelberg, 294-311. https://doi.org/10.
1007/3-540-39200-9_18

Guido Vranken. [n.d.]. HTTPS Bicycle Attack. Technical Report. https://guidovranken.files.wordpress.com/2015/12/
https-bicycle-attack.pdf

Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. 2016. Targeted Online Password Guessing: An
Underestimated Threat. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi (Eds.). ACM Press, 1242-1254. https://doi.org/10.1145/2976749.2978339

Jos Wetzels. 2016. Open Sesame: The Password Hashing Competition and Argon2. Cryptology ePrint Archive, Report
2016/104. http://eprint.iacr.org/2016/104.

Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose. 2011. Phonotactic Reconstruction of
Encrypted VoIP Conversations: Hookt on Fon-iks. In 2011 IEEE Symposium on Security and Privacy. IEEE, 3-18. https:
//doi.org/10.1109/SP.2011.34

Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian Monrose, and Gerald M. Masson. 2008. Spot Me if You Can:
Uncovering Spoken Phrases in Encrypted VoIP Conversations. In 2008 IEEE Symposium on Security and Privacy (sp
2008). IEEE, 35-49. https://doi.org/10.1109/SP.2008.21

Charles V Wright, Lucas Ballard, Fabian Monrose, and Gerald M Masson. 2007. Language identification of encrypted
voip traffic: Alejandra y Roberto or Alice and Bob?. In USENIX Security, Vol. 3. 3.

Weining Yang, Ninghui Li, Omar Chowdhury, Aiping Xiong, and Robert W. Proctor. 2016. An Empirical Study of
Mnemonic Sentence-based Password Generation Strategies. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, 1216-1229. https://doi.org/10.1145/
2976749.2978346

Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei Xu, Xiaojiang Chen, and Zheng Wang.
2018. Yet Another Text Captcha Solver: A Generative Adversarial Network Based Approach. In ACM CCS 2018, David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, 332-348. https://doi.org/10.1145/
3243734.3243754

Kim Zetter. 2016. NSA Hacker Chief Explains How to Keep Him Out of Your System. https://www.wired.com/2016/
01/nsa-hacker-chief-explains-how-to-keep-him-out-of-your-system/

Appendix A. Notation Guide

Here we include a brief summary of the notation used in our analysis. This is meant as a quick refer-
ence for intuition - for full definitions see the main body of the paper.

p: The proportion of users who selected the i’th most common password

p! The proportion of users who selected the i’th most common password of length ¢

B The number of guesses an adversary is making in a password-guessing attack

Ap The proportion of passwords guessed in some attack with B guesses. E.g. A1 is the proportion of

passwords an adversary would guess with no additional information.

star (*) Indicates attacker knowledge of password length. No star means the attacker does not know

password length, and a star means they do. E.g. A} is the proportion of passwords guessed in an
attack where the attacker knows password length.

¢ Means the variable is only considering the list of passwords of length £. E.g. Ag/ is the proportion

of passwords of length £ guessed in B guesses.
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Fig. 1. Top Alexa 100 using AES-GCM

v The value of a guessed password
k The cost of guessing a password
R(v, B) The expected reward an attacker would get in an attack with B guesses against a password

with value v.

29

C(k, B) The expected cost an attacker must pay to make B guesses on a password list, with each guess

costing k.

G(v,k,B) The expected gain (i.e. Reward - Cost) of an attacker making B guesses with password
value v and cost of each guess k.

BOPT

v The value of B that maximizes G for some list of passwords, value v, and guess cost k.

Bar (e.g. 1) Number of passwords guessed when using the relevant

Appendix B. Alexa TOP 100

BOPT

value.

For the following Top Alexa 100, these websites used AES-GCM as one of the potential cipher suites.

In all cases, these websites did not offer sufficient additional protection (i.e., padding) to obfuscate the
password length. Thus, if a Top Alexa 100 website uses AES-GCM, denoted with a 1 in the table, then
it was vulnerable to an attacker inferring the length for a plausible attack outlined in section 5.
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Additional tables

Company Website Alexa Top 100 Ranking (April 2017) Cipher Suite AES-GCM
Trnall detail.tmall.co 40 TLS ECDHE ECDSA WITH_AES 128 GCM_SHA256 1
m
TLS _RSA WITH_AES 256 CBC_SHA
WordPress.com | WOrdpress.co 41 o
MSN msn.com 42 | TLS ECOHE_ECDSA_WITH_AES_128 GOM SHA2S6 '
It TLS RSA WITH_AES 256 CBC_SHA256
AlExpress aliexpress.co 4 5 o
Bing bing.com 44 | TLS ECDHE_ECDSA WITH_AES 128 GCM_SHA256 1
Tumblr umblr.com 45 | TLS ECDHE ECDSA WITH_AES 128 GCM SHA256 1
Google Ganasa | google.ca 46 | TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2S6 ]
i i TLS_ECDHE_ RSA_WITH_AES 256 GCM SHA2S4
Lvetasmin livejasmin.co e 1
Microsoft microsoft.com 48 | TLS ECDHE RSA WITH_AES 256 GCM_SHA3S4 1
TLS_EGDHE_ECDSA WITH_AES, 128, GCM_SHAZSS
Stack Overflow stackoverflow, 49 1
Twiteh twitch.tv 50 | TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2S6 ]
Soso.com s0s0.com 51| TLS_ECOHE_ECDSA_WITH_AES_128 GCM SHA2S6 '
Blogspot blogspat.com 52 | TLS EGDHE ECDSA WITH_AES 128 GCM _SHA256 1
Amazen Japan | amazon.cap 53 | TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2S6 ]
Odnoklassnki | of.ru 54 | TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2S6
TLS_ECDHE_ECDSA WITH_AES 128 GCM_SHA256
Google Mexico goog\e comm 55 !
Apple Inc apple.com 56 | TLS_ECOHE_ECOSA_WITH_AES_128_GCM_SHA2S6 1
Naver Naver.com 57 | TLS ECDHE RSA WITH AES 256 GOM_SHA3S 1
Mail.ru mail.ru 58 | TLS ECDHE RSA WITH AES 256 GCM_SHA3S4 1
IMDb imdb.com 59 | No Encryption [
PopAds popads.net 60 | TLS_ECOHE_ECDSA_WITH_AES_128_ GCM_SHA2S6 1
Tianya Club tianya.cn 61 | Mo Encryption 0
Microsoft Office | office.com 62 | TLS_ECDHE ECDSA WITH_AES 128 GCM_SHA258 1
GoogleKorea | google.CO.KT 63 | TLS_ECOHE_ECDSA_WITH_AES_128_ GCM_SHA2S6 1
Github github.com 64 | TLS ECOHE_ECDSA_WITH_AES_128 GCM SHA2S6 '
Pinterest pinterest.com 65 | TLS_ECDHE ECDSA WITH_AES 128 GCM_SHA258 1
payPal paypal.com 66 | TLS_ECDHE_ECDSA_WITH_AES_128_ GCM_SHA2S6 1
Diply diply.com 67 | TLS ECOHE_ECDSA_WITH_AES_128_ GCM SHA2S6 '
GocoleTaman | 9000le.COM.E g | TS ECOHE ECOSA WITH AES. 128 GCM SHAZSS 1
Cocalefaman 1y
Google Turkey | google.com.r 6O | TLS ECDHE ECDSA WITH_AES 128 GCM SHA256 1
TLS_ECDHE ECDSA WITH_AES 128 GCM_SHA256
Google Australia SODQ‘E com.a 70 !
Amazon TLS_ECDHE_ECOSA WITH AES, 128 GCM_SHAZSS '
Germany amazon.de 72
TLS_EGDHE_ECDSA WITH AES, 128, GCM_SHAZSS
foogla | google.co.id 73 1
Fig. 2. Top Alexa 100 using AES-GCM (Continued)
Table 7
Cracking data for limited guessing
Length s a, A Aol
engths vk, vkl = Ayt v,/ vk,

limit

102

10%

10°

102

10% 108

107

108

0.060

0.522

1.000

0.060

0.249 | 0.315

1.912

1.460

0.034

0.258

1.000

0.000

0.059 | 0.190

1.300

1.235

0.000

0.182

0.596

0.000

0.081 | 0.132

1.802

1.284

0.000

0.128

0.500

0.000

0.059 | 0.132

1.855

1.359

0.019

0.121

1.000

0.019

0.064 | 0.863

2.122

7.300

>~ \O| oo || W

0.014

0.177

0.822

Appendix C. Performance Comparison AES-GCM vs AES-CBC

We ran our own measurements to compare the performance between CBC and GCM. The results are
shown in Figure 5. First, we are producing a set of randomized bits to encrypt using the SecureRandom
function in Java and storing it in a 64 byte buffer. Next, we then take the 64 byte buffer and encrypt
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Company. Website Alexa Top 100 Ranking (April 2017) Cipher Suite AES-GEM
LS ECOHE ECDSA WITH_AES 128 GCM_SHAZ56
Tenall detail.tmall.co 40 1
m
LS RSA WITH AES 256 CBG_SHA
WordPress.com xordpress.co 41 ¢
MSN msn.com 42 | TLS ECDHE ECDSA WITH_AES 128 GCM _SHA258 1
LS RSA_WITH AES 256 CBC_SHAZS6
AExpress aliexpress.co s o
m
Bing bing.com 44 | TLS ECDHE_ECDSA WITH_AES, 128 GCM_SHA256 1
Tumblr tumblr.com 45 | TLS_ECDHE_ECDSA WITH_AES, 128 GCM_SHA256 1
Google Canada | google.ca 46 | TLS ECDHE ECDSA WITH_AES 128 GCM _SHA258 1
i i TLS ECOHE RSA WITH AES 256 GCM SHA38L
Livesasmin livejasmin.co 4 1
Microsaft microsoft.com 48 | TLS ECDHE RS WITH_AES 256 GOM_SHA3S 1
LS ECDHE ECDSA WITH_AES 128 GCM_SHA2S6
Stack Overflow | StACkoverflow, 40 1
com
Twitch twitch.tv 50 | TLS ECDHE ECOSA WITH AES 128 GCM_SHA256 1
Soso.com 5050.c0M 51 | TLS_ECDHE ECOSA WITH_AES 128 GOM_SHA2SE 1
Blogspot blegspat.com 52 | TLS_ECDHE_ECOSA_WITH_AES 128 GCOM_SHA2SE 1
Amazon Japan | amazon.co.jp 53 | TLS_ECDHE_ECDSA WITH_AES, 128 GCM_SHA2S6 1
Odnoklassnlki | ok, 54 | TLS ECDHE ECDSA WITH_AES 128 GCM_SHA2S6
TLS ECOHE ECDSA WITH AES 128 GCM_SHA236
Gooale Mexico gougle com.m 55 1
Appla Inc. apple.com 56 | TLS_ECDHE_ECOSA_WITH_AES 128 GOM_SHA2SE 1
Naver Maver.com 57 | TLS_ECDHE_RSA_WITH_AES_256 GCM_SHA384 1
Mailry mail.fu 58 | TLS_ECDHE_RSA_WITH AES_256 GGM_SHA384 1
IMDb imdb.com 59 | Mo Encryption o
PopAds popads.net 60 | TLS ECDHE_ECDSA WITH AES. 128 GCM_SHA256 1
Tianya Club fianya.cn 61 | No Enciyption o
Microsoft Office | office.com 62 | TLS ECDHE ECOSA WITH_AES 128 GCM _SHA258 1
Google Korea | google.co.kr 63 | TLS_ECDHE_ECOSA_WITH_AES 128 GCOM_SHA2SE 1
Gitkub github.com 64 | TLS_ECDHE_ECOSA_WITH_AES 128 GOM_SHA2SE 1
Pinterest pinterest.com 65 | TLS_ECDHE_ECDSA WITH_AES, 128 GCM_SHA2S6 1
PayPal paypal.com 66 | TLS ECDHE ECDSA WITH AES 128 GCM_SHA256 1
Diply. diply.com 67 | TLS ECDHE_ECDSA WITH AES. 128 GCM_SHA256 1
LS ECDHE_ECDSA WITH_AES 128 GCM_SHA2SE
Google Taiwan | 9000E.COM.L 68 !
Google Tukey | google.com.tr 60 | TLS ECDHE_ECDSA WITH_AES, 128 GCM_SHA2S6 1
LS EGDHE_ECDSA WITH_AES 128 GCM_SHARSE
Google Australia google £om.a 70 !
Amazon TLS ECDHE ECDSA WITH_AES 128 GCM SHA56 1
Germany amazon.de 72
Google TLS_ ECOHE ECDSA WITH_AES 128 GCM SHA56 1
Indonesia google.co.id 73

Fig. 3. Top Alexa 100 using AES-GCM (Continued)

it 100,000 times on a 2.9 GHz Intel Core i7 with 16 GB of LPDDR3 memory. We repeat the test 100
times and take the median score for the duration of time to hash or encrypt the randomized data with
or without padding. The results are consistent with prior findings that GCM is substantially faster than
CBC mode due to native support for GCM at the processor level. We remark that the use of the padding
flag in TLS has minimal effect on the impressive performance of GCM.

Appendix D. Additional Detail for Observational Studies

The general approach for these studies was to observe network traffic for each service or function
studied with transport security protocols: QUIC, TLS version 1.2 and TLS version 1.3 (draft). The first
study looked at Google’s QUIC protocol in the Cisco ASA5506 enabled Virtual Private Network (VPN)
while the second study observed QUIC during the sign-in process for Google Mail. The third and fi-
nal observational study examined TLS version 1.2 during the sign in process for online banking at JP
Morgan Chase. As depicted in Figure 6, all three studies demonstrated an obvious pattern between en-
crypted traffic and the plaintext length of passwords; in particular, we observed a clear linear relationship
between the password lengths and the length of the encrypted payloads in the respective packets.
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Company Website Alexa Top 100 Ranking (April 2017)  Gipher Suite AES-GEM
Microsoft Online | microsoftonlin TLS_ECDHE RSA_WITH_AES 256 _GCM_SHA3S4 1
Serices e.com 7
Onelekds onclckds.com 75 | No Encryption 0
Amazon UK ‘amazon.co.uk 76 | TLS_ECDHE ECDSA WITH_AES 128 GCM_SHA2S6 1
THI texx.com 77 | TLS_ECDHE _ECDSA WITH_AES 128 GCM_SHA256 1
Adobe Systems | adobe.com 78 | No Encryption 0
Wikia wikia.com 79 | TLS_ECDHE_ECDSA WITH_AES 128 GCM_SHA256 1
CNZZ cnzz.com 80 | No Encryption 0
xHamster xhamster.com 81 | TLS_ECDHE RSA_WITH_AES 256 GCM_SHA3S4 1
Cée Cée COCCOC.00M 82 | No Encryption [}
Songa Cams bongacams.c i TLS_ECDHE_RSA_WITH_AES,_ 256_GCM_SHA384 1
om
FC2 fc2.com 84 | TLS ECDHE ECDSA WITH_AES 128 GCM_SHA286 1
Pixnet M B85 | TLS_ECDHE_RSA_WITH_AES _256_GCM_SHA324 1
Boogle Poland | google.pl 86 | TLS_ECDHE_ECDSA WITH_AES_128_GCM_SHA256 1
Dropbox dropbox.com 87 | TLS ECDHE RSA_WITH_AES 256 GOM_SHA3S4 1
Google file TLS_ECDHE_ECDSA WITH_AES 128 GCM_SHA2SG 1
storage ntent.com 88
Daily | gmw.cn 89 | No Encryption 0

What ﬂnmm a0 TLS_ECDHE_ECDSA WITH_AES_128 GCM_SHA256 1

o E: google.com.e i TLS_ECDHE ECDSA WITH AES 128 GCM_SHA256 1

a

‘Google Thailand gg_umm 92 | TLS_EGDHE ECDSA WITH_AES 128 GCM_SHA256 1
m@w qgoogle.com.s 0 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 1
abla a
Amazon India ‘amazon.in 94 | TLS_ECDHE_ECDSA_WITH_AES_i28_GCM_SHA2S6 1
‘Google Argentina wma[ 95 | TLS_EGDHE ECDSA WITH_AES 128 GCM_SHA256 1
BBC bbc.co.uk 96 | TLS_ECDHE_ECDSA WITH_AES 128 GCM_SHA256 1
Craigelist Q[algsj‘s_\_g_[g 97 | TLS_ECDHE ECDSA WITH_AES 128 GCM_SHA286 1
BBC Online bbc.com 98 | TLS_ECDHE ECDSA WITH_AES 128 GCM_SHA256 1
Soundeloud giuﬂmmj i TLS_ECDHE_ECDSA WITH_AES_128_GGM_SHA256 1
mmds mﬂl 100 TLS_ECDHE_ECDSA WITH_AES 128 GCM_SHA256 1

Fig. 4. Top Alexa 100 using AES-GCM (Continued)
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Fig. 5. Comparison of performance for CBC versus GCM
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Observational Study 1: QUIC in Cisco Virtual Private Network

This observational study draws inferences from a sample of network packets captured from a Cisco
ASA 5506 VPN stream. This study was a necessary first step in identifying vulnerabilities in this VPN
for future research. This observational study did not control confounding variables, because this would
make it difficult to understand the normal behavior of the encrypted VPN stream.
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Fig. 6. Relationship between password length and packet payload length

Phenomena and Variables

This study investigates phenomena of information leakage from encrypted traffic. Specifically, this
study collected and analyzed network traffic produced from the Cisco ASA 5506 appliance, one of the
most popular VPN devices used for connecting organizations around the world. This observational study
tried to answer the following research question: what information, if any, can be derive from an encrypted
Cisco VPN stream by observing the source and destination Internet Protocol (IP) address, the protocol
used, the encrypted IP packet size, and the timestamps for when packets are sent. Within this research
question, we measured four (4) variables: what communication occurred, when did the communication
take place, where did the communication take place, and who is involved in the communication.

Measures

To measure these variables, this study observed the packet attributes. A comparison of packet at-
tributes for encrypted and corresponding unencrypted traffic was conducted to identify any ordinal pat-
terns among the packet sequence, source Internet Protocol address, destination Internet Protocol address,
protocol, and packet length. These network attributes were observed using packet length in bytes, the IP
Addresses were in IP version 4 format, and the communication protocol was translated from Hexadeci-
mal automatically from WireShark. These attributes and these measures served to help us comprehend
the network traffic occurring during a specific observation.

Sample

For each observation, the data was collected three times and checked for consistency among the col-
lections to ensure the data was valid. If the three collections were consistent, then we assumed that the
network traffic was accurately collected for a particular network function.

Procedures

This study used a certified Cisco network services company to set up the Cisco VPN network to ensure
the lab configuration was correct. The Cisco ASA VPN device was configured to use TLS version 1.2 to
connect AnyConnect clients for remote access to the internal network. This study also utilized a collec-
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tion platform that allowed simultaneous collection on the internal and external interfaces for the Cisco
ASA 5506 device. This approach allowed for easy observations to compare unencrypted traffic inside the
VPN with the corresponding encrypted traffic immediately outside the VPN. For the internal interface,
this study used a 192.168.1.X C class network. For the external interface, this study attached the Cisco
ASA 5506 to a public IP Address in the C class range. For VPN clients, this study created a specific
192.168.2.X C class pool. This allowed the data to be distinguished between VPN clients and internal
devices. This setup allowed for easily correlation between unencrypted traffic in the 192.168.X.X range
to corresponding encrypted traffic from any Internet routable IP address. Next, the internal devices, the
Internet connection, and Cisco ASA 5506 were all connected to a network hub. The hub forwarded all
network traffic to each device, and therefore, the hub allowed WireShark to sniff all internal and external
communication intended to transit the VPN network.

Next, this study observed common categories of Internet communication. To represent more sponta-
neous types communication, this study observed messages between two persons communicating over
the common Instant Relay Chat (IRC) service and to simulate more continuous types of communication,
we observed file transfers using the common service File Transfer Protocol (FTP). Next, we measured
four independent variables: what, when, where, who. To ensure accuracy, the data was collected three
times and checked for consistency among the collections to ensure the data was valid.

For what, the data compared packet attributes for encrypted and corresponding unencrypted traffic
to identify any ordinal patterns among the packet sequence, source Internet Protocol address, destina-
tion Internet Protocol address, protocol, and packet length. For when, the data measured the interval
between the first and last seen occurrence of the suspected target source and destination Internet Proto-
col addresses. For where, this study used trace route and the WHOIS service to observe the source and
destination Internet Protocol address to identify the city locations. For who, this study used the WHOIS
service to expose the identities of the two parties communicating.

We then reran our observational study using WireShark and allowed simultaneous collection on the
internal and external interfaces for Google’s Chrome web browser to better study QUIC. Again, this
approach allowed for easy observations to compare unencrypted traffic before transmission with the
corresponding encrypted traffic after transmission. A comparison of packet attributes for encrypted and
corresponding unencrypted traffic was conducted to identify any ordinal patterns among the packet se-
quence, source Internet Protocol address, destination Internet Protocol address, protocol, and packet
length. These network attributes were observed using packet length in bytes with IP Addresses in IP
version 4 format; as mentioned previously, the communication protocol was translated from Hexadec-
imal automatically from WireShark. During the course of our observations, it became apparent the en-
crypted traffic allowed for the determination of the plaintext length. This in turn changed the focus of
the research to determine how much of an advantage, if any, an attacker gained from understanding the
plaintext length for passwords transmitted by QUIC, and as we detail later, the researchers used a game
theoretic model to better understand how much, if any, adversarial advantage increased when QUIC
leaks the plaintext length for passwords.

Results: QUIC Leakage in VPN

During collection, it was observed that the Cisco ASA 5506 switched from an encrypted TLS connec-
tion and used an experimental protocol by Google called the Quick UDP Internet Connection (QUIC).
QUIC was made to improve performance. The QUIC protocol supports a set of multiplexed connections
over UDP, and was designed to provide security protection equivalent to TLS/SSL, along with reduced
connection and transport latency. The use of QUIC is absent in the Cisco documentation. To summarize,
the identified ordinal patterns allowed observers to successfully determine the types of communication
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being used. Specifically, it is possible to identify when a user browses a website or when a file is trans-
ferred. It is also possible to positively identify when an IRC client connects and disconnects from an IRC
server, distinguish when online chatting begins and ends, and even derive the total length of individual
IRC chat messages. Below we briefly describe our discoveries for each of our cases:

Web Traffic: After analysis of the collected Web traffic, an ordinal pattern emerged. Packets corre-
sponding to Web traffic used the QUIC protocol and had a consistent total packet length of 1392. This
ordinal pattern allows an eavesdropper to create automatic signatures to determine if Web services are
being used.

FTP Traffic: Here too our analysis of the FTP network traffic revealed an ordinal pattern. FTP traffic
used the QUIC protocol and had a consistent packet length of 1463. As was the case with web traffic,
this ordinal pattern allows an eavesdropper to create automatic signatures to determine if FTP services
are being used in the VPN.

IRC Connect Traffic: In our observation of IRC connection traffic, we saw that the first two packets
sent during the IRC client connect have a packet length of 119 and use the TLSv1.2 protocol. The
remainder of the packets that were sent during the IRC client connect are sent from the server, using
the QUIC protocol, and have varying packet lengths. Each of these ordinal patterns remained consistent
when the client connect phase was repeated. It is important to note that an IRC connection is salient in
identifying a chat session between two users.

IRC Disconnect Traffic: The IRC client disconnect phase was similar to the client connect phase. The
first two packets sent during the client disconnect phase have a packet length of 119 and use the TLSv1.2
protocol. The remainder of the packets are sent from the server, use the QUIC protocol, and have varying
packet lengths. Again, each of these ordinal patterns remained consistent when collection of the client
disconnect phase was repeated. Again, it was important to identify an IRC disconnection to later identify
a chat session between two separate users.

IRC Chat Session: The first two packets sent during the communication phase had a packet length
of 119 and use the TLSv1.2 protocol. The remainder of the packets had varying lengths, all of which
were less than 300 bytes. From these initial observations, the QUIC packet sizes for IRC communication
appeared to vary based upon the length of the IRC message being sent. To investigate these observations
further, additional network traffic was collected. IRC messages, composed of English characters, of
character length one to 100 were sent in half-second intervals while network traffic was collected. The
network setup for this research allowed the unencrypted IRC packets to be collected from the internal
interface of the Cisco VPN.

It is important to stress the increased risk from leaking — via the VNP traffic — fine-grained information
about the plaintext; for example, one can easily envision a situation where the attacker can uniquely
identify the two parties in an IRC chat over a VPN that otherwise would not have been possible if the
leakage were less fine-grained.

Observational Study 2: QUIC in Google’s E-mail or Google Mail

In this observational study, we sought to observe if QUIC specifically leaks the password length when
signing into Google Mail. We again employed a collection platform using WireShark and allowed si-
multaneous collection on the internal and external interfaces to easily compare the encrypted and unen-
crypted traffic. During the course of our observations, it became apparent the encrypted traffic allowed
for the determination of the plaintext length.
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Phenomena and Variables, Measures, Sample
The phenomena, variables, measures, and sample are the same as in the Observational Study 1.

Procedures

The procedures changed slightly for this observational study. In this study, we used the Chrome web
browser, because by default, QUIC is enabled with Chrome. We then used our automated process to
login to Google Mail three times increasing the password length by one character every ten seconds.
We had a ten second delay between passwords entered as this helped introduce a pronounced signature
when reviewing QUIC network traffic in WireShark. Google Mail uses reCAPTCHA to slow the process
down, but we were able to manually enter the CAPTCHA challenge within the ten second time delay
built into our observational study.

Results: Password Length Leakage in QUIC

Our results suggest the password length is easily identified in traffic analysis. The encrypted packet
length and the password length have a 1:1 to ratio or as the password length increases by 1 character,
then the encrypted packet length increases also by 1 byte.

Observational Study 3: TLS version 1.2 in JP Morgan Chase Website

In this observational study, we observed if TLS version 1.2 specifically leaks the password length
when signing into We . As in the previous study, we employed a collection platform using WireShark and
allowed simultaneous collection on the internal and external interfaces to easily compare the encrypted
and unencrypted traffic. During the course of these observations, it again became apparent the encrypted
traffic allowed for the determination of the plaintext length. To ensure consistency, we reviewed that
TLS version 1.2 used AES-GCM every time we signed into JP Morgan Chase from our web browser.

Phenomena and Variables, Measures, Sample
The phenomena, variables, measures, and sample are the same as in the Observational Study 1 and 2.

Procedures

The procedures changed slightly for this observational study. In this study, we used Apple’s Safari web
browser to observe TLS version 1.2 traffic. This helped us understand that any leaking of information
was not exclusive to either the web browser or transport security protocol. We then used our automated
bot to login to JP Morgan Chase’s online banking website three times increasing the password length
by one character every ten seconds. We had a ten second delay between passwords entered, because this
helped introduce a pronounced signature when reviewing TLS version 1.2 network traffic in WireShark.
It should be noted that JP Morgan Chase returned a lock out message, but in reality, it did not lock us
out. We are able to submit a processed query to the server each time without being blocked. As soon as
we signed in with a legitimate account, it did not require multi-factor authentication.

Results: Password Length Leakage in QUIC

Our results suggest the password length is easily identified in traffic analysis. The encrypted packet
length and the password length have a 1:1 to ratio or as the password length increases by 1 character,
then the encrypted packet length increases also by 1 byte.
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Appendix E. Differential Privacy Overview

Differential privacy [35] is a rigorous mathematical formulation of privacy which has emerged as the
de facto standard. Intuitively, differential privacy captures the right of any individual user to withhold
his or her personal data from a study. Informally, differential privacy ensures that any inference that can
be made could have been made whether or not a particular individual’s data was excluded. Differential
privacy does not necessarily rule out publishing accurate aggregate statistics e.g., how many hospital
patients smoke, but would necessarily rule out (accurate) targeted statistics e.g., how many patients
named John Doe live in city X and have cancer?

Password Frequency Lists. In our setting a password dataset D consists of a list tuples (u, pwd,) where
pwd,, is the password selected by user u. Given a dataset D the password frequency consists of non-
negative list of integers fi > fo > ... > 0 where f; denotes the number of users in a dataset who
selected the i™ most popular password and N = Y f; denotes the total number of users in the dataset
We also use f{ > ff > ... > 0 to denote the frequency list for length ¢ passwords, and N, = > f{ to
denote the total number of users who selected a password of length £ — f¢ denotes the number of users
who selected i most popular password with length £.

As an example consider a toy scenario in which 12 users create LinkedIn passwords. Suppose that
J1 = b users select the password “123456,” fo = 3 users select the password “password” and f3 = 2
users select the password “abc123” and f; = 2 users select the password “letmein.” In this case the
overall frequency list would be (f1, f2, f3, fa) = (5,3,2,2) with N = 12, but the frequency list for
length ¢ = 6 passwords would be (f7, £9) = (5,2) with Ng = 7 total passwords of length 6.

We remark that a password frequency list is de-anonymized in the sense that the actual usernames and
passwords have been omitted. However, we stress that releasing a password frequency list without noise
does not satisfy the stringent requirements of differential privacy.

Security Risks. We first discuss the potential risk of releasing password frequency lists without any
noise. In the example above that the attacker happened to know the passwords for eleven of these users.
If only four of these eleven users selected the password “123456” then the attacker who obtains the exact
frequency list (f1, f2, f3, f1) = (5,3,2,2) above would be able to infer the password of the remaining
user. While this scenario may seem a bit far-fetched there are many examples of supposedly anonymized
datasets that were later de-anonymized when the attacker has some background knowledge about the
datae.g., [62].

Formal Definition of Differential Privacy for Password Frequency Lists. A mechanism A which takes
as input a frequency list fi, f2, ... with f; > fi+1 and outputs a noisy frequency list is (e, §)-differentially
private if for all subsets S of output frequency lists we have

PriA(f) eS| <ePr[A(f) eS|+,

Blocki et al. [12] previously developed an (e, §)-differentially private algorithm to publish (noisy)
password frequency lists. While their algorithm does add some noise to the data they proved that the L1
error was small i.e.
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where f is the original frequency list and f is the noisy frequency list output by their mechanism.
Empirical analysis shows that the L1 error is small in practice [9, 12].

Discussion. Differential privacy has several attractive features. It provides rigorous guarantees even
if the attacker already has significant background knowledge about one or more user’s in the dataset.
Another nice feature of differential privacy is that it is preserved under post-processing [36]. Intuitively,
we can take this mean that for any attack that an adversary might mount against a particular individual
user u the probability that the attack succeeds (e.g., guesses the user’s password) would essentially be the
same even if we had excluded the user’s password (u, pwd,,) from the original dataset before publishing
our noisy frequency list f. This guarantee holds even if the adversary already knows the passwords
for all n — 1 other user’s. In this sense f will not help the attacker to guess any particular individual’s
password. We refer an interested reader to [12] for more discussion of differential privacy as it applies
specifically to password frequency lists, and we refer an interested reader to the excellent textbook of
Roth and Dwork [36] for more discussion of differential privacy in general.
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