Computationally Data-Independent Memory Hard
Functions

Mohammad Hassan Ameri

Department of Computer Science, Purdue University, West Lafayette, IN, USA
https://www.cs.purdue.edu/homes/mameriek/

mameriek@purdue.edu

Jeremiah Blocki

Department of Computer Science, Purdue University, West Lafayette, IN, USA
https://www.cs.purdue.edu/homes/jblocki

jblocki@purdue.edu

Samson Zhou

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
https://samsonzhou.github.io/

samsonzhou@gmail.com

—— Abstract

Memory hard functions (MHFs) are an important cryptographic primitive that are used to design
egalitarian proofs of work and in the construction of moderately expensive key-derivation functions
resistant to brute-force attacks. Broadly speaking, MHFs can be divided into two categories: data-
dependent memory hard functions (AMHFs) and data-independent memory hard functions (iMHFS).
iMHFs are resistant to certain side-channel attacks as the memory access pattern induced by the
honest evaluation algorithm is independent of the potentially sensitive input e.g., password. While
dMHFs are potentially vulnerable to side-channel attacks (the induced memory access pattern might
leak useful information to a brute-force attacker), they can achieve higher cumulative memory
complexity (CMC) in comparison than an iMHF. In particular, any iMHF that can be evaluated in

N steps on a sequential machine has CMC at most O (W). By contrast, the dMHF scrypt
og

achieves maximal CMC Q(N?) — though the CMC of scrypt would be reduced to just O (N) after a
side-channel attack.

In this paper, we introduce the notion of computationally data-independent memory hard
functions (ciMHFs). Intuitively, we require that memory access pattern induced by the (randomized)
ciMHF evaluation algorithm appears to be independent from the standpoint of a computationally
bounded eavesdropping attacker — even if the attacker selects the initial input. We then ask whether
it is possible to circumvent known upper bound for iMHFs and build a ciMHF with CMC Q(N?).
Surprisingly, we answer the question in the affirmative when the ciMHF evaluation algorithm is
executed on a two-tiered memory architecture (RAM/Cache).

We introduce the notion of a k-restricted dynamic graph to quantify the continuum between
unrestricted dMHFs (k = n) and iMHFs (k = 1). For any ¢ > 0 we show how to construct a
k-restricted dynamic graph with k = Q(N 176) that provably achieves maximum cumulative pebbling
cost Q(NQ). We can use k-restricted dynamic graphs to build a ciMHF provided that cache is
large enough to hold k£ hash outputs and the dynamic graph satisfies a certain property that we
call “amenable to shuffling”. In particular, we prove that the induced memory access pattern
is indistinguishable to a polynomial time attacker who can monitor the locations of read/write
requests to RAM, but not cache. We also show that when k = o (N 1/loglog N), then any k-restricted
graph with constant indegree has cumulative pebbling cost o(N 2). Our results almost completely
characterize the spectrum of k-restricted dynamic graphs.

2012 ACM Subject Classification Security and privacy — Hash functions and message authentication
codes

Keywords and phrases Computationally Data-Independent Memory Hard Function, Cumulative
Memory Complexity, Dynamic Pebbling Game

© Mohammad Hassan Ameri, Jeremiah Blocki, and Samson Zhou;
37 licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).

Editor: Thomas Vidick; Article No. 36; pp. 36:1-36:28

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2415-3285
https://www.cs.purdue.edu/homes/mameriek/
mailto:mameriek@purdue.edu
https://orcid.org/0000-0002-5542-4674
https://www.cs.purdue.edu/homes/jblocki
mailto:jblocki@purdue.edu
https://orcid.org/0000-0001-8288-5698
https://samsonzhou.github.io/
mailto:samsonzhou@gmail.com
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2

Computationally Data-Independent Memory Hard Functions

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.36
Related Version https://arxiv.org/pdf/1911.06790.pdf

Funding The opinions in this paper are those of the authors and do not necessarily reflect the
position of the National Science Foundation or IARPA.

Mohammad Hassan Ameri: Supported in part by the National Science Foundation under award
#1755708 and by IARPA under the HECTOR program.

Jeremiah Blocki: Research supported in part by NSF Award #1755708.

Acknowledgements Part of this work was done while Samson Zhou was a postdoctoral fellow at
Indiana University. We would like to thank anonymous ITCS 2020 reviewers for thoughtful comments

which helped us to improve the paper.

1 Introduction

Memory hard functions (MHFS) [1, 27] are a central component in the design of password
hashing functions [9], egalitarian proofs of work [21], and moderately hard key-derivation
functions [27]. In the setting of password hashing, the objective is to design a function
that can be computed relatively quickly on standard hardware for honest users, but is
prohibitively expensive for an offline attacker to compute millions or billions of times while
checking each password in a large cracking dictionary. The first property allows legitimate
users to authenticate in a reasonable amount of time, while the latter goal discourages
brute-force offline guessing attacks, even on low-entropy secrets such as passwords, PINs,
and biometrics. The objective is complicated by attackers that use specialized hardware such
as Field Programmable Gate Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs) to significantly decrease computation costs by several orders of magnitude, compared
to an honest user using standard hardware. For example, the Antminer S17, an ASIC Bitcoin
miner exclusively configured for SHA256 hashes, can compute up to 56 trillion hashes per
second, while the rate of many standard CPUs and GPUs are limited to 200 million hashes
per second and 1 billion hashes per second, respectively.

Memory hard functions were developed on the observation that memory costs such as chip
area tend to be equitable across different architectures. Therefore, the cost of evaluating an
ideal “egalitarian” function would be dominated by memory costs. Blocki et al. [12] argued
that key derivation functions without some form of memory hardness provide insufficient
defense against a economically motivated offline attacker under the constraint of reasonable
authentication times for honest users. In fact, most finalists in the 2015 Password Hashing
Competition claimed some form of memory hardness [22, 9, 24]. To quantify these memory
costs, memory hardness [27] considers the cost to build, obtain, and empower the necessary
hardware to compute the function. One particular metric heavily considered by recent
cryptanalysis [2, 5, 4, 3, 15] is cumulative memory complexity (CMC) [7], which measures
the amortized cost of any parallel algorithm evaluating the function on several distinct inputs.
Despite known hardness results for quantifying [16] or even approximating [13] a function’s
CMC, even acquiring asymptotic bounds provide automatic bounds for other attractive
metrics such as space-time complexity [26] or energy complexity [29, 14].

Data-Dependent vs. Data-Independent Memory Hard Functions

At a high level, memory hard functions can be categorized into two design paradigms: data-
dependent memory hard functions (dAMHFs) and data-independent memory hard functions
(iMHFs). dMHFs induce memory access patterns that depend on the input, but can achieve

https://doi.org/10.4230/LIPIcs.ITCS.2020.36
https://arxiv.org/pdf/1911.06790.pdf

M. H. Ameri, J. Blocki, and S. Zhou

high memory hardness with potentially relatively easy constructions [6]. However, dMHFs
are also vulnerable to side-channel attacks due to their inherent data dependent memory
access patterns [8]. Examples of AMHFs include scrypt [27], Argon2d [10] and Boyen’s halting
puzzles [19]. On the other hand, iMHFs have memory access patterns that are independent of
the input, and therefore resist certain side-channel attacks such as cache timing [8]. Examples
of iMHFs include 2015 Password Hashing Competition (PHC) winner Argon2i [9], Balloon
Hashing [17] and DRSample [4]. iMHFs with high memory hardness can be more technically
challenging to design, but even more concerning is the inability of iMHFs to be maximally
memory hard.

Alwen and Blocki [2] proved that the CMC of any iMHF running in time N is at most

@ (%), while the AMHF scrypt has cumulative memory complexity Q(N?) [6], which
matches the maximal amount and cannot be obtained by any iMHF. However, the cumulative
memory complexity of a dMHF can be greatly decreased through a side-channel attack, if
an attacker has learned the memory access pattern induced by the true input. Namely, a
brute-force attacker can preemptively quit evaluation on a guess y once it is clear that the
induced memory access pattern on input y differs from that on the true input x. For example,
the cumulative memory complexity of scrypt after a side-channel attack is just O (N).
Ideally, we would like to obtain a family of memory hard functions with cumulative
memory complexity Q(N?) without any vulnerability to side-channel attacks. A natural
approach would be some sort of hybrid between data-dependent and data-independent
modes, such as Argon2id, which runs the MHF in data-independent mode for % steps before
switching to data-dependent mode for the final % steps. Although the cumulative memory
complexity is the maximal Q(N?) if there is no side-channel attack, the security still reduces

to that of the underlying iMHF (e.g., Argon2i) if there is a side-channel attack. Hence even
N2 log log N

Tos N) (or lower) in

for a hybrid mode, the cumulative memory complexity is just O (
the face of a side-channel attack. Thus in this paper we ask:

In the presence of side-channel attacks, does there exist a family of functions with
Q(N?) cumulative memory complexity?

1.1 Qur Contributions

Surprisingly, we answer the above question in the affirmative for a natural class of side-
channel attacks that observe the read/write memory locations. We introduce the concept
of computationally data-independent memory hard functions to overcome the inability of
data-independent memory hard functions to be maximally memory hard [2] without the
common side-channel vulnerabilities of data-dependent memory hard functions [8]. Our
constructions work by randomly “shuffling” memory blocks in cache before they are stored
in RAM (where the attacker can observe the locations of read/write requests). Intuitively,
each time MHF.Eval(z) is executed the induced memory access pattern will appear different
due to this scrambling step. The goal is to ensure that an attacker can not even distinguish
between the observed memory access pattern on two known inputs z # y.

Towards this goal we define k-restricted dynamic graphs as a tool to quantify the continuum
between dMHFs and iMHFs. Intuitively, in a k-restricted dynamic graph G = (V = [N], E)
we have parents(v) = {v — 1,7(v)} where the second (data-dependent) parent r(v) € R,
must be selected from a fixed (data-independent) restricted set R, C V of size |R,| < k.
When k£ = 1 the function is an iMHF (the parent r(v) € R, of each node v is fixed in a
data-independent manner) and when k& = N the function is an unrestricted dMHF — scrypt

36:3

ITCS 2020

36:4

Computationally Data-Independent Memory Hard Functions

and Argon2d are both examples of unrestricted dMHFs. Intuitively, when k is small it
becomes easier to scramble the labels R, in memory so that the observed memory access
patterns on two known inputs x # y are computationally indistinguishable.

We then develop a graph gadget that generates a family of ciMHFSs using k-restricted
graphs. Using this family of ciMHFs, we characterize the tradeoffs between the value of k
and the overall cumulative memory cost of k-restricted graphs.

Impossibility Results for Small k

Since k-restricted graphs correspond to iMHFs for k£ = 1, and it is known that cc(G) =

o (%) for any family G of iMHFs [2], then one might expect that it is impossible to
obtain maximally memory hard ciMHFs for small k. Indeed, our first result shows that this
intuition is correct; we show that for any k = o (N 1/loglog N), then any family of k-restricted

graphs G with constant indegree has cc(G) = o(N?).

» Theorem 1. Let G be any family of k-restricted dynamic graphs with constant indeg(G).
Then

2
() = O (N n N21/21°g1°gN\/m> .

loglog N
Thus for k = o (N1/1°818 V) “ye have cc(G) = o(N?).

We prove this result in Theorem 10 and Corollary 11 in Section 3 by generalizing ideas from
the pebbling attack of Alwen and Blocki [2] against any iMHF to k-restricted dynamic graphs
graphs. The pebbling attack of Alwen and Blocki [2] exploited the fact that any constant
indegree DAG G is somewhat depth-reducible e.g., we can always find a set S C V(G) of size

e=0 (%) such that any path in G — S has length at most d = bgLQN. The attack
then proceeds in a number of light phases and balloon phases, where the goal of light phase 4
is to place pebbles on the interval [ig + 1, (i + 1)g], for some parameter g to be optimized.
At the same time, the attacker discards pebbles on all nodes v unless v € S or unless v is a
parent of one of the next g nodes [ig + 1, (i + 1)g] that we want to pebble. Once light phase
1 is completed, balloon phase i uses the pebbles on S to recover all previously discarded
pebbles. Note that balloon phase 7 thus promises that pebbles are placed on the parents of
the nodes [(i + 1)g + 1, (¢ + 2)g], so that light phase i + 1 can then be initiated and so forth.

One key difference is that we must maintain pebbles on all gk nodes u € U1)6[19+17(i+1)g} R,
that are “potential parents” of the next g nodes [ig+1, (i4+1)g]. The total cost of the pebbling

attack is O (eN + gkN + NT2d>’ which is identical to [2] when k& = 1 for (e, d)-reducible
DAGs. In general for small values of k, the dynamic pebbling strategy can still achieve
cumulative memory cost o(N?) after optimizing for g.

Maximally Hard k-restricted dMHF

In Section 4, we show how to construct a k-restricted dynamic graph for k = O (N 1_6),
which has cumulative pebbling cost Q(N?) for any constant € > 0. Intuitively, our goal is
to force the pebbling strategy to maintain Q(N) pebbles on the graph for Q(NV) steps or
pay a steep penalty. In particular, we want to ensure that if there are o(N) pebbles on the
graph at time 4 then the cumulative pebbling cost to advance a pebble just 2k = O (N¢)
steps is at least Q(N27€) with high probability. This would imply that the pebbling strategy
either keeps (V) pebbles on the graph for Q(N) steps or that the pebbling strategy pays a
penalty of Q(N27¢) at least Q ({) = Q(N°) times. In either case the cumulative pebbling
cost will be Q(N?).

M. H. Ameri, J. Blocki, and S. Zhou

One of our building blocks is the “grates” construction of Schnitger [30] who, for any
€ > 0, showed how to construct a constant indegree DAG G, that is (e, d)-depth robust graph
with e = Q(INV) and d = Q(N!~¢). Our second building block is the superconcentrator [28, 26]
graph. By overlaying the DAG G, with a superconcentrator, we can spread out the data-
dependent edges on the top layer of our graph to ensure that (with high probability) advancing
a pebble 2k = O (N€) steps on the top layer starting from a pebbling configuration with o(V)
pebbles on the graph requires us to repebble an (e, d)-depth robust graph with e = Q(N) and
d = Q(N'~¢). This is sufficient since Alwen et al. [5] showed that the cumulative pebbling
cost of any (e, d)-depth robust graph is at least ed.

Open Question

We emphasize that we only show that any dynamic pebbling strategy for our k-restricted
dynamic graph has cumulative cost Q(N?). This is not quite the same as showing that our
dMHF has CMC Q(N?) in the parallel random oracle model. For static graphs, we know that
the CMC of an iMHF is captured by the cumulative pebbling cost of the underlying DAG [7].
We take the dynamic pebbling lower bound as compelling evidence that the corresponding
MHF has maximum cumulative memory cost. Nevertheless, proving (or disproving) that
the CMC of a AMHF is captured by the cumulative cost of the optimal dynamic pebbling
strategy for the underlying dynamic graph is still an open question that is outside the scope
of the current work.

ciMHF Implementation Through Shuffling

The only problem is that the above k-restricted dynamic graph is actually a data-dependent
construction; once the input x is fixed, the memory access patterns of the above construction
is completely deterministic! Thus a side-channel attacker that obtains a memory access
pattern will possibly be able to distinguish between future inputs. Our solution is to have
a hidden random key K for each separate evaluation of the password hash. The hidden
random key K does not alter the hash value of z in any manner, so we emphasize that
there is no need to know the value of the hidden key K to perform computation. However,
each computation using a separate value of K induces a different memory access pattern, so
that no information is revealed to side-channel attackers looking at locations of read/write
instructions.

Let L be a set of the last N consecutive nodes from our previous graph construction,
which we suppose is called Gy. We form G by appending a path of length N to the end of
Go. We introduce a gadget that partitions the nodes in L into blocks By, Ba, ..., By, of
size k each. We then enforce that for ¢ € [N] and j = ¢ mod k, the i" node in the final N
nodes of G has a parent selected uniformly at random from B, 1, depending on the input
x. Thus to compute the label of 7, the evaluation algorithm should know the labels of all
nodes in Bj4q.

We allow the evaluation algorithm to manipulate the locations of these labels so that the
output of the algorithm remains the same, but each computation induces a different memory
access pattern. Specifically, the random key K induces a shuffling of the locations of the
information within each block of the block partition gadget. Thus if the size of each block
is sufficiently large, then with high probability, two separate computations of the hash for
the same password will yield distinct memory access patterns, effectively computationally
data-independent. Then informally, a side-channel attacker will not be able to use the
memory access patterns to distinguish between future inputs.

36:5

ITCS 2020

36:6

Computationally Data-Independent Memory Hard Functions

In fact, this approach works for a general class of graphs satisfying a property that we
call “amenable to shuffling”. We characterize the properties of the dynamic graphs that
are amenable to shuffling in Section 5 and show that k-restricted dynamic graphs that
are ameanble to shuffling can be used in the design of MHFs to yield computationally
data-independent sequential evaluation algorithms.

» Theorem 2. For each DAG G that is amenable to shuffling, there exists a computationally
data-independent sequential evaluation algorithm computing a MHF based on the graph G
that runs in time O (N). (Informal, see Theorem 24.)

We believe that our techniques for converting graphs that are amenable to shuffling to ciMHFs
may be of independent interest.

Finally, we provide a version of our dAMHF with Q(N?) cumulative memory complexity
that is amenable to shuffling. Combining this maximally hard k-restricted dMHF using a
DAG that is amenable to shuffling with Theorem 2, we obtain a maximally hard ciMHF.

» Theorem 3. Let 0 < € < 1 be a constant and k = Q(N€). Then there exists a family G of
k-restricted graphs with cc(G) = Q(N?) that is amenable to shuffling.

We prove Theorem 3 in Section 6, introducing the necessary formalities for computationally
data-independent memory hard functions and the underlying systems model. Our results in
Theorem 1 and Theorem 3 almost completely characterize the spectrum of k-restricted graphs.
In fact, for a graph G drawn uniformly at random from our distribution G in Theorem 3
and any pebbling strategy S, not only do we have GIEG [cc(S, Q)] = Q(N?), but we also have

cc(S, G) = Q(N?) with high probability.

2 Preliminaries

We use the notation [NV] to denote the set {0,1,..., N — 1}. For two numbers = and y, we
use x oy to denote their concatenation.

Given a directed acyclic graph (DAG) G = (V, E) and a node v € V, we use parents(v) =
{u : (u,v) € E} to denote the parents of node v. We use ancestors(v) = |J,~, parentsk(v)
to denote the set of all ancestors of v — here, parentsZ (v) = parents (parentsg (v)) and
parents] ' (v) = parents; (parents,(v)). We use indeg(v) = |parents(v)| to denote the number
of incoming edges into v and define indeg(G) = Iglea%indeg(v). Given a set S C V, we use

G — S to refer to the graph obtained by deleting all nodes in S and all edges incident to S.
We use depth(G) to denote the number of nodes in the longest directed path in G.

» Definition 4. A DAG G = (V,E) is (e, d)-reducible if there exists a subset S CV of size
|S| < e such that any directed path P in G of length d contains at least one node in S. We

call such a set S a depth-reducing set. If G is not (e,d)-reducible, then we say that G is
(e, d)-depth robust.

For a DAG G = (V = [N], E), we use G<; to denote the subgraph of G induced by [i].
In other words, G<; = (V', E') for V' = [i] and E' = {(a,b) € E'|a,b < i}.

The Parallel Random Oracle Model

We review the parallel random oracle model (pROM), as introduced by Alwen and Serbin-
enko [7]. There exists a probabilistic algorithm A that serves as the main computational
unit, where A has access to an arbitrary number of parallel copies of an oracle H sampled
uniformly at random from an oracle set H and proceeds to do computation in a number of

M. H. Ameri, J. Blocki, and S. Zhou

rounds. In each round i, A’ maintains a state o; along with initial input 2. A* determines a
batch of queries q; to send to H, receives and processes the responses to determine an updated
state oy, 1. At some point, A" completes its computation and outputs the value A™(z).

We say that A’ computes a function f on input 2 with probability € if Pr [AH(J:) = fH] >
¢, where the probability is taken over the internal randomness of A. We say that A uses
t running time if it outputs A% (x) after round t. In that case, we also say A’ uses space
St |oi| and that A" makes ¢ queries if 1_, < g.

The Ideal Cipher Model

In the ideal cipher model (ICM), there is a publicly available random block cipher, which has
a k-bit key K and an N bit input and output. Equivalently, all parties, including any honest
parties and adversaries, have access to a family of 2 independent random permutations of
[N]. Moreover for any given key K and x € [N], both encryption Enc(K,z) and decryption
Dec(K, x) queries can be made to the random block cipher.

Graph Pebbling

The goal of the (black) pebbling game is to place pebbles on all sink nodes of some input
directed acyclic graph (DAG) G = (V, E). The game proceeds in rounds, and each round
consists of a number of pebbles P; C V placed on a subset of the vertices. Initially, the graph
is unpebbled, Py = (), and in each round 7 > 1, we may place a pebble on v € P; if either
all parents of v contained pebbles in the previous round (parents(v) C P;_1) or if v already
contained a pebble in the previous round (v € P;,_1). In the sequential pebbling game, at
most one new pebble can be placed on the graph in any round (i.e., |P;\P;—1| < 1), but this
restriction does not apply in the parallel pebbling game.

We use Pg to denote the set of all valid parallel pebblings of a fixed graph G. The
cumulative cost of a pebbling P = (Py,...,P) € Pg is the quantity cc(P) := |P1|+...+| P
that represents the sum of the number of pebbles on the graph during every round. The
(parallel) cumulative pebbling cost of the fixed graph G, denoted cc(G) := min (P), is

pep), €€
the cumulative cost of the best legal pebbling of G.

» Definition 5 (Dynamic/Static Pebbling Graph). We define a dynamic pebbling graph as a
distribution G over directed acyclic graphs G = (V = [N], E) with edges E = {(i — 1,4) : i <
N}YUA{(r(i),t) : i < N}, where r(i) < i — 1 is a randomly chosen directed edge. We say that
an edge (r(i),4) is dynamic if r(i) is not chosen until a black pebbled is place on node i — 1.
We say that the graph is static if none of the edges are dynamic.

We now define a labeling of a graph G.

» Definition 6. Given a DAG G = (V = [N], E) and a random oracle function H : ¥* — X%
over an alphabet X, we define the labeling of graph G as Lg g : ¥* — ¥*. In particular,
given an input x the (H,x) labeling of G is defined recursively by

H(voux), indeg(v) =0
Lana(v) = .
H (U o LG,H@('UI) O---0 LG,H@(vd)) s mdeg(v) > 07
where vy, ...,vq are the parents of v in G, according to some predetermined lexicographical
order. We define fg p(x) = La,gx(s1)0...0La ma(sk), where s1,...,s, are the sinks of

G sorted lexicographically by node index. If there is a single sink node sg then fo u(x) =
Le p.x(sq). We omit the subscripts G, H,z when the dependency on the graph G and hash
function H is clear. For a distribution of dynamic graphs G, we say fo u(x) = fa,u(x) once
a dynamic graph G has been determined from the choice of H and x.

36:7

ITCS 2020

36:8

Computationally Data-Independent Memory Hard Functions

For a node 4, we define PotentialParents(7) to be set Y; of minimal size such that Pr [r(i) € Yi] =
1. We now define k-restricted dynamic graphs, which can characterize both dMHFs and
iMHFs.

» Definition 7 (k-Restricted Dynamic Graph). We say that a dynamic pebbling graph G is
k-restricted if for all i, PotentialParents(i) < k.

Observe that k£ = 1 corresponds to an iMHF while k = IV corresponds to a dMHF. Hence,
k-restricted dynamic graphs can be viewed as spectrum between dMHFs and iMHFs.

We define the cumulative cost of pebbling a dynamic graph similar to the definition of
cumulative cost of pebblings on static graphs. We first require the following definition of a
dynamic pebbling strategy:

» Definition 8 (Dynamic Pebbling Strategy). A dynamic pebbling strategy S is a function
that takes as input

(1) an integer i < N

(2) an initial pebbling configuration P{ C [i] with i € P}

(3) a partial graph G<;41

The output of S(i, Pi,G<i+1) is a legal sequence of pebbling moves P, ..., Pfi that will be
used in the next phase, to place a pebble on node i+ 1, so thati+1 € Pfi Cli+1]. Given
G ~ G we can abuse notation and write S(G) for the valid pebbling produced by S on the graph
Gie, P),...,P° Pl ... P} ...,Prlszl,...,l:”\"1 Here, Pf,...,Pfi = S(i, P¢, G<it1)

X X T0? T17 TN-1"
where P§ = P!~ and for i =1 we set P) = 0.

1

We thus define cc(S, G) to the pebbling cost of strategy S when we sample a dynamic
graph G and cc(S,G) = GIEG [cc(S,G)]. Finally, we define cc(G) = ming cc(S, G), where
the minimum is taken over all dynamic pebbling strategies S. More generally, we define
cc(S,G,d) = max{k : g’é('; [cc(S,G) > k] > 1 — 6}. Fixing J to be some negligible function
of N, we can define ccs(G) = ming cc(S, G, J).

3 General Attack Against k-Restricted Graphs

In this section, we describe a general attack against k-restricted graphs. We show that the
attack incurs cost o(N?) for k = o (N 1/loglog N), proving that there is no maximally memory
hard k-restricted graph for small k.

We first require the following formulation of Valiant’s Lemma, which shows the existence
of a subroutine Valiant(G, e, d) to find a depth-reducing set S of size at most e within a graph

G,fore:bg?’&%andd:%,wheren>0.

» Lemma 9 (Valiant's Lemma). [32] For any DAG G = (V, E) with N nodes, indegree
d, and n > 0, there exists an efficient algorithm Valiant(G, e, d) to compute a set S of size

S| < e:= lh= such that depth(G — §) < d := 3.

The high level intuition of the generic attack is as follows. By Valiant’s Lemma (Lemma 9),
G ~ G is (e,d)-reducible for e = bgﬁﬁ and d = L. We will construct a dynamic
pebbling strategy A that for all times ¢, maintains a depth-reducing set S; such that
depth(G; — S;) < d, where G; is the portion of G revealed after running A for time ¢,
G, = G, for i = 1 4 max U;Zl P;, where cach P; C [N] represents the set of pebbled
nodes during round j. Observe that for any i, G<; is (e, d)-reducible and hence G, is also
(e, d)-reducible for all times t. Thus, the depth reducing set S; has size at most e for all
times ¢t and can be computed by a subroutine Valiant, by Lemma 9. We now describe how A

maintains this depth-reducing set through a series of light phases and balloon phases.

M. H. Ameri, J. Blocki, and S. Zhou

We first set a parameter g that we will eventually optimize. The goal of each light phase
1 is to pebble the next g nodes that have yet to be revealed. That is, if x; is the largest node
for which A has placed a pebble at some point prior to light phase i, then the goal of light
phase i is to pebble the interval [z; + 1,2; + g]. To begin light phase i at some time t;, we
require that (PotentialParents([z; + 1, 2z; + g]) U St,) C P, for some depth-reducing set Sy, of
size at most e, such that depth(G:, — S,) < d. Once this pre-condition is met, then light
phase ¢ simply takes g steps to pebble [z; + 1, z; + g], since pebbles are already placed on
PotentialParents([z; + 1, x; + g]). Hence, the post-condition of light phase i at some time u;
is pebbles on the node x; + g and some depth-reducing set S, of size at most e, such that
depth(G,, — Sy,) < d.

The goal of each balloon phase i is to place pebbles on all revealed nodes of the graph, to
meet the pre-condition of light phase 7+ 1. To begin balloon phase ¢ at some time r;, we first
have a necessary pre-condition that pebbles are placed on some depth-reducing set S, of
size at most e such that depth(G,, — S;,) < d. Once this pre-condition is met, then balloon
phase i simply takes d steps to pebble the entire graph G, meeting the post-condition of
balloon phase 1.

We now formally prove the cumulative memory complexity of the attack in Algorithm 1.

» Theorem 10. Let G be any family of k-restricted dynamic graphs with constant indeg(G).
Then

2
cc(G) =0 <N +N21/210glogN\/m) '

loglog N

Proof. We analyze the cost of the pebbling strategy of Algorithm 1. Since G is drawn from a
distribution of k-restricted dynamic graphs, then for any node x;, r(x;) must be one of at most
k labels. Thus for any consecutive g nodes, |PotentialParents([x; + 1, z; + g])| < gk. Hence it
suffices to keep gk pebbles on the set of potential parents PotentialParents([z; + 1, z; + ¢g]) to
pebble the interval [z; + 1,2; + g], as well as a depth-reducing set of size at most e, for each
of the g steps during light phase 7. On the other hand, balloon phase i takes d steps, each of
which trivially contains at most N pebbles.

A proceeds using % total rounds of light and balloon phases, by pebbling g consecutive

nodes at a time. Therefore, the total cost of the attack is O (Ngk + Ne + % . dN), where
the first and second terms originate from the cost of the light phases and the third term

results from the cost of the balloon phases. Since we set e = % and d = % from
Valiant’s Lemma (Lemma 9) so that the total cost is O (% + Ngk + %) By setting
g= \/%, the total cost is O (logj\?én + N2, /2’€n> Finally, by setting n = W’
the total cost is O (% + N2-1/2loglog N\/:1-1/log 10gN>. <

Note that if k = o(N/1°81°8 N ‘then cc(G) = o(N?).

» Corollary 11. Let G be any k-restricted dynamic graph with k = o(N'/1°81eN) gng
constant indegree. Then cc(G) = o(N?).

36:9

ITCS 2020

36:10

Computationally Data-Independent Memory Hard Functions

Algorithm 1 Generic pebbling strategy against dynamic DAG G.

Input: An integer i, an initial pebbling configuration Pi C [i] with i € P¢, a partial graph
G<it+1, and parameters d, e, g.
Output: A legal pebbling of G<;y;.
1: invariant < True
2: if i (mod g) = 0 and depth(G<;+1 — P¢) > d then
3: invariant <— False
4: else if depth(G<;+1 — Pi) > d or {i} U PotentialParents([i + 1,7 + g]) Z P} then
5: invariant < False

6: if invariant then > If pre-conditions met.
7 if ¢ (mod g) =0 then > Balloon phase
8: for j=1toj=ddo

9: P! = P;_, UDj, where D; are the nodes at depth d from F;.

10: Pj., = Valiant(G<;, e,d) U PotentialParents([i 4+ 1,7 + g]). > See Lemma 9
11: else > Light phase
12: Pi=Piu{i+1}.

13: else > If pre-conditions not met.
14: forj=1toj=i+1do

15: P;=P;_;U{j}

4 k-Restricted Graphs with high CMC

In this section, we describe a construction of k-restricted graphs with high cumulatively
memory complexity that builds into our ultimate ciMHF implementation. We first describe
the block partition extension gadget, which requires an input graph G and outputs a family
of k-restricted dynamic graphs. However, naively choosing the input graph G does not yield
a construction with high CMC.

Intuitively, the block partition extension gadget takes the last N nodes of G and partitions
them into % blocks of k nodes each. The gadget then creates N more nodes in a path, such
that a parent r(j) of node j in this path is drawn uniformly at random from block i, where
i =7 (mod %) The intuition is that by drawing parents uniformly at random from each
block in round robin fashion, we encourage an algorithm to keep Q(NN) nodes on the graph
for Q(N) steps. Of course, the graph could always maintain o(n) pebbles on the graph and
repebble when necessary, but we can discourage this strategy by making the repebbling
procedure as expensive as possible.

A first attempt would be to choose a highly depth-robust graph G, such as a grates graph,
which informally has long paths of length Q(N'~¢) for any constant 0 < € < 1, even when
Q(N) nodes are removed from G. Thus if an algorithm does not maintain Q(N) pebbles on
the graph, the repebbling strategy costs at least Q(N27¢). Although this is a good start,
this does not quite match the Q(N?) CMC of various dMHFs. We defer full discussion of
how to increase the CMC to Q(NN?) to later in this section.

Instead, we first define a specific way to obtain a k-restricted dynamic graph given a
graph G with N nodes and a parameter k.

» Definition 12 (Block Partition Extension). Given a DAG G = (V = [aN], E) with aN
nodes containing a set of O = [(a — 1)N + 1, aN] output nodes of size N and a parameter
k, let O; = [(a — 1)N + 1+ ik, (o — 1)N + (i + 1)k] for i € [{] so that {O;} forms a
partition of O. We define the block partition extension of G, denoted BlockPartitiong(G), as

M. H. Ameri, J. Blocki, and S. Zhou

a distribution of graphs Gg . Each graph G' sampled from G has vertices V' = [(a + 1) N]
and edges E' = EUF, where F is defined as the edges (i — 1,i) and (r(4),4) for each
i € [aN 41, (a+ 1)N], where r(i) is drawn uniformly at random from O

. N .
i mod -

An example of the block partition extension is given in Figure 1.

Block 1 Block 2 e Block %

N
OO0 =0-0

Figure 1 Parent r(¢) is drawn uniformly at random from the nodes partitioned to each block.

Our ultimate construction also requires the use of superconcentrator graphs, defined as
follows:

» Definition 13. A graph G with O (N) wvertices is a superconcentrator if there erists an
input set I and an output set O with |I| = |O| = N such that for all S; C I,Ss C O with
|S1]| = |S2| = k, there are k node disjoint paths from S to Ss.

It is known that there exists superconcentrators with |I| = |O| = N, constant indegree and
O (N) total nodes [28, 26]. We now show that a set Y, which contains more nodes than a
set S of removed nodes, has at least N — |S| ancestors in G — S.

» Lemma 14. Given a superconcentrator G with N input nodes I and N output nodes O,
let S andY C O be sets of nodes with |S| < |Y|. Then |I N ancestorsg_s(Y)| > N —|S|.

Proof. Let X C I be the last |Y| nodes of I. Since G is a superconcentrator, then G contains
at least |Y| node disjoint paths between X and Y. Since [S| < |Y], then one of these paths
from X to Y that does not intersect S. Thus, X contains some ancestor of Y in G — S and
in fact by considering the paths associated with decreasing order of nodes in X, it follows
that |I Nancestorsg_s(Y)| > N — |S]. <

We require the use of grates graphs {gratesy }%_, [30]. For each constant ¢ > 0 and
each N > 1 the graph gratesy . = (Vi, En,) has O (N) nodes and constant indegree
indeg(gratesy) = O (1). Moreover, the graph grates,, . contains source nodes Iy C Vy and
N sinks Oy C V. Given a set S C Vv of deleted nodes we say that an output node y € On

is c-good with respect to S if |Iy M ancestorsgpates, .—5(y)| > cN i.e., for at least ¢V input

nodes x € Iy the graph grates,, . — S still contains a path from z to y. The grates graph
contains several properties summarized below.

» Theorem 15. [30] For each € > 0 there exist constants v,c > 0 such that for all N > 1
the graph gratesy . is (YN, cN1=¢)-depth robust. Furthermore, for each set S C Vi of size
|S| <N at least cN output nodes are still c-good with respect to S. Formally,

{z € O : |Ix Nancestorsg_s(z)] > cN}| > cN .

We require the use of graph overlays, defined as follows:

36:11

ITCS 2020

36:12

Computationally Data-Independent Memory Hard Functions

@ O—0—0 I
OO0 0O 0—0-0
s [N — I
O O 0—0—0

O
¢ O—0O—0

Figure 2 An example of a graph overlay overlay(G1, G, G2).

» Definition 16 (Graph overlays). Given a DAG H = (V = [N],E) with sources I =

{1,...,n1} and sinks O ={N —na+1,...,N}, a DAG G = (V1 = [m1], E1), and a DAG

Go = (Vo = [ng], E2), we define:

(1) the graph overlay G’ = overlay(G1, H,G2) by G' = ([N], E'), where (i,j) € E' if and
only if (i,7) € E or (i,j) € E1 or (i + N —ng,j+ N —ng) € Es

(2) the superconcentrator overlay of an N node DAG G by superconc(G) = overlay(G,SCy,
Ly), where SC is a superconcentrator with N input (sources) and output (sinks) nodes
and Ly is the line graph of N nodes

(3) the grates overlay of an N node DAG G by grates (G) = overlay(G, gratesy ., Ly).

An example of a graph overlay is displayed in Figure 2.

We describe a preliminary attempt at a ciMHF construction in Figure 3. At a high level,
the construction consists of four components. The first component is a grates graph G; with N
nodes. The second component is a superconcentrator overlay with O (V) nodes, including N
input nodes and N output nodes, so that Go = superconc(G1). The third component consists
of a grates overlay with O (N) nodes including N output nodes, so that G3 = grates_(G2).
The N output nodes of G3 are partitioned into % blocks, each with k nodes, in preparation
for a block partition extension in the final component. Namely, the fourth component consists
of a k-restricted graph with N nodes, so that G4 = BlockPartition;(G3).

Sampling Algorithm, for k = Q(N°€):
(1) Gy = gratesy,

(2) G5 = superconc(Gy)

(3) Gs3 = grates,(G2)

(4) G4 ~ BlockPartition (G3)

Figure 3 First attempt at ciMHF. Each parent r(z) is randomly chosen from the labels in specific
block corresponding to 1.

The intuition for the Q(N?) cumulative pebbling complexity is as follows. Suppose there
exists a time tpg with a “small” number of pebbles on the graph. Then with high probability,
walking a pebble s = % steps on the final layer of the graph will require some number of
output nodes of the grates graph to be repebbled. Again with high probability, repebbling
one of these output nodes requires a large number of input nodes of the grates graph to be
repebbled. These input nodes are the output nodes of the superconcentrator at the second
layer. The superconcentrator property then implies that Q(N) nodes of the grates graph

M. H. Ameri, J. Blocki, and S. Zhou

on the first layer will need to be repebbled. For a grates graph that is (Q(N), Q(N1~¢))-
depth robust, this cost is at least Q(N?7¢) every s steps. Thus, the total cost is at least
min (Q(N?), kQ(N?7¢)), which is just Q(N?) for k = Q(N°).

We now show that our construction in Figure 3 has cumulative memory complexity
Q(N?).

» Theorem 17. Let G be drawn from the distribution of k-restricted graphs in Figure 3, for
k= Q(N°€). There exist constants ¢y > 0 and ¢y € (0,1) such that for any dynamic pebbling
strategy S,

P(’}r [cc(5,G) > eiN?| > 1 — cév/k.

Proof. Let aN be the total number of nodes in GG3 so that the total number of nodes in G is
(a+1)N. Let z,y € (0,1) be constants such that the grates graph Gy is (zN,yN'=¢)-depth
robust. By Theorem 15, there exist constants 0 < ¢ < § and 0 <y < ¢ such that for any set
S with |S| < N, at least ¢N nodes in the output nodes of G3 are c-good with respect to S.
For each node 1, let t; be the first time that node 7 is pebbled. Suppose there exists a time
thad With t; < thad < t;41 such that there are |P,,_,| < % pebbles on the graph.

For a node j in the output set [(a — 1) N, aN] of G3, we call an index j a costly indez if
J is c-good with respect to P, and let COSTLY be the set of costly indices. Note that if
a node ¢ € COSTLY, then by definition ¢ ¢ P;,_,. By Theorem 15 and the observation that
| Py.al < %, there are at least c/V nodes in the output set of G5 are c-good with respect to
P, i-e., [COSTLY| > c¢N. Then for s := &, we call j € [i,i + s] a missed costly index if
r(j) ¢ Py, and let r(j) € COSTLY.

For each j € [%}, let ¢; be the number of costly indices in block j of the output set
of G, i.e., ¢;j :==|COSTLY N [(« — 1)N + (j — 1)k + 1, (« — 1)N + jk]|. Since the parents of
[i,7 4 s] are exactly one random node from each of the % blocks, then the probability p that

no parent of [i,i + s] is a missed costly index is

L Nk N/k
1109 = (550-9)

where the inequality holds by the Arithmetic Mean-Geometric Mean Inequality. Since
> ¢; =c¢N, then
oY n N/k
s
p < 1—N‘ EJ S(I—C)N/k.
Jj=1
Thus with high probability, there will be some missed costly index.

By Lemma 14 and the definition of ¢-good, any missed costly index requires ¢/N nodes
in the input set of G3 to be repebbled. Since the input set of G5 is connected by a
superconcentrator to the output set of Gy, the ¢/N nodes in the input set of G3 that need
to be repebbled have at least N — ¢N ancestors in the output set of G;. Thus, at least
N — ¢N —|P,,,,| nodes in G; must be repebbled.

Because G is (xN,yN'=¢)-depth robust, then G; — S is (xN — | S|, yN*~¢)-depth robust
for any set S. Moreover, the cost to pebble G; — S is at least (zN — |S])(yN'~¢). In
particular, if G; — S is the set of nodes in G; must be repebbled, then it costs at least
(xN —eN — |P,,)(yN'~¢) to repebble G; — S. Since ¢ < £ and |P,,,| < 1 < & < N
then the cost is at least 2% N2—¢,

36:13

ITCS 2020

36:14

Computationally Data-Independent Memory Hard Functions

Hence to pebble an interval [¢, i+ s] with s = %, either % pebbles are kept on the graph
for all s = &* steps or if we at any point in time j € [, i+ s] we have |Pj| < vN/4 then (whp)
an the pebbling algorithm incurs cost MTyN 2=¢ to repebble the graph during the next s steps
[4,7 + s]. By partitioning the last N nodes of the graph G into k disjoint intervals of length

& it follows that the total cost is at least min ('YTNQ, %xyld\ﬂ’e). Thus for £ = Q(N€), the

total cost is Q(IN?) with high probability. <

» Corollary 18. Let G be drawn from the distribution of k-restricted graphs in Figure 3, for
k= Q(N€). Then cc(G) = Q(N?).

5 k-Restricted Graphs: Amenable to Shuffling

In this section, we introduce a useful property for certain dynamic graphs: amenable
to shuffling. In Section 6, we will describe computationally data-independent evaluation
algorithms for evaluating memory hard function based on dynamic graphs that are amenable
to shuffling.

5.1 Characterization of Dynamic Graphs Amenable to Shuffling

We first describe the properties of dynamic graphs that are amenable to shuffling. Recall
that for a node i, we define PotentialParents(i) to be set Y; of minimal size such that
Pr(r(i) € Y;] = 1, where r(i) < i — 1 is randomly chosen so that the directed edge (r(i),%) is
in the dynamic graph.

» Definition 19 (Amenable to Shuffling). Let G be a DAG with aN nodes for some constant

a > 1 and let L be the last N nodes of G. Suppose that L can be partitioned into % groups

Gy, ... ,G% such that

(1) Uniform Size of Groups: |G;| =k for alli € [%]

(2) Large Number of Potential Parents: For each v € L, |PotentialParents(u)| = k.

(3) Potential Parents not in L: For each v € L, PotentialParents(u) C [(a — 1)N]

(4) Same Potential Parents for FEach Group: For all i € [%] and
u,v € Gy, PotentialParents(u) = PotentialParents(v).

(5) Different Potential Parents for Different Groups: For alli,j € [%] with i # j, letu € G
and v € G;. Then PotentialParents(u) N PotentialParents(v) = 0.

(6) No Collision for Parents: For each i € [%], define the event UNIQUE; to be the event
that r(u) # r(v) for all u,v € G;. Then Pr[UNIQUE;] =1 for alli € [{].

(7) Data-Independency: The subgraph induced by the first (e — 1)N nodes is a static graph.

Then we call G amenable to shuffling.

We shall show in Theorem 24 in Section 6 that dynamic graphs that are amenable to shuffling
can be used for memory hard functions with computationally data-independent evaluation
algorithms. We now describe a version of Figure 3 that is amenable to shuffling.

5.2 Version of Construction Amenable to Shuffling

To ensure that there does not exist ¢ # j such that r(i) = r(j), we slightly modify the
construction of block partition extensions to the concept of a collision-resistant block partition
extension. For the sake of presentation, note that we use 2N output nodes in G in the
following definition.

M. H. Ameri, J. Blocki, and S. Zhou

» Definition 20 (Collision-Resistant Block Partition Extension). Given a DAG G = (V =
[aN], E) with aN nodes containing a set of O = [(« —2)N + 1, aN] output nodes of size 2N
and a parameter k, let O; = [(a — 2)N + 1 + 2ik, (a — 2)N + 2(i + 1)k] for i € [¥] so that
{O;} forms a partition of O. We define the collision-resistant block partition extension of G,
denoted CR — BlockPartitiony, (G), as a distribution of graphs Gg k. Each graph G’ sampled
from G has vertices V' = [(a+ 1)N] and edges E' = EUF, where F is defined as the edges
(i —1,%) and (r(i),4) for each i € [aN + 1, (a + 1)N], where r(i) is defined as follows:

(1) Let Enc be the family of all permutations of [2k], so that for each fized j,

{Enc(4,0) }eeon = [2K].

(2) Foreachi€ [N +1,(a+1)N], let j =i mod & and define 1 < p <k to be the unique
integer such thati = %' (p— 1) + aNi+ j. Then we define r(i) = (a — 2)N + 1 + 2jk +
Enc(z o j,p), so that r(i) € O;.

Observe that the collision-resistant block partition extension is a gadget that yields a AMHF,

since the parent function (i) has the key z o j to its permutation function Enc. Hence, the

underlying dynamic graph differs across different input values .

Then our construction of the ciMHF appears in Figure 4 and Figure 5. As before, the
construction consists of four layers. The first layer consists of a grates graph with 2N
nodes, Gy = grates,y .. The second layer consists of a superconcentrator overlay with O ()
nodes with 2N input nodes and 2N output nodes, so that G5 = superconc(G1). The third
layer consists of a grates overlay with O (N) nodes including 2N output nodes, so that
G3 = grates_(G2). The 2N output nodes of G5 are partitioned into & blocks, each with 2k
nodes, which allows the final layer to be a 2k-restricted grpah. In particular, the fourth layer
uses a collision-free block partition extension rather than the block partition extension of
Figure 3.

Sampling algorithm, for &k = Q(N°€):
(1) Gy = gratesyy .

(2) G2 = superconc(G)

(3) G3 = grates (G2)

(4) G4 ~ CR — BlockPartitiony (G3)

Figure 4 Second attempt at ciMHF. Each parent r(¢) is chosen by a permtuation of the labels in
specific block corresponding to ¢. The underlying graph is visualized in Figure 5.

We now show that the construction of Figure 4 has cumulative cost (N?) with high
probability. The proof is almost verbatim to Theorem 17 except that the graph overlays now
have 2NV input and output nodes.

» Theorem 21. Let 0 < € < 1 be a constant and k = Q(N°€). Let G be drawn from the
distribution of 2k-restricted graphs in Figure 4. There exist constants ¢; > 0 and co € (0,1)
such that for any dynamic pebbling strategy S,
2l >1-c)*
c?el(z;, [cc(S,G) > a1 N?| >1—c,
» Corollary 22. Let G be drawn from the distribution of 2k-restricted graphs in Figure /,
for k= Q(N€). Then cc(G) = Q(N?).

Finally, we observe that the construction of Figure 4 is amenable to shuffling since it satisfies
the properties of Definition 19.

36:15

ITCS 2020

36:16

Computationally Data-Independent Memory Hard Functions

grates

superconc

grates,

CR — BlockPartition

4\//-«\/-&/-&\/
MN~—

O O] O] O
O O] O] O
O O] O] O

Figure 5 Final construction of Figure 4.

6 Implementation of ciMHF

In this section, we describe how to implement our construction in a way that is computationally
data-independent. We first formalize the notion of computationally data-independent and
then describe the system model we utilize.

6.1 Computationally Data-Independent MHF (ciMHF) and Systems
Model

We define the security of a computationally data-independent memory hard function in terms
of the following game: a side-channel attacker A selects two inputs xg, z1 and sends these
inputs to an honest party H. We first require the following definition of leakage patterns.

Leakage Pattern

We define the leakage pattern of an evaluation algorithm MHF.Eval by the sequence of request
and store instructions made in each round. Specifically, in each round r, an attacker can
observe from the leakage pattern the blocks of memory to be loaded into cache, as requested
by MHF.Eval. Let ¢ = (i1,...,%4,) be the sequence of locations of all blocks requested by
MHF.Eval in a particular round r through some command load(¢). If i is completely contained
in cache, then no events will be observed by the attacker. Otherwise, if ¢ is not completely
contained in cache, we use request, to denote the locations of the blocks in memory, as well
as their sizes, requested by MHF.Eval in round r. Similarly, we use store, to denote the
locations of the blocks, as well as their sizes, stored into memory by MHF.Eval in round
r. We do not allow the attacker to observe the contents of the requested or stored blocks.
Formally, the leakage pattern LP is the information {(request,.,store,)}._; and is dependent
on the algorithm MHF.Eval, random oracle H, internal randomness R, and input value x.

M. H. Ameri, J. Blocki, and S. Zhou

Computationally Data-Independency Game

‘H runs a (randomized) evaluation algorithm MHF.Eval on both inputs z¢ and z1, yielding
two leakage patterns LPy and LP;, where LP; for ¢ € {0,1} depends on both the input z;
and the random coins selected during the execution of MHF.Eval. A then picks a random
challenge bit b € {0,1} and sends LPy,LP;_; to A to simulate a side-channel. The goal
of A is to predict b i.e., match each input with the corresponding leakage pattern. For a
secure ciMHF we guarantee that any PPT side-channel attacker A wins the game with only
negligible advantage over random guessing.

Formally, the game consists of three phases setup, challenge, and guess, which are
described as follows.

Data independency game for ciMHF:

setup In this phase, A selects the security parameter A and two challenge messages g
and z; and sends them to H. Here we assume without loss of generality that the
runtime of the evaluation algorithm MHF.Eval on zg and z; are the same.

challenge In this phase, H selects a random bit b € {0,1} and random coins Ry, Ry €
{0,1}* uniformly at random and then samples Ip, + LP(MHF.Eval(zg; Rp)) and
Ip; <= LP(MHF.Eval(z1; Ry)). H sends the ordered pair (Ip,Ip;_;) to A.

guess After receiving (lpy,Ip;_;), the adversary A outputs b’ as a guess for b. The
adversary wins the game if b = ¥'.

The advantage of the adversary to win the game of computationally data independency
of the given MHF is defined as

ind—Ip—i 1
AdvA?M:j’F MHF _ 3 Pr[A(zo, 1, Ipy, Ip1_p) =0 : b=1")]|,

where Ip, = LP(z;; MHF.Eval(x;; R;)).

» Definition 23 (Computational data independency). An evaluation algorithm MHF.Eval is
computationally data independent if f07f all nqn—uniform circuits A = {Ax}ren, there is a
negligible function negl(-) such that Advlﬂ?,\;:fg'MHF < negl(A).

With the proper random coins, a memory-hard function with an evaluation algorithm that
satisfies the above definition reveals only a negligible amount of information through its
leakage patterns, and we thus call such a function a computationally data-independent
memory hard function.

On the Definition of Computational Data Independency

In section Section 6.2.2 we show that the definition is equivalent to a multi round version of
the game in which the attacker can adaptively select the challenge z; 0, x;,1 in each round
i <1 after observing Ip;_; y,1p;_1 1, — the memory access patterns from the last round. We
also prove that the two security notions are asymptotically equivalent when the attacker runs
in polynomial time — in terms of concrete security parameters we lose a factor of r (number
of challenge rounds) in the reduction.

We are primarily motivated by the password hashing application where the inputs xg

and z; come from a small domain, as user selected passwords tend to have low entropy [18].

In practice it is reasonable to assume that 7 is polynomial i.e., if the user only authenticates

36:17

ITCS 2020

36:18

Computationally Data-Independent Memory Hard Functions

poly(A) times then there are at most r = poly(\) memory access patterns for the attacker to
observe. Assuming that the input domain has size poly()) a brute-force attacker cannot use
the leaked memory access pattern on input x to eliminate any candidate password z’ with
high probability, otherwise the attacker could have used the pair z and 2z’ to win the data
independency game.

However, in settings where the input domain is very large and r is super-polynomial it will
be better to adopt a concrete security definition (see Section 6.2.2). The asymptotic definition
in Definition 23 does not definitively rule out the possibility that an attacker can substantially
narrow the search space after many (super-polynomial) side channel attacks. For example,
suppose that the attacker gets to observe Ip; < LP(MHF.Eval(z; R;)) for i = 1,...,2%, i.e.,
2* independent evaluations of MHF on secret input x. Supposing that Advlzf',\;ll_ﬂ:_ MHF _ 9-x
and that the input domain for MHF has size 22*, it is possible that each Ip; allows the attacker
to eliminate a random subset of Adv%’,@ﬂf{ IMHF 22X — 2X candidate inputs, allowing the
attacker to find x after just O (/\2>‘) examples. However, in practice it will usually be
reasonable to assume that the attacker gets to observe Ip; a polynomial number of times i.e.,

the honest party will execute LP(MHF.Eval(z; R;)) at most poly(A) times.

Memory Architecture Assumptions

We consider a tiered random access memory architecture with main memory (RAM) and
working memory (cache). We assume that main memory (RAM) is a shared resource with
other untrusted processes, each of which have their own cache. Although the operating
system kernel will enforce memory separation, i.e., only our program has some region of
memory and that other processes cannot read/write to this block, it is also possible that an
untrusted process will be able to infer the memory address of read/write operations in RAM
(due to side-channel effects).

Formally, the system allows programs access to two operations Write(i,), which takes
an address ¢ within the memory allocated to the program and writes the value x at address
i, and Read(7) which loads the data at location . When an operation requests memory at
location ¢, there are two possible outcomes. Either the data item is already in cache or the
data item is not in cache. In the second case, the location of the item in memory is revealed
through the leakage pattern. Hence, the leakage pattern is either L, if the data item is
already in cache, or i, if the data item is not in cache.

Cache Replacement Policy

We now show that our implementation of the dynamic pebbling construction with cumulative
memory cost Q(N?) is computationally data-independent. In particular, we provide an
evaluation algorithm whose leakage pattern is computationally indistinguishable under each
of the following cache replacement policies:

Least recently used (LRU) This policy tracks the most recent time each item in cache was
used and discards the least recently used items first when cache is full and items need to
be replaced.

First in first out (FIFO) This policy evicts the first item that was loaded into cache, ignoring
how recent or how often it has been accessed.

M. H. Ameri, J. Blocki, and S. Zhou

6.2 ciMHF Implementation

Recall from the definition of a graph labeling in Definition 6 that given a function H and a
distribution of dynamic graphs G, the goal is to compute fg g (x) for some input z, which
is equivalent to fg m(z) once the graph G has been determined by the choice of H and
x. In this section, we describe a computationally data-independent implementation of the
construction of Section 5.2.

We implement the first three layers as data-independent components. Namely, the grates
graph (1, its superconcentrator overlay G5 and the subsequent grates overlay Gs can be
implemented deterministically. Observe that G3 has aN nodes, including 2N output nodes
O that are partitioned into % blocks of size 2k each. Specifically O = O U ... U O%, where
O; = [(a = 2)N + 1+ 2jk, (a = 2)N +2(j + 1)k] for j € [&].

As stated in Figure 4, the collision-resistant block partition extension G, is actually
data-independent, since for each i € [(aw — 1) N, aN], each parent r(7) of 4 is chosen uniformly
at random from k possible nodes, but the random procedure is independent of the input
x. Hence, the challenge is to implement a computationally data-independent version of
the collision-resistant block partition extension. We demand the input of a key K for each
computation of fg g(x). The value of fg g(x) remains the same across all keys K but the
leakage pattern is different for each K.

Data-Dependent Dynamic Graph

For each i € [aN + 1,(a + 1)N], let j = i mod % To implement a computationally
data-independent version of G4 from Figure 4, we use the value of Lg g (i — 1) to select
a previously “unused” node of O; as the parent r(¢) for ¢ that is not ¢ — 1. Here, we say a
node v € O; is unused if it is not the parent of any node besides v 4+ 1 and 1.

Since L, 1, (i—1) can be viewed as a random integer modulo 2k, we can use Lg, g5 (i —1)
(mod 2k) as an input to a permutation with key K to randomly choose the parent of i from
O;. Observe that i = alN + j is the first time a parent will be selected from O;. Moreover,
observe that m = Lg g (1 — 1) (mod 2k) + 1 can be viewed as a random number from [2k]
so we set 7(i) = m + (o — 2)N + 1 + 25k as the m" entry of O;.

Now if Lg,g,.(i — 1) (mod 2k) were all unique across the values of {ili mod & = j},

then there would be no collisions among selections of parents in O; and we would be done.

However, since these values are not unique, we must do a little more work to avoid collisions,
which would reveal information through leakage patterns about the parents of two nodes
being the same. To ensure there are no collisions in O; among parents, we store an array
U, of size 2k for each block O,. For each 1 < /¢ < 2k, we initialize U;[¢] = . The purpose
of the U; array is to ensure that the nodes of O; that have already appeared as parents
are at the end of U;. In the above example when 7(i) = m + (o — 2)N + 1 + 2jk, we then
set Uj[m] = 2k and U;[2k] = m. Then in the next round of selecting a parent from Oj;, we
choose uniformly at random from the first 2k — 1 entries of U; and in general, for the s*
round of selecting a parent from O;, we choose uniformly at random from the first 2k — s 41
entries of Uj.

* jteration in which a parent is selected

Specifically for some 2 < s < k, consider the s
from O;. That is, for i = aN + j + (s — 1)&, the parent r(i) is the s" parent among the
nodes of O;. Observe that m = Lg g (i — 1) (mod 2k — s+ 1) can be viewed as a random
number from [2k — s + 1] and so U;[m] is a random entry among the unselected 2k — s + 1
nodes of O;. We then swap the values of U;[m] and U;[2k — s + 1] so that if U;[m] = a and
U;[2k — s + 1] = b previously then we set U;[m] = b and U,[2k — s + 1] = a. Hence, the
invariant remains that the first 2k — s locations of U; have been unused.

36:19

ITCS 2020

36:20

Computationally Data-Independent Memory Hard Functions

Block 1 Block 2 Block &
112 2k
Enc(lo K,-) Enc(20K,") Enc (¥ o K,")

! ! !

N
O-0~0==0O-0

Figure 6 Parent r(¢) is drawn uniformly at random from the nodes partitioned to each block.

Shuffling Leakage Patterns

Finally, we point out that the leakage pattern across all computations of fg m(z) is still the
same, since we have not actually incorporated the key K in any of the above details. In
summary, the above the description ensures a collision-resistant block partition extension
that is data-dependent, but is still vulnerable to side-channel attacks. Hence, we add a final
element to our implementation that shuffles the locations of each node p € O; inside O;.
That is, for each 1 < 57 < %, we use the keyed permutation Enc to store the label of p € O; in
the location that corresponds to Enc(j o K, p) instead. Thus if r(i) = p € O, for some node
i, the algorithm must look at the location associated with Enc(j o K, p) to learn the value of
LG m,5(p). Therefore, the underlying graph G is a dynamic graph that is data-dependent
but the leakage pattern across each computation of fg m(x) is different due to the choice
of K that shuffles the locations of all labels in each block O;. A high level example of this
shuffling is shown in Figure 6.

Observe that this shuffling must be done completely in the cache to avoid leaking locations
of labels during the shuffling. Hence, we require cache eviction policies such as the least
recently used (LRU) or first in first out (FIFO) cache eviction policies to ensure that the entire
block O; will remain in cache as the shuffling is performed. We describe the implementation
in full in Figure 7.

A Note on Oblivious RAM

The complications with the cache eviction policies and shuffling leakage patterns originate from
the necessity of not divulging information in the data-independency game. One reasonable
question is whether these complications can be avoided with other implementations that
conceal the leakage patterns. For example, an algorithm using oblivious RAM (ORAM),
introduced by Goldreich and Ostrovsky [23], reveals no information through the memory
access patterns about the underlying operations performed. Thus, an algorithm using an
ORAM data structure to evaluate a memory hard function would induce a computationally
independent memory hard function, regardless of whether the underlying function is data-

M. H. Ameri, J. Blocki, and S. Zhou

Computationally data-independent sequential evaluation algorithm MHF.Eval(z; R) to
compute fg g(x) for any k-restricted dynamic graph G that is amenable to shuffling.
(1) Data-independent phase:

a. Let G be a k-restricted dynamic graph with a/N nodes for some constant o > 1
that is amenable to shuffling, L be the last N nodes of G, and H be an arbitrary
hash function.

b. Let K = Setup(1*; R) be a hidden random permutation key for each computation
of fa u(z), given the security parameter A and random bits R.

c. Recall that the subgraph induced by the first (o« — 1) N nodes is a static graph.
Compute the label Lg g, (v) for each node v € (G — L).

(2) Shuffling phase:

a. Since G is amenable to shuffling, L can be partitioned into groups G1,...,G
that satisfy the definition of Definition 19. For each j € [%], let O;
PotentialParents(G).

b. For each j € [%L shuffle the contents of O;:

i. Let vy,...,v; be the vertices in O;.

ii. Load the labels Lg g,2(v1), ..., Le, 1, (vk) into cache.

iii. Shuffle the positions of Lg 1,5(v1), ..., La m,z(vxk) so that for each p € [k],
L¢ p.4(vp) is in the location that previously corresponded to L g, (vg), where
q = Enc(j o K, p), where Enc is a keyed pseudorandom permutation of k.

(3) Data-dependent phase:

a. For each j € [{!], initialize an array U; such that for all 1 < ¢ <k, U;[(] = ¢.

b. For each i = aN +1 to (a +1)N:

i. Let 7 and s be defined so that 1 < s < kand 1 < j < %giveni:
aN+j+(s—1)% andlet m = Lg g .(i — 1) (mod k—s+1) + 1.

ii. Set (i) = U;[m] + (a — 1)N + 1+ jk so that r(i) € O; and load L, . (r(7)).
(Recall that the label of 7(7) is actually located at the position where the label
of node Enc(j o K, U[m]) was previously located prior to the shuffling.)

iii. Load Lg, g ,(r(i)) and Lg mq(i — 1) and compute Lg mq(i) = H(i o
LG,H’I(T(Z')) o LG,H,z(i - 1))

iv. Let U;[U;[m]] = a and Uj;[k — s+ 1] = b. Then swap the values of U; at U;[m]
and k — s + 1 so that U;[U;[m]] = b and Uk —s+ 1] = a.

N
k

Figure 7 Description of evaluation algorithm for k-restricted graphs that are amenable to shuffling.
Note that each computation of f¢ m(z) requires as input random bits R to generate the leakage
patterns.

dependent or data-independent. [23] describe an oblivious RAM simulator that transforms
any program in the standard RAM model into a program in the oblivious RAM model,
where the leakage pattern is information theoretically hidden, which is ideal for the data-
independency game.

Existing constructions of ORAM protocols such as Path ORAM [31] require amortized
Q(log N) bandwidth overhead. Hence given any dMHF and evaluation algorithm running
in sequential time M, we can use ORAM to develop a new evaluation algorithm with a
concealed leakage pattern, running in sequential time N = M log M. However, this is not
ideal because the cumulative memory complexity of the dMHF is O (M?) = O (k)JgVTQN)
Viewed in this way, the ciMHF construction is worse than known iMHF constructions that

achieve CMC (10];’ ZN) such as DRSample [4, 11]. In fact, even for k-restricted graphs,

36:21

ITCS 2020

36:22

Computationally Data-Independent Memory Hard Functions

we still obtain a blow-up of Q(log? K), which is Q <log’zg120gN) when k = Q(N1/loglog Ny,

Otherwise for k = o(N'/1981°8 N} " our dynamic pebbling attack in Corollary 11 shows that
the CMC is at most o(N?).

Although Boyle and Naor [20] proposed the notion of online ORAM, where the operations
to be performed arrive in an online manner, and observe that the lower bounds of [23] do
not hold for online ORAM, Larsen and Nielsen [25] answer this open question by proving
an amortized Q(log N) bandwidth overhead lower bound on the bandwidth of any online
ORAM. Therefore, it does not seem obvious how to use ORAM in the implementations of
maximally hard ciMHFs.

6.2.1 Implementation and Analysis

Hybrid:
(1) Data-independent phase:

a. Let G be a k-restricted dynamic graph with aN nodes for some constant a > 1
that is amenable to shuffling, L be the last N nodes of GG, and H be an arbitrary
hash function.

b. Let K = Setup(1*; R) be a hidden random permutation key for each computation
of fa u(z), given the security parameter A and random bits R.

c. Recall that the subgraph induced by the first (o — 1) N nodes is a static graph.
Compute the label Lg, g, (v) for each node v € (G — L).

(2) Shuffling phase:

a. Since G is amenable to shuffling, L can be partitioned into groups Gq,...,G
that satisfy the definition of Definition 19. For each j € [%]7 let O;
PotentialParents(G}).

b. For each j € [%L shuffle the contents of O;:

i. Let v1,..., v be the vertices in O;.

ii. Load the labels L g2 (v1), ..., La o (vg) into cache.

iii. Shuffle the positions of La, g4 (v1),..., La,mx(vx) so that for each p € [£],
L¢ p,o(vp) is in the location that previously corresponded to L g . (vg), where
g = Enc(j o K, p), where Enc is a keyed truly random permutation of k.

(3) Data-dependent phase:

a. For each j € [£!], initialize an array U; such that for all 1 < ¢ <k, U;[(] = £.

b. For each i = aN + 1 to (o« +1)N:

i. Let 7 and s be defined so that 1 < s < kand 1 < j < %giveni:
aN+j+(s—1)% and let m = Lg g.(i — 1) (mod k—s—+1) + 1.

ii. Set r(i) = U;[m]+ (@ —1)N + 1+ jk so that r(i) € O; and load L, g . (7(7)).
(Recall that the label of (i) is actually located at the position where the label
of node Enc(j o K, U[m]) was previously located prior to the shuffling.)

iii. Load Lg g ,(r(i)) and Lg mq(i — 1) and compute Lg mq(i) = H(i o
LG7H796(T(’L')) o LG7H73;(Z' - 1))

iv. Let U;[U;[m]] = a and U,[k — s+ 1] = b. Then swap the values of U; at U;[m]
and k — s + 1 so that U;[U;[m]] =b and Uk —s+ 1] = a.

N
k

Figure 8 Description of hybrid. Differs from Figure 7 in that the hidden input key is used to
index into the entire family of random permutations, rather than a pseudorandom permutation.

M. H. Ameri, J. Blocki, and S. Zhou

We require the hybrid in Figure 8 to argue that our implementation of Figure 4 is a
ciMHF. The hybrid in Figure 8 differs from the implementation of Figure 4 in Figure 7 in that
the hidden input key is used to index from the entire family of random permutations, rather
than a pseudorandom permutation. Thus the only way an adversary can distinguish between
the hybrid and the real world sampler is by distinguishing between a random permutation
and a pseudorandom permutation. On the other hand, if an adversary fails to distinguish
between the hybrid and the real world sampler, then the cumulative memory complexity of
the implementation requires 2(IN?) since the leakage pattern of the hybrid is statistically
equivalent to the dMHF construction in Figure 4, where each parent is chosen a priori using
a permutation drawn uniformly at random.

» Theorem 24. For each DAG G that is amenable to shuffling, there exists a computationally
data-independent sequential evaluation algorithm MHF.Eval(x; R) computing the function
fe,m in time O (N).

Proof. Consider the evaluation function in Figure 7. Observe that the hybrid in Figure 8
has the same distribution of leakage patterns as the dMHF of Figure 4. Moreover, under
the least recently used (LRU) or first in first out (FIFO) cache eviction policies, if k is
less than the size of the cache, then all the shuffling can be performed so an attacker
observing the leakage patterns of the hybrid has no advantage in the data-independency
game. Furthermore, the ciMHF implementation in Figure 7 only differs from the hybrid
in Figure 8 in the implementation of Enc as a pseudorandom permutation compared to
a truly random permutation. Therefore, an attacker observing leakage patterns from the
implementation in Figure 7 only obtains a negligible advantage negl(A) in the security
parameter A, in the data-independency game. Hence, the implementation of Figure 7 is a
ciMHF. |

We now show that the evaluation function in Figure 7 of the dMHF in Figure 4 is a maximally
hard ciMHF.

» Theorem 25. Let 0 < € < 1 be a constant and k = Q(N€). Then there exists a family G
of k-restricted graphs with cc(G) = Q(N?) that is amenable to shuffling. Moreover, there
exists a negligible value § = negl(N) such that ccs(G) = Q(N?).

Proof. Consider the evaluation function in Figure 7 of the dMHF in Figure 4. For the sake
of completeness, the full implementation is also shown in Figure 9. Since the construction of

Figure 4 is amenable to shuffling, then the evaluation algorithm is a ciMHF by Theorem 24.

Finally by Theorem 21, cc(G) = Q(N?).
In fact, Theorem 21 implies that for G € G drawn uniformly at random and any pebbling
strategy S, not only is GEG [cc(S, G)] = Q(N?), but also cc(S, G) = Q(N?) with probability at

least 1—cN/* for some constant 0 < ¢ < 1. Thus for § = 1—cN/*, we have cc(S, G, §) = Q(N?)
for any pebbling strategy S and so ccs(G) = Q(N?). <

For the sake of completeness, we give the evaluation algorithm for the maximally hard
ciMHF in Figure 9.

36:23

ITCS 2020

36:24 Computationally Data-Independent Memory Hard Functions

Computationally data-independent sequential evaluation algorithm MHF.Eval(z; R)
(1) Let H be an arbitrary hash function and K = Setup(1*; R) be a hidden random
permutation key for each computation of fg g (), given the security parameter A
and random bits R. Let k = Q(N€).
(2) Data-independent phase:
a. Gy = gratesyy
b. G5 = superconc(Gy)
c. G5 = grates, (G2), which has aN total nodes, including 2N output nodes O =
O1U...UOx, where O; = [(a—2)N +1+2ik, (o — 2)N +2(j + 1)k] for j € [T].
d. Compute the label Lg, g 5(v) for each node v € Gs.
(3) Shuffling phase:
a. Let G be the graph G3 appended with N additional nodes, so that V' = [(a+1)N],

and edges (i — 1,7) for each aN +1 <i < («+ 1)N.

b. For each j € [%}, shuffle the contents of O;:

i. Let vy,..., vy be the vertices in O;.

ii. Load the labels Lg i,z (v1), ..., La,m,5(var) into cache.

iii. Shuffle the positions of Lg, 1,4 (v1),. .., La mz(v2k) so that for each p € [2k],
L¢ m.2(vp) is in the location that previously corresponded to L g2 (vg), where
q = Enc(j o K, p), where Enc is a keyed pseudorandom permutation of 2k.

(4) Data-dependent phase:
a. For each j € [%}, initialize an array U; such that for all 1 < ¢ < 2k, U;[(] = ¢.
b. For each i = aN + 1 to (o + 1)N:

i. Let j and s be defined so that 1 < s < kand 1 < j < %giveni:
aN +j+(s—1)¥ and let m = Lg (i — 1) (mod 2k — s+ 1) + 1.

ii. Set r(i) = Uj[m] + (o —2)N + 1+ 2jk so that (i) € O; and load L, . (r(7)).
(Recall that the label of 7(i) is actually located at the position where the label
of node Enc(j o K, U[m]) was previously located prior to the shuffling.)

iii. Load Lg g, (r(i)) and Lgma(i — 1) and compute Lg m.(i) = H(i o
LG,H,m(T(i>) o LG’H@(i — 1))

iv. Let U;[U;[m]] = a and U;[2k — s + 1] = b. Then swap the values of U; at
Uj[m] and 2k — s + 1 so that U;[U;[m]] = b and U;[2k — s + 1] = a.

Figure 9 Description of implementation of maximally hard ciMHF. Again note that each compu-
tation of fa, m(x) requires as input random bits R to generate the leakage pattern.

6.2.2 Extension to Multiple Rounds

Finally, we show that our ciMHF implementation is robust to multiple rounds of leakage by
considering a data independency game where an adversary is allowed to submit and observe
multiple adaptive queries before outputting a guess for the hidden challenge bit b. The game
again consists of the phases setup, challenge, and guess, which are described as follows.

M. H. Ameri, J. Blocki, and S. Zhou

Adaptive data independency game for ciMHF:

setup In this phase, A selects the security parameter A and sends it to H. H then
selects a random bit b € {0, 1}.

challenge For each round ¢ = 1,2, ..., A chooses two adaptive query messages ;o
and z;; and sends the query messages to H. H selects random coins R; o, R;1 €
{0,1}* uniformly at random, samples Ip; o < LP(MHF.Eval(z;0; R;0)) and Ip; ; +
LP(MHF.Eval(z;1; R 1)), and sends the ordered pair (Ip;;,Ip; 1-;) to A. Note: A
can pick ;110 and x;11,1 adaptively after observing the response (Ip; ;,,Ip; 1)

guess The game ends when the adversary A outputs b’ as a guess for b. A wins the
game if b=1"0'.

As before, the advantage of the adversary to win the adaptive data independency game
for ciMHF is:

ind—mult—Ip—i 1
Advl?lc,iMHFlt P = 92 Pr[A(T)=b:b="V)],

where T is the transcript {x; 0,21, 1P b |Pi,17b} and Ip; ; = LP(z;,;; MHF.Eval(z; j; R; ;)).

» Definition 26. We say an evaluation algorithm MHF.Eval has (t, €)-single security if any
attacker running in time t has at most advantage € in the data independency game. Similarly,
we say an evaluation algorithm MHF.Eval has (t, r, €)-adaptive security if any attacker running
in time t and making v queries has at most advantage € in the adaptive data independency
game.

We conclude by noting the following relationship between single security and adaptive security,
thus implying the security of our evaluation function in Figure 7 of the dMHF in Figure 4
with respect to the adaptive data independency game.

» Theorem 27. (t,¢)-single security implies (t — O (r - time(MHF.Eval)) , r, re)-adaptive se-
curity.

Proof. Suppose that Aggeptive violates (¢ — O (r - time(MHF.Eval)) , r, re)-adaptive security
for the sake of contradiction. Without loss of generality we will assume that Aggaptive OUtpUts
b = b with probability greater than % +re. We will use Aggaptive to construct an attacker
Asingle that violates (t, €)-single security.

We first define a sequence of r hybrids in the adaptive data-independency game. In Hybrid
i, the challenger H picks bits b,b1,...,b;—1 uniformly at random and sets b; = b,b; 11 =
b,...,b, = b. In round j when the attacker Ayquptive sSubmits two strings x; ¢ and x; 1, the
challenger H samples Ip; ; <= LP(MHF.Eval(z; 0; Rj0)) and Ip; ; <= LP(MHF.Eval(z; 1; R; 1))
and then responds with Ip; ;. ,lp;;_;, instead of Ip,, and Ip, ;_, i.e., the bit b; is used to
permute the order of the responses in round ¢ instead of b.

Observe that in Hybrid 1, by = ... = b, = b, so that Hybrid 1 is equivalent to the
actual adaptive independency game. Similarly, in Hybrid r, the bits by, ..., b, are all picked
independently so that Aggaprive Working in Hybrid » has no advantage i.e., the attacker
guesses b’ = b correctly with probability at most Pr [’ = b | Hybrid r] = 2. We observe that
the advantage of the attacker is

1
Pr ' =b | Hybrid 1] 5 = Pr[t = b| Hybrid 1] =Pr [0’ = b | Hybrid r] = Ag ... +A, |

where A; = Pr [t =b | Hybrid i — 1) — Pr[b' = b | Hybrid ¢]. By an averaging argument,
we must have A; 1 > € for some i < r. The following observation will also be useful:

1 1
Aivr=5Pr[y =b | Hybrid i] — ;Pr[b=1"| Hybrid i + 1,b; #]

36:25

ITCS 2020

36:26

Computationally Data-Independent Memory Hard Functions

Reduction

We now define Agipngie as follows: (1) Agingie simulates Aggoptive along with the adaptive
challenger Hadaptive- Asingle generates random bits by,...,b;—1 and sets bjy; = ... =
b, = b" for another random bit b”. In each round j # ¢, when A,geptive Outputs a query
740,241, our attacker Agingre simply computes Ip; o <= LP(MHF.Eval(z; 0; Ri)) and Ip; ; <
LP(MHF.Eval(z;1; R; 1)) and responds with Ip; ., 1p; 15, When Asgaptive Outputs the query
%4,0, 4,1 in round ¢, Agingie forwards this query to the challenger for the single stage challenger
Hsingle and receives back Ip; ,1p; 1, for an unknown bit b selected by Hsingie. Finally, when
Asdaptive outputs a guess b’ (for b”) Agingie outputs the same guess b (for b).

Analysis

Notice that since b is just a bit selected uniformly at random and independent from b, then
Prp) =V |b" =b] = Pr[t/ =" | Hybrid i]. Then from the above observation, we have
Prp) =0 |b" #£b) = Pr[b) =" | Hybrid i + 1,b; # V"] = Pr [t/ = V"] Hybrid i] — 2A;41.
It follows that Pr[t/ =b" |V =b] — Pr [t/ =b" |b” #b] = 2A,;41. Thus, the probability
that Agingle Wins is

Pr(t/ =b] =Pr [t/ =b|Pr[t/ =b" | b/ =0+ Pr[t) £b](1—Pr[t/ =0" [b))
1

5 +Ai+1 > €.

Furthermore, the running time of Agjy,gie is at most ¢. This contradicts the assumption that

the evaluation algorithm MHF.Eval has (¢, €)-single security. Therefore, (¢, €)-single security
implies (t — O (r - time(MHF.Eval)) , r, re)-adaptive security. <

—— References

1 Martin Abadi, Michael Burrows, Mark S. Manasse, and Ted Wobber. Moderately hard,
memory-bound functions. ACM Trans. Internet Techn., 5(2):299-327, 2005.

2 Joél Alwen and Jeremiah Blocki. Efficiently Computing Data-Independent Memory-Hard
Functions. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Proceedings, Part II, pages 241-271, 2016.

3 Joél Alwen and Jeremiah Blocki. Towards Practical Attacks on Argon2i and Balloon Hashing.
In 2017 IEEE European Symposium on Security and Privacy, FuroS&P, pages 142-157, 2017.

4 Joél Alwen, Jeremiah Blocki, and Benjamin Harsha. Practical Graphs for Optimal Side-
Channel Resistant Memory-Hard Functions. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, CCS, pages 1001-1017, 2017.

5 Joél Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-Robust Graphs and Their
Cumulative Memory Complexity. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Proceedings, Part 111, pages 3-32, 2017.

6 Joél Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. Scrypt Is
Maximally Memory-Hard. In Advances in Cryptology - EUROCRYPT - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Proceedings,
Part 111, pages 33-62, 2017.

7 Joél Alwen and Vladimir Serbinenko. High Parallel Complexity Graphs and Memory-Hard
Functions. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC, 2015.

8 Daniel J Bernstein. Cache-timing attacks on AES, 2005.

M. H. Ameri, J. Blocki, and S. Zhou

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Fast and Tradeoff-Resilient Memory-
Hard Functions for Cryptocurrencies and Password Hashing. TACR Cryptology ePrint Archive,
2015:430, 2015.

Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New Generation of Memory-
Hard Functions for Password Hashing and Other Applications. In IEEE European Symposium
on Security and Privacy, EuroS&P, pages 292-302, 2016.

Jeremiah Blocki, Benjamin Harsha, Siteng Kang, Seunghoon Lee, Lu Xing, and Samson Zhou.
Data-Independent Memory Hard Functions: New Attacks and Stronger Constructions. In
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Proceedings, Part II, pages 573—-607, 2019.

Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. On the Economics of Offline Password
Cracking. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, pages
853-871, 2018.

Jeremiah Blocki, Seunghoon Lee, and Samson Zhou. Approximating Cumulative Pebbling
Cost is Unique Games Hard. CoRR, abs/1904.08078, 2019. arXiv:1904.08078.

Jeremiah Blocki, Ling Ren, and Samson Zhou. Bandwidth-Hard Functions: Reductions
and Lower Bounds. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, CCS, pages 1820-1836, 2018.

Jeremiah Blocki and Samson Zhou. On the Depth-Robustness and Cumulative Pebbling Cost
of Argon2i. In Theory of Cryptography - 15th International Conference, TCC, Proceedings,
Part I, pages 445-465, 2017.

Jeremiah Blocki and Samson Zhou. On the Computational Complexity of Minimal Cumulative
Cost Graph Pebbling. In Financial Cryptography and Data Security - 22nd International
Conference, FC, Revised Selected Papers, pages 329-346, 2018.

Dan Boneh, Henry Corrigan-Gibbs, and Stuart E. Schechter. Balloon Hashing: A Memory-
Hard Function Providing Provable Protection Against Sequential Attacks. In Advances in
Cryptology - ASTACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Proceedings, Part I, pages 220-248, 2016.

Joseph Bonneau. The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million
Passwords. In 2012 IEEE Symposium on Security and Privacy, pages 538-552, San Francisco,
CA, USA, May 21-23 2012. IEEE Computer Society Press. doi:10.1109/SP.2012.49.
Xavier Boyen. Halting Password Puzzles: Hard-to-break Encryption from Human-memorable
Keys. In Proceedings of the 16th USENIX Security Symposium, 2007.

Elette Boyle and Moni Naor. Is There an Oblivious RAM Lower Bound? In Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, pages 357-368, 2016.
Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting Junk Mail. In Advances
in Cryptology - CRYPTO 792, 12th Annual International Cryptology Conference, Proceedings,
pages 139-147, 1992.

Christian Forler, Stefan Lucks, and Jakob Wenzel. Memory-Demanding Password Scrambling.
In Advances in Cryptology - ASIACRYPT - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Proceedings, Part II, pages 289-305, 2014.
Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on Oblivious RAMs.
J. ACM, 43(3):431-473, 1996.

Marcos A. Simplicio Jr., Leonardo C. Almeida, Ewerton R. Andrade, Paulo C. F. dos Santos,
and Paulo S. L. M. Barreto. Lyra2: Password Hashing Scheme with improved security against
time-memory trade-offs. JACR Cryptology ePrint Archive, page 136, 2015.

Kasper Green Larsen and Jesper Buus Nielsen. Yes, There is an Oblivious RAM Lower
Bound! In Advances in Cryptology - CRYPTO 2018 - 388th Annual International Cryptology
Conference, Proceedings, Part II, pages 523-542, 2018.

Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on time-space
trade-offs in a pebble game. J. ACM, 29(4):1087-1130, 1982.

Colin Percival. Stronger key derivation via sequential memory-hard functions, 2009.

36:27

ITCS 2020

http://arxiv.org/abs/1904.08078
https://doi.org/10.1109/SP.2012.49

36:28

Computationally Data-Independent Memory Hard Functions

28
29

30

31

32

Nicholas Pippenger. Superconcentrators. SIAM J. Comput., 6(2):298-304, 1977.

Ling Ren and Srinivas Devadas. Bandwidth Hard Functions for ASIC Resistance. In Theory of
Cryptography - 15th International Conference, TCC 2017, Proceedings, Part I, pages 466-492,
2017.

Georg Schnitger. On Depth-Reduction and Grates. In 24th Annual Symposium on Foundations
of Computer Science (FOCS), pages 323-328, 1983.

Emil Stefanov, Marten van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher W. Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: An Extremely Simple Oblivious
RAM Protocol. J. ACM, 65(4):18:1-18:26, 2018.

Leslie G. Valiant. Graph-Theoretic Arguments in Low-Level Complexity. In Mathematical
Foundations of Computer Science 1977, 6th Symposium, Proceedings, pages 162-176, 1977.

	Introduction
	Our Contributions

	Preliminaries
	General Attack Against k-Restricted Graphs
	k-Restricted Graphs with high CMC
	k-Restricted Graphs: Amenable to Shuffling
	Characterization of Dynamic Graphs Amenable to Shuffling
	Version of Construction Amenable to Shuffling

	Implementation of ciMHF
	Computationally Data-Independent MHF (ciMHF) and Systems Model
	ciMHF Implementation
	Implementation and Analysis
	Extension to Multiple Rounds

