
On Locally Decodable Codes in Resource
Bounded Channels
Jeremiah Blocki
Purdue University, West Lafayette, IN, USA
jblocki@purdue.edu

Shubhang Kulkarni
Purdue University, West Lafayette, IN, USA
kulkar17@purdue.edu

Samson Zhou
Carnegie Mellon University, Pittsburgh, PA, USA
samsonzhou@gmail.com

Abstract
Constructions of locally decodable codes (LDCs) have one of two undesirable properties: low rate
or high locality (polynomial in the length of the message). In settings where the encoder/decoder
have already exchanged cryptographic keys and the channel is a probabilistic polynomial time
(PPT) algorithm, it is possible to circumvent these barriers and design LDCs with constant rate and
small locality. However, the assumption that the encoder/decoder have exchanged cryptographic
keys is often prohibitive. We thus consider the problem of designing explicit and efficient LDCs in
settings where the channel is slightly more constrained than the encoder/decoder with respect to
some resource e.g., space or (sequential) time. Given an explicit function f that the channel cannot
compute, we show how the encoder can transmit a random secret key to the local decoder using
f(·) and a random oracle H(·). We then bootstrap the private key LDC construction of Ostrovsky,
Pandey and Sahai (ICALP, 2007), thereby answering an open question posed by Guruswami and
Smith (FOCS 2010) of whether such bootstrapping techniques are applicable to LDCs in channel
models weaker than just PPT algorithms. Specifically, in the random oracle model we show how
to construct explicit constant rate LDCs with locality of polylog in the security parameter against
various resource constrained channels.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Locally Decodable Codes, Resource Bounded Channels

Digital Object Identifier 10.4230/LIPIcs.ITC.2020.16

Related Version https://arxiv.org/pdf/1909.11245.pdf

Funding This research was supported in part by the National Science Foundation (CCF Award
#1910659).

Acknowledgements We would like to thank anonymous reviewers for helpful feedback that improved
the presentation of this paper.

1 Introduction

Consider the classical one-way communication setting where two parties, the sender and
receiver, communicate over a noisy channel that may corrupt parts of any message sent
over it. An error correcting code is an invertible transformation mapping messages into
codewords that are then transmitted over the noisy channel. The goal is to ensure that the
decoder can (w.h.p.) reliably recover the entire message from the corrupted codeword. For
locally decodable codes (LDCs) we have an even stronger goal: The decoder should be able

© Jeremiah Blocki, Shubhang Kulkarni, and Samson Zhou;
licensed under Creative Commons License CC-BY

1st Conference on Information-Theoretic Cryptography (ITC 2020).
Editors: Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5542-4674
mailto:jblocki@purdue.edu
https://orcid.org/0000-0002-1670-6011
mailto:kulkar17@purdue.edu
https://orcid.org/0000-0001-8288-5698
mailto:samsonzhou@gmail.com
https://doi.org/10.4230/LIPIcs.ITC.2020.16
https://arxiv.org/pdf/1909.11245.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On Locally Decodable Codes in Resource Bounded Channels

to reliably recover any individual bit of the original message (w.h.p.) by examining at most
` bits of the corrupted codeword. An ideal LDC should have a good rate (i.e., the codeword
should not be much longer than the original message) and small locality `.

Historically, there have been two major lines of work associated with modelling the
channel behavior. In Shannon’s symmetric channel model, the channel each bit of the
codeword independently at random with some fixed probability. By contrast, in Hamming’s
adversarial channel model the channel corrupts the codeword in a worst case manner subject
to an upper bound on the total number of corruptions.

Unsurprisingly, when we work in Shannon’s channel model it is much easier to design
LDCs with good rate/locality. By contrast, state of the art LDC constructions for Hamming
channels either have very high locality e.g., ` = 2O

(√
logn log logn

)
[29] or poor rate e.g.,

Hadamard codes have constant locality ` = O (1) but the codeword has exponential length.
Unfortunately, in many real-world settings independent random noise is not a realistic model
of channel behavior e.g., burst-errors are common in reality, but unlikely in Shannon’s model.
Thus, coding schemes designed to work in Shannon’s channel model are not necessarily
suitable in practice. By contrast, coding schemes designed to work in Hamming’s adversarial
setting must be able to handle any error pattern.

Our central motivating goal is to find classes of adversarial channels that are expressive
enough to model any error patterns that would arise in nature, yet admit LDCs with
good decoding algorithms. LDCs have found remarkable applications throughout various
fields, notably private information retrieval schemes [9, 16, 30], psuedo-random generator
constructions [7, 38], self-correcting computations [18, 21], PCP systems [8] and fault tolerant
storage systems [27].

Lipton [31] introduced the adversarial computationally bounded model, where the channel
was viewed as a Hamming channel restricted to bounded corruption by a probabilistic
polynomial time (PPT) algorithm. The notion of adversaries being computationally bounded is
well-motivated by real-world channels that have some sort of limitations on their computations
i.e., we expect error patterns encountered in nature to be modeled by some (possibly unknown)
PPT algorithm. We argue that even Lipton’s channel significantly overestimates the capability
of the channel. For example, if the channel has reasonably small latency, say 10 seconds,
and the world’s fastest single core processor can evaluate 10 billion instructions per second
then the depth of any (parallel) computation performed by the channel is at most 100 billion
operations.

This view of modelling the channel as more restricted than just PPT was further explored
by Guruswami and Smith [23] who studied channels that could be described by simple
(low-depth) circuits. Remarkably, even such a simple restriction allowed them to design
codes that enjoyed no public/private key setup assumptions, while matching the Shannon
capacity using polynomial time encoding/decoding algorithms. With such positive results, it
is natural to ask whether similar results may be expected for LDCs.

1.1 Contributions

We introduce resource bounded adversarial channel models which admit LDCs with good
locality whilst still being expressive enough to plausibly capture any error pattern for most
real-world channels. We argue that these resource bounded channel models are already
sufficiently expressive to model any corruption pattern that might occur in nature e.g.,
burst-errors, correlated errors. For example, observe that the channel must compute the
entire error pattern before the codeword is delivered to the receiver. Thus, the channel can

J. Blocki, S. Kulkarni, and S. Zhou 16:3

be viewed as sequentially time bounded e.g., the channel may perform arbitrary computation
in parallel but the total depth of computation is bounded by the latency of the channel. The
notion of a space bound (or space-time bound) channel can be similarly motivated.

We introduce safe functions as a general way to characterize LDC friendly channels.
Intuitively, a function f is “safe” for a class of channels if the channel is not able to predict
f(x) given x. We show how to construct safe functions for several classes of resource bounded
channels including time bounded, space bounded, and cumulative memory cost bounded
channels in the parallel random oracle model. For example, in the random oracle model the
function Ht+1(x) is a safe function for the class of sequentially time-bounded adversaries
i.e., it is not possible to evaluate the function using fewer than t sequential calls to the
random oracle H. We also discuss how to construct safe functions for the class of space (resp.
space-time) bounded channels using random oracles.

Furthermore, we give a general framework for designing good locally decodable codes
against resource bounded adversarial channels by using safe functions to bootstrap existing
private-key LDC constructions. Our framework assumes no a priori private or public key
setup assumptions, and constructs explicit LDCs over the binary alphabet1 with constant
rate against any class of resource bounded adversaries admitting safe functions.

Our local decoder can decode correctly with arbitrarily high constant probability after
examining at most O

(
f(κ)

)
bits of the corrupted codeword, where κ is the security

parameter2 and f(κ) is any function such that f(κ) = ω(log κ) e.g., f(κ) = log1+ε κ or
f(κ) = log κ log log κ. By contrast, state of the art LDC constructions for Hamming channels
have very high locality e.g., 2O

(√
logn log logn

)
[29]. Our codes are robust against a constant

fraction of corruptions, and are (essentially) non-adaptive i.e., the local decoding algorithm
can decode after submitting just two batches of queries.

Our constructions stand at the intersection of coding theory and cryptography, using well-
known tools and techniques from cryptography to provide notions of (information theoretic)
randomness and security for communication protocols between sender/receiver. To prove
the security of our constructions, we introduce a two-phase distinguisher hybrid argument,
which may be of independent interest for other coding theoretic problems in these resource
bounded channel models.

1.2 Technical Overview

Private LDCs. Our starting point is the private locally decodable codes of [33]. These LDCs
permit nearly optimal query complexity, asymptotically positive rate and reliable decoding
with high probability, but make the strong assumption that the sender and receiver have
already exchanged a secret key sk that is unknown to the PPT adversarial channel over which
they communicate. In our setting the sender and the receiver do not have access to any
secret key. Our constructions thus reduce the general setting (no setup assumptions) against
resource bounded channels to the shared private key setting against these channels, so that
we can bootstrap private LDC constructions.

1 Note that small alphabet sizes are attractive for practical channels designed to transmit bits efficiently.
2 In this paper we use the security parameter κ in an asymptotic sense e.g., for any attacker running in

time poly(κ) there is a negligible function negl(κ) upper bounding the probability that the attacker
succeeds. In particular, the function negl(κ) = 2− log1+ε κ) is negligible, but does not provide κ-bits of
concrete security i.e., any attacker running in time t succeeds with probability at most t2−κ.

ITC 2020

16:4 On Locally Decodable Codes in Resource Bounded Channels

Bootstrapped Encoder/Decoder. Our encoder uses the following high level template: (1)
samples a random seed r (2) computes a predetermined safe function f(r) on the seed and
extracts a secret key sk from f(r) (e.g., using a random oracle) (3) Uses the private LDC
encoder to encode the message using sk (4) appends a reliable encoding (error-correcting
code composed with a repetition code) of the random seed r to the codeword. The local
decoder (1) decodes the random seed r (random sampling + majority vote). (2) Evaluates
the safe function f(r) to recover the secret key sk. (3) Uses the private LDC decoder with
the secret key sk to recover the desired bit of the original message.

Security Proof. We remark that there are a few subtle challenges that arise while proving
the security of our bootstrapped constructions. We want to prove that the channel fails to
produce a corrupted codeword that fools the local decoding algorithm. Towards this goal
we might try to prove that the channel cannot distinguish the derived key sk from a truly
random key, even when given the nonce r. However, this is insufficient to prove that the
local decoder is successful because the local decoder is able to recover sk from the f . We
introduce a novel two-phase distinguisher game to address these challenges. In particular,
we consider an attacker-distinguisher pair who tries to predict whether or not the secret
encoding key sk is derived from the nonce r (b = 0) or was selected uniformly at random
(b = 1). In phase 1 the (resource bounded) attacker generates a corrupted codeword which
is given to the distinguisher in phase 2 who must then guess whether b = 1 or b = 0. The
distinguisher is computationally unbounded, but is not allowed to query the random oracle.
If f is a safe function then the advantage of any such attacker-distinguisher pair can be
shown to be negligible. We demonstrate that any channel which succeeds at fooling our local
decoder yields an attacker-distinguisher pair for this two phase game – the distinguisher
works by simulating the private LDC decoder to distinguish between the two aforementioned
encodings. It follows that the channel cannot fool the local decoder (except with negligible
probability).

1.3 Related Work

Many existing code constructions consider an underlying channel that can only introduce a
bounded number of errors, but has an unlimited time to adversarially decide the positions
of these errors. These codes are therefore resilient to any possible error pattern with a
bounded number of corruptions, corresponding to Hamming’s error model, and are safe for
data transmission. However, this resiliency to the worst-case error leads to coding limitations
and some possibly undesirable tradeoffs. On one hand, current constructions for LDCs that
focus on efficient encoding can obtain any constant rate R < 1 while simultaneously being
robust to any constant fraction δ < 1 − R of errors and using 2O

(√
logn log logn

)
queries

for decoding [29]. On the other hand, codes that focus on low query complexity obtain
blocklength that is subexponential in the message length while using a constant number of
queries q ≤ 3 [39, 20, 19]. Finally, if exactly q = 2 queries are desired, any code must use
blocklength exponential in the message length [28]. Avoiding such drastic tradeoffs between
blocklength and query complexity would be attractive for other natural channels in contrast
to Hamming’s error model. For example, Shannon introduces a model in which each symbol
has some independent probability of being corrupted; this probability is generally fixed across
all symbols and known a priori. However, this probabilistic channel may be too weak to
capture natural phenomenon such as bursts of consecutive error.

J. Blocki, S. Kulkarni, and S. Zhou 16:5

Thus it is reasonable to believe that many natural channels lie between these two extremes;
in particular, Lipton [31] argues that many reasonable channels are computationally bounded
and can be modeled as PPT algorithms. In this model, [31] introduced an analog to classical
error-correcting codes that is robust to a fraction of errors beyond the rates provably
tolerable by any code in the adversarial Hamming channel model. Similarly, a line of
work [31, 32, 23, 37] have improved upon the error rate limits of classical error-correcting
codes in slight variants of Lipton’s computationally bounded channel model. A weakness
of the codes introduced by [31] is the strong cryptographic assumption that the sender and
receiver share a secret random string unknown to the channel. This weakness is ameliorated by
[32], who observe that if a message is encoded by digitally signing a code that is list-decodable
with a secret key, then an adversarial PPT is unlikely to produce valid signatures. Conversely,
the decoder can select the unique message from the list of possible messages with a valid
signature, effectively producing public-key error-correcting codes against computationally
bounded channels. Subsequently, [23] further removes the public-key setup assumption
specifically for the channel in which either the error is independent of the actual message
being sent, or the errors can be described by polynomial size circuits. Their results are based
on the idea that the sender can choose a permutation and some key that is computable by
the decoder but not by the channel, since it operates with low complexity. In some loose
sense, their results are an example of our framework when the channel has bounded circuit
complexity, i.e. the bounded resource is circuit complexity of the error.

[33] obtain LDCs with constant information and error rates over the binary alphabet
against computationally bounded errors, using a small number of queries to the corrupted
word; specifically they can achieve any ω(log κ) query complexity, where κ is the desired
security parameter. However, their results not only assume the existence of one-way functions,
but also once again assume a predetermined private key known to both the encoder and
decoder but not the channel, similar to [31]. Analogous to the improvements of [32] for
classical error codes, [24, 25] construct public-key LDCs, assuming the existence of Φ-hiding
schemes [15] and IND-CPA secure cryptosystems.

Ben-Sasson et al. [10] introduce the concept of relaxed locally decodable codes (RLDCs) as
an alternative means of decreasing the tradeoffs between rate and locality in classical LDCs.
In contrast to LDCs, the decoding algorithm for RLDCs is allowed to output ⊥ sometimes to
reveal that the correct value is unknown, though it is limited in the fraction of outputs in
which it can output ⊥. The RLDCs proposed by Ben-Sasson et al. [10] obtain constant query
complexity and blocklength n = k1+ε. Subsequently, Gur et al. [22] construct relaxed locally
correctable codes (RLCCs) with attractive properties but significant tradeoffs; they propose
codes with constant query complexity and error rate but block length roughly quartic in
the message length as well as codes with constant error rate and linear block length, but
quasipolynomial ((logn)O(log logn)) query complexity. These parameters are significantly
better than classical locally correctable codes and their results immediately extend to RLDCs,
since the original message is embedded within the initial part of the encoding. However,
these tradeoffs are still undesirable.

Recently, Blocki et al. [12] study RLDCs and RLCCs on adversarial but computationally
bounded channels in an effort to reduce these tradeoffs. They obtain RLDCs and RLCCs
over the binary alphabet, with constant information rate, and poly-logarithmic locality.
Moreover, their codes require no public-key or private-key cryptographic setup; the only
setup assumption required is the selection of the public parameters (seed) for a collision-
resistant hash function.

ITC 2020

16:6 On Locally Decodable Codes in Resource Bounded Channels

2 Preliminaries

2.1 Notation
We use the notation [n] to represent the set {1, 2, . . . , n}. For any x, y ∈ Σn, let HAM(x)
denote the Hamming weight of x, i.e. the number of non-zero coordinates of x. Let
HAM(x, y) = HAM(x− y) denote the Hamming distance between the vectors x and y. All
logarithms will be base 2. For n vectors x1, . . . , xn, we use majority(x1 · · ·xn) to denote the
vector that appears most frequently. If such a vector is not unique, then an arbitrary vector
of highest frequency is chosen. For any vector x ∈ Σn, let x[i] be the ith coordinate of x. We
also let x ◦ y denote the concatenation of x with y and x⊕ y denote the bitwise XOR of x
and y. For a randomized function f(·), the notation f(·;R) will be used to denote that f(·)
uses random coins R as its randomness. A function negl(κ) is said to be negligible in κ if

negl(κ) ∈ o
(∣∣∣ 1

poly(κ)

∣∣∣) for any non-zero polynomial poly(·). Finally, we distinguish between

inputs and parameters to a function f as follows: f(inputs · · ·)[parameters · · ·].

2.2 Locally Decodable Codes
We consider the setting where sender S encodes a message x into a codeword y using an
encoding algorithm so that y is sent over noisy channel C, which then hands over the possibly
corrupted codeword y′ to R, who then uses a decoding algorithm to obtain the original
message. We denote x ∈ Σk and y ∈ ΣK where Σ is the alphabet. We denote the alphabet
size by q = |Σ|. We consider the model where y′ corresponds to y with some symbols replaced
with others in Σ. The term corruptions refers to such symbol replacements within y, with a
single corruption meaning a single symbol replacement, so that y′ ∈ ΣK . The encoding and
decoding algorithms are denoted by Enc : Σk → ΣK and Dec : ΣK → Σk. We use the terms
sender, encoder, and encoding algorithm interchangeably, and similarly for receiver, decoder,
and decoding algorithm.

A code is an encoder-decoder pair. The information rate or simply rate of the code is the
ratio k/K, so that a lower rate corresponds to a larger amount of information redundancy
introduced by the code. The message length, codeword length, and alphabet size characterize
a coding scheme. Coding schemes with high rate and low alphabet size are desired.

An error correcting code allows the decoder to recover the entire original message x by
reading the entire y′. It is also possible to construct codes that only need to read a few
symbols of y′ rather than the entire message to recover a small part of the message. Such
codes are called locally decodable codes (LDC), and will be the focus of this work. An LDC
has locality `, error rate ρ and error correction probability p if any character of x may be
recovered with probability at least p by making at most ` queries to y′, even when the channel
corrupts ρ fraction of all symbols of y to generate y′. We use the terms query complexity and
locality interchangeably. When ρ and p are clear from context (as constants), the scheme
may be referred to as an `-LDC. Naturally, LDCs with low locality, high error rate, and high
error correction probability are desired.

2.3 Definitions
The focus of this work will be the construction of LDCs (Section 2.4) for resource-bounded
channels (Section 4.1). In this section, we present several building blocks that we will require
in our constructions – LDC∗s, private-LDCs and safe functions. We first give two classical
definitions pertaining to LDCs that compactly summarize our discussion in Section 2.2.

J. Blocki, S. Kulkarni, and S. Zhou 16:7

I Definition 1. A (K, k)q-coding scheme C[K, k, q] = (Enc,Dec) is a pair of encoding
Enc : Σk → ΣK and decoding Dec : ΣK → Σk algorithms where |Σ| = q. The information
rate of the scheme is defined as k

K .

I Definition 2. A (K, k)q-coding scheme C[K, k, q] = (Enc,Dec) is an (`, ρ, p)-locally decod-
able code (LDC) if Dec, with query access to a word y′ such that HAM(Enc(x), y′) ≤ ρK, on
input index i ∈ [k], makes at most ` queries to y′ and outputs xi with probability at least p
over the randomness of the decoder.

Next, we present a simple variant of LDCs which we denote by LDC∗s. These will be very
similar to LDCs except that they are required to decode the entire original message while
making as few queries to the corrupted codeword as possible. They are defined with respect
to the same setting as in Section 2.2.

I Definition 3. A (K, k)q-coding scheme C[K, k, q] = (Enc,Dec) is an (`, ρ, p)-LDC∗ if Dec,
with query access to a word y′ such that HAM(Enc(x), y′) ≤ ρK, makes at most ` queries to
y′ and outputs x with probability at least p over the randomness of the decoder.

We remark that it will be typically desired that for an LDC∗ C[K, k, q], the locality be
O (k) even when K is very large. We now move on to define one-time private-LDCs analogous
to Definition 2 as an alternative to that given by Ostrovsky, Pandey and Sahai [33]. Ostrovsky
et al. also give explicit constructions of one-time private-LDCs, and so we restate their result
according to our new definition. Refer to the full version [13] for an overview of [33].

priv− LDC− Sec− Game[A, x, κ, ρ, p] :

1. The challenger generates a secret key sk← GenKey(1κ), computes the codeword y ← Enc(x, κ, sk)
for the message x and sends the codeword y to the attacker.

2. The attacker outputs a corrupted codeword y′ ← A (x, y, κ, ρ, p, k,K) where y′ ∈ ΣK should
have hamming distance at most ρK from y.

3. The output of the experiment is determined as follows:

priv− LDC− Sec− Game[A, x, κ, ρ, p] =
{

1 if ∃i ≤ k s.t. Pr[Decy
′
(i, κ, sk) = xi] < p

0 otherwise

If the output of the experiment is 1 (resp. 0), the attacker A is said to win (resp. lose) against C.

Figure 1 priv− LDC− Sec− Game defining the interaction between an attacker and an honest
party.

I Definition 4 (One-Time Private-LDC). A triplet of probabilistic algorithms C[K, k, κ] =
(GenKey,Enc,Dec) is an (`, ρ, p, ε,C)-private locally decodable code (private LDC) against a
class C if Dec makes at most ` queries and for all attackers A ∈ C and all messages x ∈ Σk,

Pr[priv− LDC− Sec− Game[A, x, κ, ρ, p] = 1] ≤ ε

where the probability is taken over the random coins of A and GenKey. If C is the set of all
(computationally unbounded) attackers we say that the scheme is a (`, ρ, p, ε)-private LDC.

A construction of Ostrovsky et al. [33] yields a constant-rate One-Time Private-LDC with
constant rate, low locality ` = ω(log κ) and negligible failure probability whenever k = poly(κ).

ITC 2020

16:8 On Locally Decodable Codes in Resource Bounded Channels

I Theorem 5 (One-Time Private-LDC Existence). [33] Let f(κ) be any function such that
f(κ) = ω(log κ). Then, for security parameter κ and for all K > k > 0 such that k = poly(κ)
where poly is any non-zero polynomial, there exists a (K, k)2 coding scheme that is a one-time
(`OPS, ρOPS, pOPS, εOPS)−private LDC where `OPS = f(κ), ρOPS is a constant, pOPS = 1, and
εOPS ≤ k

(
e
4
)−ρOPS`OPS is negligible in the security parameter.

Our contributions in the subsequent sections will assume that the coding scheme and
channel all have access to a random oracle. Furthermore, we assume that the channel is a
pROM algorithm with respect to this random oracle (refer to the initial discussion in Section
4.1 for an overview of the pROM model). The following definition establishes a notion of
privacy against classes (i.e. sets) of adversarial channels in terms of “hard to compute”
functions.

I Definition 6 (Safe Function). We say that a function f : {0, 1}n → {0, 1}∗ is δ-safe for a
class C of algorithms if for all A ∈ C we have

Pr
[
A(x) = f(x)

]
≤ δ

where the probability is taken over the random coins of A and the selection of an input
x ∈ {0, 1}n. If the function f = fH(·) is defined using a random oracle, then the probability
Pr
[
AH(·)(x) = fH(·)(x)

]
is also taken over the selection of the random oracle H(·).

We will use the notation SC to denote a δ−safe function for class C. In the above definition,
we usually think of δ as being a negligibly small parameter. We remark that in the parallel
random oracle model, one can construct functions with sharp thresholds on the required
resources. For example, the function Ht+1(x) is trivial to compute using at most t + 1
sequential queries to H : {0, 1}∗ → {0, 1}2, but any parallel algorithm making at most q
queries over t rounds succeeds with probability at most δ = (t2 + tq)/2w.

Precomputation. Definition 6 can be extended to consider an attacker who is allowed
to perform precomputation with the random oracle H(·) before receiving the input x. In
particular, we could consider a pair of oracle algorithms (A1,A2) where AH(·)

1 (m) outputs
an m-bit hint σ ∈ {0, 1}m for A2 after making at most q queries to H(·). We could modify
the definition to require that for all A2 ∈ C we have

Pr
[
AH(·)

2 (x,AH(·)
1 (m)) = fH(·)(x)

]
≤ δ

where the randomness is taken over the selection of x, the random oracle H(·), and the
random coins of A2. Here, AH(·)

1 (m) (precomputation) is not necessarily constrained to be in
the same class C as A2.

We remark that for k = m/w, a precomputing attacker can succeed with probability at
least k/2n by having AH(·)

1 (m) output the hint σ = fH(·)(1), . . . , fH(·)(k). Then AH(·)
2 (x, σ)

first checks if x ∈ {1, . . . , k} and, if so, simply returns the output fH(·)(x) which is already
recorded in the hint σ. Thus, we need the length n of the random nonce x to be sufficiently
large to resist brute-force precomputation attacks. By contrast, if the attacker does not get
to perform any precomputation then δ can be negligible even when n = O (1).

All of the safe functions we consider would also be secure under this stronger notion. For
example, Ht+1(x) is δ-safe for δ = O

(
(qt+ t2)/2w + qt/2n

)
where x is a random n bit string,

A1 makes at most q total random oracle queries, and A2 makes at most q total queries in
at most t rounds to H(·). In our LDC constructions we select a random nonce of length
Ω(log1+ε κ) to ensure that a precomputing attacker fails.

J. Blocki, S. Kulkarni, and S. Zhou 16:9

2.4 Our Model
We first define an experiment to model the interaction between a code and an algorithm
from a class of pROM algorithms adversarial against the code. For random oracle H(·), let
C = (EncH(·),DecH(·)) be a (K, k)q-coding scheme in the random oracle model and let C be
a class of pROM algorithms. Then, the interaction of AH(·) ∈ C having error rate ρ, with
the code C is defined in Figure 2 (analogous to priv-LDC-Sec-Game defined in Figure 1).
Here, the security parameter κ, and the decoding probability p are also given as inputs to
the game. We now formally define a notion of LDCs analogous to Definition 2, but with
respect to general classes of adversarial (pROM) channels.

LDC− Sec− Game[A, x,H, κ, ρ, p] :

1. The challenger computes y ← EncH(·)(x, κ) encoding the message x and sends y ∈ ΣK to the
attacker.

2. The channel AH(·) outputs a corrupted codeword y′ ← AH(·) (x, y, κ, ρ, p, k,K) where y′ ∈ ΣK
should have hamming distance at most ρK from y.

3. The output of the experiment is determined as follows:

LDC− Sec− Game[A, x,H, κ, ρ, p] =
{

1 if ∃i ≤ k such that Pr[Decy
′,H(·)(i, κ) = xi] < p

0 otherwise

If the output of the experiment is 1 (resp. 0), the channel is said to win (resp. lose).

Figure 2 LDC− Sec− Game defining the interaction between an attacker and an honest party.

I Definition 7. Let C be a class of pROM algorithms. A (K, k)q-coding scheme C[K, k, q] =
(EncH(·),DecH(·)) is an (`, ρ, p, ε,C)-locally decodable code (LDC) if DecH(·) makes at most `
queries and for all AH(·) ∈ C and all messages x ∈ Σk we have

Pr[LDC− Sec− Game[A, x,H, κ, ρ, p] = 1] ≤ ε

where the probability is taken over the random coins of AH(·)and the selection of the random
oracle H.

3 Constructions

We begin by discussing the use of safe functions in Section 3.1 and give several examples of
constructing such functions in Section 4. We then show how allowing an encoder/decoder
pair with enough resources to compute safe functions can effectively generate a random
shared secret key between the pair. This secret key can then be bootstrapped into existing
private LDC constructions to give codes against resource bounded adversaries. We give our
final framework in Section 3.2 and the main proofs in Sections 3.3 and 3.4.

3.1 Using Safe Functions
Let C be a class of algorithms with safe function SC. For some input x ∈ {0, 1}n to
AH(·) ∈ C, we will be interested in bounding the probability of the undesirable event where
the AH(·)queries the random oracle at any string of the form y ◦ SC(x) with y ∈ {0, 1}dlog2 αe.
In the absence of such an event, H(SC(x)) would information theoretically appear random to
AH(·). Lemma 8 shows that such an event may only happen with negligible probability qε
where q is the total number of random oracle queries.

ITC 2020

16:10 On Locally Decodable Codes in Resource Bounded Channels

I Lemma 8. For a some class C of pROM algorithms with δ−safe function SC{0, 1}n →
{0, 1}∗, let badA be the event that on some input x ∈ {0, 1}n, AH(·) ∈ C queries the random
oracle at α ◦ SC(x) for any α > 0. Then Pr[badA] ≤ qδ, where q is the number of oracle
queries made by AH(·).

Proof. We prove the claim by a reduction argument. By way of contradiction, suppose
there exists a BH(·) ∈ C such that on input string x, BH(·) makes q queries to the random
oracle H(·) and Pr[badB] > qε. We construct an adversary AH(·) as follows: on input x, the
adversary

Simulates BH(·) with input x
Keeps track of all q queries by which BH(·) queries the random oracle
On termination of BH(·), returns the suffix of length |SC(x)| from one of the q queries
selected uniformly at random

However, we know that BH(·) queries the random oracle at α ◦ SC(x) with probability
> qδ. Since AH(·) picks one of BH(·)’s queries at random, Pr[AH(·)(x) = SC(x)] > δ, which
contradicts the definition of δ−safe function. J

Assuming that AH(·)never queries the random oracle at any point of the form y ◦ SC(x)
with y ∈ {0, 1}dlog2 αe (for some α > 0) we can view each H(y ◦ SC(x)) as a fresh w-bit string.
Thus, we can obtain a random wα-bit string by concatenating all of the labels H(y ◦ SC(x))
for each y ∈ {0, 1}dlog2 αe. This motivates the following definition of an expansion family
which will be used in subsequent sections.

I Definition 9 (Expansion Family). For random oracle H(·) the expansion family of functions
{EH(·)

α }∞α=1 where each function EH(·)
α : {0, 1}∗ → {0, 1}αw is defined as EH(·)

α (x) = H(1 ◦ x) ◦
H(2 ◦ x) ◦ · · · ◦H(α ◦ x), where the prefix i ∈ [α] of x for each oracle query in the definition is
expressed in binary using dlog2 αe bits.

3.2 Framework for LDCs against Resource Bounded Channels
Our aim in this section is to achieve LDCs having no asymptotic loss in rate, query complexity,
or success probability of private locally decodable codes. In contrast to the private LDC
setting, we assume no private (or public) key setup assumptions. We also aim for LDCs that
may be used for multiple (polynomial) rounds of communication, a notion which we describe
later in the section. Let Cldc∗ be a LDC∗and Cpriv be a private-LDC. Then, against classes of
pROM algorithms permitting δ−safe functions, our encoder will use Cldc∗ to bootstrap off of
Cpriv even in the absence of shared private randomness with the decoder.

Framework Overview: The encoding algorithm first samples a random seed r of modest
length (kldc∗). By embedding an encoding of r (via Cldc∗) in our final codeword, we can ensure
that our decoder will also have access to r. Let the channel, over which the communication
happens, belong to a class C of pROM algorithms (w.r.t. random oracle H(·)) permitting
some δ-safe function SC : {0, 1}kldc∗ → {0, 1}∗. Even though the channel has access to the
seed r, it will be unable to compute SC(r) by definition of the safe function. Thus H(SC(r)) is
effectively a random string to the channel. We can expand this randomness via an expansion
function (Definition 9), and use GenKeypriv with this randomness to compute a key. The
computed key is effectively secret from the channel and can be used in conjunction with
Encpriv to obtain an encoding of any input message. Note that since the decoder also has
access to r, it may also compute the secret key using exactly the same procedure and use
this key in conjunction with Decpriv to perform the required decoding. Thus the use of Cldc∗ ,

J. Blocki, S. Kulkarni, and S. Zhou 16:11

safe and expansion functions on a random seed reduces the setting to that of Cpriv. Our
framework is parameterized by [SC,Cldc∗ ,Cpriv].

Figure 3 Instantiation of framework for LDCs against adversaries permitting safe functions.

Explicit Constructions: We provide explicit constructions of LDCs against adversarial
pROM channels permitting δ−safe functions by instantiating the framework discussed above.
Figure 3 gives an overview of the instantiation. For private LDCs we use the constructions of
Theorem 5. Furthermore, we instantiate Cldc∗ as follows: The encoder encodes the seed with
a standard constant rate error correcting code – we instantiate this with Justesen codes –
composed with a repetition code. The local decoder then randomly samples seed-encodings
and takes a majority vote over the decoded samples to determine the seed. We show that
these encoding and decoding algorithms result in a (`, ρ, p)-LDC∗ where, for a parameter
α and message of length k, ` = O (αk), ρ = O (1) and p ≥ 1 − e−α. The prior results
are obtainable for any desired codeword length K = Ω(k). We refer the reader to the full
version [13] for a formal explanation of this LDC∗ instantiation.

Detailed descriptions of our encoder (EncH(·)
final) and decoder (DecH(·)

final), given a message x,
security parameter κ, and random oracle H(·), may be described in Figure 4. In particular,
our framework lead to the following theorem.

EncH(·)
final (x, κ)[SC,Cldc∗ ,Cfinal] :

1. Sample a random seed of length kldc∗ .
r← {0, 1}kldc∗

2. Encode random seed using an LDC.
Yldc∗ := Encldc∗(r)

3. Generate randomness uncomputable by chan-
nel via safe and expansion functions.
R := EH(·)

τ (SC(r))
4. Generate a secret key from the randomness.

skfinal := GenKeypriv(κ;R)
5. Use private LDC encoder with generated key.

Ypriv := Encpriv(x, κ, skfinal)
6. Output Ypriv ◦ Yldc∗

DecH(·),Y′priv◦Y
′
ldc∗

final (i, κ)[SC,Cldc∗ ,Cfinal] :

1. Decode the original random seed.

r := DecY
′

ldc∗
ldc∗ (·)

2. Compute randomness used by encoder.
R := EH(·)

τ (SC(r))
3. Compute secret key used by encoder.

skfinal := GenKeyOPS(κ;R)
4. Use private LDC decoder with computed key.

Output DecY
′

priv
priv (i, skfinal)

Figure 4 Encoding and decoding algorithms for our LDC construction.

ITC 2020

16:12 On Locally Decodable Codes in Resource Bounded Channels

I Theorem 10. Let Cldc∗ [Kldc∗ , kldc∗] = (Encldc∗ ,Decldc∗) be an (`ldc∗ , ρldc∗ , pldc∗)−LDC∗and
Cpriv[Kpriv, kpriv, κ] = (Encpriv,Decpriv,GenKeypriv) be an (`priv, ρpriv, ppriv, εpriv)−private LDC.
Then for any class C of pROM algorithms admitting a δ−safe function SC : {0, 1}kldc∗ →
{0, 1}∗, the (Kfinal, kfinal)2 coding scheme in the random oracle model Cfinal[SC,Cldc∗ ,Cpriv] =
(EncH(·)

final ,DecH(·)
final) is an (`final, ρfinal, pfinal, εfinal)-LDC with kfinal = kpriv, Kfinal = Kldc∗ + Kpriv,

`final = `final + `ldc∗ , ρfinal = 1
Kldc∗+Kpriv

min{ρldc∗Kldc∗ , ρprivKpriv}, pfinal ≥ 1− (2− ppriv − pldc∗),
εfinal ≤ εpriv + qδ. Here q is an upper bound on the number of queries any algorithm AH(·) ∈ C
makes to the random oracle H(·).

The final codeword generated by EncH(·)
final is simply the concatenation of the codewords

generated by Encpriv and Encldc∗ , resulting in Kfinal = Kldc∗ +Kpriv. By construction, the only
queries DecH(·)

final makes to the corrupted codeword are during the executions of Decldc∗ and
Decpriv. This gives the locality `final = `ldc∗ + `priv. Furthermore for correct overall decoding,
it is necessary that the individual codes are correctly decoded. Thus the total errors that
the code can tolerate is bounded by the maximum number of errors any individual one
of the codes can tolerate. This gives the claimed (worst case) error rate. We emphasize
that the proofs of the bounds on the decoder’s success probability and the security of the
framework is much more involved than the above discussion and is included in Section 3.3
and 3.4. In particular, we show that no adversary admitting δ-safe functions can distinguish
between the encodings of EncH(·)

final and those of Encpriv with random strings appended to
them. Furthermore, even the decoder, who has no computational restrictions and gets the
appropriate secret key used during the respective encoding processes may not make this
distinction, thereby effectively reducing the security of Cfinal to that of Cpriv with negligible
loss. The following two corollaries exhibit decoding probability vs locality tradeoffs when
our framework is instantiated with LDC∗s and private-LDCs from the discussion of explicit
constructions earlier in the section. We defer details of these to the full version [13].

I Corollary 11. For security parameter κ, a class C of pROM adversaries admitting δ−safe
function SC : {0, 1}log1+ε κ → {0, 1}∗ where ε > 0 and for every k > 0 such that k = poly(κ)
where poly is any non-zero polynomial, there exists a (βk, k)2 coding scheme in the random
oracle model that is an (`, ρ, p, ε,C)−LDC where ` = (α+ 1) log1+ε κ (such that α ≥ 17), ρ
is a constant, p is a constant dependent on α, and ε ≤ negl(κ) + qδ. Here β is a constant,
negl(κ) is a negligible function of κ and q is an upper bound on the total queries any algorithm
in C makes to the random oracle.

I Corollary 12. For security parameter κ, a class C of pROM adversaries admitting δ−safe
function SC : {0, 1}log1+ε κ → {0, 1}∗ where ε > 0 and for every k > 0 such that k = poly(κ)
where poly is any non-zero polynomial, there exists a (βk, k)2 coding scheme in the random
oracle model that is an (`, ρ, p, ε,C)−LDC where ` = (1+24 log1+ε κ) log1+ε κ, ρ is a constant,
p ≥ (1− negl1(κ)), and ε ≤ negl2(κ) + qδ. Here β is a constant, negl1(κ) and negl2(κ) are
negligible functions of κ, and q is an upper bound on the total queries any algorithm in C
makes to the random oracle.

Precomputation. We remark that Steps 1-4 of EncH(·)
final may be precomputed. This may be

advantageous in some settings to speed up encoding time as the sender may precompute
multiple (skfinal, Yldc∗) pairs. When a message is ready to be encoded, the sender then simply
needs to generate Ypriv using skfinal and append Yldc∗ to generate the final codeword. However,
we do note that this precomputation must be done after the selection of the random oracle,
and that such precomputation is not possible for DecH(·)

final .

J. Blocki, S. Kulkarni, and S. Zhou 16:13

Multi-round Communication. Existing constructions of private LDCs [33] are secure only
for a single round of communication (see the full version [13] for details on the round-based
game between the encoder/decoder and the channel in the private LDC setting). We may
generalize our model to be in terms of rounds as well, where each round runs an instance of
the experiment LDC− Sec− Game defined in Section 2.4. We remark that our codes work for
this generalized model as well. In every round of the experiment, the encoder can sample a
fresh random seed r. This is not directly possible in the existing private LDC constructions
as an attacker listening to the decoder’s queries may learn information about the secret key
after a single round of communication. For this Ostrovsky et al. introduce a new construction
which hides the secret key behind a layer of encryption, which in turn increases the locality
of their final constructions to ω(log2 κ).

3.3 Two-Phase Hybrid Distinguisher Argument
To prove the security of the LDC framework in section 3.2, our approach is to argue the
following: if any channel wins the LDC-Sec-Game against an instantiation of our LDC
constructions (EncH(·)

final , DecH(·)
final), then this channel can win the priv-LDC-Sec-Game against

its constituent private-LDC (contradicting its security guarantee).

Standard Hybrid Argument Failure: A natural attempt to prove this, yet one that fails, is
to use the following standard hybrid argument. In the first hybrid we use our original encoding
scheme EncH(·)

final to obtain a codeword Ypriv
(0) ◦ Yldc

(0). In the second hybrid, we replace the
second component with an encoding of a random unrelated nonce to get Ypriv

(1)◦Yldc∗
(1). Here

Yldc∗
(1) is an encoding of some random nonce which is sampled completely independent of the

message encoding Ypriv
(1). We would like to argue that the two hybrids are indistinguishable

and conclude that a resource bounded channel cannot fool the local decoder from original
encoding scheme (first hybrid) – since we cannot fool the private-LDC local decoder in the
second hybrid. However, if the distinguisher D is able to evaluate the safe-function then the
hybrids are trivially distinguishably. On the other hand, if we assume that the distinguisher
D is resource bounded like the channel then indistinguishability does not suffice to argue that
the local decoder i.e., fooling the decoder does not yield a resource bounded distinguisher D
since the decoder is not constrained in the same way as the resource bounded channel.

Two-Phase Argument Overview: We address the previous issue by introducing a two-phase
distinguisher game defined over adversary/distinguisher pairs. In the first phase of this game,
a random coin toss b ∈ {0, 1} randomly selects one of the hybrid encoders to encode a
message. The selected hybrid hands its encoding Ypriv

(b) ◦ Yldc∗
(b) to the adversary AH(·)

which outputs a corrupted codeword Yhyb
(b)′ . In the second phase, the distinguisher D is

given the initial message x, the corrupted codeword Yhyb
(b)′ , along with the secret key sk(b)

used to obtain Ypriv
(b), and tries to predict the value of b, i.e., which hybrid encoder was used.

An important point to note is that D is not constrained in any way. However, it is not given
access to the random oracle. We show (Lemma 14) that for any such attacker-distinguisher
pair, the distinguisher succeeds at guessing which hybrid encoding was used with at most
negligible probability. The two phase hybrid argument allows us to reason about our original
goal: the probability that the channel fools the honest decoder. In particular, a channel that
wins the LDC-Sec-Game with non-negligible probability can be used in phase 1 in conjunction
with a distinguisher that can simulate the decoding algorithm (with the correct key) in phase
2 to distinguish between the hybrids with non-negligible probability. This gives the required
contradiction (Lemma 15). We formally define the two hybrid encoders in Figure 5.

ITC 2020

16:14 On Locally Decodable Codes in Resource Bounded Channels

EncH(·)
0 (x, κ)[SC,Cldc∗ ,Cpriv]: (same as Figure 3)

1. Sample a random seed of length kldc∗ .
r(0) ← {0, 1}kldc∗

2. Encode random seed using an LDC∗.
Yldc

(0) := Encldc∗(r(0))
3. Generate randomness uncomputable by chan-

nel via safe and expansion functions.
R(0) := EH(·)

τ (SC(r(0)))
4. Generate a secret key from the randomness.

sk(0) := GenKeypriv(κ; R(0))
5. Use private LDC encoder with generated key.

Ypriv
(0) := Encpriv(x, κ, sk(0))

6. Output Ypriv
(0) ◦ Yldc

(0)

Enc1(x, sk(1), κ)[SC,Cldc∗ ,Cpriv]:
1. Sample a random seed of length kldc∗ .

r(1) ← {0, 1}kldc∗

2. Encode random seed using an LDC∗.
Yldc∗

(1) := Encldc∗(r(1))
3. Use private LDC encoder with input key.

Ypriv
(1) := Encpriv(x, κ, sk(1))

4. Output Ypriv
(1) ◦ Yldc∗

(1)

Figure 5 Hybrid encoding algorithms. By design, EncH(·)
0 is the same as our proposed LDC

construction.

Let AH(·) be an adversarial channel belonging to a class C of pROM algorithms w.r.t
random oracle H(·) permitting δ−safe functions. Furthermore, let D :

(
{0, 1}∗

)4 → {0, 1} be
a computationally unbounded algorithm. We will term AH(·) and D as attacker and distin-
guisher respectively. Using the hybrid encoders in Figure 5, we define the indistinguishability
experiment ExpA,D,H,κ,x over all attacker-distinguisher pairs (AH(·),D). Note that in this
experiment, D is provided with the secret key that the selected hybrid used during encoding,
and does not have access to the random oracle. With respect to this experiment, we define
the advantage of the attacker-distinguisher pair as follows:

AdvA,D := max
x

∣∣∣∣Pr[ExpA,D,H,κ,x = 1]− 1
2

∣∣∣∣
where the probability is taken over the randomness of D, AH(·), and the selection of the random
oracle H(·). Our first aim will be to show that the advantage of any attacker-distinguisher
pair, as defined above, is negligible at best.

Let (AH(·),D) be any attacker-distinguisher pair and hybrid encoders be instantiated with
parameters [SC,Cldc∗ ,Cpriv]. For security parameter κ and message x, consider an execution
of the indistinguishability experiment ExpA,D,H,κ,x. Let badA be the event that the attacker
queries the random oracle at position c ◦ SC(r(b)) where r is the random seed chosen by the
selected hybrid encoder EncH(·)

b and c is any constant expressed in binary. Furthermore, let
succ be the event where the attacker-distinguisher pair succeed in distinguishing the hybrid
encodings in the experiment, i.e., the event where ExpA,D,H,κ,x = 1.

The next proposition follows from the observation that conditioning on the event badA
not occurring, the secret key skb used during the encoding process remains (information
theoretically) private to both the adversary and the distinguisher. To the pair, EncH(·)

0
appears information theoretically identical to Enc1 which gets a secret key as its input,
and thus any advantage on distinguishing the encoding schemes would allow the pair to
distinguish between random strings.

I Proposition 13. Pr[succ|badA] = 1/2

J. Blocki, S. Kulkarni, and S. Zhou 16:15

ExpA,D,H,κ,x: \\message x and security parameter κ:

Phase I
1. Encode message with both hybrids. Let sk(0) and sk(1) be the secret keys used by first and

second hybrid respectively.
Yhyb

(0) := EncH(·)
0 (x, κ).

Yhyb
(1) := Enc1(x, κ, sk(1)).

2. Flip an unbiased coin to randomly select a hybrid encoding.
b← {0, 1}

3. Hand the selected encoding to the channel to get corrupted codeword.
Yhyb

(b)′ := AH(·)(x, κ,Yhyb
(b))

Phase II
1. Distinguisher, given the message, secret key, corrupted codeword, and security parameter, guesses

the coin toss.
b′ := D(x, sk(b),Yhyb

(b)′ , κ)

2. ExpA,D,H,x,κ =
{

1 iff b′ = b

0 otherwise

Figure 6 Indistinguishability experiment for the attacker-distinguisher pair.

The following lemma shows that the advantage for any attacker-distinguisher pair is negligible.

I Lemma 14. AdvA,D ≤ qδ
2 for any execution of the game ExpA,D,H,x,κ. Here q is an upper

bound on the number of queries AH(·)makes to the random oracle.

Proof. Consider some execution of the game ExpA,D,H,x,κ. Using conditional probability to
partition the event space, the advantage of the attacker-distinguisher pair is:

AdvA,D =
∣∣∣∣Pr[succ]− 1

2

∣∣∣∣ =
∣∣∣∣Pr[succ|badA] Pr[badA] + Pr[succ|badA] Pr[badA]− 1

2

∣∣∣∣
By Proposition 13, we may view the event of succ conditioned on badA not occurring as

an unbiased random choice. Thus AdvA,D =
∣∣∣∣Pr[succ|badA] Pr[badA] + 1

2 (1−Pr[badA])− 1
2

∣∣∣∣.
This allows us to bound the advantage of the attacker-distinguisher pair by a factor of the

probability of event bad occurring by AdvA,D = Pr[badA]
∣∣∣∣Pr[succ|badA]− 1

2

∣∣∣∣ ≤ Pr[badA] 1
2 .

Therefore by Lemma 8, the advantage of the attacker-distinguisher pair for the execution of
ExpA,D,H,x,κ is at most qδ

2 . J

3.4 Security and Decoding Probability of Constructions
Note that EncH(·)

0 is identical to EncH(·)
final and Enc1 is identical to Encpriv with random

strings appended to its output. Consider a (`priv, ρpriv, ppriv, εpriv)−private LDC instance
Cpriv[kpriv,Kpriv] = (Encpriv,Decpriv,GenKeypriv) and an instantiation of our constructions
Cfinal[SC,Cldc∗ ,Cfinal] = (EncH(·)

final ,DecH(·)
final). With respect to these instances, we define εfinal as

the following:

εfinal := Pr[LDC− Sec− Game[A, x,H, κ, ρ, p] = 1 against Cfinal]

Consider the codes C0 = (EncH(·)
0 ,DecH(·)

final) and C1 = (Enc1,Decpriv∗) formed by our hybrid
encoders. Here Decpriv∗ is defined identical to Decpriv except that it ignores the strings

ITC 2020

16:16 On Locally Decodable Codes in Resource Bounded Channels

appended to the output of Encpriv during the encoding execution of Enc1. With respect to
these codes, we define the following:

ε0 := max
AH(·)∈C

Pr[priv− LDC− Sec− Game[A, x, κ, ρfinal, pfinal] = 1 against C0]

ε1 := max
AH(·)∈C

Pr[priv− LDC− Sec− Game[A, x, κ, ρfinal, pfinal] = 1 against C1]

Note that by our definitions, ε0 = εfinal and ε1 ≤ εpriv. The second observation follows from
the following:

ε1 = max
AH(·)∈C

Pr[priv− LDC− Sec− Game[A, x, κ, ρfinal, pfinal] = 1 against C1]

≤ max
AH(·)∈C

Pr[priv− LDC− Sec− Game[A, x, κ, ρfinal, ppriv] = 1 against C1]

≤ max
A∈C

Pr[priv− LDC− Sec− Game[A, x, κ, ρpriv, ppriv] = 1 against Cpriv] = εpriv

where the first inequality follows because pfinal ≤ ppriv, while the second inequality follows
since ρfinalKfinal ≤ ρprivKpriv i.e., the attacker gets to make more corruptions against Cpriv.
Lemma 15 upper bounds |ε0 − ε1| ≤ qδ and it immediately follows that εfinal ≤ εpriv + qδ.

I Lemma 15. |ε0 − ε1| ≤ qδ. Here q is an upper bound on the number of queries the attacker
makes to the random oracle.

Proof. Recall that an attacker wins the LDC− Sec− Game[A, x,H, κ, ρ, p] if there exists some
index which the corresponding decoder fails to decode with probability at least p. Suppose for
sake of contradiction that |ε0 − ε1| > qδ for some attacker AH(·). Consider the distinguisher
D′ in Figure 7. With respect to the indistinguishability experiment, D′ takes as input the
original message x, the corrupted codeword y′b, the key used by hybrid b during encoding,
and the security parameter κ.

Distinguisher D′(x, y′b, skb, κ):
1. Computes εb by enumerating over all i, running Decy

′
b

priv(i, κ) and checking whether Decpriv fails
to decode correctly with probability at least ppriv.

2. return b′ =
{

1 with probability εb
0 otherwise

Figure 7 Distinguisher that uses the Decpriv decoding algorithm.

Note that the computationally intensive step 1 of D′ is possible since we assume no
computational restrictions. Thus by conditional probability, the advantage of distinguisher
D′ paired with any AH(·) ∈ C may be given by

AdvA,D′ =
∣∣∣∣Pr[succ]− 1

2

∣∣∣∣ = 1
2
∣∣Pr[succ|b = 0]− Pr[succ|b = 1]

∣∣
= 1

2
∣∣(1− ε0)− (1− ε1)

∣∣ = 1
2 |ε1 − ε0| ,

where the penultimate equality is by definition of the distinguisher D′. Our initial assumption
|ε0 − ε1| > qδ then implies that AdvA,D > qδ

2 , contradicting Lemma 14. J

The following proposition is a direct consequence of Lemma 15 and the observation that
ε1 ≤ εpriv.

J. Blocki, S. Kulkarni, and S. Zhou 16:17

I Proposition 16. ε0 ≤ εpriv + qδ where q is an upper bound to the number of queries that
the attacker makes to the random oracle.

Finally, we complete the proof by showing that that εfinal ≤ ε0 in Lemma 17. Combined with
proposition 16 this completes the proof since εfinal ≤ ε0 + qδ.

I Lemma 17. εfinal ≤ ε0

Proof. Let faili denote the event that DecH(·)
final incorrectly decodes xi for i ∈ [k]. We define succ

to be the event that priv− LDC− Sec− Game[A, x, κ, ρfinal, pfinal] = 1 against C0 to simplify
notation. It suffices to argue that Pr[faili|succ] ≤ (1− ppriv) + (1− pldc∗) for any i ∈ [k] since
Pr[succ] = ε0. Let key be the event that DecH(·)

final recovers the correct seed r(0) from Yldc
(0).

We first observe that

Pr[faili|succ] = Pr[faili|succ, key] Pr[key|succ] + Pr[faili|succ, key] Pr[key|succ]
≤ Pr[faili|succ, key] + Pr[key|succ]

Second we observe that Pr[key|succ] ≤ 1 − pldc∗ since there are at most ρfinalKfinal ≤
ρldc∗Kldc∗ errors in the second part of the codeword Yldc

(0). Finally, observe that by definition
we have Pr[faili|succ, key] ≤ 1− ppriv. The claim now directly follows. J

4 Constructing Safe Functions

In this section we provide several examples of safe functions in the parallel random oracle
model (pROM) [6]. We first define the parallel random oracle model and introduce several
cost metrics that measure the resources used by a pROM algorithm AH(·).

4.1 Parallel Random Oracle Model
Computation in the pROM proceeds in rounds. Each round ends when the algorithm A
outputs a batch of random oracle queries to be answered in parallel and a new round
begins when the attacker receives the answer(s) to this batch of queries. In between
rounds the A may perform arbitrary computation. Formally, in the initial round the
pROM algorithm A takes input x, performs some arbitrary computation, and outputs a
state σ1 and list ~u1 = (u1

1, . . . , u
1
q1

) of random oracle queries. In general, we then have
(~ui+1, σi+1) = A(σi,~ai) where ~ai = (H(ui1), . . . ,H(uiqi

) are the answers to the qi random
oracle queries ~ui = (ui1, . . . , uiqi

) asked in the previous round. The execution ends in round t if
the algorithm A returns an output value y = σt along with an empty batch of random oracle
queries ~ut = ∅. We use TraceA,R,H(x) = (σ1, σ2 · · · , σt, ~u1, . . . , ~ut) to denote the sequence of
states (and oracle queries) output when we run the pROM attacker A(x) on input x fixing
the random oracle H(·) and fixing A’s random coins R.

Cost Metrics. Figure 8 defines the resources we will consider as characterizing the cost
of a particular execution trace T = TraceA,R,H(x). We can define the time (resp. space)
cost as time(T) = t (resp. space(T) = maxi≤t |σi|). Similarly, the space time cost measures
the product space− time(T) = t ·maxi≤t |σi| and cumulative memory complexity measures
CMC(T) =

∑t
i=0 |σi|. Intuitively, cumulative memory complexity captures the amortized

space time complexity of a function that we want to evaluate many times in parallel [6].
Finally, the cumulative query cost is CQ(T) =

∑t
i=1 |~ui|. For a resource R listed in Figure 8,

the term R complexity will refer to a upper bound on resource R.

ITC 2020

16:18 On Locally Decodable Codes in Resource Bounded Channels

Resource Notation Definition

Time time(T) t

Space space(T) maxti=0 |σi|

Space-Time ST(T) space(T) · time(T)

Cumulative memory CMC(T)
∑t

i=0 |σi|

Cumulative query CQ(T)
∑t

i=0 ~ui

Figure 8 Resource Definitions.

I Definition 18. (Resource Bounded Algorithms) We use CCQ,q to refer to the set of all
pROM algorithms A with the property that for all inputs x, random oracles H(·), and all
random strings R, we have CQ(TraceA,R,H(x)) ≤ q. We use Cspace,M, ⊂ CCQ,q to refer
to the subset of all pROM algorithms A with the additional constraint that for all inputs
x, random oracles H(·), and all random strings R, we have CQ(TraceA,R,H(x)) ≤ q and
space(TraceA,R,H(x)) ≤ M . Similarly, Ctime,T,q ⊂ CCQ,q (resp. Cspace−time,S,q ⊂ CCQ,q) refers
to the subset of all pROM algorithms A with the additional constraint that for all inputs
x, random oracles H(·), and all random strings R, we have time(TraceA,R,H(x)) ≤ T (resp.
space− time(TraceA,R,H(x)) ≤ S). The definition of CCMC,M,q is symmetric – we add the
additional constraint that CMC(TraceA,R,H(x)) ≤M for all x,R,H(·).

The assumption that the channel is resource constrained with respect to one or more
of the above resources (time, space, cmc, etc.) is natural in most real word settings. For
example, if a low latency channel uses AH(·) to compute the corruptions to an encoded
message then we can plausibly assume that the attacker A ∈ Ctime,M,q is time bounded – M
denotes the maximum number of sequential evaluations of H(·) before the corrupted codeword
must be delivered. It would also be reasonable to assume that the total number of random
oracle queries q is polynomial in the relevant parameters. One can also argue that in most
practical settings the channel A will have other resource constraints e.g., space-bounded etc.
In general one can define complexity classes for various combinations of resource constraints
– see Definition 19.

I Definition 19. For constraintsM = (M1, . . . ,Mp) on resources R = (R1, . . . ,Rp) listed
in Figure 8, the constraint class CR,M is the set of all pROM AH(·)such that AH(·)is R-bounded
with constraintsM. Here, a pROM algorithm is said to be R-bounded with constraintsM
if for all i ≤ p and on all inputs x, random coins R, and random oracles H(·), we have

Ri
(
TraceA,R,H(x)

)
≤Mi

SCRYPT. Alwen et al. [5] proved that Percival’s [35] memory hard function scrypt is
maximally memory hard. In particular, scryptN can be computed in sequential time N , but
any pROM attacker evaluating the scrypt function has cumulative memory complexity at
least Ω(N2w), where w is the length of the output. Thus, scrypt could be used to obtain safe
functions for the classes CCMC,S,q and Cspace−time,S,q – observe that CMC(T) ≤ space− time(T)
for any execution trace T .

J. Blocki, S. Kulkarni, and S. Zhou 16:19

4.2 Sequentially Hard Function
The hash iteration function f(x) = H(x)t+1, defined recursively as H(x)t+1 = H(H(x)t)
where H(x)1 = H(x), is a simple example of a safe function for the class Ctime,T=t,q of time
bounded attackers – see Claim 20. The trade-off is sharp since it is trivial to compute f(x) in
sequential time t+ 1. This is a desirable property in our context since the encoder/decoder
both need to compute f(x) for a random input x.

We remark that the proof of Claim 20 is very similar to an argument of Cohen and
Pietrzak [17]. Our bound is slightly tighter, but less general. Cohen and Pietrzak [17] proved
that any pROM algorithm running in time t can produce an arbitrary H-sequence with
probability at most O

(
q2

2w

)
. We can reduce the bound to O

(
qt
2w

)
since the attacker needs

to compute a specific H-sequence i.e., L1, . . . , Lt+1 with Li = H(x)i. In general, we may
have q � t.

B Claim 20. Let f(x) = H(x)t+1 and let ε = (t+ 1)t/2w+1 + (qt+ 1)2−w then the function
f is ε-safe for the class Ctime,T=t,q.

Proof. (Sketch) Let Li := H(x)i. We remark that if L1, . . . , Lj−1 are all distinct then

Pr
[
Lj = H(Lj−1) ∈ {L1, . . . , Lj−1

]
≤ (j − 1)2−w

Thus, the probability of the event COL that Li = Lj for some 1 ≤ i < j ≤ t+ 1 is at most
2−w

∑t+1
j=1(j − 1) = (t+ 1)t/2w+1. We say that a particular random oracle query u in round

i is lucky if the output is H(u) = Lj but the label Lj−1 had not previously been observed as
the output to any earlier random oracle query. If i denotes the maximum index such that Li
has been observed as a random oracle output, then the probability that a particular query u
is lucky is at most Pr[H(u) ∈ {Li+2, . . . , Lt+1}|COL] = (t− i)2−w ≤ t2−w.

Conditioning on the event COL that no collisions occur, we can apply union bounds to
show that, except with probability qt/22, there are no lucky queries. If there are no lucky
queries, then after t sequential rounds the output Lt+1 = f(x) can be viewed as uniformly
random and the probability that the attacker outputs f(x) is at most 2−w in this case. J

If we let r denote the maximum number of sequential calls to H(·) that can be evaluated
in a second3 then we could set t = r × Lmax, where Lmax denotes the maximum latency of
the channel. Note that the encoder/decoder would need require time marginally higher than
the latency Lmax + 1/r ≈ Lmax to compute Ht+1(x).

4.3 Graph Labeling Functions
We define a labeling function fG,H(x) on a graph G, hash function H, and input x.

IDefinition 21. Given a DAG G = (V = [N], E) and a random oracle function H : Σ∗ → Σw
over an alphabet Σ, we define the labeling of graph G as LG,H : Σ∗ → Σ∗. In particular,
given an input x the (H,x) labeling of G is defined recursively by

LG,H,x(v) =

H(v ◦ x), indeg(v) = 0
H
(
v ◦ LG,H,x(v1) ◦ · · · ◦ LG,H,x(vd)

)
, indeg(v) > 0,

3 Bonneau and Schechter [14] estimated that SHA256 can be evaluated r ≈ 107 times per second on a
single core processor

ITC 2020

16:20 On Locally Decodable Codes in Resource Bounded Channels

where v1, . . . , vd are the parents of v in G, according to some predetermined lexicographical
order. We define fG,H(x) = {LG,H,x(s)}s∈sinks(G). If there is a single sink node sG then
fG,H(x) = LG,H,x(sG). We omit the subscripts G,H, x when the dependency on the graph G
and hash function H is clear.

The graph labeling function can be used to construct safe functions for several different
classes of resource bounded adversaries. In particular, the resources necessary to compute
fG,H in the pROM are tightly linked to the black pebbling cost of the DAG G.

Parallel Black Pebbling Game. A legal (parallel) pebbling P = (P0, P1, . . . , Pt) of a DAG
G = (V,E) consists of a sequence of pebbling configurations Pi ⊆ V – representing the
set of labels LG,H,x(v) which are stored in memory at time i. We start with no pebbles
on the graph P0 = ∅, and can remove pebbles from the graph (free memory) at any time.
For any newly pebbled node v ∈ Pi+1 \ Pi, it must be the case that parents(v) ⊆ Pi where
parents(v) := {u : (u, v) ∈ E}. Intuitively, this is because we cannot compute LG,H,x(v)
unless each of the dependent values LG,H,x(u) for each u ∈ parents(v) is already available in
memory. In the parallel version of the black pebbling game, there is no constraint on the
number of new pebbles

∣∣Pi+1 \ Pi
∣∣ that can be placed on the graph in each round.

The space cost of a pebbling P is defined as space(P) := maxi |Pi| and the space complexity
of a graph is space(G) = minP space(P). The space-time (resp. cumulative cost) cost of a
pebbling P is the product space− time(P) := time(P)× space(P) (resp. CC(G) =

∑
i |Pi|).

We remark that CC(G) ≤ space− time(G). For constant degree graphs G with N nodes it is
known that space(G) = O

(
N/ logN

)
and that CC(G) = O

(
N2 log logN/ logN

)
[1]. One

can also construct graphs G s.t. CC(G) = Ω(N2/ logN) [3, 2] and Paul et al. [34] constructed
a constant indegree graph G with space(G) = Ω(N/ logN) [34, 4] – this last bound is tight
as Hopcroft et al. [26] showed that any static DAG G on N nodes with constant indegree
can be pebbled with at most space(G) = O

(
N/ logN

)
pebbles.

Pebbling Reductions. In the full version [13] we prove that if space(G) ≥ m and S = mw/2
then fG,H is safe for the class Cspace,S,q. The pebbling reduction is conceptually very similar to
the reduction of Alwen and Serbinenko [6] who proved that CMC(fG,H) = Ω(CC(G) ·w) i.e., if
the graph G has high cumulative pebbling cost then fG,H is safe for the class CCMC,M,q, and by
extension safe for the class Cspace−time,M,q ⊆ CCMC,M,q. In particular, given an execution trace
TraceA,R,H(x) for an algorithm AH(·)(x) computing fG,H(x) we can (with high probability)
extract a legal pebbling P = (P1, . . . , Pt) for G and then use an extractor argument to show
that |σi| /w ≥ |Pi|/2 during each round i – otherwise we could derive a contradiction by
using the extractor to compress the random oracle. Thus, to construct a safe function one
simply needs to find a graph G with sufficiently large pebbling cost.

4.4 Brief Note on Candidate Constructions without Random Oracles
Recall that the proof of correctness for our LDC constructions on space bounded channels
uses the random oracle model inherently through an extractor argument showing that any
space bounded channel that fools a decoding algorithm can also essentially predict a random
string. Obtaining the same results without random oracles is an open challenge. We remark
that there are several candidate constructions of safe-functions in the standard model e.g.,
using time-lock puzzles [36]. One may also be able to use the framework of Bitansky et al.
[11] to construct safe-functions without random oracles e.g., Bitansky et al. construct explicit
time-lock puzzles from the minimal assumption that “inherently sequential” languages exist.
It is plausible that the same construction would also yield space-bound (or space-time bound)
puzzles from minimal assumptions. See the full version [13] for additional assumptions.

J. Blocki, S. Kulkarni, and S. Zhou 16:21

References
1 Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-hard

functions. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages 241–
271, Santa Barbara, CA, USA, August 14–18 2016. Springer, Heidelberg, Germany. doi:
10.1007/978-3-662-53008-5_9.

2 Joël Alwen, Jeremiah Blocki, and Ben Harsha. Practical graphs for optimal side-channel
resistant memory-hard functions. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer and Communications
Security, pages 1001–1017, Dallas, TX, USA, October 31 – November 2 2017. ACM Press.
doi:10.1145/3133956.3134031.

3 Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and their cumulative
memory complexity. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, Part III, volume 10212 of Lecture Notes in Computer
Science, pages 3–32, Paris, France, April 30 – May 4 2017. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-56617-7_1.

4 Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complexity. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 99–130, Tel Aviv, Israel,
April 29 – May 3 2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-78375-8_4.

5 Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. Scrypt is
maximally memory-hard. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, Part III, volume 10212 of Lecture Notes in Computer
Science, pages 33–62, Paris, France, April 30 – May 4 2017. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-56617-7_2.

6 Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard
functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium
on Theory of Computing, pages 595–603, Portland, OR, USA, June 14–17 2015. ACM Press.
doi:10.1145/2746539.2746622.

7 L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. Bpp has subexponential time simulations
unless exptime has publishable proofs. In [1991] Proceedings of the Sixth Annual Structure in
Complexity Theory Conference, pages 213–219, June 1991. doi:10.1109/SCT.1991.160263.

8 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory
of Computing, pages 21–31, 1991. doi:10.1145/103418.103428.

9 Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified
construction. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Auto-
mata, Languages and Programming, pages 912–926, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

10 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
pcps of proximity, shorter pcps, and applications to coding. SIAM J. Comput., 36(4):889–974,
2006. A preliminary version appeared in the Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC).

11 Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and
Brent Waters. Time-lock puzzles from randomized encodings. In Madhu Sudan, editor,
ITCS 2016: 7th Conference on Innovations in Theoretical Computer Science, pages 345–
356, Cambridge, MA, USA, January 14–16 2016. Association for Computing Machinery.
doi:10.1145/2840728.2840745.

12 Jeremiah Blocki, Venkata Gandikota, Elena Grigorescu, and Samson Zhou. Relaxed locally
correctable codes in computationally bounded channels. In IEEE International Symposium on
Information Theory, ISIT, page (to appear), 2019.

ITC 2020

https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1145/3133956.3134031
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-78375-8_4
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1145/2746539.2746622
https://doi.org/10.1109/SCT.1991.160263
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/2840728.2840745

16:22 On Locally Decodable Codes in Resource Bounded Channels

13 Jeremiah Blocki, Shubhang Kulkarni, and Samson Zhou. On locally decodable codes in
resource bounded channels. CoRR, abs/1909.11245, 2019.

14 Joseph Bonneau and Stuart E. Schechter. Towards reliable storage of 56-bit secrets in human
memory. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014: 23rd USENIX
Security Symposium, pages 607–623, San Diego, CA, USA, August 20–22 2014. USENIX
Association.

15 Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information
retrieval with polylogarithmic communication. In Advances in Cryptology - EUROCRYPT ’99,
International Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding, pages 402–414, 1999.

16 Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, November 1998. doi:10.1145/293347.293350.

17 Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II, volume
10821 of Lecture Notes in Computer Science, pages 451–467, Tel Aviv, Israel, April 29 – May 3
2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-78375-8_15.

18 A. Deshpande, R. Jain, T. Kavitha, S. V. Lokam, and J. Radhakrishnan. Better lower bounds
for locally decodable codes. In Proceedings 17th IEEE Annual Conference on Computational
Complexity, pages 184–193, May 2002. doi:10.1109/CCC.2002.1004354.

19 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM J. Comput.,
40(4):1154–1178, 2011.

20 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,
41(6):1694–1703, 2012.

21 Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In Proceedings of the
Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91, pages 33–42, New
York, NY, USA, 1991. ACM. doi:10.1145/103418.103429.

22 Tom Gur, Govind Ramnarayan, and Ron D. Rothblum. Relaxed locally correctable codes. In
9th Innovations in Theoretical Computer Science Conference, ITCS, pages 27:1–27:11, 2018.

23 Venkatesan Guruswami and Adam Smith. Optimal rate code constructions for computationally
simple channels. J. ACM, 63(4):35:1–35:37, September 2016. doi:10.1145/2936015.

24 Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In Advances in
Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference, Proceedings,
pages 126–143, 2008.

25 Brett Hemenway, Rafail Ostrovsky, Martin J. Strauss, and Mary Wootters. Public key
locally decodable codes with short keys. In 14th International Workshop, APPROX, and 15th
International Workshop, RANDOM, Proceedings, pages 605–615, 2011.

26 John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM, 24(2):332–
337, April 1977. doi:10.1145/322003.322015.

27 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the Thirty-second Annual ACM Symposium on Theory of
Computing, STOC ’00, pages 80–86, New York, NY, USA, 2000. ACM. doi:10.1145/335305.
335315.

28 Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395–420, 2004.

29 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally correctable
and locally testable codes with sub-polynomial query complexity. J. ACM, 64(2):11:1–11:42,
2017.

30 E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database, computationally-
private information retrieval. In Proceedings 38th Annual Symposium on Foundations of
Computer Science, pages 364–373, October 1997. doi:10.1109/SFCS.1997.646125.

https://doi.org/10.1145/293347.293350
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1109/CCC.2002.1004354
https://doi.org/10.1145/103418.103429
https://doi.org/10.1145/2936015
https://doi.org/10.1145/322003.322015
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/335305.335315
https://doi.org/10.1109/SFCS.1997.646125

J. Blocki, S. Kulkarni, and S. Zhou 16:23

31 Richard J. Lipton. A new approach to information theory. In STACS 94, pages 699–708,
Berlin, Heidelberg, 1994.

32 Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correction
against computationally bounded noise. In Joe Kilian, editor, Theory of Cryptography, pages
1–16, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

33 Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private locally decodable codes. In
Automata, Languages and Programming, pages 387–398, 2007.

34 Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game
on graphs. In Proceedings of the Eighth Annual ACM Symposium on Theory of Computing,
STOC ’76, pages 149–160, New York, NY, USA, 1976. ACM. doi:10.1145/800113.803643.

35 C. Percival. Stronger key derivation via sequential memory-hard functions. In BSDCan 2009,
2009.

36 Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology, USA, 1996.

37 Ronen Shaltiel and Jad Silbak. Explicit list-decodable codes with optimal rate for computation-
ally bounded channels. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pages 45:1–45:38, 2016.

38 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the xor
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001. doi:10.1006/jcss.
2000.1730.

39 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM,
55(1):1:1–1:16, 2008.

ITC 2020

https://doi.org/10.1145/800113.803643
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730

	Introduction
	Contributions
	Technical Overview
	Related Work

	Preliminaries
	 Notation
	Locally Decodable Codes
	Definitions
	Our Model

	Constructions
	Using Safe Functions
	Framework for LDCs against Resource Bounded Channels
	Two-Phase Hybrid Distinguisher Argument
	Security and Decoding Probability of Constructions

	Constructing Safe Functions
	Parallel Random Oracle Model
	Sequentially Hard Function
	Graph Labeling Functions
	Brief Note on Candidate Constructions without Random Oracles

