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Abstract

Given a directed acyclic graph (DAG) G=(V,E), we say that G is (e,d)-
depth-robust (resp. (e,d)-edge-depth-robust) if for any set S⊆V (resp. S⊆
E) of at most |S|≤e nodes (resp. edges) the graphG−S contains a directed
path of length d. While edge-depth-robust graphs are potentially easier to
construct, many applications in cryptography require node depth-robust
graphs with small indegree. We create a graph reduction that transforms
an (e,d)-edge-depth-robust graph with m edges into a (e/2,d)-depth-robust
graph withO(m) nodes and constant indegree. One immediate consequence
of this result is the first construction of a provably (nloglognlogn , n

logn(logn)loglogn
)-

depth-robust graph with constant indegree. Our reduction crucially relies on
ST-robust graphs, a new graph property we introduce which may be of inde-
pendent interest. We say that a directed, acyclic graph with n inputs and n
outputs is (k1,k2)-ST-robust if we can remove any k1 nodes and there exists
a subgraph containing at least k2 inputs and k2 outputs such that each of the
k2 inputs is connected to all of the k2 outputs. If the graph if (k1,n−k1)-ST-
robust for all k1≤nwe say that the graph is maximally ST-robust. We show
how to construct maximally ST-robust graphs with constant indegree and
O(n) nodes. Given a family M of ST-robust graphs and an arbitrary (e,d)-
edge-depth-robust graph G we construct a new constant-indegree graph
Reduce(G,M) by replacing each node inG with an ST-robust graph from M.
We also show that ST-robust graphs can be used to construct (tight) proofs-
of-space and (asymptotically) improved wide-block labeling functions.

1 Introduction

Given a directed acyclic graph (DAG) G=(V,E), we say that G is (e,d)-reducible
(resp. (e,d)-edge reducible) if there is a subset S⊆V (resp. S⊆E) of |S|≤ e
nodes (resp. edges) such that G−S does not contain a directed path of length
d. If a graph is not (e,d)-reducible (resp. (e,d)-edge reducible) we say that the
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graph is (e,d)-depth robust (resp. (e,d)-edge-depth-robust). Depth robust graphs
have found many applications in the field of cryptography in the construction
of proofs of sequential work [MMV13], proofs of space [DFKP15,Pie19], and
in the construction of data independent memory hard functions (iMHFs). For
example, highly depth robust graphs are known to be necessary [AB16] and
sufficient [ABP17] to construct iMHFs with high amortized space time complex-
ity. While edge depth-robust graphs are often easier to construct [Sch83], most
applications require node depth-robust graphs with small indegree.

It has been shown [Val77] that in any DAG with m edges and n nodes, there
exists a set Si of mi

logn edges that will force depth(G−Si)≤ n
2i

for all i< logn.
For DAGs with constant indegree we have m=O(n) edges so an equivalent
condition holds for node depth robustness [AB16], since a node can be removed
by removing all the edges incident to it. In particular, there exists a set Si of
O( ni

logn) nodes such that depth(G−Si)≤ n
2i

for all i< logn. It is known how to
construct a (c1n/logn,c2n)-depth-robust graph, for suitable c1,c2>0 [ABP17]
and a (c3n,c4n

1−ε)-depth-robust graph for small ε for [Sch83].
An open challenge is to construct constant indegree (c1ni/logn,c2n/2

i)-depth-
robust graphs which match the Valiant bound [Val77] for intermediate values
of i=ω(1) and i= o(logn). For example, when i= loglogn then the Valiant
bound [Val77] does not rule out the existence of (c1ni/logn,c2n/logn)-depth-
robust graphs with constant indegree. Such a graph would yield asymptotically
stronger iMHFs [BHK+19]. While there are several constructions that are
conjectured to be (c1ni/logn,c2n/logn)-depth-robust the best provable lower
bound for (e= cni/logn,d)-depth robustness of a constant indegree graph is
d=Ω(n1−ε). For edge-depth robustness we have constructions of graphs withm=
O(nlogn) edges which are (ei,di)-edge depth robust for any i with ei=mi/logn
and di=n/logi+1n — much closer to matching the Valiant bound [Val77].

1.1 Contributions

Our main contribution is a graph reduction that transforms any (e,d)-edge-depth-
robust graph with m edges into an (e/2,d)-depth-robust graph with O(m) nodes
and constant indegree. Our reduction utilizes ST-robust graphs, a new graph
property we introduce and construct. We believe that ST-robust graphs may
be of independent interest.

Intuitively, a (k1,k2)-ST-robust graph with n inputs I and n outputs O satis-
fies the property that, even after deleting k1 nodes from the graph we can find k2
inputs x1,...,xk2 and k2 outputs y1,...,yk2 such that every input xi (i∈ [k2]) is still
connected to every output yj (j∈ [k2]). If we can guarantee that the each directed
path from xi to yj has length d then we say that the graph is (k1,k2,d)-ST-Robust.
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A maximally depth-robust graph should be (k1,n−k1) -depth robust for any k1.

Definition 1.1. ST-Robust Let G=(V,E) be a DAG with n inputs, denoted
by set I and n outputs, denoted by set O. Then G is (k1,k2)-ST-robust if
∀D⊂V (G) with |D|≤k1, there exists subgraph H of G−D with |I∩V (H)|≥k2
and |O∩V (H)|≥k2 such that ∀s∈ I∩V (H) and ∀t∈O∩V (H) there exists a
path from s to t in H. If ∀s∈I∩V (H) and ∀t∈O∩V (H) there exists a path
from s to t of length ≥d then we say that G is (k1,k2,d)-ST-robust.

Definition 1.2. Maximally ST-Robust Let G=(V,E) be a constant indegree
DAG with n inputs and n outputs. Then G is c1-maximally ST-robust (resp. c1
max ST-robust with depth d) if there exists a constant 0<c1≤1 such that G is
(k,n−k)-ST-robust (resp. (k,n−k,d)-ST-robust) for all k with 0≤k≤ c1n. If
c1=1, we just say that G is maximally ST-robust.

We show how to construct maximally ST-robust graphs with constant in-
degree and O(n) nodes and we show how maximally ST-robust graphs can be
used to transform any (e,d)-edge-depth-robust graph G with m edges into a
(e/2,d)-depth-robust graph G′ with O(m) nodes and constant indegree. Intu-
itively, in our reduction each node v∈V (G) with degree δ is replaced with a
maximally ST-robust graph Mv with δ inputs/outputs. Incoming edges into v
are redirected into the inputs Iv of the ST-robust graph. Similarly, v’s outgoing
edges are redirected out of the outputs Ov of the ST-robust graph. Because
the graph is maximally ST-robust removing k nodes from Mv corresponds to
destroying at most 2k edges in the original graph G.

Our reduction gives us a fundamentally new way to design node-depth-robust
graphs: design an edge-depth-robust graph (easier) and then reduce it to a
node-depth-robust graph. The reduction can be used with a construction from
[Sch83] to construct a (nloglognlogn , n

logn(logn)loglogn
)-depth-robust graph. We conjecture

that several prior DAG constructions (e.g, [EGS75,Sch83,ABP18]) are actually
(nloglogn, n

logn)-edge-depth-robust. If any of these conjectures are true then our

reduction would immediately yield the desired (nloglognlogn , n
logn)-depth-robust graph.

We also present several other applications for maximally ST-robust graphs
including the construction of (tight) proofs-of-space and wide block-labeling
functions.

2 Edge to Node Depth-Robustness

In this section, we assume the existence of linear sized, constant indegree, maxi-
mally ST-robust graphs and use this assumption to construct a transformation of
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an (e,d)-edge-depth robust graph with m edges into an (e,d)-node-depth robust
graph with constant indegree and O(m) nodes. In the next section we will
construct a family of ST-robust graphs that satisfies assumption 2.1.

Assumption 2.1. There is a family of graphs M={Mn}∞n=1 with the property
that for each n≥1, Mn has constant indegree, O(n) nodes, and is maximally
ST-robust.

2.1 Reduction Definition

Let G=(V,E) be a DAG, and let M be as in Assumption 2.1. Then we define
Reduce(G, M) in construction 2.2 as follows:

Construction 2.2 (Reduce(G, M)). Let G=(V,E) and let M be the family
of graphs defined above. For each Mn∈M, we say that Mn=(V (Mn),E(Mn)),
with V (Mn) = I(Mn)∪O(Mn)∪D(Mn), where I(Mn) are the inputs of Mn,
O(Mn) are the outputs, and D(Mn) are the internal vertices. For v ∈ V , let
δ(v) = max{indegee(v),outdegree(v)} Then we define Reduce(G) = (VR,ER),
where VR = {(v,w)|v ∈ V,w ∈ Vδ(v)} and ER = Einternal ∪Eexternal. We let
Einternal = {((v,uδ(v)),(v,wδ(v)))|v ∈V,(uδ(v),wδ(v))∈E(Hδ(v))}. Then for each
v∈V , we define an In(v)={u : (u,v)∈E} andOut(v)={u : (v,u)∈E} and then
pick two injective mappings πin,v :In(v)→I(Vδ(v)) and πout,v :Out(v)→O(Vδ(v)).
We let Eexternal={((u,πout,u(v)),(v,πin,v(u))) : (u,v)∈E}.

Intuitively, to costruct Reduce(G, M) we replace every node of G with a
constant indegree, maximally ST-robust graph, mapping the edges connecting
two nodes from the outputs of one ST-robust graph to the inputs of another.
Then for every e=(u,w)∈E, add an edge from an output of Mδ(u) to an input of
Mδ(w) such that the outputs of Mδ(u) have outdegree at most 1, and the inputs
of Mδ(w) have indegree at most 1. If v∈V is replaced by Mδ(v), then we call v
the genesis node and Mδ(v) its metanode.

2.2 Proof of Main Theorem

We now state the main result of this section which says that if G is edge-depth
robust then Reduce(G,M) is node depth-robust.

Theorem 2.3. Let G be an (e, d)-edge-depth-robust DAG with m edges. Let M
be a family of max ST-Robust graphs with constant indegree. Then G′=(V ′,E′)=
Reduce(G,M) is (e/2,d)-depth robust. Furthermore, G′ has maximum indegree

maxv∈V (G){indeg
(
Mδ(v)

)
}, and its number of nodes is

∑
v∈V (G)

∣∣∣Mδ(v)

∣∣∣ where
δ(v)=max{indeg(v),outdeg(v)}.
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Figure 1: Diagram of the transformation Reduce(G,M)

A formal proof can be found in Appendix B. We briefly outline the intuition
for this proof below.

Proof. (Intuition) The first thing we node is that each graph Mδ(v) has constant
indegree at most cδ(v) nodes for some constant c>0. Therefore, the graph G′

has
∑

v∈V (G)

∣∣∣Mδ(v)

∣∣∣≤c∑vδ(v)≤2cm nodes and G′ has constant indegree.

Now for any set S ⊆ V ′ of nodes we remove from G′ we will map S to
a corresponding set Sirr ⊆E of at most |Sirr| ≤ 2|S| irrepairable edges in G.
We then prove that any path P in G−Sirr corresponds to a longer path P ′

in G′−S that is at least as long. Intuitively, each incoming edge (u,v) (resp.
outgoing edge (v,w)) in E(G) corresponds to an input node (resp. output node)
in v’s corresponding metanode Mδ(v) which we will label xu,v (resp. yv,w). If
S⊆V ′ removes at most k nodes from the metanode Mδ(v) then, by maximal
ST-robustness, we still can find δ(v)−k inputs and δ(v)−k outputs that are
all pairwise connected. If xu,v (resp. yv,w) is not part of this pairwise connected
subgraph then we will add the corresponding edge (u,v) (resp. (v,w)) to the set
Sirr. Thus, the set Sirr will have size at most 2|S| Claim B.2 in the appendix).

Intuitively, any path P inG−Sirr can be mapped to a longer path P ′ inG′−S
(Claim B.1). If P contains the edges (u,v),(v,w) then we know that the input
node xu,v and output node yu,v node in Mδ(v) are still connected in G′−S.

Corollary 2.4. (of Theorem 2.3) If there exists some constants c1,c2, such
that we have a family M = {Mn}∞n=1 of linear sized |V (Mn)| ≤ c1n, constant
indegree indeg(Mn)≤ c2, and maximally ST-robust graphs, then Reduce(G,M)
has maximum indegree c2 and the number of nodes is at most 2c1m.
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The next corollary states that if we have a family of maximally ST-robust
graphs with M = {Mk}∞k=1 and depth dk then we can transform any (e,d)-
edge-depth-robust DAG G=(V,E) with maximum degree δ=maxv∈V δ(v) into
(e/2,d·dδ)-depth robust graph. Instead of replacing each node v∈G with a copy
of Mδ(v), we instead replace each node with a copy of Mδ,v :=Mδ, attaching the
edges same way as in Construction 2.2. Thus the transformed graph G′ has
|V (G)|×|Mδ| nodes and constant indegree. Intuitively, any path P of length d
in G−Sirr now maps to a path P ′ of length d×dδ — if P contains the edges
(u,v),(v,w) then we know that the input node xu,v and output node yu,v node
in Mδ,v are connected in G′−S by a path of length at least dδ.

Corollary 2.5. (of Theorem 2.3) Suppose that there exists a familyM={Mk}∞k=1

of max ST-robust graphs with depth dk and constant indegree. Given any (e,d)-
edge-depth-robust DAG G with n nodes and maximum degree δ we can construct a
DAG G′ with n×|Mδ| nodes and constant indegree that is (e/2,d·dδ)-depth robust.

Proof. (sketch) Instead of replacing each node v∈G with a copy of Mδ(v), we
instead replace each node with a copy of Mδ,v :=Mδ, attaching the edges same
way as in Construction 2.2. Thus the transformed graph G′ has |V (G)|×|Mδ|
nodes and constant indegree. Let S⊂V (G′) be a set of nodes that we will remove
from G′. By Claim B.1, there exists a path P in G′−S that passes through d
metanodes Mδ,v1,...,Mδ,vd. Since Mδ is maximally ST-robust with depth dδ the
sub-path Pi=P∩Mδ,vi through each metanode has length |Pi|≥dδ. Thus, the
total length of the path is at least

∑
i|Pi|≥d·dδ.

Corollary 2.6. (of Theorem 2.3) Let ε>0 be any fixed constant. Given any
family {Gm}∞m=1 of (em,dm)-edge-depth-robust DAGs Gm with m nodes and
maximum indegree δm then for some constants c1,c2>0 we can construct a fam-
ily {Hm}∞m=1 of DAGs such that each DAG Hm is (em/2,dm·δ1−εm )-depth robust,
Hm has maximum indegree at most c2 (constant) and at most

∣∣V (Hm)
∣∣≤c1mδm

nodes.

Proof. (sketch) This follows immediately from Corollary 2.5 and from our con-
struction of a family Mε = {Mk,ε}∞k=1 of max ST-robust graphs with depth
dk>k

1−ε and constant indegree.

Corollary 2.7. (of Theorem 2.3) Let {em}∞m=1 and {dm}∞m=1 be any sequence.
If there exists a family {Gm}∞m=1 of (em,dm)-edge-depth-robust graphs, where each
DAG Gm has m edges, then there is a corresponding family {Hn}∞n=1 of constant
indegree DAGs such that each Hn has n nodes and is (Ω(en),Ω(dn))-depth-robust.
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The original Grate’s construction [Sch83], G, has N=2n nodes and m=n2n

edges and for any s≤n, and is (s2n, N∑s
j=0(

n
j)

)-edge-depth-robust. For node depth-

robustness we only had matching constructions when s=O(1) [ABP17,ABH17]
and s = Ω(logN) [Sch83] — no comparable lower bounds were known for
intermediate s.

Corollary 2.8. (of Theorem 2.3) There is a family of constant indegree graphs
{Gn} such that Gn has O(N=2n) nodes and Gn is (sN/(2n), N∑s

j=0(
n
j)

)-edge-

depth-robust for any 1≤s≤ logn

In particular, setting s=loglogn and applying the indegree reduction from
Theorem 2.3, we see that the transformed graph G′ has constant indegree,
N ′=O(n2n) nodes, and is (N

′loglogN′

logN′ , N′

logN′(logN′)loglogN′ )-depth-robust. Blocki

et al. [BHK+19] showed that if there exists a node depth robust graph with
e=Ω(N loglogN/logN) and d=Ω(N loglogN/logN) then one can obtain another
constant indegree graph with pebbling cost Ω(N2loglogN/logN) which is optimal
for constant indegree graphs. We conjecture that the graphs in [EGS75] are
sufficiently edge depth robust to meet these bounds after being transformed by
our reduction.

3 ST Robustness

In this section we show how to construct maximally ST-robust graphs with con-
stant indegree and linear size. We first introduce some of the technical building
blocks used in our construction including superconcentrators [Val76,Pip77,GG81]
and grates [Sch83]. Using these building blocks we then provide a randomized con-
struction of a c1-maximally ST-robust DAG with linear size and constant indegree
for some constant c1>0 — sampled graphs are c1-maximally ST-robust DAG
with high probability. Finally, we use c1-maximally ST-robust DAGs to construct
a family of maximally ST-robust graphs with linear size and constant indegree.

3.1 Technical Ingredients

We now introduce other graph properties that will be useful for constructing
ST-robust graphs.

Grates A DAG G = (V,E) with n inputs I and n outputs O is called a
(c0,c1)-grate if for any subset S⊂V of size |S|≤c0n at least c1n

2 input output
pairs (x,y)∈ I×O remain connected by a directed path from x to y in G−S.
Schnitger [Sch83] showed how to construct (c0,c1)-grates with O(n) nodes and
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constant indegree for suitable constants c0,c1>0. The notion of an maximally
ST-robust graph is a strictly stronger requirement since there is no requirement
on which pairs are connected. However, we show that a slight modification of
Schnitger’s [Sch83] construction is a (cn,n/2)-ST-robust for a suitable constant
c. We then transform this graph into a c1-maximally ST-robust graph by
sandwiching it in between two superconcentrators. Finally, we show how to use
several c1-maximally ST-robust graphs to construct a maximally ST-robust graph.

Superconcentrators We say that a directed acyclic graph G=(V,E) with n in-
put vertices and n output vertices is an n-superconcentrator if for any r inputs
and any r outputs, 1≤r≤n, there are r vertex-disjoint paths in G connecting
the set of these r inputs to these r outputs. We note that there exists linear size,
constant indegree superconcentrators [Val76,Pip77,GG81] and we use this fact
throughout the rest of the paper. For example, Pippenger [Pip77] constructed
an n-superconcentrator with at most 41n vertices and indegree at most 16.

Connectors We say that an n-superconcentrator is an n-connector if it is
possible to specify which input is to be connected to which output by vertex
disjoint paths in the subsets of r inputs and r outputs. Connectors and supercon-
centrators are potential candidates for ST-robust graphs because of their highly
connective properties. In fact, we can prove that any connectors n-connector is
maximally ST-robust — the proof of Theorem 3.1 can be found in the appendix.
While we have constructions of n-connector graphs these graphs have O(nlogn)
vertices and indegree of 2, an information theoretic technique of Shannon [Sha50]
can be used to prove that any n-connector with constant indegree requires at
least Ω(nlogn) vertices — see discussion in the appendix. Thus, we cannot
use n-connectors to build linear sized ST-robust graphs. However, Shannon’s
information theoretic argument does not rule out the existence of linear size
ST-robust graphs.

Theorem 3.1. If G is an n-connector, then G is (k,n−k)-ST-robust, for all
1≤k≤n.

3.2 Linear Size ST-robust Graphs

ST-robust graphs have similar connective properties to connectors, so a natu-
ral question to ask is whether ST-robust graphs with constant indegree require
Ω(nlogn) vertices. In this section, we show that linear size ST-robust graphs exist
by showing that a modified version of the Grates construction [Sch83] becomes
c-maximally ST-robust when sandwiched between two superconcentrators for
some constant c.
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In the proof of Theorem A in [Sch83], Schnitger constructs a family of DAGs
(Hn|n∈N) with constant indegree δH, where n is the number of nodes and Hn

is (cn,n2/3)-depth-robust, for suitable constant c> 0. We construct a similar
graph Gn as follows:

Construction 3.2 (Gn). We begin with H1
n, H2

n and H3
n, three isomorphic

copies of Hn with disjoint vertex sets V1, V2 and V3. For each top vertex v∈V3
sample τ vertices xv1,...,x

v
τ independently and uniformly at random from V2 and

for each i≤ τ add each directed edge (xvi ,v) to Gn to connect each of these
sampled nodes to v. Similarly, for each node vertex u∈V2 sample τ vertices
xu1 ,...,x

u
τ from V1 independently and uniformly at random and add each directed

edge (xui ,u) to Gn. Note that indeg(Gn)≤ indeg(Hn)+τ .

Schnitger’s construction only utilizes two isomorphic copies of Hn and the
edges connecting H1

n and H2
n a sampled by picking τ random permutations. In

our case the analysis is greatly simplified by picking the edges uniformly and we
will need three layers to prove ST-robustness. We will use the following lemma
from the Grates paper as a building block. A proof of Lemma 3.3 is included
in the appendix for completeness.

Lemma 3.3. [Sch83] For some suitable constant c> 0 any any subset S of
cn/2 vertices of Gn the graph H1

n−S contains k=cn1/3/2 vertex disjoint paths
A1,...,Ak of length n2/3 and H2

n−S contains k vertex disjoint paths B1,...,Bk of
the same length.

We use Lemma 3.3 to help establish our main technical Lemma 3.4. We sketch
the proof of Lemma 3.4 below. A formal proof can be found in Appendix B.

Lemma 3.4. Let Gn be defined as in Construction 3.2. Then for some constants
c>0, with high probability Gn has the property that for all S⊂V (Gn) with |S|=
cn/2 there exists A⊆V (H1

n) and B⊆V (H3
n) such that for every pair of nodes u∈

A and v∈B the graph Gn−S contains a path from u to v and |A|,|B|≥9cn/40.

Proof. (Sketch) Fixing any S we can apply Lemma 3.3 to find k :=cn1/3/2 vertex
disjoint paths P i1,S,...,P

i
k,S in Hi

n of length n2/3 for each i≤ 3. Here, c is the

constant from Lemma 3.3. Let U ij,S be the upper half of the j-th path in Hi
n

and Lij,S be the lower half and define the event BADupper
i,S to be the event that

there exists at least k/10 indices j≤k s.t., U2
j,S is disconnected from L3

i,S. We

construct B by taking the union of all of upper paths U3
i,S in H3

n for each non-bad

(upper) indices i. Similarly, we define BADlower
i,S to be the event that there exists

at least k/10 indices j≤k s.t. U1
i,S is disconnected from L2

j,S and we construct A
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be taking the union of all of the lower paths L1
i,S in H1

n for each non-bad (lower)
indices i. We can now argue that any pair of nodes u∈A and v∈B is connected
by invoking the pigeonhole principle i.e., if u∈L1

i,S and v∈U3
i′,S for good indices

i and i′ then there exists some path P 2
j in the middle layer H2

n which can be used
to connect u to v. We still need to argue that |A|,|B|≥cn/3 for some constant c.
To lower bound |B| we introduce the event BADS= |{i : BADupper

i,S }|> k
10 and

note that unless BADS occurs we have |B|≥(9k/10)n2/3/2=9cn/40. Finally,
we show that P[BADS] is very small and then use union bounds to show that,
for a suitable constant τ , the probability P[∃SBADS] becomes negligibly small.
A symmetric argument can be used to show that |A|≥9cn/40.

We now use Gn to construct c-maximally ST-robust graphs with linear size.

Construction 3.5 (Mn). We construct the family of graphs Mn as follows: Let
the graphs SC1

n and SC2
n be linear sized n-superconcentrators with constant

indegree δSC [Pip77], and let H1
n, H2

n and H3
n be defined and connected as in

Gn, where every output of SC1
n is connected to a node in H1

n, every node of H3
n

is connected to an input of SC2
n.

SC1
n H1

n

Random Edges

H2
n

Random Edges

H3
n SC2

n

Figure 2: A diagram of the constant indegree, linear sized, ST-robust graph Mn.

Theorem 3.6. There exists a constant c′>0 such that for all sets S⊂V (Mn)
with |S|≤c′n/2, Mn is (|S|,n−|S|)-ST-robust, with n inputs and n outputs and
constant indegree.

Proof. Let c′=9c/40, where c is the constant from Gn. Consider Mn−S. Then
because |S∩(H1

n∪H2
n)|≤|S|≤c′n/2≤cn/2, by Lemma 3.4 with a high probabil-

ity there exists setsA inH1
n andB inH3

n with |A|,|B|≥ 9
10k

n2/3

2 = 9
40cn=c′n, such

that every node in A connects to every node in B. By the properties of supercon-
centrators, the size of the set BAD1 of inputs u in SC1

n that can’t reach any node
in A in Mn−S. We claim that |BAD1|≤|S|≤c′n. Assume for contradiction that
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|BAD1|> |S| then SC1
n contains at least min{|BAD1|,|A|}> |S| node disjoint

paths between BAD1 and A. At least one of these node disjoint paths does not
intersect S which contradicts the definition of BAD1. Similarly, we can bound
the size of BAD2, the set of outputs in SCn which are not reachable from any
node in B. Given any input u 6∈BAD1 of SC1

n and any output v 6∈BAD2 of SC2
n

we can argue that u is connected to v in Mn−S since we can reach some node
x∈A from u and v can be reached from some node y∈B and any such pair x,y is
connected by a path in Mn−S. It follows that Mn is (|S|,n−|S|)-ST-robust.

Corollary 3.7. (of Theorem 3.6) For all ε > 0, there exists a family of
DAGs M={Mε

n}∞n=1, where each Mε
n is a c-maximally ST-robust graphs with

|V (Mn)|≤cεn, indegree(Mn)≤cε, and depth d=n1−ε.

Proof. (sketch) In the proof of Lemma 3.3, we used (cn,n2/3)-depth robust graphs.
When considering the paths Ai and Bj, we were considering connecting the
upper half of one path to the lower half of another. Thus, after we remove nodes
from Mn, there exists a path of length at least n2/3 that connects any remaining
input to any remaining output. Thus Mn is c-maximally ST-robust with depth
d=n2/3. In [Sch83], Schnitger provides a construction that is (cn,n1−ε)-depth
robust for all constant ε> 0. By the same arguments we used in this section,
we can construct c-maximally ST-robust graphs with depth d=n1−ε, where the
constant c depends on ε.

3.3 Constructing Maximal ST-Robust Graphs

In this section, we construct maximal ST-robust graphs, which are 1-maximally
ST-robust, from c-maximally ST-robust graphs. We give the following construc-
tion:

Construction 3.8 (O(Mn)). Let Mn be a c-maximally ST-robust graph on
O(n) nodes. Let O be a set o1,o2,...,on of n output nodes and let I be a set
i1,i2,...,in of n input nodes. Let Sj for 1≤j≤d1ce be a copy of Mn with outputs

oj1,o
j
2,...,o

j
n and inputs ij1,i

j
2,...,i

j
n. Then for all 1≤j≤n and for all 1≤k≤n, add

a directed edge from ik to ijk and from ojk to ok.

Because we connect d1ce copies ofMn to the output nodes, O(Mn) has indegree
max{δ,d1ce}, where δ is the indegree ofMn. Also, ifMn has kn nodes, then O(Mn)
has (kd1ce+2)n nodes. We now show that O(Mn) is a maximal ST-robust graph.

Theorem 3.9. Let Mn be a c-maximally ST-robust graph. Then O(Mn) is a
maximal ST-robust graph.
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Proof. Let R⊂V (O(Mn)) with |R|=k. Let R=RI∪RM∪RO, where RI=R∩I,
RO = R∩O, and RM = R∩

(
∪d1/cei=1 Si

)
. Consider O(Mn)−R. We see that

|RM |≤k, so by the Pidgeonhole Principal at least one Sj has less than cn nodes
removed, say it has t nodes removed for t≤ cn. Hence t≤ |RM |. Since Sj is
c-max ST-robust there exists a subgraph H of Sj R containing n−t inputs and
n−t outputs such that every input is connected to all of the outputs. Let H′ be
the subgraph induced by the nodes in V (H)∪I′∪O′, where I′={(ia,iba)|iba∈H}
and O′={(oba,oa)|oba∈H}.

Claim 3.10. The graph H′ contains at least n−k inputs and n−k outputs and
there is a path between every pair of input and output nodes.

Proof. The set |I \ I′| ≤ |I ∩R|+ |V (Sj)∩R| ≤ |R| ≤ k. Similarly, |O \O′| ≤
|O∩R|+|V (Sj)∩R|≤|R|≤k. Let v∈I′ be some input. By the connectivity of
H, v can reach all of the outputs in O′. Thus there is a path between every pair
of input and output nodes.

Thus O(Mn) is (k,n−k)-ST-robust for all 1≤k≤n. Therefore O(Mn) is a
maximal ST-robust graph.

Corollary 3.11. (of Theorem 3.9) For all ε > 0, there exists a family Mε =
{Mε

k}∞k=1 of max ST-robust graphs of depth d=n1−ε such that |V (Mε
k)| ≤ cεn

and indegree(Mε
k)≤cε.

Proof. Apply Construction 3.8 to the family graphs Mε={Mε
k}∞k=1 from Corol-

lary 3.7. Then by Theorem 3.9, the family of graphs {O(Mε
k)}∞k=1 is the desired

family.

4 Applications of ST-Robust Graphs

As outlined previously maximally ST-Robust graphs give us a tight connection
between edge-depth robustness and node-depth robustness. Because edge-depth-
robust graphs are often easier to design than node-depth robust graphs [Sch83]
this gives us a fundamentally new approach to construct node-depth-robust
graphs. Beyond this exciting connection we can also use ST-robust graphs to
construct perfectly tight proofs of space [Pie19,Fis19] and asymptotically superior
wide-block labeling functions [CT19].
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4.1 Tight Proofs of Space

In Proof of Space constructions [Pie19] we want to find a DAG G=(V,E) with
small indegree along with a challenge set VC ⊆V . Intuitively, the prover will
label the graph G using a hash function H (often modeled as a random oracle
in security proofs) such that a node v with parents v1,...,vδ is assigned the label
Lv=H(Lv1,...,Lvδ). The prover commits to storing Lv for each node v in the
challenge set VC. The pair (G,VC) is said to be (s,t,ε)-hard if for any subset
S⊆V of size |S|≤s at least (1−ε) fraction of the nodes in VC have depth ≥t in
G−S — a node v has depth ≥t in G−S if there is a path of length ≥t ending
at node v. Intuitively, this means that if a cheating prover only stores s≤|VC|
labels and is challenged to reproduce a random label Lv with v∈VC that, except
with probability ε, the prover will need at least t sequential computations to
recover Lv — as long as t is sufficiently large the verifier the cheating prover
will be caught as he will not be able to recover the label Lv in a timely fashion.
Pietrzak argued that (s,t,ε)-hard graphs translate to secure Proofs of Space in
the parallel random oracle model [Pie19].

We want G to have small indegree δ(G) (preferably constant) as the prover
will need O(Nδ(G)) steps. Additionally, we want |VC|=Ω(N) and ε to be small
while s,t should be larger. Pietrzak [Pie19] proposed to let Gε be an ε-extreme
depth-robust graph with N ′= 4N nodes and to let VC = [3N+1,4N] be the
last N nodes in this graph. An ε-extreme depth-robust graph with N ′ nodes is
(e,d)-depth robust for any e+d≤(1−ε)N . Such a graph is (s,N,s/N+4ε)-hard
for any s≤N . Alwen et al. [ABP18] constructed ε-extreme depth-robust graphs
with indegree δ(G) =O(logN) though the hidden constants seem to be quite
large. Thus, it would take time O(N logN) for the prover to label the graph G.
We remark that ε=s/|VC| is the tightest possible bound one can hope for as the
prover can always store s labels from the set VC.

We remark that if we take VC to be any subset of output nodes from a
maximally ST-robust graph and overlay an (e= s,d= t)-depth robust graph
over the input nodes, then the resulting graph will be (s,t,ε=s/|VC|)-hard —
optimally tight in ε. In particular, given a DAG G=(V =[N ],E) with N nodes
devine the overlay graph HG by starting with a maximally ST-robust graph
with |V | inputs I={x1,...,x|V |} and |V | outputs O then for every directed edge
(u,v)∈E(G) we add the directed edge (xu,xv) to E(HG) and we specify a target
set VC⊆O. Fisch [Fis19] gave a practical construction of (G,VC) with indegree
O(logN) that is (s,N,ε=s/N+ε′)-hard. The constant ε′ can be arbitrarily small
though the number of nodes in the graph scales with O(N log1/ε′). Utililizing
ST-robust graphs we fix ε′=0 without increasing the size of the graph1.

1As a disclaimer we are not claiming that our construction would be more efficient than
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Theorem 4.1. If G is (e,d)-depth robust then the pair (HG,VC) specified above
is (s,t=d+1,s/|VC|)-hard for any s≤e.

Proof. Let S be a subset of |S|≤s nodes in HG. By maximal ST-robustness we
can find a set A of N−|S| inputs and B of N−|S| outputs such that every pair
of nodes u∈A and v∈B are connected in HG−S. We also note since A contains
all but s nodes from G that some node u∈A is the endpoint of a path of length
t by (s,t)-depth-robustness of G. Since u is connected to every node in B this
means that every node v∈B is the endpoint of a path of length at least t+1.

This result immediately leads to a (s,N1−ε,s/N)-hard pair for any s≤N
which the prover can label in O(N) time as the DAG G has constant indegreee.
We expect that in many settings t=N1−ε would be sufficiently large to ensure
that a cheating prover is caught with probability s/N after each challenge i.e.,
if the verifier expects a response within 3 seconds, but it would take longer to
evaluate the hash function H a total of N1−ε sequential times.

Corollary 4.2. For any constant ε>0 there is a constant indegree DAG G with
O(N) nodes along with a target set VC ⊆V (G) of N nodes such that the pair
(G,VC) is (s,t=N1−ε,s/N)-hard for any s≤N.

Proof. (sketch) Let G be an
(
N,N1−ε)-depth robust graph with N ′ = O(N)

nodes and constant indegree from [Sch83]. We can then take VC to be any subset
of N output nodes in the graph HG and apply Theorem 4.1.

If one does not want to relax the requirement that t=Ω(N) then we can pro-
vide a perfectly tight construction with O(N logN) nodes and constant indegree.
Since the graph has constant indegree it will takeO(N logN) work for the prover to
label the graph. This is equivalent to [Pie19], but with perfect tightness ε=s/N .

Corollary 4.3. For any constant ε>0 there is a constant indegree DAG G with
N ′=O(N logN) nodes along with a target set VC⊆V (G) of N nodes such that
the pair (G,VC) is (s,t,s/N)-hard for any s≤N.

Proof. (sketch) LetG be an (N,N logN)-depth robust graph withN ′=O(N logN)
nodes and constant indegree from [ABH17]. We can then take VC to be any
subset of N output nodes in the graph HG and apply Theorem 4.1.

Finally, if we want to ensure that the graph only hasO(N) nodes and t=Ω(N)
we can obtain a perfectly tight construction with indegree δ(G)=O(logN).

[Fis19] for practical parameter settings.
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Corollary 4.4. For any constant ε>0 there is a DAG G with O(N) nodes and
indegree δ(G)=O(logN) along with a target set VC⊆V (G) of N nodes such that
the pair (G,VC) is (s,N,s/N)-hard for any s≤N.

Proof. (sketch) Let G be an (N,N)-depth robust graph with N ′= 3N nodes
from [ABP18]. We can then take VC to be any subset of N output nodes in the
graph HG and apply Theorem 4.1.

4.2 Wide-Block Labeling Functions

Chen and Tessaro [CT19] introduced source-to-sink depth robust graphs as a
generic way of obtaining a wide-block labeling function Hδ,W :{0,1}δW→{0,1}W
from a small-block function Hfix :{0,1}2L→{0,1}L (modeled as an ideal primi-
tive). In their proposed approach one transforms a graph G with indegree δ and
into a new graph G′ by replacing every node with a source-to-sink depth-robust
graph. Labeling a graph G with a wide-block labeling function is now equivalent
to labeling G′ with the original labeling function Hfix. The formal definition
of Source-to-Sink-Depth-Robustness is presented below:

Definition 4.5 (Source-to-Sink-Depth-Robustness (SSDR) [CT19]). A
DAG G=(V,E) is (e,d)-source-to-sink-depth-robust (SSDR) if and only if for
any S⊂V where |S|≤e, G−S has a path (with length at least d) that starts
from a source node of G and ends up in a sink node of G.

If G is (e,d)-depth robust and G′ is constructed by replacing every node v
in G with a (e∗,d∗)-source-to-sink-depth-robust (SSDR) and orienting incoming
(resp. outgoing) edges into the sources (resp. out of the sinks) then the graph G′

is (ee∗,dd∗)-depth robust [CT19] and has cumulative pebbling complexity at least

ed(e∗d∗) [ABP17]. The SSDR graphs constructed in [CT19] are (K4 ,
δK2

2 )-SSDR
with O(δK2) vertices and constant indegree. They fix K :=W/L as the ratio
between the length of outputs forHδ,W :{0,1}δW→{0,1}W and the ideal primitive
Hfix. Their graph has δK source nodes for a tunable parameter δ∈N, O(δK2)
vertices and constant indegree. Ideally, since we are increasing the number of
nodes by a factor of δK2 we would like to see the cumulative pebbling complexity
increase by a quadratic factor of δ2K4. Instead, if we start with an (e,d)-depth
robust graph with cumulative pebbling complexity O(ed) their final graph G′ has

cumulative pebbling complexity ed× δK3

8 . Chen and Tessaro left the problem of
finding improved source-to-sink depth-robust graphs as an open research question.

Our construction of ST-robust graphs can asymptotically2 improve some of

2While we improve the asymptotic performance we do not claim to be more efficient for
practical values of δ,K.
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their constructions, specifically their constructions of source-to-sink-depth-robust
graphs and wide-block labeling functions.

Theorem 4.6. Let G be a maximal ST-robust graph with depth d and n inputs
and outputs. Then G is an (n−1,d)-SSDR graph.

Proof. By the maximal ST-robustness property, n−1 arbitrary nodes can be
removed from G and there will still exist at least one input node that is connected
to at least one output node. Since G has depth d, the path between the input
node and output node must have length at least d.

By applying Theorem 4.6 to the construction in Corollary 3.9, we can con-
struct a family of (δK,(δK)1−ε)-SSDR graphs with O(δK) nodes and constant
indegree and δK sources. In this case the cumulative pebbling complexity of
our construction would be already be ed×δ2K2−ε which is much closer to the
quadratic scaling that we would ideally like to see. We are off by just Kε

for a constant ε > 0 that can be arbitrarily small. To make the comparison
easier we could also applying Theorem 4.6 to obtain a family of (δK2,(δK2)1−ε)-
SSDR graphs with O(δK2)-nodes and constant indegree. While the size of the
SSDR matches [CT19] our new graph is (eδK2,d(δK2)1−ε)-depth robust and
has cumulative pebbling complexity ed×δ2−εK4−2ε�edδK3.
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Appendix

A Connector Graphs

We say that a directed acyclic graph G= (V,E) with n input vertices and n
output vertices is an n-connector if for any ordered list x1,...,xr of r inputs
and any ordered list y1,...,yr of r outputs, 1≤r≤n, there are r vertex-disjoint
paths in G connecting input node xi to output node yi for each i≤r.

A.1 Connector Graphs are ST-Robust

We remarked in the paper that any n-connector is maximally ST-robust.
Reminder of Theorem 3.1. If G is an n-connector, then G is (k,n−k)-

ST-robust, for all 1 ≤ k ≤ n. Proof of Theorem 3.1. Let D ⊆ V (G) with
|D|=k. Consider G−D. Let A={(s1,t1),...,(sm,tm)}, where the input si∈S
is disconnected from the output ti∈T in G−D, or si∈D or ti∈D. Let B=∅.

Perform the following procedure on A and B: Pick any pair (sp,tp)∈A and
add sp and tp to B. Then remove the pair from A along with any other pair
in A that shares either sp or tp. Continue until A is empty.

If we consider the nodes of B in G, then there are |B| vertex-disjoint paths
between the pairs in B by the connector property, and in G−D at least one
vertex is removed from each path. Thus |B|≤k, or we have a contradiction.

If (s,t) ∈G− (D∪B) are an input to output pair, and s is disconnected
from t, then by the definition of A and B we would have a contradiction, since
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(s,t) would still be in A. Thus all of the remaining inputs in G−(D∪B) are
connected to all the remaining outputs.

Hence, if we let H=G−(D∪B), then H is a subgraph of G with at least
n−k inputs and n−k outputs, and there is a path going from each input of H
to each of its outputs. Therefore, G is (k,n−k)-ST-robust for all 1≤k≤n. �

Butterfly Graphs A well known family of constant indegree n-connectors, for
n=2k, are the k-dimensional butterfly graphsBk, which are formed by connecting
two FFT graphs on n inputs back to back. See Figure A.1 for an example. By
Theorem 3.1, the butterfly graph is also a maximally ST-robust graph. However,
the butterfly graph has Ω(nlogn) nodes and does not yield a ST-robust graph of
linear size. Since Bk has O(nlogn) vertices and indegree of 2, a natural question
to ask is if there exists n-connectors with O(n) vertices and constant indegree.

Figure 3: The butterfly graph B3 is both an 8-superconcentrator and an
8-connector. All edges are directed from left to right.

A.2 Connector Graphs Have Ω(n logn) vertices

An information theoretic argument of Shannon [Sha50] rules out the possibility
of linear size n-connectors.

Theorem A.1. (Shannon [Sha50]) An n-connector with constant indegree re-
quires at least Ω(nlogn) vertices.
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Intuitively, given a n-connector with constant indegree with constant indegree
and m edges Shannon argued that we can use the n-connector to encode any
permutatation of [n] using m bits. In more detail fixing any permuation π we
can find n node disjoint paths from input i to output π(i). Because the paths
are node disjoint we can encode π simply by specifying the subset Sπ of directed
edges which appear in one of these node disjoint paths. We require at mostm bits
to encode Sπ and from Sπ we can reconstruct the set of node-disjoint paths and
recover π. Thus, we must have m=Θ(nlogn) since we require logn!=Θ(nlogn)
bits to encode a permutation.

We stress that this information theoretic argument breaks down if the graph
G is only ST-robust. We are guaranteed that G contains a path from input i
to output π(i), but we are not guaranteed that all of the paths are node disjoint.
Thus, Sπ is insufficient to reconstruct π.

B Missing Proofs

Reminder of Theorem 2.3. Let G be an (e, d)-edge-depth-robust DAG with
m edges. Let M be a family of max ST-Robust graphs with constant indegree.
Then G′ = (V ′,E′) = Reduce(G,M) is (e/2,d)-depth robust. Furthermore, G′

has maximum indegree maxv∈V (G){indeg
(
Mδ(v)

)
}, and its number of nodes is∑

v∈V (G)

∣∣∣Mδ(v)

∣∣∣ where δ(v)=max{indeg(v),outdeg(v)}.
Proof of Theorem 2.3.

We know that each graph in M has constant indegree, and that each node v

in G will be replaced with a graph in M with indegree indeg
(
Mδ(v)

)
. Thus G′

has maximum indegree maxv∈V (G){indeg
(
Mδ(v)

)
}. Furthermore, the metanode

corresponding to the node v has size |Mδ(v)|. Thus G′ has
∑

v∈V (G)

∣∣∣Mδ(v)

∣∣∣ nodes.

Let S⊂V (G′) be a set of nodes that we will remove from G′. For a specific
node v∈V (G) we let Sv=S∩({v}×Vδ(v)) denote the subset of nodes deleted
from the corresponding metanode. We say that the node v∈V (G) is irrepairable
with respect to S if |Sv|≥δ(v); otherwise we say that v is repairable. If a node
v is repairable, then because the metanodes are maximally ST-Robust we can
find subsets Iv,S and Ov,S (with |Iv,S|,|Ov,S|≥δ(v)−|Sv|) such that each input
node s∈Iv,S is connected to every output node in Ov,S.

We say that an edge (u,v)∈E(G) is irrepairable with respect if u or v is
irrepairable, or if the corresponding edge e′= (u′,v′)∈E(G′) has u′ 6∈Ou,S or
v′ 6∈Iv,S. We let Sirr⊂E(G) be the set of irrepairable edges after we remove S
from G. We begin the proof by first proving two claims.
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Claim B.1. Let P be a path of length d in G−Sirr. Then there exists a path
of length at least d in G′−S.

Proof. InG−Sirr we have removed all of the irreparable edges, so any path in the
graph contains only repairable edges. By definition, if (u,v) is a repairable edge,
both u and v will be repairable, and (u,πout,u(v))∈Ou,S and (v,πin,v(u))∈Iv,S.
Thus the edge corresponding to (u,v) in G′−S will connect the metanodes of u
and v, and (u,πout,u(v)) connects to every node in Iu,S and (v,πout,v(u)) connects
to every node in Ov,S. Thus the edges in G′−S corresponding to the edges in
P form a path of length at least d.

Claim B.2. Let Sirr⊂E(G) be the set of irreparable edges with respect to the
removed set S. Then

|Sirr|≤2|S|.

Proof. If a node v is repairable with respect to S then let Sinirr,v⊆E(G) (resp.
Soutirr,v) denote the subset of edges (u,v)∈E(G) (resp. (v,u)∈E(G)) that are
irrepairable because of Sv i.e., the corresponding edge e′=(u′,v′)∈E(G′) has
v′ 6∈ Iv,S (resp. the corresponding edge (v′,u′) ∈ E(G′) has v′ 6∈ Ov,S). Let
Sirr,v=Sinirr,v∪Soutirr,v. Similarly, if v is irrepairable we let Sirr,v={(u,v) :(u,v)∈
E(G)}∪{(v,u) : (v,u)∈E(G)} denote the set of all of v’s incoming and outgoing
edges. We note that |Sirr| ≤

∑
v

∣∣Sirr,v∣∣ since Sirr =
⋃
vSirr,v any irrepairable

edge must be in one of the sets Sirr,v. Now we claim that |Sirr,v|≤|Sv| where
Sv=S∩({v}×Vδ(v)) denote the subset of nodes deleted from the corresponding
metanode. We now observe that∣∣Sirr,v∣∣≤∣∣∣Sinirr,v∣∣∣+∣∣∣Sinirr,v∣∣∣

≤
(
δ(v)−|Iv,S|

)
+
(
δ(v)−|Ov,S|

)
≤2|Sv| .

The last inequality invokes maximal ST-robustness to show that δ(v)−|Ov,S|≤
|Sv| and δ(v)−|Iv,S|≤|Sv|. If a node v is irrepairable then the subsets Iv,S and
Ov,S might be empty since δ(v)−|Sv|≤0, but it still holds that δ(v)−|Ov,S|≤|Sv|
and δ(v)−|Iv,S|≤|Sv|.

Thus
|Sirr|≤

∑
v

∣∣Sirr,v∣∣≤∑
v

2|Sv|≤2|S| .

�

Reminder of Corollary 2.5. (of Theorem 2.3) Suppose that there exists
a family M = {Mk}∞k=1 of max ST-robust graphs with depth dk and constant
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indegree. Given any (e,d)-edge-depth-robust DAG G with n nodes and maximum
degree δ we can construct a DAG G′ with n×|Mδ| nodes and constant indegree
that is (e/2,d·dδ)-depth robust.
Proof of Corollary 2.5. (sketch) We slightly modify our reduction. Instead of
replacing each node v∈G with a copy of Mδ(v), we instead replace each node
with a copy of Mδ,v :=Mδ, attaching the edges same way as in Construction 2.2.
Thus the transformed graph G′ has |V (G)|×|Mδ| nodes and constant indegree.
Let S⊂V (G′) be a set of nodes that we will remove from G′. By Claim B.1,
there exists a path P in G′−S that passes through d metanodes Mδ,v1,...,Mδ,vd.
The only difference is that each Mδ,vi is maximally ST-robust with depth dδ
meaning we can assume that the sub-path Pi=P∩Mδ,vi through each metanode
has length |Pi|≥dδ. Thus, the total length of the path is at least

∑
i|Pi|≥d·dδ.

�

Reminder of Lemma 3.3 [Sch83]. For some suitable constant c>0 any
any subset S of cn/2 vertices of Gn the graph H1

n−S contains k=cn1/3/2 vertex
disjoint paths A1,...,Ak of length n2/3 and H2

n−S contains k vertex disjoint paths
B1,...,Bk of the same length.
Proof of Lemma 3.3 [Sch83]. Consider H1

n−S. Since H1
n is (cn,n2/3)-depth-

robust and |S|= cn/2, there must exist a path A1 = (v1,...,vn2/3) in H1
n−S.

Remove all vertices of A1 and repeat to find A2, .... Then we finish with
cn/(2n2/3)=cn1/3/2 vertex disjoint paths of length n2/3. We perform the same
process on H2

n to find the Bi. �

Reminder of Lemma 3.4. Let Gn be defined as in Construction 3.2. Then
for some constants c>0, with high probability Gn has the property that for all
S⊂V (Gn) with |S|=cn/2 there exists A⊆V (H1

n) and B⊆V (H3
n) such that for

every pair of nodes u∈A and v∈B the graph Gn−S contains a path from u to
v and |A|,|B|≥9cn/40.
Proof of Lemma 3.4. By Lemma 3.3, we know that in Gn−S there exists
k :=cn1/3/2 vertex disjoint paths P i1,...,P

i
k in each Hi

n of length n2/3. Here, c is
the constant from Lemma 3.3. Let U ij,S be the upper half of the j-th path in

Hi
n and Lij,S be the lower half, both of which are relative to the removed set S.

Let Dlower
i,j,S (resp. Dupper

i,j,S ) be an indicator random variable the event that

U1
j,S (resp. U2

j,S ) is disconnected from L2
i,S (resp. L3

i,S). Now for each i≤k define
the event BADupper

i,S to be the event that
∑

jD
upper
i,j,S ≥k/10 i.e., the lower path

L3
i,s in H3

n is disconnected from at least k/10 distinct upper paths U2
j,S in H2

n.

Similarly, define BADlower
j,S to be the event that

∑
iD

lower
i,j,S ≥k/10 i.e., the upper

path U1
j,S is disconnected from at least k/10 distinct lower paths L2

i,S in H2
n.

We now set GOODupper
S =[k]\{i : BADupper

i,S } and GOODlower
S =[k]\{i :
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BADlower
i,S } and define

BS :=

k⋃
i∈GOODupperS

U3
i,S , and AS :=

k⋃
i∈GOODlowerS

L1
i,S .

Now we claim that for every node u∈AS and v∈BS the graph Gn−S contains
a path from u to v. Since u∈AS we have u∈L1

i,S for some i∈GOODlower
S .

Similarly, v∈U3
i′,S for some i′∈GOODupper

S . By the pigeonhole principle there

must exist some j s.t. U2
j,S connects to L3

i′,S and U1
i,S connects to L2

j,S. Thus, we

can connect u to v by routing from u to U1
i,S to L2

j,S to U2
j,S to L3

i′,S and finally
to v. Thus, every pair of nodes in AS and BS are connected.

It remains to argue that (whp) for any set S the resulting set |BS| =
|GOODupper

S |n2/3 and |AS|= |GOODlower
S |n2/3 are sufficiently large. Now we

define the events

BADlower
S := |{i : BADlower

i,S }|> k

10

BADupper
S := |{i : BADupper

i,S }|> k

10
.

Intuitively, BADS occurs when more than a small fraction of the events
BADi,S occur. Assuming thatBADupper

S never occurs then for any set S we have

|BS|≥|GOODS|n2/3≥(9/10)kn2/3/2=9cn/40 .

Similarly, if BADlower
S never occurs for any set S we are guaranteed to have

|AS|≥9cn/40.
Consider, for the sake of finding the probabilities, that S is fixed before all

of the random edges are added to Gn. We will then union bound over all choices

of sets S. First we bound P
[
BADupper

i,S

]
and P

[
BADlower

i,S

]
. Union bounding

over all
(
k
10

)
subsets we have

P
[
BADupper

i,S

]
≤
(
k

10

)(
1−c/40

)τn2/3/2
≤ek

(
1

e

)cτn2/3/80
.

A slightly different calculation holds for P
[
BADlower

i,S

]
since we connect each

node in H2
n to τ random nodes in H1

n and we are now considering the upper
path U1

j,S instead of the lower path L3
i,S.
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P
[
BADupper

i,S

]
≤
(
k

10

)(
1− 1

2n1/3

)τ(k/10)n2/3/2
≤ek

(
1

e

)cτn2/3/80
.

By selecting τ >81·80/c2 to ensure that ek
(
1
e

)cτn2/3/80
≤e−80n2/3/c.

We remark that for i 6=j the event BADupper
i,S is independent of BADupper

j,S

since the τ random incoming edges connected to L2
i are sampled independently

of the edges for L2
j .

We will show that the probability of the event BADupper
S is very small and

then take a union bound over all possible S to show our desired result.

P
[
BADupper

S

]
≤
(

k

k/10

)
P
[
BAD1,S∧...∧BADk/10,S

]
=

(
k

k/10

)
P
[
BADupper

1,S

]k/10

≤ek
(1

e

)80n2/3/c
cn

1/3

20

=

(
1

e

)4n−k
.

Finally, we take the union bound over every possible S of size cn/2 nodes. Since
Gn has 2n nodes there are at most 22n≤e2n such sets. Thus,

P
[
∃S s.t. BADupper

S

]
≤e2nP

[
BADupper

S

]
≤
(

1

e

)2n−k
�e−n .

Thus, except with negigible probability for any S of size cn/2 the event
BADupper

S does not occur for any set S selected after Gn is sampled. Similarly,
we can reason about the event BADlower

S . We now utilize the fact that

P
[
BADlower

j,S : BADlower
1,S ,...,BADlower

j−1,S

]
≤P
[
BADlower

j,S

]
.

Intuitively, this holds because the event BADlower
i,S means that for some set

of k/10 lower paths (WLOG say L2
1,S,...,L

2
k/10,S) we are guaranteed that none of
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the edges these paths hit U1
i,S which only makes it more likely that those edges

hit U1
j,S potentially preventing the event BADlower

j,S from occuring.

P
[
BADlower

S

]
≤
(

k

k/10

)
P
[
BADlower

1,S ∧...∧BADlower
k/10,S

]
=

(
k

k/10

)
P
[
BADlower

1,S

]∏
j>1

P
[
BADlower

j,S : BADlower
1,S ,...,BADlower

j−1,S

]
≤
(

k

k/10

)
P
[
BADlower

1,S

]k/10

≤ek
(1

e

)80n2/3/c
cn

1/3

20

=

(
1

e

)4n−k
.

Thus, it follows that P
[
∃S s.t. BADupper

S

]
≤e−n. �
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