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Abstract

It is known [6, 14, 19] that if Ω ⊂ Rd belongs to a class of multi-tiling domains when translated by a
lattice Λ, there exists a Riesz basis of exponentials for L2(Ω) constructed using k translates of the dual
lattice Λ∗. In this paper, we give an explicit construction of the corresponding biorthogonal dual Riesz
basis. We also extend the iterative reconstruction algorithm introduced in [11] to this setting.

1 Introduction

This paper centers on Riesz bases of exponentials {el(x) := e2πil·x}l∈L for the space L2(Ω), where Ω ⊂ Rd
is a set of positive and finite Lebesgue measure, and L ⊂ Rd is a countable set. The set {el(x)}l∈L ⊂ L2(Ω)
is a Riesz basis for L2(Ω) if each f ∈ L2(Ω) has the unique representation

f(x) =
∑
l∈L

clel(x), (1)

where the coefficients {cl}l∈L ∈ `2(L) satisfy

A‖f‖2L2(Ω) ≤
∑
l∈L

|cl|2 ≤ B‖f‖2L2(Ω) (2)

for some constants 0 < A ≤ B <∞. In this case, there exists a (unique) dual Riesz basis {gl(x)}l∈L ⊂ L2(Ω)
that satisfies the biorthogonality condition

〈el, gl′〉 =

{
|Ω| if l = l′

0 otherwise,
(3)

and the coefficients in (1) are given by cl = 1
|Ω| 〈f, gl〉.

Although no general proof of the statement exists, there are many cases where it is known that a set
Ω admits a Riesz basis of exponential functions . These cases include when Ω is a finite union of co-
measurable intervals in R or multi-rectangles in Rd [22, 8] and when Λ is a stable set of sampling for the
Paley-Wiener space PWΩ [5, 16, 25, 27]. It was recently established in [9] that any convex polytope that is
centrally symmetric and whose faces of all dimensions are also centrally symmetric admits a Riesz basis of
exponentials. For more details on properties of families of exponentials, we refer to [28].

However, to the best knowledge of the authors, no explicit algorithms or formulas for the corresponding
dual Riesz bases are available in the literature. As seen from (1), knowing the biorthogonal dual is important
for the reconstruction of any function in L2(Ω). One of the goals of this paper is to construct biorthogonal
Riesz bases for L2(Ω) for a class of domains Ω ⊂ Rd of finite, positive Lebesgue measure.

∗christin@njit.edu
†kasso@mit.edu

1



The interest in Riesz bases of exponentials stems partially from the Fuglede Conjecture [12], which asserts
that the set of exponentials {el(x)}l∈L is an orthogonal basis for L2(Ω) if and only if Ω tiles Rd with respect
to the discrete set L ⊂ Rd. In this case, the system of exponentials is self-dual, that is el ≡ gl for l ∈ L and
A = B = 1

|Ω| in (2). The Fuglede conjecture has been disproved in both directions when d ≥ 3 [12, 26, 21, 18]

but remains open when d = 1, 2. It has recently been proved in [24] that the Fuglede conjecture does hold
for convex domains in all dimensions. Removing the rigidity imposed by orthonormality leads naturally to
the problem of obtaining Riesz bases of exponentials.

Let Λ be a full lattice in Rd and k be a natural integer. We say that a Lebesgue measurable set Ω ⊂ Rd
of finite positive measure is a k-tile for Λ (or multi-tiling subset of Rd) if∑

l∈Λ

χΩ(x− l) = k for almost all x ∈ Rd.

When Ω ⊂ Rd is an admissible k-tile for a full lattice Λ ⊂ Rd (defined in Remark 1), then it admits a
Riesz basis of exponentials [6, 14, 19]. More specifically, there exists a set of vectors {as}ks=1 ⊂ Rd such that
the exponentials

{el(x) = e2πil·x}l∈L, L =
k⋃
s=1

Λ∗ + as (4)

form a Riesz basis for L2(Ω), where Λ∗ is the dual lattice of Λ.
The first goal of the paper, accomplished in Section 2, is to introduce a procedure for constructing the

biorthogonal dual Riesz basis for any multi-tiling domain that is known to admit a Riesz basis of exponentials
of the form (4). The second goal of this paper is to derive an iterative (and adaptive) algorithm for performing
the pointwise reconstruction of functions f ∈ L2(Ω) given data of the form {〈f, el〉}l∈L. The algorithm is
deterministic, it only involves inverting 1D Vandermonde systems, and it establishes a new framework for
finding a set of vectors {as}ks=1 ⊂ Rd for which (4) is guaranteed to be a Riesz basis with Riesz bounds that
are quantifiable using analytical formulas for 1D Vandermonde matrices.

As we will show in Section 3, this algorithm extends the results that recently appeared in [11] to more
general multi-tiling sets. Compared to the iterative procedure in [2, 3], our algorithm solves invertible 1D
Vandermonde systems at each iteration. A related algorithm in [10] relies on the existence of solutions to a
linear system. In contrast, the algorithm presented here chooses the lattice shifts to ensure invertibility. The
algorithm introduced here more closely compares to the construction in [25], however instead of creating a
p-th order sampling procedure at each iteration, a first-order sampling is used at each iteration. Another line
of investigation that compares to the present work is considered in [15, 17] where numerical sampling algo-
rithms for multivariate trigonometric polynomials are used to derive approximations of infinite-dimensional
bandlimited functions from nonuniform sampling. Recent results in [17] employ numerical methods for sam-
pling along random rank-1 lattices for a given frequency set to approximate multivariate periodic functions,
focusing on the error in approximation. In contrast, we formulate a deterministic algorithm and provide
guarantees for exact reconstruction in cases where the domain Ω is fully known.

2 Finding duals

The main result in this section offers an explicit construction of biorthogonal systems of exponentials corre-
sponding to a class of multi-tiling sets. Throughout the paper, we let Λ = MZd be a full lattice generated
by the basis vectors M = [m1, . . . ,mn] ∈ Rd×d. The canonical dual lattice is Λ∗ = {M−T z, z ∈ Zd} and ΠΛ

denotes the fundamental domain ΠΛ = MTd.
Let Ω ⊂ Rd be a measurable domain with 0 < |Ω| <∞ that is a k-tile for Λ. Then, there exists a partition

Ω = Ω1 ∪Ω2 ∪ . . . ∪Ωk ∪E, where E is a set of measure zero, and Ωj are mutually disjoint measurable sets
that are each a fundamental domain of Λ (Lemma 1 in [19]). Let Λx(Ω) := Λx = {λ ∈ Λ | x + λ ∈ Ω}.
Denote the cardinality of the finite set S by #S. Then #Λx = k for almost every x ∈ ΠΛ and we define the
points {λr(x)} ⊂ Λ to be the unique lattice points that satisfy

x+ λr(x) ∈ Ωr, 1 ≤ r ≤ k. (5)
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The mapping ωr : ΠΛ → Ωr given by x→ x+ λr(x) is then invertible.
Our first main result is the following.

Theorem 2.1. Let Ω ⊂ Rd be a k-tile for a full lattice Λ, and define {λr(x)}kr=1 and {ωr(x)}kr=1 by (5).
If there exists a set of vectors {as}ks=1 ⊂ Rd and positive constants α and β such that the matrix function
V = V (x) ∈ Ck×k with entries

(V (x))sr = e−2πiλr(x)·as , 1 ≤ s, r ≤ k, (6)

has uniformly bounded singular values, 0 < α < σi (V (x)) < β < ∞, 1 ≤ i ≤ d, then the following two
families of functions form a pair of biorthogonal Riesz bases for L2(Ω):

{el(x)}l∈L, {gl(x)}l∈L, L =
k⋃
s=1

Λ∗ + as (7)

where, for λ∗ ∈ Λ∗ and 1 ≤ s ≤ k,

gλ∗+as(x) = eλ∗+as(x)

(
k

k∑
r=1

(V (ω−1
r (x)))sr(V (ω−1

r (x))−1)rsχΩr (x)

)
. (8)

Here χΩr denotes the indicator function of Ωr.

Proof. Let f ∈ L2(Ω). Then the mappings from `2 → L2(ΠΛ) given by

{〈f, el〉}l∈Λ∗+as →
∑

l∈Λ∗+as

〈f, el〉el(x)

are well-defined (in fact, isometries) for all 1 ≤ s ≤ k by the orthogonality of the exponentials {el}l∈Λ∗+as in
the space L2(ΠΛ). It follows from the Poisson summation formula that the sequences {〈f, el〉}l∈Λ∗+as and
{f(ωr(x))}kr=1 are related by the following set of linear equations for almost every x ∈ ΠΛ:

∑
l∈Λ∗+as

〈f, el〉el(x) = vol(Λ)

k∑
r=1

(V (x))srf(ωr(x)), 1 ≤ s ≤ k. (9)

By assumption, the lattice shifts {as} are chosen so that V (x) is invertible, leading to the following `2
estimate

‖V (x)−1‖−2
k∑
r=1

|f(ωr(x))|2 ≤
k∑
s=1

|
∑

l∈Λ∗+as

〈f, el〉el(x)|2 ≤ ‖V (x)‖2
k∑
r=1

|f(ωr(x))|2.

Since both ‖V (x)‖ = max1≤i≤d σi(V (x)) < β and ‖V (x)−1‖ = 1/min1≤i≤d σi(V (x)) > 1/α are uniformly
bounded, integrating over ΠΛ produces

A‖f‖2L2(Ω) ≤
∑
l∈L

|〈f, el〉|2 ≤ B‖f‖2L2(Ω), L =
k⋃
s=1

Λ∗ + as, (10)

where 0 < A ≤ B <∞ are constants.
To show (1), let l = η∗ + as for a fixed lattice point η∗ ∈ Λ∗ and 1 ≤ s ≤ k and define the functions

Gl;r(x), 1 ≤ r ≤ to be the unique solutions to the system

0
...

el(x)
...
0

 =
1

k
V (x)



Gl;1(x)
...

Gl;r(x)
...

Gl;k(x))

 . (11)
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Since ‖(V (x))−1‖ is also uniformly bounded, Gl;r are functions in L2(ΠΛ). Then the function uniquely
defined by gl(ωr(x)) = Gl;r(x) is in L2(Ω) and solves (9) for almost every x ∈ ΠΛ:

1

|Ω|



ea1
(x) 0

. . .

eas(x)
. . .

0 eak(x)





∑
λ∗∈Λ∗〈gl, eλ∗+a1

〉eλ∗(x)
...∑

λ∗∈Λ∗〈gl, eλ∗+as〉eλ∗(x)
...∑

λ∗∈Λ∗〈gl, eλ∗+ak〉eλ∗(x)

 =
1

k
V (x)



gl(ω1(x))
...

gl(ωr(x))
...

gl(ωk(x))

 . (12)

Here we used that vol(Λ) = |Ω|
k because Ω is a k-tile for Λ. Since the right hand side of the equations (11)

and (12) are equal, we can equate the left hand side of both equations to obtain

1

|Ω|
∑
λ∗∈Λ∗

〈gl, eλ∗+as′ 〉eλ∗(x) =

{
eη∗(x), s = s′

0, s 6= s′
.

Since {eλ∗}λ∗∈Λ∗ form an orthogonal basis for L2(ΠΛ), this implies that 〈gη∗+as , eλ∗+as′ 〉 = 0 for λ∗ +
as′ 6= η∗ + as and |Ω| otherwise. Therefore there is a unique sequence {gl}l∈L ⊂ L2(Ω) satisfying (3)
and subsequently all functions f ∈ L2(Ω) have the unique representation (1), with cl = 〈f, gl〉. Then∑
l∈L |〈f, gl〉|2 =

∑
l∈L |〈f,

∑
l′∈l〈gl, e′l〉e′l〉|2 =

∑
l∈L |〈f, el〉|2. By (10), the family {el}l∈L ⊂ L2(Ω) satisfies

the frame condition (2). We have shown that {el}l∈L is a Riesz basis of exponentials.
To find an explicit formula for the dual Riesz basis {gl}l∈L, the system (11) can be explicitly solved using

only the sth column of the matrix (V (x))−1:

k(V (x)−1)rsel(x) = gl(ωr(x)), 1 ≤ r ≤ k, a.e. x ∈ ΠΛ.

Since el(ωr(x)) = e2πil·(λr(x)+x) = el(x)e2πil·λr(x) = el(x)(V (x))sr, we can write this as

k(V (x))sr(V (x)−1)rsel(ωr(x)) = gl(ωr(x)), 1 ≤ r ≤ k, a.e. x ∈ ΠΛ. (13)

The functions in (8) are obtained by extending the domain in (13) to all x ∈ Ω using the inverse functions
ω−1
r (x) = x− λr(x) for x ∈ Ωr.

Remark 1. 1. This result holds for all multi-tiling sets for which there exists a Riesz basis of exponentials
of the form (4), including admissible multi-tiling sets. A multi-tiling set for a full lattice Λ is admissible
if there exists an element of the dual lattice v ∈ Λ∗ and an integer n ∈ Z+ such that v·λ1(x), . . . , v·λk(x)
are distinct integers modulo n for almost every x [14, 19, 6, 7].

2. For k = 1 the theorem implies that gl(x) = el(x)χΩ(x) = el(x) and the system is an orthogonal basis.

3. If the system is self-dual, that is gl = el, then (13) implies that (V (x)−1)rs = 1
ke

2πiλr(x)·as . Therefore,
Theorem 2.1 shows that the system (7) forms an orthogonal basis if and only if V (x)∗V (x) = kI
meaning that V (x) is a (log) Hadamard matrix [20].

3 Finding Riesz bases of exponentials

Suppose Ω ⊂ Rd is a k-tile for the full lattice Λ = MZd. Theorem 2.1 provides sufficient conditions on the set
of lattice shifts {as}ks=1 ⊂ Rd so that the two families of functions defined in (7) form a pair of biorthogonal
Riesz bases for L2(Ω). These conditions are based on the uniform bound on the singular values of the k× k
matrices V (x) defined in (6). For admissible domains Ω, the lattice shifts can be chosen so that the matrices
V (x) are square Vandermonde matrices (V (x))rs = ws−1

r in which the nodes wr = e2πi(λr(x)·v)/n are a subset
of the nth roots of unity {wr}kr=1 ⊂ {e2πij/n}nj=1 for almost every x. Since the distance between any two
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Table 1: List of Symbols used in §3.

Md A given set of k vectors m1, . . .mk in Rd

Ml = {mi ∈ Rl | (mi,m
′) ∈Md for some m′ ∈ Rd−l}1

Z li =

{
M1 l = i = 1

{zl ∈ R | (mi, zl) ∈Ml} l ≥ 2,

Ml−1
i = {m′j ∈Ml | j ≥ i} l ≥ 2

Qi(Ml) =

{
{0, . . . ,#Z li − 1} i = 1

{#Z li−1, . . . ,#Z li − 1} i ≥ 2

Kl(Ml) =

{
{0, . . . ,#M1 − 1}, l = 1⋃#Ml−1

i=1 Kl−1(Ml−1
i )×Qi(Ml) l ≥ 2

1 Ml−1 = {mi} is enumerated so that #Zl
i ≤ #Zl

j for i ≤ j.

nodes has a uniform lower bound, that is, max
r 6=r′
|wr − wr′ | ≥ |1 − e2πi/n| > 0, it follows from [13] that the

matrices V (x) have uniformly bounded singular values for almost every x ∈ ΠΛ.
In general, determining the invertibility of Fourier matrices is challenging, especially when d is large.

Even when invertibility is guaranteed, directly solving the linear system (9) becomes increasingly difficult
as k and d grow. In this section, we will discuss a strategy for reconstructing functions using a family of
exponentials and finding a Riesz basis of exponentials for a class of multi-tiles.

To keep the notations simple, we collect in Table 1 a list of symbols used in this section.
For x ∈ ΠΛ define the frequency set Md = Md(x) = Λx. Since the shift index set Kd(Md) is defined

recursively, we first prove the following lemma.

Lemma 3.1. For each l = 1, . . . d, #Kl(Ml) = #Ml.

Proof. By induction. This is true for l = 1 by definition. Consider 1 < l ≤ d. The induction assumption
asserts that there are #Ml′ elements in Kl′(Ml′) for 1 ≤ l′ < l. Therefore there are #Ml−1 elements in
Kl−1(Ml−1) and for i > 1, #Ml−1 − i + 1 = #Ml−1

i = #Kl−1(Ml−1
i ). Then, there are #Z l1 in Q1(Ml)

and for i > 1, (#Z li −#Z li−1) elements in Qli(Ml). Summing this up,

#Kl(Ml) = #Ml−1#Z l1 +

#Ml−1∑
i=2

(#Ml−1 − i+ 1)(#Z li −#Z li−1)

=

#Ml−1∑
i=1

#Z li = #

#Ml⋃
i=1

{(mi, zl) | zl ∈ Z li} = #Ml.

The construction of the shift index set Kd(Md) is based on a tree structure admitted by the frequency
set Md. The sets Ml correspond to the collection of vectors in each parent node in the lth level of the tree.
The ordering Ml−1 = {mi} corresponds to nodes in increasing order of the number of immediate children.
The sets Z lp correspond to the last coordinate of the children of the pth vector in Ml−1.

Example 1. Let k = 10 and consider the frequency set

M4 =

 (1,1,1,1), (2,1,1,1), (3,1,1,1), (4,1,1,1),
(2,2,1,1), (3,2,1,1), (4,2,1,1),
(2,2,1,2), (3,2,2,1), (4,3,1,1)

 .

The tree diagram produced by M4 is illustrated in Figure 1.
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M1

M2

M3

M4

1

(1, 1)

(1, 1, 1)

(1, 1, 1, 1)

2

(2, 1)

(2, 1, 1)

(2, 1, 1, 1)

(2, 2)

(2, 2, 1)

(2, 2, 1, 1) (2, 2, 1, 2)

3

(3, 1)

(3, 1, 1)

(3, 1, 1, 1)

(3, 2)

(3, 2, 1)

(3, 2, 1, 1)

(3, 2, 2)

(3, 2, 2, 1)

4

(4, 1)

(4, 1, 1)

(4, 1, 1, 1)

(4, 2)

(4, 2, 1)

(4, 2, 1, 1)

(4, 3)

(4, 3, 1)

(4, 3, 1, 1)

Figure 1: Tree structure produced by M4 in Example 1.

3.1 Finding Riesz bases of exponentials

We first define a weaker notion of admissibility.

Definition 3.1. Let Ω ⊂ Rd be a k-tile for a full lattice Λ. For v ∈ Rd and q ∈ Zd+ we say that Ω is weakly
(v, q)-admissible if for almost every x ∈ ΠΛ and Md =Md(x) = Λx, the following condition is satisfied:

#{vlzl mod ql | zl ∈ Z lp} = #Z lp, 1 ≤ p ≤ Nl−1, 1 ≤ l ≤ d,

where N0 = 1 and Nl = #Ml if 1 ≤ l ≤ d.

These conditions state that the numbers vlzl are distinct modulo ql. In particular, any bounded k-tile
for a lattice Λ is weakly admissible for some pair (v, q). Weakly admissible domains are not necessarily
admissible as defined in Remark 1.

Theorem 3.2. Suppose that Ω ⊂ Rd is a k-tile for a full lattice Λ that is weakly (v, q)-admissible for some
q ∈ Zd+ and v ∈ Rd. Then, for almost every x ∈ Ω, f(x) can be uniquely determined from the data

{〈f, el〉}l∈L, L =
k⋃
s=1

Λ∗ + as,

where the lattice shifts are given by

{as(x) = δjs + η | js ∈ Kd(Md(x))}, (14)

for any diagonal matrix δ ∈ Rd×d of the form δll = vl/ql, 1 ≤ l ≤ d and η is any point in the dual lattice Λ∗.

Proof. Consider the system of equations (9) given by (Fjs(x))ks=1 = V (x)(Fλr (x))kr=1 for almost every
x ∈ ΠΛ, where V (x) = V has the form (6) and

Fjs(x) = Fjs =
1

vol(Λ)

∑
λ∗∈Λ∗

〈f, eλ∗+as〉eλ∗+as(x), (15)

Fλr (x) = Fλr = f (ωr(x)) . (16)

Notice that e2πiλr(x)·(δjs+η) = e2πiλr(x)·δjs so it suffices to consider shifts of the form as = δjs. Since for
almost every y ∈ Ω, y = ωr(x) for some x ∈ ΠΛ and 1 ≤ r ≤ k, we will prove the unique recovery of f(x) by
showing the invertiblity of the matrices V l(x) = V l, 1 ≤ l ≤ d, defined by

(V l)sp = e−2πiδ′′j′′s ·mp , j′′s ∈ Kl(Ml), mp ∈Ml. (17)

Here, Kl(Ml) is the set of #Ml shift indices constructed in Lemma 3.1, and we define the diagonal matrices
δ′ = (δij)l+1≤i,j≤d and δ′′ = (δij)1≤i,j≤l. This is equivalent to proving the uniqueness of solutions of the
linear systems (

F(j′′s ,j
′)

)
j′′s ∈Kl(Ml)

= V l
(
F
mp
j′

)
mp∈Ml

(18)
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for all 1 ≤ l ≤ d where for a fixed j′ ∈ Rd−l we define

F
mp
j′ =

∑
m′∈Rd−l:

(mp,m
′)∈Md

F (mp,m
′)e−2πiδ′j′·m′ .

In the case l = 1, V 1 = W 1
1 , where W 1

1 is a #M1 ×#M1 Vandermonde matrix (W 1
1 )st = ws−1

t with nodes
wt = e−2πiδ11zt , zt ∈ M1. By the admissibility condition, the set {v1z1 mod q1 | z1 ∈ Z1

1} contains #Z1
1

distinct numbers and therefore the nodes wt are distinct, and W 1
1 is invertible for δ11 = v1/q1.

For l ≥ 2 and p = 0, . . . ,#Ml−1 define the 1D Vandermonde matrices W̃ l
(q,p) ∈ C#Zlp×#Zlq for q < p and

W l
(p,p) ∈ C#Zlp×#Zlp by {

(W̃ l
(q,p))st = e2πi(s−1)ztδll zt ∈ Z lq

(W l
(p,p))st = e2πi(s−1)ztδll zt ∈ Z lp,

, 1 ≤ s ≤ #Z lp.

Define the matrices Ṽ l−1
p ∈ C#Ml−1

p ×#Ml−1
q and V l−1

p ∈ C#Ml−1
p ×#Ml−1

p{
(Ṽ l−1
p )sq = e−2πimq·δ′′j′′s , q < p

(V l−1
p )s(q−p+1) = e−2πimq·δ′′j′′s , q ≥ p

, j′′s ∈ Kl−1(Ml−1
p ), mq ∈Ml−1

p .

Then, we can form the linear systems from (18) as(
F(j′′,jl,j′)

)
j′′∈Kl−1(Ml−1

1 )
= V l−1

1

(
F
mq
(jl,j′)

)
mq∈Ml−1

1

, jl ∈ Ql1, (19)(
F(j′′,jl,j′)

)
j′′∈Kl−1(Ml−1

p )
− Ṽ l−1

p

(
F
mq
(jl,j′)

)
q<p

= V l−1
p

(
F
mq
(jl,j′)

)
mq∈Ml−1

p

, jl ∈ Qlp, p ≥ 2. (20)

The vector
(
F
mp
(jl,j′)

)
jl∈Qli,1≤i≤p

, created from solutions to (19) and (20) when V l−1
p are all invertible, solves

the system (
F
mp
(jl,j′)

)
jl∈Qli,1≤i≤p

= W l
(p,p)

(
F

(mp,zl)
j′

)
zl∈Zlp

, (21)

where the square matrices W l
(p,p) are invertible again by weak admissibility.

To write (19) − (21) in matrix form, we define [V l−1
p ], [Ṽ l−1

p ] to be block diagonal matrices with #Qlp
block entries all equal to V l−1

p and Ṽ l−1
p , respectively, and

[W̃ l
p] =


W̃ l

(1,p) 0

W̃ l
(2,p)

. . .

0 W̃ l
(p−1,p)

 , [W l
p] =


W l

(1,1) 0

W l
(2,2)

. . .

0 W l
(p−1,p−1)

 .

The block diagonal matrix [W l
p] is invertible, and for appropriate permutation matrices1 Ũp, and Up, the

matrix defined as
Xp = [Ṽ l−1

p ]Ũp[W̃
l
p]([W

l
p])
−1Up,

satisfies

Xp

((
F
mq
(jl,j′)

)
q≥i,jl∈Qli

)
i<p

=

(
Ṽ l−1
p

(
F
mq
(jl,j′)

)
q<p

)
jl∈Qlp

.

1Up and Ũp correspond to the mappings Up((v)q≥i,jl∈Qli
)i<p = ((v)zl∈Zlq

)q<p and Ũp((v)jl∈Qlp
)q<p = ((v)q<p)jl∈Qlp

.
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Therefore (19)− (20) can be written as



(
F(j′′,jl,j′)

)
j′′∈Kl−1(Ml−1

1 ),jl∈Ql1(
F(j′′,jl,j′)

)
j′′∈Kl−1(Ml−1

2 ),jl∈Ql2
...(

F(j′′,jl,j′)

)
j′′∈Kl−1(Ml−1

p ),jl∈Qlp
...


=



[V l−1
1 ] . . . 0

X2 [V l−1
2 ]

. . .
...

Xp [V l−1
p ]

...
. . .





(
F
mq
(jl,j′)

)
q≥1,jl∈Ql1(

F
mq
(jl,j′)

)
q≥2,jl∈Ql2
...(

F
mq
(jl,j′)

)
q≥p,jl∈Qlp
...


. (22)

The solutions to (22) can then be rearranged to form the linear system,(
F
mp
(jl,j′)

)
mp∈Ml−1,jl∈∪pi=1Qli

= W l
(
F

(mp,z)
j′

)
(mp,z)∈Ml

(23)

where W l = [W l
(#Ml−1,#Ml−1)] is an invertible matrix.

Putting it all together, for an appropriate permutation matrix U , and the block lower triangular matrix
in (22) denoted by [[V l−1]], it follows that the matrix V l in (17) can be expressed as V l = [[V l−1]]UW l,
and it is invertible provided that V l−1

p are all invertible. The case l = d is proved in the same way, with

modifications in notation, implying that the terms {Fλr (x)}λr=m∈Md(x) are determined uniquely. Then,
f(x) can be uniquely constructed as

f(x) =
k∑
r=1

f(x)χΩr (x) =
k∑
r=1

Fλr (ω−1
r (x))χΩr (x)

=
1

vol(Λ)

k∑
s=1

∑
λ∗∈Λ∗

〈f, eλ∗+as〉

(
k∑
r=1

(V (x)−1)rs(V (x))srχΩr (x)

)
eλ∗+as(x).

Note that this reconstruction has the form f(x) =
∑
l∈L clgl(x) with cl = 1

|Ω| 〈f, el〉 and gl(x) is defined as

in Theorem 2.1, however, weak admissibility of Ω does not guarantee that gl is a function in L2(Ω).

The proof can be summarized in the following pointwise reconstruction algorithm for functions f ∈ L2(Ω),
where Ω is a weakly (v, q)-admissible domain. For almost every x′ ∈ Ω, there is a unique r ∈ {1, . . . k} so
that x′ ∈ Ωr, so it suffices to state the algorithm for recovering f(ωr(x)), x ∈ ΠΛ.

Algorithm 1. Define Md(x) = Md = Λx. Construct the lattice shift set {as}ks=1 given by (14) for a fixed
diagonal matrix δ ∈ Rd×d satisfying the assumptions of Theorem 3.2.

Step 1: For each j ∈ Kd(Md), define Fj = Fj(x) by (15).

Step 2: If d = 1, solve the 1D Vandermonde system (18) for l = 1, obtaining (Fm1)m1∈M1 . Then,

skip to Step 4. If d ≥ 2, solve (18) with l = 1 for all j′′ ∈ K1(M1) and j′1 = 0 ∈ Zd−1, obtaining(
Fm1

j′1

)
m1∈M1

.

Step 3: For l = 2, . . . , d− 1 and Ml−1 = {mq}

(a) For p = 1 repeat the l − 1 iteration (Step 2 for l = 2 or Step 3 for l > 2), substituting j′l−1

with (jl, j
′
l) where jl ∈ Ql1 and j′l = 0 ∈ Rd−l to obtain

(
F
mq
(jl,j′l)

)
mq∈Ml−1

1

. Then, determine(
F

(m1,zl)
j′l

)
zl∈Zl1

by solving the 1D Vandermonde system (21).
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(b) For p = 2, . . . ,#Ml−1. Define

F̃(j′′,jl,j′) :=
(
F(j′′,jl,j′)

)
j′′∈Kl−1(Ml−1

p )
− Ṽ l−1

p

(
F
mq
(jl,j′)

)
q<p

and M̃d = {m ∈ Md | (m1, . . . ,ml) ∈ Ml
p}. Repeat Step 3 a) substituting Fj and Md with F̃j

and M̃d, obtaining
(
F

(mp,zl)

j′l

)
zl∈Zlp

.

Step 4: For l = d, perform Step 3 omitting j′d to obtain

f(ωr(x)) = f(λr(x) + x)}λr∈Λx .

Although Theorem 3.2 guarantees that the matrix V (x) in (6) is invertible, Algorithm 1 does not directly
find the inverse. Instead, the algorithm iteratively solves the system in a block-by-block fashion, and therefore
only involves the inversion of 1D Vandermonde matrices. Equations (19) and (20) are only solved directly
in the case l = 1.

Remark 2. The proof of Theorem 3.2 provides an explicit procedure for recovering functions that arise in, for
example, [19], in which the existence of the set of vectors {as}ks=1 ⊂ Rd is proved by showing the existence
of Λ-periodic functions f̃s ∈ L2(ΠΛ), 1 ≤ s ≤ k, such that

f(λr(x) + x) =
k∑
s=1

e2πias·(x−λr(x))f̃s(x), 1 ≤ r ≤ k, (24)

and showing that the determinant of the matrix for this system as a function of x has finitely many zeros.
Theorem 3.2 provides one way to intuitively choose the lattice shifts for certain domains Ω by setting
{as = δjs}ks=1, js ∈ Kd(Md) for a suitable matrix δ ∈ Rd×d.

Algorithm 1 provides a procedure for the pointwise (and adaptive) reconstruction of functions in L2(Ω)
that does not rely on a Riesz basis of exponentials. In fact, it may not be known a priori if V in (16)
satisfies the assumptions of Theorem 2.1. The factorization of V in the proof of Theorem 3.2 provides a
systematic procedure for choosing the lattice shifts {as} and estimating the Riesz bounds (when they exist).
The algorithm finds a Riesz basis of exponentials for the following subset of domains satisfying Definition 3.1.

Definition 3.2. Let Ω ⊂ Rd be a k-tile for a full lattice Λ. For v ∈ Rd and q ∈ Zd+ we say that Ω
is strongly (v, q)-admissible if it is weakly (v, q)-admissible and for almost every x ∈ ΠΛ the sets {vlzl
mod ql | zl ∈ Z lp}, 1 ≤ p ≤ Nl−1, 1 ≤ l ≤ d are all sets of integers.

For example, any bounded multi-rectangle in Rd of the form Ω = ∪kr=1(ΠΛ + λr) with {λr} ⊂ Λ is
strongly admissible. The advantage of strong admissibility is the uniform boundedness of ‖V (x)‖ which we
will show next leads to a Riesz basis of exponentials.

Corollary 3.2.1. Any strongly (v, q)-admissible k-tile for a full lattice Λ admits a Riesz basis of exponentials
{el}l∈L of the form given in Theorem 3.2.

Proof. Let Ω ⊂ Rd be a strongly (v, q)-admissible k-tile for a full lattice Λ. Since the matrix V (x) given
in (6) is piecewise constant on ΠΛ, there exists a normalized eigenvector of V (x), denoted by u(x) =
(u1(x), . . . , uk(x)), that corresponds to an eigenvalue with squared magnitude σ(x). It follows that u(x) is
also piecewise constant and each of its entries ur(x) are functions in L2(Πλ).

Define the measurable function f(x) ∈ L2(Ω) by f(ωr(x)) ≡ ur(x) for x ∈ ΠΛ. Square-integrability

follows immediately: |Πλ| =
∫

Πλ

∑k
r=1 |ur(x)|2dx =

∫
Πλ

∑k
r=1 |f(ωr(x))|2dx =

∫
Ω
|f(x)|2dx. By taking the

`2-norm of the vector (Fjs(x))ks=1 = V (x) (f(ωr(x)))
k
r=1 = V (x)u(x),

σ(x) = ‖V (x)u(x)‖2 =
k∑
s=1

|Fjs(x)|2. (25)
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We will use the proof of Theorem 3.2 to show that σ(x) is uniformly bounded. Taking the `2 norm of (18),
for l = 1 and j′ ∈ Rd−1, we obtain

‖V 1(x)−1‖−2
∑

m1∈M1

|Fm1

j′ (x)|2 ≤
∑

j1∈K1(M1)

|F(j1,j′)(x)|2 ≤ ‖V 1(x)‖2
∑

m1∈M1

|Fm1

j′ (x)|2.

Applying the inequality (23) for l = 2, . . . , d,

d∏
l=1

‖W l(x)−1‖−2
∑

mp∈Md

|Fmp(x)|2 ≤
∑

j∈Kd(Md)

|Fj(x)|2 ≤
d∏
l=1

‖W l(x)‖2
∑

mp∈Md

|Fmp(x)|2.

By (25) this implies that α ≤ σ(x) ≤ β, where

α = inf
x∈ΠΛ

(
d∏
l=1

‖W l(x)−1‖−2

)
, β = sup

x∈ΠΛ

(
d∏
l=1

‖W l(x)‖2
)
.

The block matrices W l(x) in (23) all have uniformly bounded norm because the square Vandermonde
matrices W l

(p,p)(x) have nodes that form a subset of the ql roots of unity by the strong admissibility condition.
Therefore α > 0, and β <∞, and Theorem 2.1 can then be applied to complete the proof.

The Riesz bounds A and B give a sense of the stability of the reconstruction (1). For the choice of
lattice shifts {as} given (14), these constants depend on the conditioning of the matrices W l(x). There are
infinitely many feasible choices for δ ∈ Rd×d and η ∈ Λ∗ that can produce a Riesz basis of exponentials of
the form (4), however, for |δll| � 1 the condition numbers of these matrices grow large. It is, in general,
a hard problem to estimate the condition number of a Vandermonde matrix [23, 1, 13], and although the
question of determining the optimal choice of δ is an important one, we consider this direction out of the
scope of the present work. However, in special cases, we can show that the factorization of V (x) produced
by Algorithm 1 can be used to derive optimally conditioned matrices.

Definition 3.3. We say that a k-tile for a full lattice is perfectly admissible if there exists a vector v such
that it is strongly (v, q∗)-admissible, where (q∗)l = #Z l1 = . . . = #Z lNl−1

.

For example, any bounded multi-tiling for the full lattice Λ = MZd of the form Ω = ∪z∈Md(ΠΛ + Mz)
with Md = {Mz | z = (z1, . . . , zd)

T |∈ Zd, | |zi| ≤ K, 1 ≤ i ≤ d} for any K ≥ 1 is perfectly admissible. We
show next that perfect admissibility guarantees the existence of an orthogonal basis of exponentials.

Corollary 3.2.2. Any perfectly admissible k-tile for a full lattice Λ admits an orthogonal basis of exponentials
{el}l∈L of the form (4).

Proof. Define the lattice shifts {as}ks=1 by (14) for the perfectly admissible domain Ω with (v, q∗) as in
Definition 3.3. Then for 1 < l ≤ d and 1 ≤ p ≤ #Ml−1 the sets {vlz | z ∈ Z lp} form a complete residue set

modulo #Z lp, and it follows that each set Ml can be ordered so that W l
1 = W l

2 = . . . = W l
p and the matrix

V in (6) has the form V = W 1
1 ⊗W 2

1 ⊗ . . .⊗W d
1 . For the choice of δll = vl/#Z l1, the nodes of W l

1 form the
#Z l1 roots of unity. Since the singular values of V are products of the singular values of each factor, it holds

that κ(V (x)) =
∏
l κ(W l(x)) = 1, where κ(V (x)) = σmax(V (x))

σmin(V (x)) is the condition number of the matrix V (x)

for x ∈ ΠΛ, defined as the ratio of the maximum singular value σmax and minimum singular value σmin.
Since V (x)∗V (x) = kI ⇐⇒ κ(V (x)) = 1, Remark 1 implies that the family {el}l∈L in (7) forms an

orthogonal basis of exponentials for L2(Ω).

The following proves a partial converse result in one dimension.

Corollary 3.2.3. Let Ω be k-tile for Λ = Z. Suppose that there exists an orthogonal basis of exponentials
for L2(Ω) of the form {eλ∗+sδ}λ∗∈Λ∗,1≤s≤k for some δ ∈ R. If, in addition, there exists a number Q ∈ Z so
that Q = gcd(Λx = {z1, . . . , zk}) for almost every x ∈ ΠΛ, then Ω is perfectly admissible.
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Proof. For any set z1, . . . , zk ∈ Z, it is known that there exists a τ ∈ R so that the Vandermonde matrix V

with entries (V )st = e
2πiτszt

k is perfectly conditioned, that is, κ(V ) = 1, if and only if { zrQ mod k}kr=1 is a

complete residue system, where Q = gcd{zr}kr=1 [4]. The choice τ = ± 1
Q +nk for an integer n ∈ Z produces

a perfectly conditioned matrix. For the choice v = τ/k, and letting q∗ = k, Ω satisfies the conditions of
perfect admissibility.
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[15] K. Gröchenig, Non-uniform sampling in higher dimensions: From trigonometric polynomials to ban-
dlimited functions, in Modern Sampling Theory: Mathematics and Applications, J. J. Benedetto and
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Listing 1: MATLAB code for finding Kd(Md)

1 function K=K_l(Ml)

2 [n_Ml ,l]=size(Ml);

3 % If $l=1$, return $\{0, \hdots , \#\ mathcal{M}^1 -1\}$ , otherwise , append

the sets $K_i^l\times Q_i^l$
4 if l==1

5 K = (0:(n_Ml -1))';
6 return

7 else

8 [Ml_old , n_Zl]= Ml_sort(Ml,l-1);

9 [n_Ml , ~]= size(Ml_old);

10 K=[];

11 for i=1: n_Ml

12 if i==1

13 Qi_l = (0:( n_Zl(i) -1))';
14 else

15 Qi_l = (n_Zl(i-1):(n_Zl(i) -1))';
16 end

17
18 Ml_i=Ml_old(i:end ,:);

19 Kl_i=K_l(Ml_i);

20 for ii=1: length(Kl_i (:,1))

21 for jj=1: length(Qi_l)

22 K=[K; Kl_i(ii ,:) Qi_l(jj)];

23 end

24
25 end

26 end

27 end

28
29 % Frequencies in tiling lattice $\ Lambda$
30 function [Ml n_Zl]= Ml_sort(Md,l)

31 if l==0

32 Ml=Md;

33 n_Zl =0;

34 else

35 [Ml ia , ic] = unique(Md(:,1:l),'rows');
36 n_Zl = histc(ic,unique(ic));

37 [n_Zl , idx] = sort(n_Zl);

38 Ml=Ml(idx ,:);

39 end
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