Finding duality for Riesz bases of exponentials on multi-tiles
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Abstract

It is known [6, 14, 19] that if  C R? belongs to a class of multi-tiling domains when translated by a
lattice A, there exists a Riesz basis of exponentials for L?(Q) constructed using k translates of the dual
lattice A*. In this paper, we give an explicit construction of the corresponding biorthogonal dual Riesz
basis. We also extend the iterative reconstruction algorithm introduced in [11] to this setting.

1 Introduction

This paper centers on Riesz bases of exponentials {e;(x) := e2>™#®},. 1 for the space L?(f2), where Q C R?
is a set of positive and finite Lebesgue measure, and L C R? is a countable set. The set {e;(z)}1er C L*(2)
is a Riesz basis for L?(Q) if each f € L?(Q) has the unique representation

f(x) = aealo), (1)

leL
where the coefficients {c;}cr € £?(L) satisfy
Alf 2@ < lal®> < Bl flliz (2)
leL

for some constants 0 < A < B < oo. In this case, there exists a (unique) dual Riesz basis {g;(z) }1e C L?(Q2)
that satisfies the biorthogonality condition

(e, gir) = {Q| wr=r (3)

0 otherwise,

and the coefficients in (1) are given by ¢; = ﬁ(f, g

Although no general proof of the statement exists, there are many cases where it is known that a set
Q) admits a Riesz basis of exponential functions . These cases include when {2 is a finite union of co-
measurable intervals in R or multi-rectangles in R¢ [22, 8] and when A is a stable set of sampling for the
Paley-Wiener space PWq, [5, 16, 25, 27]. It was recently established in [9] that any convex polytope that is
centrally symmetric and whose faces of all dimensions are also centrally symmetric admits a Riesz basis of
exponentials. For more details on properties of families of exponentials, we refer to [28].

However, to the best knowledge of the authors, no explicit algorithms or formulas for the corresponding
dual Riesz bases are available in the literature. As seen from (1), knowing the biorthogonal dual is important
for the reconstruction of any function in L?(€2). One of the goals of this paper is to construct biorthogonal
Riesz bases for L2(f2) for a class of domains  C R? of finite, positive Lebesgue measure.
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The interest in Riesz bases of exponentials stems partially from the Fuglede Conjecture [12], which asserts
that the set of exponentials {e;(2)},cr, is an orthogonal basis for L?(Q) if and only if Q2 tiles R? with respect
to the discrete set L C RZ. In this case, the system of exponentials is self-dual, that is e; = g; for [ € L and
A=B= ﬁ in (2). The Fuglede conjecture has been disproved in both directions when d > 3 [12, 26, 21, 18]
but remains open when d = 1,2. It has recently been proved in [24] that the Fuglede conjecture does hold
for convex domains in all dimensions. Removing the rigidity imposed by orthonormality leads naturally to
the problem of obtaining Riesz bases of exponentials.

Let A be a full lattice in R? and k be a natural integer. We say that a Lebesgue measurable set Q C R?
of finite positive measure is a k-tile for A (or multi-tiling subset of R?) if

ng(x — 1) = k for almost all z € RY.
leA

When Q C R is an admissible k-tile for a full lattice A C R¢ (defined in Remark 1), then it admits a
Riesz basis of exponentials [6, 14, 19]. More specifically, there exists a set of vectors {as}*_; C R? such that
the exponentials

k
{ei() =™ Yer, L= A +a, (4)
s=1

form a Riesz basis for L?(Q), where A* is the dual lattice of A.

The first goal of the paper, accomplished in Section 2, is to introduce a procedure for constructing the
biorthogonal dual Riesz basis for any multi-tiling domain that is known to admit a Riesz basis of exponentials
of the form (4). The second goal of this paper is to derive an iterative (and adaptive) algorithm for performing
the pointwise reconstruction of functions f € L*(Q) given data of the form {(f,e;)}icr. The algorithm is
deterministic, it only involves inverting 1D Vandermonde systems, and it establishes a new framework for
finding a set of vectors {a,}*_; C R? for which (4) is guaranteed to be a Riesz basis with Riesz bounds that
are quantifiable using analytical formulas for 1D Vandermonde matrices.

As we will show in Section 3, this algorithm extends the results that recently appeared in [11] to more
general multi-tiling sets. Compared to the iterative procedure in [2, 3], our algorithm solves invertible 1D
Vandermonde systems at each iteration. A related algorithm in [10] relies on the existence of solutions to a
linear system. In contrast, the algorithm presented here chooses the lattice shifts to ensure invertibility. The
algorithm introduced here more closely compares to the construction in [25], however instead of creating a
p-th order sampling procedure at each iteration, a first-order sampling is used at each iteration. Another line
of investigation that compares to the present work is considered in [15, 17] where numerical sampling algo-
rithms for multivariate trigonometric polynomials are used to derive approximations of infinite-dimensional
bandlimited functions from nonuniform sampling. Recent results in [17] employ numerical methods for sam-
pling along random rank-1 lattices for a given frequency set to approximate multivariate periodic functions,
focusing on the error in approximation. In contrast, we formulate a deterministic algorithm and provide
guarantees for exact reconstruction in cases where the domain €2 is fully known.

2 Finding duals

The main result in this section offers an explicit construction of biorthogonal systems of exponentials corre-
sponding to a class of multi-tiling sets. Throughout the paper, we let A = MZ¢ be a full lattice generated
by the basis vectors M = [my,...,m,] € R%?. The canonical dual lattice is A* = {M Tz, 2z € Z?} and 1,
denotes the fundamental domain ITy = MT<.

Let Q C R be a measurable domain with 0 < |[Q| < oo that is a k-tile for A. Then, there exists a partition
Q=0 UQU...UQ,UE, where I is a set of measure zero, and 2; are mutually disjoint measurable sets
that are each a fundamental domain of A (Lemma 1 in [19]). Let A,(Q2) == A, = {A € A |z + X € Q}.
Denote the cardinality of the finite set S by #S. Then #A, = k for almost every x € II, and we define the
points {\.(x)} C A to be the unique lattice points that satisfy

x4+ A (x) € Q,, 1<r<k. (5)



The mapping w, : [Ty — Q, given by x — x + A.(x) is then invertible.
Our first main result is the following.

Theorem 2.1. Let Q C RY be a k-tile for a full lattice A, and define {\.(z)}r_; and {w,(z)}r_; by (5).
If there exists a set of vectors {as}*_; C R? and positive constants o and S such that the matriz function
V = V(z) € CE** with entries

(V(Jj))b’r = eizﬂiAT(I).asa 1 S 377" S k) (6)

has uniformly bounded singular values, 0 < a < o0; (V(2)) < 8 < 00, 1 < i < d, then the following two
families of functions form a pair of biorthogonal Riesz bases for L?(£2):

k
{ei(@) e, {g1(7) bier, L= U A"+ a, (7)

s=1

where, for \* € A* and 1 < s <k,

k
9 ta, () = exva, (kz w, (@) s (V(w () 1)7-s><m(33)> : (8)
r=1

Here xq, denotes the indicator function of Q,.
Proof. Let f € L*(). Then the mappings from ¢2 — L?(II,) given by
{(f.ehiensta, = Y, (fredel)
leAN*+ag

are well-defined (in fact, isometries) for all 1 < s < k by the orthogonality of the exponentials {e; }iep*4q. in
the space L?(Il5). It follows from the Poisson summation formula that the sequences {(f,e;)}ica++a, and
{f(wr(x))}*_, are related by the following set of linear equations for almost every = € Il:

Mw

> (frede(z) = vol(A 2)srflwn(@), 1<s<k 9)

lEA*+as T:1

By assumption, the lattice shifts {as} are chosen so that V(x) is invertible, leading to the following /o
estimate

IV ()M~ 2X:If wr(2))]? <Z\ > (heda@) < |V(w))? Zlf wy(x
s=1 leA*+as
Since both ||V (2)| = maxi<i<q0:(V(z)) < B and ||V (z)7!| = 1/ minj<;<q0:(V(x)) > 1/« are uniformly
bounded, integrating over II, produces

k
AlflFe) < D Wfenl < Blflie@, L= JA" +as, (10)

leL s=1

where 0 < A < B < 0o are constants.
To show (1), let I = n* + a, for a fixed lattice point n* € A* and 1 < s < k and define the functions
Gi,r(z),1 < r < to be the unique solutions to the system

0 Gl;l(.’L')
(o) | = %V(x) Gn(@) | (11)
0 E)



Since ||(V(x))~!|| is also uniformly bounded, Gy, are functions in L?(II5). Then the function uniquely
defined by g(w,(z)) = Gp,-(z) is in L?(2) and solves (9) for almost every = € Il:

o (1) 0\ (Seea- 0 xsa)er- (@) (e (=)
o e Seen- o extaden @) | = V@) [aon@) [ (2)
0 @) \Shen oo raden (0) (e (x)

Here we used that vol(A) = % because 2 is a k-tile for A. Since the right hand side of the equations (11)
and (12) are equal, we can equate the left hand side of both equations to obtain

1 ens(x), s=3s¢
mZ@wwmw%“)

;-
A*eA* O’ S#S

Since {ex«}rea+ form an orthogonal basis for L?(II,), this implies that (In*+a.,€x ta,,) = 0 for X* +
as # n* + as and |Q| otherwise. Therefore there is a unique sequence {g;}ier. C L?(Q) satisfying (3)
and subsequently all functions f € L?(Q2) have the unique representation (1), with ¢; = (f,g;). Then
e I/, g)* = DEALYE Zl/el<gz,ei>62>l2 = 2er I e)]*. By (10), the family {e;}ier C L*(Q) satisfies
the frame condition (2). We have shown that {e;};cy is a Riesz basis of exponentials.

To find an explicit formula for the dual Riesz basis {g; }1c 1, the system (11) can be explicitly solved using
only the s*® column of the matrix (V(x))~!:

E(V(z) ™ Yser(z) = gi(we(z), 1<7 <k, ae x€lly.
Since e;(w,(x)) = 2™ A (@)F2) — ¢ (7)™ (@) = ¢)(2)(V(2)) 4, We can write this as
E(V(2)er(V(2) V) rser(wr () = gi(we (), 1<7 <k, ae xclly. (13)

The functions in (8) are obtained by extending the domain in (13) to all €  using the inverse functions
w i (x) =2 — \(2) for z € Q,.
O

Remark 1. 1. This result holds for all multi-tiling sets for which there exists a Riesz basis of exponentials
of the form (4), including admissible multi-tiling sets. A multi-tiling set for a full lattice A is admissible
if there exists an element of the dual lattice v € A* and an integer n € Z4 such that v-A1(x),...,v-Ag(x)
are distinct integers modulo n for almost every z [14, 19, 6, 7].

2. For k =1 the theorem implies that g;(z) = e;(x)xq(z) = e;(x) and the system is an orthogonal basis.

3. If the system is self-dual, that is g, = e;, then (13) implies that (V(z)7!),s = £e2™+(®)¢: Therefore,
Theorem 2.1 shows that the system (7) forms an orthogonal basis if and only if V(z)*V(z) = kI
meaning that V(z) is a (log) Hadamard matrix [20].

3 Finding Riesz bases of exponentials

Suppose Q C R? is a k-tile for the full lattice A = MZ4. Theorem 2.1 provides sufficient conditions on the set
of lattice shifts {as}*_; C R? so that the two families of functions defined in (7) form a pair of biorthogonal
Riesz bases for L?(€2). These conditions are based on the uniform bound on the singular values of the k x k
matrices V(z) defined in (6). For admissible domains €2, the lattice shifts can be chosen so that the matrices
V(z) are square Vandermonde matrices (V(x)),s = ws™! in which the nodes w, = e>™*+(@)v)/" are a subset
of the n'™ roots of unity {w,}k_, C {e*™9/"}"_, for almost every z. Since the distance between any two



Table 1: List of Symbols used in §3.

M A given set of k vectors mq,...my, in R?

ML = {m; e RY| (my;,m’) € M? for some m' € R4-1}L
z M l=i=1
' {z1 €R | (my,z) e M} 1>2,
M = e M ji) 122
v {0,...,#2 -1} i=1
own (Pl I
KMl = {O,...ll?éé./\/tl—l}, =1
UEY KM x Qi(MY) 122

L=t = {m;} is enumerated so that #Zf < #Z]L for 1 < j.

nodes has a uniform lower bound, that is, n;ax|wr —wp| > |1 —e2™/™| > 0, it follows from [13] that the
r#r!

matrices V(x) have uniformly bounded singular values for almost every x € Il4.

In general, determining the invertibility of Fourier matrices is challenging, especially when d is large.
Even when invertibility is guaranteed, directly solving the linear system (9) becomes increasingly difficult
as k and d grow. In this section, we will discuss a strategy for reconstructing functions using a family of
exponentials and finding a Riesz basis of exponentials for a class of multi-tiles.

To keep the notations simple, we collect in Table 1 a list of symbols used in this section.

For x € I, define the frequency set M? = M%(x) = A,. Since the shift index set K(M?) is defined
recursively, we first prove the following lemma.

Lemma 3.1. For eachl=1,...d, #K' (M) = #M'.

Proof. By induction. This is true for [ = 1 by definition. Consider 1 < [ < d. The induction assumption
asserts that there are #M! elements in K (M) for 1 < I’ < I. Therefore there are #M!~! elements in
KEY MY and for i > 1, #ME — i 41 = #ME = #K1 (MY, Then, there are #2¢ in Q; (M)
and for i > 1, (#2! — #2Z! ) elements in Q}(M"). Summing this up,

#Ml—l
HC (M) = M THZI+ Y (FMT i )(#2] - #2])
=2
#qu #Ml
= > #2=# J{mi,2) |z € 2]} = #M'.
=1 =1

O

The construction of the shift index set X¢(M¢9) is based on a tree structure admitted by the frequency
set M. The sets M! correspond to the collection of vectors in each parent node in the I** level of the tree.
The ordering M!~! = {m;} corresponds to nodes in increasing order of the number of immediate children.
The sets Z}l, correspond to the last coordinate of the children of the p* vector in M!~1.

Example 1. Let k = 10 and consider the frequency set
(1)1,17]‘)) (2’1717]‘)’ (3717171)’ (4717171)’
Mt = (2,2,1,1), (3,2,1,1), (4,2,1,1),
(2,2,1,2), (3,2,2,1), (4,3,1,1)

The tree diagram produced by M* is illustrated in Figure 1.



o | N PN 1

M2 (1,1) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2) (4,3)
\ \ \ \ VRN \ \ \
M3 (1,1,1) (2,1,1) (2,2,1 (3,1,1) (3,2,1) (3,2,2) (4,1,1) (4,2,1) (4,3,1)
\ \ VRN \ \ \ \ \ \
M (LLLD)  2LL1) (22151) (2212 (G1LL1) (,21.1) (3221 (“LL1) (4211 (4311)

Figure 1: Tree structure produced by M* in Example 1.

3.1 Finding Riesz bases of exponentials

We first define a weaker notion of admissibility.

Definition 3.1. Let Q C R? be a k-tile for a full lattice A. For v € R% and ¢ € Zi we say that € is weakly
(v, q)-admissible if for almost every x € Iy and M? = M?(z) = A,, the following condition is satisfied:

#{oz modq |z € 2} =#Z,, 1<p< Ny, 1<1<d,

where Ny =1 and N; = #M!if 1 <1 <d.

These conditions state that the numbers v;2; are distinct modulo ¢;. In particular, any bounded k-tile
for a lattice A is weakly admissible for some pair (v,q). Weakly admissible domains are not necessarily
admissible as defined in Remark 1.

Theorem 3.2. Suppose that Q C R? is a k-tile for a full lattice A that is weakly (v, q)-admissible for some
q € Z‘_f_ and v € R, Then, for almost every x € Q, f(x) can be uniquely determined from the data

k
{<f7el>}l€ln L= UA*+asa
s=1
where the lattice shifts are given by
{as(z) = 8js + 1 js € KAM (@)}, (14)

for any diagonal matriz § € R of the form 6y = v/q, 1 <1< d and n is any point in the dual lattice A*.

Proof. Consider the system of equations (9) given by (Fj (z))*_, = V(z)(F* (z))k_, for almost every
x € I, where V(z) = V has the form (6) and

FL@) =B = oy 2 (hexrsa)en o (@) (15)
A*EA*
P (a) = F = f (). (16)

Notice that e27iAr(®)(07s4n) — 2miAr(2):07s g0 it suffices to consider shifts of the form a, = dj,. Since for
almost every y € Q, y = w,.(x) for some x € [T, and 1 < r < k, we will prove the unique recovery of f(z) by
showing the invertiblity of the matrices V!(z) = V!, 1 <1 < d, defined by

1" .01

(Vh)gp = e 20 demn i’ e K{MY), m, e M. (17)

Here, K!(M!) is the set of # M shift indices constructed in Lemma 3.1, and we define the diagonal matrices
8" = (ij)i+1<i,j<a and 8" = (0;;)1<ij<i- This is equivalent to proving the uniqueness of solutions of the
linear systems

l m
(F(j‘;/7j/))j;’€)€l(./\/ll) - V (Fj’p (18)



for all 1 <1 < d where for a fixed j' € R4~ we define

!’ ARYs !’
FJTP _ E F(mp,m )6727”6 j’-m’

m'eR4L:
(mp,m’)emM?

In the case I = 1, V! = W}, where W} is a #M" x #M* Vandermonde matrix (W{)s; = w; ™" with nodes

wy = e” 2™z ¢ M. By the admissibility condition, the set {v1z; mod q; | 21 € 2]} contains #2Z]

distinct numbers and therefore the nodes w; are distinct, and W7 is invertible for 611 = v1/q;.
Forl>2and p=0,...,#M!! define the 1D Vandermonde matrices W(lq’p) € CH#E#Z; for g <pand

W(lpm) = C#Z;)X#Z; by

17l _ 2mi(s—1)2:6 l
{(W<w>)st =e toae 2 1<s<#ZL

(W(lp’p))st _ eQm’(s—l)zté” 2 € Z;IZJ’ )

~ 1—1 -1 1— -1
Define the matrices Vpl_1 € C#My x#My " and Vpl_1 € CHMy T XH#M,

g e KN MY, mg e M

—2mimg-8" 5.
)

(V1) sq = e72mima8"50, g<p
(Vo Dsta—ptn) =€ q=p’

Then, we can form the linear systems from (18) as

)oenits” jie g, (19)

(rl—1 My _ -1 mq . 1
(Foriguin) ey = Vo (F(jz,j’)>q<p =% (Fuz,j'))mqew*’ J€Q p22 (20)

_ -1 mq
(FG7g0an) jrexci-1 i1y = Vi (F(juj')

The vector (F P

G j,)) o , created from solutions to (19) and (20) when Vz*l are all invertible, solves
13" ) jiegt1<i<p

the system

Mp — l (mpvzl)
<F(jl’j,))jlegi,1§igp - W(p»p) (F]/ )Zlezllj ) (21)

where the square matrices W(lp p) are invertible again by weak admissibility.
To write (19) — (21) in matrix form, we define [V!=!], [V!~!] to be block diagonal matrices with #Q!,

block entries all equal to Vpl_1 and f/pl_l, respectively, and
il 1
Wi _ 0 W
- W
[Wl] _ (2,p) ' ’ [Wl] _

. z . l
0 W(p—lyp) 0 W(p—l,p—l)

The block diagonal matrix [W}ﬁ] is invertible, and for appropriate permutation matrices’ Up, and Up, the
matrix defined as R o
Xp = [V, U [WRl (W) 7 U,

satisfies

X (F’Hibq./ ) ) — (Vll (Fﬂ_bq_/ ) ) .
p< G6:3) g>i e QL i<p P 3 g<p sieQl,

LU, and U correspond to the mappings Up((v)qu,J’leQﬁ)i<P = ((U)zlezé)Q<P and UP((U)jZGQé)q<P = ((v)‘I<P)jl€Q§)'




Therefore (19) — (20) can be written as

(F(j//vjl7j/))j”€ICl*1(M’i_l),szQll [‘/1171] 0 ( (le'))quJlEQll
T, 1— Mq
(F(J”,Jz,j'))j”elcl’l(Ml{l),szle X [Vg 1] (F(jhj') q>2,51€Q}
: = - : : (22)
-1
(F(j//?jlvjl))j”EK:L_l(Mfgil),jzegé Xp [Vp ] ( n?'q ., )
' . ) (41.3") ¢>p.ji1€Ql,
The solutions to (22) can then be rearranged to form the linear system,
i) —w' (Fm) 23
( (J1:3") mpeMl—l’jleulegé J (mp,z)GMl ( )

where W' = [W(I#lelﬁ#/\/[lfl)] is an invertible matrix.

Putting it all together, for an appropriate permutation matrix U, and the block lower triangular matrix
in (22) denoted by [[V!~1]], it follows that the matrix V! in (17) can be expressed as V! = [[VIZ1JUW,
and it is invertible provided that sz_l are all invertible. The case [ = d is proved in the same way, with
modifications in notation, implying that the terms {F*~(z)} Ar=meMd(z) are determined uniquely. Then,
f(z) can be uniquely constructed as

k k
fla) =" f@)xo, (@) =Y F*(w ' (2)xo, (@)
” 1 k - k
=S (s [ V@ (V@) arxa, (@) ) exc o (@)
VOI(A) s=1 A*€A* r=1

Note that this reconstruction has the form f(x) =3, ; qgi(x) with ¢ = ﬁ(f, e;) and g;(z) is defined as

in Theorem 2.1, however, weak admissibility of {2 does not guarantee that g; is a function in L?(f2).
O

The proof can be summarized in the following pointwise reconstruction algorithm for functions f € L?(12),
where Q is a weakly (v, ¢)-admissible domain. For almost every o’ € , there is a unique r € {1,...k} so
that 2’ € ., so it suffices to state the algorithm for recovering f(w,(z)),z € II,.

Algorithm 1. Define M%(x) = M? = A,. Construct the lattice shift set {as}*_; given by (14) for a fixed
diagonal matrix § € R?¥*? satisfying the assumptions of Theorem 3.2.

Step 1: For each j € K4(M?), define F; = Fj(z) by (15).

Step 2: If d = 1, solve the 1D Vandermonde system (18) for [ = 1, obtaining (F™), .. Then,
skip to Step 4. If d > 2, solve (18) with [ = 1 for all j” € K'(M!') and j; = 0 € Z%!, obtaining

my
. .
S miemt

Step 3: For [ =2,...,d — 1 and M'"! = {m,}

(a) For p = 1 repeat the [ — 1 iteration (Step 2 for | = 2 or Step 3 for [ > 2), substituting j;_,

with (ji,j;) where j; € Q} and j; = 0 € R?"! to obtain (F(mq./ ) . Then, determine
Ji,J7) mgeMi!

(Fj(/m 1’2’)) _ by solving the 1D Vandermonde system (21).
L ZLGZI



(b) For p=2,...,#M!~! Define

~ o o -1
Ergign = (F(J”JlvJ’))j”eICH(MZ ! V ( (“” )>q<p

and M? = {m € M| (my,...,my) € ML}, Repeat Step 3 a) substituting F; and M? with 7
and M¢%, obtaining (F?,’”Pvzl)> .
I z€Z!

Step 4: For | = d, perform Step 3 omitting j, to obtain
flwr(@)) = F(Ar(2) + ) }ren, -

Although Theorem 3.2 guarantees that the matrix V(z) in (6) is invertible, Algorithm 1 does not directly
find the inverse. Instead, the algorithm iteratively solves the system in a block-by-block fashion, and therefore
only involves the inversion of 1D Vandermonde matrices. Equations (19) and (20) are only solved directly
in the case | = 1.

Remark 2. The proof of Theorem 3.2 provides an explicit procedure for recovering functions that arise in, for
example, [19], in which the existence of the set of vectors {a k_, c R? is proved by showing the existence
of A-periodic functions f, € L?(IT5),1 < s < k, such that

k
FO(@) +2) = S miar @M@ f ) 1<r <k, (24)
s=1

and showing that the determinant of the matrix for this system as a function of x has finitely many zeros.
Theorem 3.2 provides one way to intuitively choose the lattice shifts for certain domains €2 by setting
{as = 055}, js € K4M?) for a suitable matrix § € R?¥9,

Algorithm 1 provides a procedure for the pointwise (and adaptive) reconstruction of functions in L?(£2)
that does not rely on a Riesz basis of exponentials. In fact, it may not be known a priori if V' in (16)
satisfies the assumptions of Theorem 2.1. The factorization of V in the proof of Theorem 3.2 provides a
systematic procedure for choosing the lattice shifts {as} and estimating the Riesz bounds (when they exist).
The algorithm finds a Riesz basis of exponentials for the following subset of domains satisfying Definition 3.1.

Definition 3.2. Let Q C R? be a k-tile for a full lattice A. For v € R? and ¢ € Z% we say that Q
is strongly (v, q)-admissible if it is weakly (v, ¢)-admissible and for almost every x € II, the sets {v;z
mod q; | z € ZL},1 <p < Ni_y,1 <1 < d are all sets of integers.

For example, any bounded multi-rectangle in R? of the form Q = UF_,(TI5 + A,) with {\,} C A is
strongly admissible. The advantage of strong admissibility is the uniform boundedness of ||V (x)| which we
will show next leads to a Riesz basis of exponentials.

Corollary 3.2.1. Any strongly (v, q)-admissible k-tile for a full lattice A admits a Riesz basis of exponentials
{ethier of the form given in Theorem 3.2.

Proof. Let © C R be a strongly (v, q)-admissible k-tile for a full lattice A. Since the matrix V(z) given
in (6) is piecewise constant on IIa, there exists a normalized eigenvector of V(z), denoted by u(z) =
(ui(x),...,ux(z)), that corresponds to an eigenvalue with squared magnitude o(z). It follows that u(z) is
also piecewise constant and each of its entries u,(x) are functions in L?(ILy).

Define the measurable function f( ) € L3(Q) by f(wr(z)) = uy(x) for * € TI5. Square-integrability
follows immediately: [IIy| = [;; 370, |up(2)Pde = [ S (wp (@) 2da = Jo If(2)|?dz. By taking the

¢2-norm of the vector (Fj,(x z))k_ = V() (f((,ur(x)))f=1 = V(z)u(x),

o(x) = ||V (z)u()]* = ZIFS : (25)



We will use the proof of Theorem 3.2 to show that o(z) is uniformly bounded. Taking the ¢5 norm of (18),
for | =1 and j' € R?!, we obtain

V@)™ Y I @P s Y Faany@P < IVI@IP Y 1F @)

miemM?! J1eER(MT) miem?t

Applying the inequality (23) for I =2,...,d,

d d
[TIWi@=72 Yo 1 @P < Y IE@P<]TIW@IP Y [F @l
=1 =1

mpEM? JEKH (M) mpeM?

By (25) this implies that o < o(x) < 3, where

d d
o= inf (HWZ(QC)_l_Q), B = sup ( Wl(w)||2>~
xzellp zellp
1=1 1=1
The block matrices W!(z) in (23) all have uniformly bounded norm because the square Vandermonde
matrices W(lp ) (z) have nodes that form a subset of the ¢; roots of unity by the strong admissibility condition.
Therefore o > 0, and 8 < oo, and Theorem 2.1 can then be applied to complete the proof.

O

The Riesz bounds A and B give a sense of the stability of the reconstruction (1). For the choice of
lattice shifts {a,} given (14), these constants depend on the conditioning of the matrices W'(z). There are
infinitely many feasible choices for § € R?*¢ and n € A* that can produce a Riesz basis of exponentials of
the form (4), however, for |§;;| < 1 the condition numbers of these matrices grow large. It is, in general,
a hard problem to estimate the condition number of a Vandermonde matrix [23, 1, 13], and although the
question of determining the optimal choice of § is an important one, we consider this direction out of the
scope of the present work. However, in special cases, we can show that the factorization of V' (z) produced
by Algorithm 1 can be used to derive optimally conditioned matrices.

Definition 3.3. We say that a k-tile for a full lattice is perfectly admissible if there exists a vector v such
that it is strongly (v, ¢*)-admissible, where (¢*); = #Z! = ... = #Zf\,lil.

For example, any bounded multi-tiling for the full lattice A = MZ? of the form Q = U, pqa(Ilp + M2)
with M4 = {Mz | 2 = (21,...,24)T |€ Z9,| |z| < K,1 < i < d} for any K > 1 is perfectly admissible. We
show next that perfect admissibility guarantees the existence of an orthogonal basis of exponentials.

Corollary 3.2.2. Any perfectly admissible k-tile for a full lattice A admits an orthogonal basis of exponentials
{ei}ier of the form (/]).

Proof. Define the lattice shifts {as}*_, by (14) for the perfectly admissible domain Q with (v,q*) as in
Definition 3.3. Then for 1 <l <dand 1 <p< #Ml’l the sets {v;z | z € Z]lg} form a complete residue set
modulo #Z[l), and it follows that each set M! can be ordered so that W} = W} = ... = Wé and the matrix
V in (6) has the form V = W @ W2 ® ... ® W{L. For the choice of §; = v;/#Z!, the nodes of W} form the
#Z! roots of unity. Since the singular values of V are products of the singular values of each factor, it holds
that x(V(z)) = [[, k(W'(x)) = 1, where x(V(x)) = % is the condition number of the matrix V(z)
for x € 11, defined as the ratio of the maximum singular value 0,4, and minimum singular value o, .
Since V(2)*V(z) = kI <= k(V(z)) = 1, Remark 1 implies that the family {e;};cr in (7) forms an
orthogonal basis of exponentials for L?(€2).
O

The following proves a partial converse result in one dimension.

Corollary 3.2.3. Let 2 be k-tile for A = Z. Suppose that there exists an orthogonal basis of exponentials
for L?(Q) of the form {exsiss}r-en-1<s<k for some & € R. If, in addition, there exists a number Q € Z so
that Q = ged(Ay = {z1,...,2x}) for almost every x € I, then Q is perfectly admissible.
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Proof. For any set z1,..., 2 € Z, it is known that there exists a 7 € R so that the Vandermonde matrix V'
2miTSZ
with entries (V)5 = e~ *  is perfectly conditioned, that is, (V) = 1, if and only if {% mod k}F_, is a
complete residue system, where Q = ged{z,}¥_; [4]. The choice T = :l:é + nk for an integer n € Z produces
a perfectly conditioned matrix. For the choice v = 7/k, and letting ¢* = k, Q satisfies the conditions of
perfect admissibility.
O
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Listing 1: MATLAB code for finding X¢(M?)

function K=K_1(M1)
[n_M1,1]=size(M1);
% If $1=1$, return $\{0, \hdots, \#\mathcal{M}~"1-1\1}$,
the sets $K_i~1\times Q_i"1$
if 1==
K = (0:(n_M1-1))"';
return
else
[M1_o0ld, n_Z1]=Ml_sort(Ml,1-1);
[n_M1, “]l=size(Ml_old);

K=[1;
for i=1:n_M1
if i==
Qi_1 = (0:(n_Z1(i)-1))"';
else
Qi_l = (n_Z1(i-1):(n_Z1(i)-1))";
end

M1_i=M1l_old(i:end,:);
K1_i=K_1(M1_i);
for ii=1:length(K1_i(:,1))
for jj=1:length(Qi_1)
K=[K; Kl1_i(ii,:) Qi_1(jj)1;
end

end
end
end

% Frequencies in tiling lattice $\Lambda$
function [M1 n_Z1]=Ml_sort(Md,1l)

if 1==
M1=Md;
n_z1=0;
else
[M1 ia, ic] = unique(Md(:,1:1),'rows"');
n_Z1l = histc(ic,unique(ic));

[n_Z1, idx] = sort(m_Z1);
M1=M1(idx,:);
end

otherwise,

append
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