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Abstract—This paper introduces the decentralized Pliable Index
CODing (PICOD) problem: a variant of the Index Coding
(IC) problem, where a central transmitter serves pliable users
with message side information; here, pliable refers to the fact
that a user is satisfied by decoding any t messages that are
not in its side information set. In the decentralized PICOD,
a central transmitter with knowledge of all messages is not
present, and instead users share among themselves massages
that can only depend on their local side information set. This
paper characterizes the capacity of two classes of decentralized
complete–S PICODptq problems with m messages (where the
set S � rms contains the sizes of the side information sets,
and the number of users is n �

°
sPS

�
m
s

�
, with no two users

having the same side information set): (i) the consecutive case
S � rsmin : smaxs for some 0 ¤ smin ¤ smax ¤ m � t, and (ii)
the complement-consecutive case S � r0 : m � tszrsmin : smaxs,
for some 0   smin ¤ smax   m � t. Interestingly, the optimal
code-length for the decentralized PICOD in those cases is the
same as for the classical (centralized) PICOD counterpart, except
when the problem is no longer pliable, that is, it reduces to
an IC problem where every user needs to decode all messages
not in its side information set. Although the optimal code-length
may be the same in both centralized and decentralized settings,
the actual optimal codes are not. For the decentralized PICOD,
sparse Maximum Distance Separable (MDS) codes and vector
linear index codes are used (as opposed to scalar linear codes).

I. INTRODUCTION

A. Motivation

Index coding (IC), first proposed when considering satellite
communication [1], is a simple model to study the impact
of message side information at the receivers in broadcast
communication networks. The IC consists of one transmitter
with m independent messages to be delivered to n users
through an error-free broadcast link. Each user has some
messages as side information available to it and needs to
reliably decode some messages that are not in its side in-
formation set; the desired messages for each user are pre-
determined. In IC, one asks what is the minimum number
of transmissions (i.e., minimum code-length) such that every
user is able to decode its desired messages successfully. In
this paper we are interested in the decentralized pliable index
coding problem, which is motivated by two variants of IC:
Pliable Index CODing (PICOD), and decentralized IC.

The PICOD problem is motivated by the flexibility in
choosing the desired messages for the users in some prac-
tical scenarios, such as online advertisement systems. Firstly
proposed in [2], in the PICODptq there is a single transmitter,
with m message, and n users, with message side information,
which are connected via an error-free rate-limited broadcast
channel, as in IC. Different from IC, in the PICODptq the

desired messages at the users are not pre-determined and each
user is satisfied whenever it can decode any t messages not
in its side information set. This provides the transmitter more
encoding opportunities, as it now encodes based on its own
choice of desired messages for the users. The goal in the
PICODptq is to find the assignment of desired messages for
the users that leads to the smallest possible code-length.

The decentralized IC is motivated by peer-to-peer and ad-
hoc network, where a central controller / transmitter does not
exist and instead communication occurs among peers / users.
The decentralized IC can be seen as a special case of the
distributed IC [7]. In the distributed IC with m messages, there
are 2m � 1 servers; each sender has knowledge of a unique
subset of the message set (and can thus only encode based
on its local knowledge) and is connected to the users through
a separate error-free rate-limited link. The decentralized IC is
thus a distributed IC where there are as many servers as users,
and each server has the same message knowledge as one of
the users. The goal for the decentralized IC is to determine
the shortest code-length such that all users can decode.

The decentralized PICOD proposed in this paper is a com-
bination of the (centralized) PICOD and the decentralized IC,
namely, a central transmitter with knowledge of all messages
is not present, and instead users share among themselves
massages that can only depend on their local side information
set. The decentralized PICOD problem is motivated by coded
cooperative data exchang [3], [9], distributed storage [5], and
distributed computation [12].

B. Past Work

Several achievable schemes have been proposed for PICOD,
based on scalar linear codes; the results of [2], [11] show an
exponential code-length reduction for PICOD compared to IC.

For converse results, the optimal code-length under the
restriction that the transmitter can only use linear schemes
was shown in [2] for the oblivious PICODptq, where the
transmitter only knows the size of the side information at
the users. In [6], we used techniques based on combinatorial
design to prove tight converse bounds for some complete–
S PICODptq (see next for a formal definition) problems that
generalize of the oblivious class, and showed the information
theoretic optimality of scalar linear codes.

The multi-sender IC has been studied in [10], where the
focus was on the “single uniprior” case (where users have only
one single message as side information). The general multi-
sender IC, or distributed IC, was investigated in [7], where
converse bounds (leveraging the submodularity of entropy)

532978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on November 06,2020 at 16:35:00 UTC from IEEE Xplore.  Restrictions apply. 



and achievable bounds (based on composite IC coding) were
proposed; those bounds were numerically verified to match for
the case of symmetric rate and symmetric link capacities in
all settings with no more than four messages; the use of those
bounds in general settings is however problematic because the
number of variables involved is exponential in the number of
servers (thus double exponential in the number of messages).

C. Contributions
In this paper we derive tight information theoretic con-

verse bounds (i.e., no restrictions on the class of codes used
by the users) for two classes of decentralized PICODptq
problems, namely: (i) the complement-consecutive complete-
S PICODptq, and (ii) the consecutive complete-S PICODptq.
The complete–S PICODptq, where S is a subset of r0 : m� ts
(where m is the number of messages at the transmitter and
t the number of messages to be decoded by each user), is
a system where all side information sets / users with size
indexed by S are present. We say that S is consecutive if
S � rsmin : smaxs for some 0 ¤ smin ¤ smax ¤ m � t, and
complement-consecutive if S � r0 : m � tszrsmin : smaxs for
some 0   smin ¤ smax   m�t. We characterized the optimal
code-length in those cases in [6] for the centralized PICODptq
case. Here, we examine the decentralized case.

Trivially, a centralized PICODptq has optimal block-length
no larger than that of the corresponding decentralized problem
(because a centralized transmitter can mimic any decentralized
transmission scheme). In this work, we thus start by analyzing
the decentralized version of those PICODptq problems whose
optimal code-length we characterized in [6], and use our
tight past result as a “trivial centralized converse bound.”
Surprisingly, we show that such a “trivial centralized converse
bound” is tight whenever the decentralized PICODptq remains
indeed pliable. More precisely, we show that by using vector
linear codes (in contrast to the simple linear scalar schemes
that are optimal in the corresponding centralized setting [6])
we can achieve the “trivial centralized converse bound” except
for the case where the problem parameters are such that every
user must decode all the messages that are not in its side
information set, that is, the problem becomes a special case
of the “communications for omniscience” problem [4].

D. Paper Organization
Section II introduces the system model and definitions; Sec-

tion III lists our main contributions; Section IV, resp. V, pro-
vides the proof for consecutive, resp. complement-consecutive,
complete–S PICODptq. Section VI concludes the paper.

E. Notation
Throughout the paper we use capital letters to denote sets,

calligraphic letters for family of sets, and lower case letters
for elements in a set. For integers 1 ¤ a1 ¤ a2 we let ra1 :
a2s :� ta1, a1 � 1, . . . , a2u, and ra2s :� r1 : a2s. A capital
letter as a subscript denotes set of elements whose indices are
in the set, i.e., WA :� twa : wa P W,a P Au. For two sets A
and B, AzB is the set that consists all the elements that are
in A but not in B.

II. SYSTEM MODEL

A decentralized PICODptq system consists of: (i) n P N
users and no central transmitter. The user set is denoted as
U :� tu1, u2, . . . , unu. (ii) m P N independent and uniformly
distributed binary messages of κ P N bits each. The message
set is denoted as W :� tw1, w2, . . . , wmu. (iii) User ui knows
the messages indexed by its side information set Ai � rms,
i P rns. The collection of all side information sets is denoted
as A :� tA1, A2, . . . , Anu, which is assumed globally known
at all users. Note that for a decentralized PICOD problem to
have a solution, one must have Yni�1Ai � Aj ,@j P rns, that
is, for every user there must be an unknown message that is
in the side information set of some other users. (iv) An error-
free broadcast link is shared among all users and allows one
user to transmit while all the remaining users receive. (v) The
codeword xκ` :� pxκ`1 , xκ`2 , . . . , xκ`nq is eventually received
by all users, where ` :�

°
jPrns `j and

xκ`j :� ENCjpWAj ,Aq, @j P rns,

is the encoding function at user uj . (vi) The decoding function
for user uj is

t pwpjq
1 , . . . , pwpjq

t u :� DECjpWAj , x
`κq, @j P rns.

(vii) A code is valid if and only if every user can successfully
decode at least t messages not in its side information set, i.e.,
the decoding functions tDECj ,@j P rnsu are such that

PrrDtdj,1, . . . , dj,tu XAj � H :

t pwpjq
1 , . . . , pwpjq

t u � twdj,1 , . . . , wdj,tus ¤ ε,

for some ε P p0, 1q. For a valid code, t pwpjq
1 , . . . , pwpjq

t u �
twdj,1 , . . . , wdj,tu is called the desired message set for user
uj , j P rns. The indices of the desired messages are denoted
as Dj :� tdj,1, . . . , dj,tu where Dj X Aj � H,@j P rns.
The choice of desired messages for the users is denoted as
D � tD1, D2, . . . Dnu. (viii) The goal is to find a valid code
with minimum length, that is, to determine

`� :� mint` : D a valid xκ` for some κu.

In the following we shall focus on the decentralized
complete–S PICODptq, for a given set S � r0 : m� ts. In this
complete–S system, there are n :�

°
sPS

�
m
s

�
users, where no

two users have the same side information set, i.e., all possible
users with distinct side information sets that are subsets of size
s of the message set, for all s P S, are present in the system. In
particular, we focus on the consecutive complete-S PICODptq
and the complement-consecutive complete-S PICODptq, where
we say that S is consecutive if S � rsmin : smaxs for some
0 ¤ smin ¤ smax ¤ m � t (i.e., S contains consecutive
integers, from smin to smax), and complement-consecutive if
S � r0 : m � tszrsmin : smaxs for some 0   smin ¤ smax  
m� t (note that the set S includes elements 0 and m� t). We
characterized the optimal centralized code-length in those two
cases in [6] and we examine here the decentralized version.
Note that S � t0u is not considered since it violates the
condition Yni�1Ai � Aj ,@j P rns.
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III. MAIN RESULTS

The main contributions of this paper are as follows.

Theorem 1 (consecutive). For the decentralized complete–S
PICODptq with m messages and S � rsmin : smaxs for some
0 ¤ smin ¤ smax ¤ m� t, the optimal code-length is

`� �

$&%
p m
m�tq

p m
m�tq�1

t, smax � smin � m� t,

mintsmax � t,m� sminu, otherwise.
(1)

Theorem 2 (complement-consecutive). For the decentralized
complete–S PICODptq with m messages and S � r0 : m �
tszrsmin : smaxs � r0 : smin � 1s Y rsmax � 1 : m � ts for
some 0   smin ¤ smax   m� t, the optimal code-length is

`� � mintm, |S| � 2t� 2u. (2)

Proof details are in Sections IV and V. Note:
1) Theorem 2 says that, for the same parameters of

pm, t, smin, smaxq, the centralized and the decentralized
settings have the same optimal code-length; similarly for
Theorem 1, except for the case smax � smin � m� t.

2) Having the same optimal code-length does not necessarily
imply that the same code is optimal in both cases.
In [6], we showed that for the centralized setting simple
scalar linear codes are optimal; in particular, the central
transmitter either sends `� distinct messages one by one,
or `� random linear combinations of all the messages.
Clearly, the former strategy can be implemented in a
decentralized setting, but not the latter. In this case we use
vector linear codes; in particular, our achievable scheme
uses sparse Maximum Distance Separable (MDS) codes.

3) When necessary to distinguish the optimal code length of
the centralized and decentralized settings, we shall use the
notation `�,cen and `�,dec, respectively. Note that `�,dec �
`� where `� was defined in Section II.
Among all PICOD cases studied in this work, the only
case where the decentralized optimal code-length `�,dec is
strictly larger than the corresponding centralized optimal
code-length `�,cen is when smin � smax � m� t. This is
the only case in centralized PICODptq where `�,cen � t.
Since `�,dec ¡ t for all decentralized PICODptq (as what
is sent by a user is not useful for that user), our results
show that for the consecutive and complete consecutive
complete–S PICODptq, `�,dec � `�,cen if only if `�,cen �
t; interestingly, this is also the case where the PICOD
problem “looses its pliability,” that is, it reduces to an IC
problem where every user needs to decode all messages
not in its side information set.

4) Theorems 1 and 2 can be extended to all the centralized
complete–S PICODptq that we have been solved in [6],
which are not reported here because of space limitations.
In those cases too we obtained `�,dec � `�,cen whenever
`�,cen � t; and `�,dec � n

n�1 t if `�,cen � t. An intriguing
question is whether this holds true for all complete–S
PICODptq, even those not solved by the technique in [6].
Answering this question is part of ongoing work.

5) A similar proof technique can show that for the decentral-
ized PICODp1q where the network topology hypergraph
is a circular-arc, the optimal code-length is: `� � 2 if
1-factor does not exists; or `� � p

p�1 , where p is the
maximum size of the 1-factor of the network topology
hypergraph – see definitions in [6]. This serves a tight
bound for the decentralized PICOD beyond the complete–
S case. Finding tight bounds for the general decentralized
PICODptq is one direction for future work.

IV. PROOF FOR THEOREM 1

We split the proof into sub cases. For `�,cen � mintsmax �
t,m � sminu   t for the centralized consecutive complete–
S PICODptq, in which case `�,cen � `�,dec � `�, we study
separately the cases smax � t ¤ m� smin (Section IV-A) and
t   m�smin   smax�t (Section IV-B). The case `�,cen � t is
studied in Section IV-C, in which case `�,cen   `�,dec � `� �
p m
m�tq

p m
m�tq�1

t and is only possible for smin � smax � m� t.

A. Case smax � t ¤ m� smin

We send smax � t messages, one at a time. This can be
done in a decentralized setting since each message is in the
side information set of at least one user. Therefore, such a user
can transmit the message to the rest of the users in one channel
use. This achievable scheme is optimal since smax � t is the
optimal code-length for the corresponding centralized setting.
We thus conclude `� � smax � t for smax � t ¤ m� smin.

B. Case t   m� smin   smax � t

We show that in this case a decentralized scheme with m�
smin transmissions can satisfy all users; being m � smin the
optimal code-length for the corresponding centralized setting,
such a scheme is thus optimal. In the centralized case, the
optimal code involves m � smin linearly independent linear
combinations of all the messages, or alternatively an MDS
code; this is not a possible decentralized scheme because at
most smax � t messages can be used to produce a valid code
(assuming that a user has side information set of size smax

and sends after having decoded t messages).
Next, when describing achievable schemes, instead of work-

ing with messages and codewords in bits (as done in the
description of the channel model in Section II), we represent
each message of κ bits as one symbols in the finite field F2κ .
With an abuse of notation, we also let x` denote the codeword
of length ` symbols from the finite field F2κ , and where each
symbol corresponds to a transmission by a user. A linear code
for the decentralized system is thus x` � Gwm, where G is
the code generator matrix of size `�m and wm is the vector
of length m containing all the messages.

For a valid optimal decentralized linear code, we look for a
matrix G � rC,0s, where 0 is zero matrix of size `�� pm�
smax � tq with `� � m � smin, and where C is a matrix of
size `� � psmax � tq that satisfies two conditions:

1) [C1] each row has at most smax non-zero elements, and
2) [C2] any submatrix of p columns, with t ¤ p ¤ `�, has

rank p / is full rank.
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The reason for these conditions is as follows. Each row of G
is the encoding vector used by a user; C1 is because a user
knows at most smax messages (in its side information set). C2
is for successful decoding at the users; once the contribution
of the messages in the side information set has been subtracted
off from the code, each user sees a subset of the remaining
messages encoded by a full rank submatrix of p columns;
the range of p is because each user must decode at least t
messages, thus t ¤ p, and at most all messages in the code
that are not in the side information, thus p ¤ `�.

Note that condition C2 is equivalent to require that all `��`�

submatrices of G are full rank. This is because any submatrix
obtained by taking a subset of columns of a full rank square
matrix is full rank. Therefore, instead of having to consider all
possible sets of p columns in condition C2, we only look at
submatrix of size `��`�, which is the so-called MDS-property
of a linear code of dimension `�. We show that the desired
matrix G exists as a spare MDS code generator matrix for
sufficiently large κ, that is, for a sufficiently large field size.

We now introduce the “zero pattern” matrix for the spare
MDS code generator matrix. The “zero pattern” matrix Z P
t0, 1upm�sminq�psmax�tq of C is a matrix whose entry is 0 if
the corresponding entry in C is 0, and 1 otherwise. Consider
the following Z � rzijs

zij �

#
1, for 0 ¤ i� j pmod psmax � tqq ¤ smax � 1,
0, otherwise.

Let Zi :� tj P rsmax � ts : zij � 0u be the set of the
zero entries in the ith row, |Zi| � t,@i P rm � smins. Since
smax� t ¡ m� smin, we have Zi � Zj , i � j. Therefore, all
Zi are different “shifted” version of Z1. In XiPPZi there are
|P | � 1 “shifts”, which reduce the size of the intersection by
at least |P | � 1. We then have the inequality

|P | � | XiPP Zi| ¤ |P | � t� p|P | � 1q � t� 1 ¤ `�,

which is known as the “MDS condition”(which is sufficient
for the existence of an MDS generator matrix over some finite
field [8]). Therefore, there exists a matrix C that satisfies
conditions C1 and C2 with the specified “zero pattern” Z.
From [8], a finite field of size m�smin�smax�t�1 suffices.
Since G satisfies condition C1, this code thus can be generated
in a distributed way.

After receiving the codewords of length `� � m�smin, user
ui subtracts off the messages in its side information set Ai
and is left with a linear code for the messages Wrsmax�tszAi .
Condition C2 guarantees that all users can decode at least t
messages that are not in their side information. Therefore all
users can be satisfied by this code of length m� smin.

C. Case smin � smax � m� t

Let s :� smin � smax � m � t. This is the case where
the “trivial centralized converse bound” `�,cen � mintm �
s, s � tu � t ¤ `� is not tight, and for which we want to

show `� �
tpms q
pms q�1

¡ t � `�,cen. In this case, the decentral-

ized PICODptq becomes an actual multicast decentralized IC
problem, we must show both achievability and converse.

1) Converse: An intuitive explanation for the converse
proof is as follows. The n :�

�
m
s

�
users in the system are

symmetric, i.e., by relabeling the messages we can swap any
pair of users. Therefore all users have the same “chance” 1{n
to be the one who sends part of the overall codeword x`.
In the decentralized setting, the part of x` sent by a user is
generated based on its own side information set, and such a
transmission cannot benefit the transmitting user. Therefore, at
most a fraction n�1

n of x` can be useful for each user. Since
each transmission can convey at most one message, in order
to let each user decode at least t messages, the total number
of transmissions satisfies n�1

n ` ¥ t.
We next provide the formal proof for the converse. Let

`iκ be the number of bits sent by user ui, i P rns, and
xκ` :� pxκ`1 , xκ`2 , . . . , xκ`nq be the overall codeword used
for decoding by the users, with ` :�

°
iPrns `i. With an abuse

of notation, let xp`�`iqκ indicate the bits in the transmitted
codeword x`κ that were not sent by user ui, i P rns.

By Fano’s inequality, with limκÑ8 εκ � 0, we have

`κεκ ¥ HpWDi |x
`κ,WAiq � HpWDi |x

p`�`iqκ,WAiq

� HpWDi |WAiq � IpWDi ;x
p`�`iqκ|WAiq

� HpWDiq � IpWDi ;x
p`�`iqκ|WAiq.

Therefore, for @i P rns, we have

p`� `iqκ ¥ Hpxp`�`iqκq ¥ Hpxp`�`iqκ|WDiq

¥ IpWDi ;x
p`�`iqκ|WAiq

¥ HpWDiq � `κεκ ¥ tκ� `κεκ,

and therefore, for large enough κ, by summing the above
inequalities we obtain the converse bound

` ¥
nt

n� 1
�

�
m
s

��
m
s

�
� 1

t. (3)

2) Achievability: The achievability involves message split-
ting and random linear coding, i.e., we use a vector linear code,
in contrast to the scalar linear code used in Section IV-B.

We split each message into f sub-messages, wi �
rwi,1, wi,2, . . . , wi,f s, i P rms. The size of the sub-message
is κ{f bits, which is assumed to be an integer. The parameter
f will be appropriately chosen later. Each sub-message is thus
on the finite field F2κ{f . Each user uses `1 � f`

n sub-timeslots
(as the messages are split into f pieces, the time slots are split
into f pieces as well) to transmit. In each sub-timeslot the user
transmits a linear combination of all the sub-messages it has in
its side information set, i.e., at sub-timeslot h, user ui transmits°
gPAi,jPrfs

agjphqwg,j , where the coefficients agjphq are on
F2κ{f . The linear code has generator matrix G consisting of
agjphq for g P rms, j P rf s, h P rf`s, and of size n`1 �mf .
Each row of G has at most sf nonzero entries.

For each user, among all n`1 sub-timeslots, only pn � 1q`1

are useful for its decoding since the other `1 sub-timeslots are
transmitted by itself. Therefore, we choose `1 and f such that

pn� 1q`1 � pm� sqf, n �

�
m

s



, `1 �

f`

n
.
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For each user, the submatrix of G corresponding to what all
other users have sent needs to be a full rank square matrix of
size pn� 1q`1 � pm� sqf so that each user can successfully
decode, i.e., every submatrix of G formed by pm � sqf
columns is full rank. Similarly to the proof in Section IV-B,
the “MDS condition” on its zero-pattern matrix is as follows

|P | � | XiPP Zi| ¤ n`1 � |P | � `1 �
|P | � `1

`1
f ¤ n`1.

Therefore the proposed code generator matrix G exists for
some large enough κ. By this scheme each user decodes all
the pm�sqf sub-messages that are not in its side information.

The total number of transmissions by this scheme is

` �
`1

f
n �

1

f

fpm� sq

n� 1
n �

nt

n� 1
, (4)

which coincides with the converse bound in 3. The achievabil-
ity scheme is information theoretically optimal.

Note that a scalar linear code can only achieve an integer
number of transmissions. Thus our vector linear code strictly
outperforms scalar linear codes in this case.

V. PROOF FOR THEOREM 2

Also for this decentralized complement-consecutive
complete–S PICODptq, where S � r0 : m� 1szrsmin : smaxs
for some 0   smin ¤ smax   m � t, we need to show
a decentralized achievable scheme that meet the “trivial
centralized converse bound.”

In the centralized case, the achievable scheme consists of
two scalar linear codes: one to serve all the users with side
information of size in r0 : smin�1s, and the other to serve all
the users with side information of size in rsmax � 1 : m� ts.
Also for the decentralized scheme, we separate the users into
these two groups: U1 � tui : |Ai| P r0 : smin � 1su and
U2 � tui : |Ai| P rsmax � 1 : m � tsu. The analysis of the
achievability scheme is divided into two parts: smin� 1� t  
smax � 1 � m� t and the rest.

A. Case smin � 1� t   smax � 1 � m� t

In this case the decentralized scheme is different from the
centralized one. This is because U2 in this case represents a
consecutive complete–S case discussed in Section IV-C, where
the centralized converse bound is not tight. Therefore, we can
not treat the problem of serving the users in U1 and U2 as two
independent subproblems, as the scheme does in centralized
case. The achievability scheme takes two steps:


 Step 1: Send messages Wrsmin�1�ts one by one. All users
in U1 are satisfied. smin � 1 � t ¥ t messages are sent
in this step. Since all users in U2 have side information
sets of size smax � 1 � m � t, there exists at least one
user in U2 that has been satisfied in the first step.


 Step 2: The user in U2 that was satisfied in Step 1 has
the knowledge of all messages and can thus act as the
centralized transmitter of the centralized PICODptq [6],
sending t linearly independent linear combinations of all
messages. Since all users in U2 have t messages not in

the side information, by having t linear independent linear
combinations of all messages, all users in U2 are satisfied.

It thus takes smin � 1 � t � t � |S| � 2t � 2 number of
transmissions to satisfy all users.

B. Other Case

The achievable scheme in Section IV-A satisfies the users
in U1 by using smin � 1 � t transmissions. The achievable
scheme in Section IV-B satisfies the users in U2 by using
m� psmax � 1q transmissions. Therefore, the total number of
transmissions is smin � 1� t�m� smax � 1 � |S| � 2t� 2.

Note that ` � m is a trivially achievable number of trans-
missions for the decentralized setting as well, we conclude for
decentralized complement-consecutive complete–S PICODptq
the optimal number of transmissions is `� � mintm, |S| �
2t� 2u, which is the same as the centralized setting.

VI. CONCLUSION

In this paper we introduced and found the capacity of some
decentralized complete–S PICODptq problems. For most cases
we found that the optimal code-length for the decentralized
setting is the same as for the centralized one. Among the cases
we have explored, we found that when all users request all
the messages that are not in their side information set then the
decentralized PICOD has a strictly larger optimal code-length
then the centralized one. Whether there are other cases where
the centralized and decentralized settings have the same code-
length, and if there is a fundamental connection between lack
of “pliability” and different code-lengths between centralized
and decentralized settings, is part of ongoing work.
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