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Abstract—This paper introduces the decentralized Pliable Index
CODing (PICOD) problem: a variant of the Index Coding
(IC) problem, where a central transmitter serves pliable users
with message side information; here, pliable refers to the fact
that a user is satisfied by decoding any ¢t messages that are
not in its side information set. In the decentralized PICOD,
a central transmitter with knowledge of all messages is not
present, and instead users share among themselves massages
that can only depend on their local side information set. This
paper characterizes the capacity of two classes of decentralized
complete-S PICOD(¢) problems with m messages (where the
set S < [m] contains the sizes of the side information sets,
and the number of users is n = Y, ¢ ("), with no two users
having the same side information set): (i) the consecutive case
S = [Smin : Smax| for some 0 < Smin < Smax < m — t, and (ii)
the complement-consecutive case S = [0 : m — t]\[Smin : Smax]»
for some 0 < Smin < Smax < m — t. Interestingly, the optimal
code-length for the decentralized PICOD in those cases is the
same as for the classical (centralized) PICOD counterpart, except
when the problem is no longer pliable, that is, it reduces to
an IC problem where every user needs to decode all messages
not in its side information set. Although the optimal code-length
may be the same in both centralized and decentralized settings,
the actual optimal codes are not. For the decentralized PICOD,
sparse Maximum Distance Separable (MDS) codes and vector
linear index codes are used (as opposed to scalar linear codes).

I. INTRODUCTION
A. Motivation

Index coding (IC), first proposed when considering satellite
communication [1], is a simple model to study the impact
of message side information at the receivers in broadcast
communication networks. The IC consists of one transmitter
with m independent messages to be delivered to n users
through an error-free broadcast link. Each user has some
messages as side information available to it and needs to
reliably decode some messages that are not in its side in-
formation set; the desired messages for each user are pre-
determined. In IC, one asks what is the minimum number
of transmissions (i.e., minimum code-length) such that every
user is able to decode its desired messages successfully. In
this paper we are interested in the decentralized pliable index
coding problem, which is motivated by two variants of IC:
Pliable Index CODing (PICOD), and decentralized IC.

The PICOD problem is motivated by the flexibility in
choosing the desired messages for the users in some prac-
tical scenarios, such as online advertisement systems. Firstly
proposed in [2], in the PICOD() there is a single transmitter,
with m message, and n users, with message side information,
which are connected via an error-free rate-limited broadcast
channel, as in IC. Different from IC, in the PICOD(t) the
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desired messages at the users are not pre-determined and each
user is satisfied whenever it can decode any ¢t messages not
in its side information set. This provides the transmitter more
encoding opportunities, as it now encodes based on its own
choice of desired messages for the users. The goal in the
PICOD(t) is to find the assignment of desired messages for
the users that leads to the smallest possible code-length.

The decentralized IC is motivated by peer-to-peer and ad-
hoc network, where a central controller / transmitter does not
exist and instead communication occurs among peers / users.
The decentralized IC can be seen as a special case of the
distributed IC [7]. In the distributed IC with m messages, there
are 2™ — 1 servers; each sender has knowledge of a unique
subset of the message set (and can thus only encode based
on its local knowledge) and is connected to the users through
a separate error-free rate-limited link. The decentralized IC is
thus a distributed IC where there are as many servers as users,
and each server has the same message knowledge as one of
the users. The goal for the decentralized IC is to determine
the shortest code-length such that all users can decode.

The decentralized PICOD proposed in this paper is a com-
bination of the (centralized) PICOD and the decentralized IC,
namely, a central transmitter with knowledge of all messages
is not present, and instead users share among themselves
massages that can only depend on their local side information
set. The decentralized PICOD problem is motivated by coded
cooperative data exchang [3], [9], distributed storage [5], and
distributed computation [12].

B. Past Work

Several achievable schemes have been proposed for PICOD,
based on scalar linear codes; the results of [2], [11] show an
exponential code-length reduction for PICOD compared to IC.

For converse results, the optimal code-length under the
restriction that the transmitter can only use linear schemes
was shown in [2] for the oblivious PICOD(¢), where the
transmitter only knows the size of the side information at
the users. In [6], we used techniques based on combinatorial
design to prove tight converse bounds for some complete—
S PICOD(t) (see next for a formal definition) problems that
generalize of the oblivious class, and showed the information
theoretic optimality of scalar linear codes.

The multi-sender IC has been studied in [10], where the
focus was on the “single uniprior” case (where users have only
one single message as side information). The general multi-
sender IC, or distributed IC, was investigated in [7], where
converse bounds (leveraging the submodularity of entropy)
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and achievable bounds (based on composite IC coding) were
proposed; those bounds were numerically verified to match for
the case of symmetric rate and symmetric link capacities in
all settings with no more than four messages; the use of those
bounds in general settings is however problematic because the
number of variables involved is exponential in the number of
servers (thus double exponential in the number of messages).

C. Contributions

In this paper we derive tight information theoretic con-
verse bounds (i.e., no restrictions on the class of codes used
by the users) for two classes of decentralized PICOD(¢)
problems, namely: (i) the complement-consecutive complete-
S PICOD(t), and (ii) the consecutive complete-S PICOD(t).
The complete—S PICOD(t), where S is a subset of [0 : m —1]
(where m is the number of messages at the transmitter and
t the number of messages to be decoded by each user), is
a system where all side information sets / users with size
indexed by S are present. We say that S is consecutive if
S = [Smin : Smax] for some 0 < Smin < Smax < m — ¢, and
complement-consecutive if S = [0 : m — t]\[Smin : Smax] for
some 0 < Smin < Smax < M —t. We characterized the optimal
code-length in those cases in [6] for the centralized PICOD(¢)
case. Here, we examine the decentralized case.

Trivially, a centralized PICOD(t) has optimal block-length
no larger than that of the corresponding decentralized problem
(because a centralized transmitter can mimic any decentralized
transmission scheme). In this work, we thus start by analyzing
the decentralized version of those PICOD(¢) problems whose
optimal code-length we characterized in [6], and use our
tight past result as a “trivial centralized converse bound.”
Surprisingly, we show that such a “trivial centralized converse
bound” is tight whenever the decentralized PICOD(t) remains
indeed pliable. More precisely, we show that by using vector
linear codes (in contrast to the simple linear scalar schemes
that are optimal in the corresponding centralized setting [6])
we can achieve the “trivial centralized converse bound” except
for the case where the problem parameters are such that every
user must decode all the messages that are not in its side
information set, that is, the problem becomes a special case
of the “communications for omniscience” problem [4].

D. Paper Organization

Section II introduces the system model and definitions; Sec-
tion III lists our main contributions; Section IV, resp. V, pro-
vides the proof for consecutive, resp. complement-consecutive,
complete—S PICOD(t). Section VI concludes the paper.

E. Notation

Throughout the paper we use capital letters to denote sets,
calligraphic letters for family of sets, and lower case letters
for elements in a set. For integers 1 < a; < az we let [ay :
as] = {a1,a1 +1,...,a2}, and [az] := [1 : az]. A capital
letter as a subscript denotes set of elements whose indices are
in the set, i.e., W4 := {w, : w, € W,a € A}. For two sets A
and B, A\B is the set that consists all the elements that are
in A but not in B.

II. SYSTEM MODEL

A decentralized PICOD(¢) system consists of: (i) n € N
users and no central transmitter. The user set is denoted as
U :={uj,us,...,u,}. (ii) m € N independent and uniformly
distributed binary messages of x € N bits each. The message
set is denoted as W := {w1, w2, ..., wy}. (iii) User u; knows
the messages indexed by its side information set A; c [m],
i € [n]. The collection of all side information sets is denoted
as A:= {41, As,..., A,}, which is assumed globally known
at all users. Note that for a decentralized PICOD problem to
have a solution, one must have U?_; A; D A;,Vj € [n], that
is, for every user there must be an unknown message that is
in the side information set of some other users. (iv) An error-
free broadcast link is shared among all users and allows one
user to transmit while all the remaining users receive. (v) The
codeword z"* := (x"f1, x"%2 .. 2%n) is eventually received
by all users, where £ := )’ £; and

j€ln]
2 = ENC;(Wa,, A), Vj € [n],

is the encoding function at user ;. (vi) The decoding function
for user u; is

(@), .., &} := DEC;(Wa,,a"), ¥j € [n].

(vii) A code is valid if and only if every user can successfully
decode at least ¢ messages not in its side information set, i.e.,
the decoding functions {DEC;,V; € [n]} are such that

Pr[3{d;q1,....dj ) nAj =
{@gﬂ')’ . .,@y)} #{wd, s wa,  }] <e
for some e € (0,1). For a valid code, {® ... &} =

{wa, ..., wq;,} is called the desired message set for user
uj, j € [n]. The indices of the desired messages are denoted
as Dj = {d'71,...,dj’t} where Dj N Aj = Q,V] € [n]
The choice of desired messages for the users is denoted as
D ={D;y,Ds,... D,}. (viii) The goal is to find a valid code
with minimum length, that is, to determine

¢* ;= min{/ : 3 a valid "¢ for some £}.

In the following we shall focus on the decentralized
complete—S PICOD(t), for a given set S € [0 : m —t]. In this
complete—S system, there are n := >, ¢ (") users, where no
two users have the same side information set, i.e., all possible
users with distinct side information sets that are subsets of size
s of the message set, for all s € S, are present in the system. In
particular, we focus on the consecutive complete-S PICOD(t)
and the complement-consecutive complete-S PICOD(t), where
we say that S is consecutive if S = [Smin : Smax| for some
0 < Smin < Smax < m — t (i.e.,, S contains consecutive
integers, from spyin tO Smax), and complement-consecutive if
S =10:m —t]\[Smin : Smax] for some 0 < Spin < Smax <
m —t (note that the set .S includes elements 0 and m —t). We
characterized the optimal centralized code-length in those two
cases in [6] and we examine here the decentralized version.
Note that S = {0} is not considered since it violates the
condition LT ;A; # A;,Vj € [n].
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III. MAIN RESULTS

The main contributions of this paper are as follows.

Theorem 1 (consecutive). For the decentralized complete—S
PICOD(t) with m messages and S = [Smin : Smax] for some
0 < Smin < Smax < m — t, the optimal code-length is

(me)
m ta Smax = Smin = T — t»
=4 ()1 1)

min{Smax + &, M — Smin}, otherwise.

Theorem 2 (complement-consecutive). For the decentralized
complete—S PICOD(t) with m messages and S = [0 : m —
t\[Smin : Smax] = [0 ¢ Smin — 1] U [Smax + 1 : m — t] for
some 0 < Spin < Smax < M — t, the optimal code-length is

0* = min{m, |S| + 2t — 2}. 2)

Proof details are in Sections IV and V. Note:

1) Theorem 2 says that, for the same parameters of
(m, t, Smin, Smax ), the centralized and the decentralized
settings have the same optimal code-length; similarly for
Theorem 1, except for the case Smax = Smin = M — t.

2) Having the same optimal code-length does not necessarily
imply that the same code is optimal in both cases.
In [6], we showed that for the centralized setting simple
scalar linear codes are optimal; in particular, the central
transmitter either sends £* distinct messages one by one,
or ¢* random linear combinations of all the messages.
Clearly, the former strategy can be implemented in a
decentralized setting, but not the latter. In this case we use
vector linear codes; in particular, our achievable scheme
uses sparse Maximum Distance Separable (MDS) codes.

3) When necessary to distinguish the optimal code length of

the centralized and decentralized settings, we shall use the
notation £*¢" and ¢£*9°°, respectively. Note that £*4¢¢ =
£* where ¢* was defined in Section II.
Among all PICOD cases studied in this work, the only
case where the decentralized optimal code-length £*4 is
strictly larger than the corresponding centralized optimal
code-length £*°" is when Syin = Smax = m — t. This is
the only case in centralized PICOD(¢) where £*°" = ¢.
Since £*9¢ > ¢ for all decentralized PICOD(¢) (as what
is sent by a user is not useful for that user), our results
show that for the consecutive and complete consecutive
complete—S PICOD(t), ¢*49¢¢ # ¢*<n if only if £*" =
t; interestingly, this is also the case where the PICOD
problem “looses its pliability,” that is, it reduces to an IC
problem where every user needs to decode all messages
not in its side information set.

4) Theorems 1 and 2 can be extended to all the centralized
complete—S PICOD(¢) that we have been solved in [6],
which are not reported here because of space limitations.
In those cases too we obtained £*9¢ = £*°" whenever
04 £ ¢ and 9 = g jf (%" = . An intriguing
question is whether this holds true for all complete—S
PICOD(t), even those not solved by the technique in [6].
Answering this question is part of ongoing work.

5) A similar proof technique can show that for the decentral-
ized PICOD(1) where the network topology hypergraph
is a circular-arc, the optimal code-length is: ¢* = 2 if
1-factor does not exists; or £* = 1%, where p is the
maximum size of the 1-factor of the network topology
hypergraph — see definitions in [6]. This serves a tight
bound for the decentralized PICOD beyond the complete—
S case. Finding tight bounds for the general decentralized
PICOD(t) is one direction for future work.

IV. PROOF FOR THEOREM 1

We split the proof into sub cases. For £*°" = min{smax +
t,m — Smin} < t for the centralized consecutive complete—
S PICOD(t), in which case £*" = ¢*d¢ = ¢* we study
separately the cases Spmax +1 < m — Spin (Section IV-A) and
t < M—Smin < Smax+1 (Section IV-B). The case £*" = ¢ is
studied in Section IV-C, in which case £*¢" < g*dec — p* —

m
m—t

Wt and is only possible for Spin = Smax = m —t.
m—t

A. Case Spax +1 <M — Spin

We send spmax + t messages, one at a time. This can be
done in a decentralized setting since each message is in the
side information set of at least one user. Therefore, such a user
can transmit the message to the rest of the users in one channel
use. This achievable scheme is optimal since syax + t is the
optimal code-length for the corresponding centralized setting.
We thus conclude £* = syax +t fOr Smax +t < M — Smin.

B. Caset < m — Spin < Smax + ¢

We show that in this case a decentralized scheme with m —
Smin transmissions can satisfy all users; being m — sy, the
optimal code-length for the corresponding centralized setting,
such a scheme is thus optimal. In the centralized case, the
optimal code involves m — sy, linearly independent linear
combinations of all the messages, or alternatively an MDS
code; this is not a possible decentralized scheme because at
most Spmax + t messages can be used to produce a valid code
(assuming that a user has side information set of size Syax
and sends after having decoded ¢ messages).

Next, when describing achievable schemes, instead of work-
ing with messages and codewords in bits (as done in the
description of the channel model in Section II), we represent
each message of k bits as one symbols in the finite field Fox.
With an abuse of notation, we also let 2 denote the codeword
of length ¢ symbols from the finite field Fo~, and where each
symbol corresponds to a transmission by a user. A linear code
for the decentralized system is thus 2! = Gw™, where G is
the code generator matrix of size £ x m and w™ is the vector
of length m containing all the messages.

For a valid optimal decentralized linear code, we look for a
matrix G = [C, 0], where 0 is zero matrix of size ¢* x (m —
Smax — t) with £* = m — sy, and where C is a matrix of
size £* x (Smax + t) that satisfies two conditions:

1) [C1] each row has at most sy,,x non-zero elements, and

2) [C2] any submatrix of p columns, with ¢ < p < £*, has

rank p / is full rank.
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The reason for these conditions is as follows. Each row of G
is the encoding vector used by a user; C1 is because a user
knows at most sy,ax messages (in its side information set). C2
is for successful decoding at the users; once the contribution
of the messages in the side information set has been subtracted
off from the code, each user sees a subset of the remaining
messages encoded by a full rank submatrix of p columns;
the range of p is because each user must decode at least ¢
messages, thus ¢ < p, and at most all messages in the code
that are not in the side information, thus p < £*.

Note that condition C2 is equivalent to require that all £* x £*
submatrices of G are full rank. This is because any submatrix
obtained by taking a subset of columns of a full rank square
matrix is full rank. Therefore, instead of having to consider all
possible sets of p columns in condition C2, we only look at
submatrix of size £* x £*, which is the so-called MDS-property
of a linear code of dimension ¢*. We show that the desired
matrix G exists as a spare MDS code generator matrix for
sufficiently large , that is, for a sufficiently large field size.

We now introduce the “zero pattern” matrix for the spare
MDS code generator matrix. The “zero pattern” matrix Z €
{0, 1}(m=smin)x(smax+1) of C is a matrix whose entry is 0 if
the corresponding entry in C is 0, and 1 otherwise. Consider
the following Z = [z;;]

1, for0<i+j (mod (Smax +1)) <
Zij =
0, otherwise.

Smax — 1’

Let Z; :== {j € [Smax +t] : z;; = 0} be the set of the
zero entries in the ith row, |Z;| = ¢,VYi € [m — Spmin]. Since
Smax +1t > M — Smin, We have Z; # Z;, i # j. Therefore, all
Z; are different “shifted” version of Z;. In n;cpZ; there are
|P| — 1 “shifts”, which reduce the size of the intersection by
at least | P| — 1. We then have the inequality

|P|+ | niep Zi] < |P|+t—(|P|—1)=t+ 1<%,

which is known as the “MDS condition”(which is sufficient
for the existence of an MDS generator matrix over some finite
field [8]). Therefore, there exists a matrix C that satisfies
conditions C1 and C2 with the specified “zero pattern” Z.
From [8], a finite field of size m — Smin + Smax +1 — 1 suffices.
Since G satisfies condition C1, this code thus can be generated
in a distributed way.

After receiving the codewords of length ¢* = m— sy, user
u; subtracts off the messages in its side information set A;
and is left with a linear code for the messages W, . 14\, -
Condition C2 guarantees that all users can decode at least ¢
messages that are not in their side information. Therefore all
users can be satisfied by this code of length m — syin.
C. Case Spmin = Smax =M — t

Let s := Spmin = Smax = m — t. This is the case where
the “trivial centralized converse bound” ¢*°" = min{m —

s, +t} =t < £* is not tight, and for which we want to

show ¢* = (f,g))l
ized PICOD(i) becomes an actual multicast decentralized IC
problem, we must show both achievability and converse.

> t = (%" In this case, the decentral-

1) Converse: An intuitive explanation for the converse
proof is as follows. The n := (') users in the system are
symmetric, i.e., by relabeling the messages we can swap any
pair of users. Therefore all users have the same “chance” 1/n
to be the one who sends part of the overall codeword ‘.
In the decentralized setting, the part of 2 sent by a user is
generated based on its own side information set, and such a
transmission cannot benefit the transmitting user. Therefore, at
most a fraction ”,—_1 of ¢ can be useful for each user. Since
each transmission can convey at most one message, in order
to let each user decode at least ¢ messages, the total number
of transmissions satisfies —6 > t.

We next provide the formal proof for the converse. Let
l;k be the number of bits sent by user u;,¢ € [n], and
= (aFf pf2 . 2%n) be the overall codeword used
for decoding by the users, with ¢ := Zie[n] £;. With an abuse
of notation, let z(!=%)% indicate the bits in the transmitted
codeword x that were not sent by user u;,i € [n].

By Fano’s inequality, with lim,_,, ¢, = 0, we have

lre, = HWp, |2, Wa,) = HWp,|z“=5% Wy,)
= HWp,|Wa,) — I(Wp,; 24| W)
= H(Wp,) = I(Wp,;a“~"|W.a,).

Therefore, for Vi € [n], we have

(6= L)k = H(@! =) > H(z“ =% Wp,)
> I(Wp,; 20" |Wa,)
> H(Wp,) — lke, =tk — lke,,

and therefore, for large enough k, by summing the above
inequalities we obtain the converse bound

Lo (D)
> = .
n—1 (Zl) -1

2) Achievability: The achievability involves message split-
ting and random linear coding, i.e., we use a vector linear code,
in contrast to the scalar linear code used in Section I'V-B.

We split each message into f sub-messages, w; =
[wi1, W 2,...,w;¢],i € [m]. The size of the sub-message
is x/f bits, which is assumed to be an integer. The parameter
f will be appropriately chosen later. Each sub- message is thus
on the finite field Fy./r. Each user uses ¢/ = o ¢ sub-timeslots
(as the messages are split into f pieces, the time slots are split
into f pieces as well) to transmit. In each sub-timeslot the user
transmits a linear combination of all the sub-messages it has in
its side information set, i.e., at sub-timeslot h, user u; transmits
2ige A jelf] @gi(h)wg, ;. where the coefficients ag;(h) are on
Fy./r. The linear code has generator matrix G consisting of
ag;(h) for g € [m],j € [f],h € [f{], and of size nt’ x mf.
Each row of G has at most sf nonzero entries.

For each user, among all n¢’ sub-timeslots, only (n — 1)¢
are useful for its decoding since the other ¢’ sub-timeslots are
transmitted by itself. Therefore, we choose ¢’ and f such that

(-1t = m-s)f. n= ("), ¢ = L

3)
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For each user, the submatrix of G corresponding to what all
other users have sent needs to be a full rank square matrix of
size (n — 1)¢' x (m — s)f so that each user can successfully
decode, i.e., every submatrix of G formed by (m — s)f
columns is full rank. Similarly to the proof in Section IV-B,
the “MDS condition” on its zero-pattern matrix is as follows
U U |P | . ’
|P|+|mlEpZz\<nE +|P|—f —TfSnE

Therefore the proposed code generator matrix G exists for
some large enough x. By this scheme each user decodes all
the (m —s) f sub-messages that are not in its side information.

The total number of transmissions by this scheme is
U
€n=lf(m—s)n= nt 7 @

f f n—1

which coincides with the converse bound in 3. The achievabil-
ity scheme is information theoretically optimal.

Note that a scalar linear code can only achieve an integer
number of transmissions. Thus our vector linear code strictly
outperforms scalar linear codes in this case.

(=

n—1

V. PROOF FOR THEOREM 2

Also for this decentralized complement-consecutive
complete—S PICOD(t), where S = [0 : m — 1]\[Smin : Smax]
for some 0 < Spin < Smax < m — t, we need to show
a decentralized achievable scheme that meet the “trivial
centralized converse bound.”

In the centralized case, the achievable scheme consists of
two scalar linear codes: one to serve all the users with side
information of size in [0 : $yin — 1], and the other to serve all
the users with side information of size in [Spax + 1 : m — ¢].
Also for the decentralized scheme, we separate the users into
these two groups: Uy = {u; : |A;] € [0 : Smin — 1]} and
Us = {u; : |Ai| € [Smax + 1 : m — t]}. The analysis of the
achievability scheme is divided into two parts: sy, — 1+t <
Smax + 1 = m —t and the rest.

A. Case Spin — 1+t < Spax +1=m —1t

In this case the decentralized scheme is different from the
centralized one. This is because U; in this case represents a
consecutive complete—S case discussed in Section IV-C, where
the centralized converse bound is not tight. Therefore, we can
not treat the problem of serving the users in U; and U, as two
independent subproblems, as the scheme does in centralized
case. The achievability scheme takes two steps:

« Step 1: Send messages W[, .. 14 one by one. All users
in U; are satisfied. sy, — 1 + ¢ > ¢ messages are sent
in this step. Since all users in Uy have side information
sets of size smax + 1 = m — ¢, there exists at least one
user in Uz that has been satisfied in the first step.

« Step 2: The user in U, that was satisfied in Step 1 has
the knowledge of all messages and can thus act as the
centralized transmitter of the centralized PICOD(¢) [6],
sending ¢ linearly independent linear combinations of all
messages. Since all users in U have ¢ messages not in

the side information, by having ¢ linear independent linear
combinations of all messages, all users in U, are satisfied.

It thus takes Smin — 1 + ¢+t = |S| + 2t — 2 number of
transmissions to satisfy all users.

B. Other Case

The achievable scheme in Section IV-A satisfies the users
in U; by using Spmin — 1 + ¢ transmissions. The achievable
scheme in Section IV-B satisfies the users in U by using
m — (Smax + 1) transmissions. Therefore, the total number of
transmissions is Smin — 1 + & + M — Smax — 1 = |S| + 2t — 2.

Note that £ = m is a trivially achievable number of trans-
missions for the decentralized setting as well, we conclude for
decentralized complement-consecutive complete—S PICOD(¢)
the optimal number of transmissions is ¢* = min{m, |S| +
2t — 2}, which is the same as the centralized setting.

VI. CONCLUSION

In this paper we introduced and found the capacity of some
decentralized complete—S PICOD(¢) problems. For most cases
we found that the optimal code-length for the decentralized
setting is the same as for the centralized one. Among the cases
we have explored, we found that when all users request all
the messages that are not in their side information set then the
decentralized PICOD has a strictly larger optimal code-length
then the centralized one. Whether there are other cases where
the centralized and decentralized settings have the same code-
length, and if there is a fundamental connection between lack
of “pliability” and different code-lengths between centralized
and decentralized settings, is part of ongoing work.
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