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Abstract—Data shuffling of training data among different
computing nodes (workers) has been identified as a core element
to improve the statistical performance of modern large scale
machine learning algorithms. Data shuffling is often considered
one of the most significant bottlenecks in such systems due to the
heavy communication load. Under a master-worker architecture
(where a master has access to the entire dataset and only commu-
nications between the master and workers is allowed) coding has
been recently proved to considerably reduce the communication
load. This work considers a different communication paradigm
referred to as distributed data shuffling, where workers, connected
by a shared link, are allowed to communicate with one another
while no communication between the master and workers is
allowed. Under the constraint of uncoded cache placement, first
a general coded distributed data shuffling scheme is proposed,
which achieves the optimal communication load within a factor
two; then, an improved scheme achieving the exact optimality for
either large memory size or at most four workers in the system.

I. INTRODUCTION

Recent years have witnessed the emergence of big data and
machine learning with wide applications in both business and
consumer worlds. To cope with such a large size/dimension of
data and the complexity of machine learning algorithms, it is
increasingly popular to use distributed computing platforms
such as Amazon Web Services Cloud, Google Cloud, and
Microsoft Azure services, where large scale distributed ma-
chine learning algorithms can be implemented. The approach
of data shuffling has been identified as one of the core elements
to improve the statistical performance of modern large scale
machine learning algorithms. In particular, data shuffling is
to re-shuffle the training data among all computing nodes
(workers) once very few iterations determined by the learning
algorithms. However, due to the huge communication cost,
data shuffling cannot be often used and is considered as one of
the main bottlenecks in such systems. To tackle this problem,
under a master-worker setup, where the master has access
to the entire dataset, coded data shuffling has been recently
proposed [1] to significantly reduce the communication load
between master and workers, which is the one of the main
focuses in this research area. Nevertheless, it can be observed
that data shuffling involves multiple iterations of training data
such that the entire set of training data has been stored across
all works in the previous iteration. Hence, if workers are
allowed to communicate with each other,1 the communication
bottleneck between master and workers can be completely

1In practice, workers communicate with each other as described in [2].

eliminated, instead, the data shuffling can be implemented
distributedly among workers. This can be advantageous if the
transmission capacity among workers is much higher than
that between the master and workers, and the communication
load between this two setups are similar. In this work, we
consider such a distributed data shuffling framework, where
all workers, connected by a shared link network, are allowed
to communicate while no communication between the master
and workers is allowed. In the following, we will review the
literature of coded data shuffling problems and introduce the
distributed coded shuffling framework studied in this paper.

A. Shared-link Data Shuffling Problem

The coded data shuffling problem was originally proposed
in [1] in a master-worker shared-link model, where a master
with the access to the whole library is connected to K workers.
Each shuffling epoch is divided into data shuffling and storage
update phases. In the data shuffling phase, a subset of files
are assigned to each worker and each worker should recover
these files from the broadcasted packets of the master and its
own cached content from the last epoch. In the storage update
phase, each worker should store the assigned files in its cache
and store some information of other files in its extra memory
also based on the broadcasted packets from the master and the
its own cached content from the last epoch. The authors in [1]
firstly proposed a coded scheme to transmit packets from the
master based on the constraint that each worker fills its extra
memory independently at random, which leads a coded data
shuffling gain of a factor of O(K) in terms of communication
load compared to the uncoded data shuffling scheme.

The coded data shuffling problem with coordinated un-
coded cache placement was originally proposed in [3], [4]
to minimize communication load for the worst-case shuffles.
The optimal schemes under the constraint of uncoded cache
placement for the cases where there is no extra memory for
each worker or there are less than 3 workers in the systems
were proposed in [3], [4]. Inspired by the achievable and
converse bounds for the shared-link caching problem in [5]–
[7], the authors then proposed a general coded data shuffling
scheme in [8], which was shown to be order optimality within
a factor if 2 under the constraint of uncoded cache placement.
In [8], the same authors improved the performance of the
general coded shuffling scheme in some memory regimes
using a different coded shuffling scheme, which was shown to
be optimal under the constraint of uncoded cache placement
in such specific memory regimes.
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Recently, the authors in [9] proposed a linear coding based
on interference alignment, which achieves the optimal worst-
case total communication load under the constraint of uncoded
cache placement. In addition, under the constraint of uncoded
cache placement, the proposed coded data shuffling scheme
was shown to be optimal for any shuffles when the number of
files is equal to the number of workers.

B. Distributed Data Shuffling Problem

An important limitation of the shared-link framework is
the assumption that workers can only receive packets from
the master. Since the entire data set is stored distributedly
across all workers in the previous epoch of the distributed
learning algorithm, the master may not be needed in the
data shuffling phase if workers can communicate with each
other (e.g., [2]). In this paper, we consider the distributed
data shuffling problem, where only communications among
workers is allowed. This means that in the data shuffling phase,
each worker broadcasts well designed coded packets based on
its cached content in the last epoch. Workers takes turn in
transmitting. Transmissions are assumed received error-free by
any other worker, as in the shared-link model. The objective
is to design a joint data shuffling and storage update phases
in order to minimize the total communication load across all
the workers in the worst-case scenario.

C. Relation to other Problems

The coded distributed data shuffling problem considered
in this paper is related to the coded device-to-device (D2D)
caching problem [10] and the coded distributed computing
problem [11] – see also Remark 1.

The D2D caching problem includes placement and delivery
phases. In the placement phase, each user stores some con-
tents in its cache without knowing the later demands. In the
delivery phase, each user requests one file. According to users’
demands, each user broadcasts well designed (coded) packets
based on its cached content to all other users via a shared
link. An order-optimal two-phase linear coding scheme was
proposed in [10].

Recently, the scheme for the coded D2D caching problem
in [10] has been extended to the coded distributed computing
problem [11], which consists of two stages named Map and
Reduce. In the Map stage, workers compute a fraction of
intermediate computation values using local input data points
according to the designed Map functions. In the Reduce
stage, cording to the designed Reduce functions, workers
exchange among each other a set of well designed (coded)
intermediate computation values, based on its local interme-
diate computation values, in order to compute the final output
results. The coded distributed computing problem can be seen
as a coded D2D caching problem under the constraint of
uncoded and symmetric cache placement, where symmetry
here means that each user uses the same storing function for
each file. A converse bound was proposed in [11] to show that
the proposed coded distributed computing scheme is exactly
optimal in terms of communication load.

Compared to the coded D2D caching and the coded dis-
tributed computing problems, the distributed data shuffling
problem differs as follows. On the one hand, an novel con-
straint on the cached contents for the workers is present
(because each worker must store all bits of each assigned
file in the previous epoch, which breaks the symmetry of the
cached contents across files of the other settings). On the other
hand, each worker also needs to update its cache based on the
received packets and its own cache content in the last epoch,
while in the other problems, each user fills its cache based on
the whole library, after which the cache content is kept fixed.

D. Contributions and Paper Organization

In this paper, we study the distributed data shuffling prob-
lem under the constraint of uncoded cache placement where
workers broadcast packets among themselves. In Appendix A,
we propose a novel converse bound under the constraint of
uncoded cache placement. By extending the shared-link data
shuffling scheme to distributed model, in Appendix C we
propose a general coded distributed data shuffling scheme.
In Appendix D, we then improve on the above scheme for
M = N/K and for M ∈

[ (K−2)N
K ,N

]
, where M is the memory

size per worker, K is the number of workers, and N is the
cardinality of the dataset. We prove that the improved scheme
is optimal under the constraint of uncoded cache placement
for the above memory regimes. Based on this result, we can
also characterize the exact optimality under the constraint of
uncoded cache placement when K ≤ 4. Finally, we prove that
the proposed schemes are generally order optimal under the
constraint of uncoded cache placement within a factor of 2.

II. SYSTEM MODEL

We use the following notation convention. Calligraphic
symbols denote sets, bold symbols denote vectors, and sans-
serif symbols denote system parameters. We use | · | to
represent the cardinality of a set or the length of a vector;
[a : b] := {a, a+ 1, . . . , b} and [n] := [1, 2, . . . , n]; ⊕
represents bit-wise XOR.

The (K, q,M) distributed data shuffling problem is defined
as follows. There are K ∈ N workers, each of which is charged
to process and store q ∈ N files from a library of N := Kq
files. Files are denoted as (F1, F2, . . . , FN) and each file has B
i.i.d. bits. Each worker has a local cache of size MB bits, for
M ∈

[
q,N

]
. The workers are interconnected through a noise-

less multicast network. The computation process occurs over T
time slots. At the end of time slot t−1, t ∈ [T], the content of
the local cache of user k ∈ [K] is denoted by Zt−1

k ; the content
of all caches is denoted by Zt−1 := (Zt−1

1 , Zt−1
2 , . . . , Zt−1

K ).
At the beginning time slot t ∈ [T], the N files are partitioned
into K disjoint batches, each containing q files. The files
indexed by At

k ⊆ [N ] are assigned to worker k ∈ [K] who
must stored them in its local cache by the end of time slot
t ∈ [T]. The file partition in time slot t ∈ [T] is denoted by
At = (At

1,At
2, . . . ,At

K) and must satisfy

|At
k| = q, ∀k ∈ [K], (1a)
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At
k1
∩ At

k2
= ∅, ∀(k1, k2) ∈ [K]2 : k1 6= k2, (1b)

∪k∈[K] At
k = [N] (file partition). (1c)

The following two-phase scheme allows users to store the
requested files.

Data Shuffling Phase: Given global knowledge of the
stored content Zt−1 at all workers, and of the data shuffle
from At−1 to At (indicated as At−1 → At) worker k ∈ [K]
broadcasts a message Xt

k of BRA
t−1→At

k bits to all of the
other workers, where Xt

k is based only on the its local cache
content Zt−1

k , that is,

H
(
Xt

k|Zt−1
k

)
= 0 (encoding). (2)

The collection of all sent messages is denoted by Xt :=
(Xt

1, X
t
2, . . . , X

t
K). Each worker k ∈ [K] must recover all files

indexed by At
k from the sent messages Xt and its local cache

content Zt−1
k , that is,

H
((

Fi : i ∈ At
k

)
|Zt−1

k , Xt
)
= 0 (decoding). (3)

Storage Update Phase: Each worker k ∈ [K] must also
update its local cache based on the sent messages Xt and its
local cache content Zt−1

k , that is,

H
(
Zt
k|Zt−1

k , Xt
)
= 0 (cache update), (4)

by placing in it all the recovered files, that is,

H
((

Fi : i ∈ At
k

)
|Zt

k

)
= 0, (cache content). (5)

Moreover, the local cache has limited size bounded by

H
(
Zt
k

)
≤ MB, ∀k ∈ [K], (cache size). (6)

If there is “excess storage,” that is, if M > q, besides the
files indexed by At

k, worker k ∈ [K] can store in its local cache
parts of the files indexed by [N]\At

k. The “excess storage”
placement is said to be uncoded if each worker simply copies
bits from the files in its local cache.

Objective: The objective is to minimize the worst-case total
communication load, or just load for short in the following,
among all possible consecutive data shuffles, that is

R? := min
Zt

k:k∈[K]
max
At−1,At

∑
k∈[K]

RA
t−1→At

k . (7)

The minimum load under the constraint of uncoded cache
placement is denoted by R?

u. In general, R?
u ≥ R?.

Remark 1 (Distributed Data Shuffling vs D2D Caching). The
distributed D2D caching problem studied in [10] differs from
our setting as follows: (i) in the distributed data shuffling
problem one has the constraint on the cached content in (5),
which imposes that each worker stores the whole requested
files and which is not present in the D2D caching problem, and
(ii) in the D2D caching problem each user fills its local cache
by accessing the whole library, while in the distributed data
shuffling problem, each worker updates its local cache based
on the received packets in the current time slot and its cached

content in the previous time slot as in (4). Because of these
differences, achievable and converse bounds for the distributed
data shuffling problem can not be obtained by trivial renaming
of variables in the D2D caching problem. Finally, we note that
the distributed computing problem in [11] is a special case
of the D2D caching problem when one restricts attention to
uncoded and symmetric (across files) cache placement. �

Remark 2 (Distributed vs Shared-Link Data Shuffling). Data
shuffling was originally proposed in [8] for the shared-link
model, where there exists one master node equipped with all
the files that broadcasts packets to all workers, that is, the K
encoding functions in (2) are replaced by H(Xt|Zt−1) = 0
where Xt is broadcasted by the master to all the workers. We
revise next some key results from [8], which will be used in the
following sections. We shall use the subscripts “u,sl,conv” and
“u,sl,ach” for converse (conv) and achievable (ach) bounds,
respectively, for the shared-link problem (sl) with uncoded
cache placement (u).

For a (K, q,M) shared-link data shuffling system, the worst-
case total communication load under the constraint of uncoded
cache placement is lower bounded by the lower convex enve-
lope of the following memory-load pairs [8, Thm.2](

M

q
= m,

R

q
=

K−m

m

)
u,sl,conv

, ∀m ∈ [K]. (8)

It was shown in [9, Thm.4] that the converse bound in (8)
can be achieved by a scheme that uses linear network coding
and interference elimination; such a scheme is however not
extendable straightforwardly to the distributed setting consid-
ered in this paper because it heavily builds on “centralized
interference alignment”-type ideas. A similar optimality result
was shown in [8, Thm.4] but only for m ∈ {1,K− 2,K− 1};
note that m = K is trivial.

In [8] it was showed that the lower convex envelope of
the following memory-load pairs is achievable with uncoded
cache placement [8, Thm.1](

M

q
= 1 + g

K− 1

K
,
R

q
=

K− g

g + 1

)
u,sl,ach

, ∀g ∈ [0 : K]. (9)

The bound in (9) is order optimal to within a factor K
K−1 ≤ 2

under the constraint of uncoded cache placement [8, Thm.3].
The scheme that achieves the load in (9) works as fol-

lows. Fix g ∈ [0 : K] and divide each file into
(
K
g

)
non-

overlapping and equal-length subfiles of length B/
(
K
g

)
bits.

Let Fi = (Fi,W :W ⊆ [K] : |W| = g), i ∈ [N].
Storage Update Phase: Worker k ∈ [K] cashes all the

subfiles of the required q files indexed by At
k, and in addition

all subfiles Fi,W with i ∈ [N]\At
k and k ∈ W , thus

M = q+ (N− q)

(
K−1
g−1
)(

K
g

) =
(
1 + g

K− 1

K

)
q. (10)

Data Shuffling Phase: After the storage update phase just
described, the new assignment At+1 is revealed. Let

At+1
k,W := {Fi,W : i ∈ At+1

k \ At
k}, ∀W ⊆ [K] : |W| = g},

(11)
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represent the subfiles required by worker k ∈ [K] and not
present in its local cache. Note that |At+1

k,W | ≤ B q

(Kg)
, with

equality (i.e., worst case scenario) if and only if At+1
k ∩At

k =
∅. To allow the workers to recover their missing subfiles, the
central server broadcasts Xt+1 given by

Xt+1 = (W t+1
J : J ⊆ [K] : |J | = g + 1) where (12)

W t+1
J := ⊕k∈JAt+1

k,J\{k}. (13)

Since worker k ∈ J requests At+1
k,J\{k} and has cached all

the remaining subflies in W t+1
J defined in (13), it can recover

At+1
k,J\{k} from W t+1

J and thus all its missing subfiles from
Xt+1. Hence, the worst-case total communication load is

R = q

(
K

g+1

)(
K
g

) = q
K− g

g + 1
. (14)

This concludes the description of the scheme in [8]. �

III. MAIN RESULTS

We shall use the subscripts “u, dist,conv” and “u,dist,ach”
for converse (conv) and achievable (ach) bounds, respectively,
for the distributed problem (dist) with uncoded cache place-
ment (u). In the following, Theorem 1 gives a converse bound
for the distributed data shuffling problem under the constraint
of uncoded cache placement (proof in Appendix A):

Theorem 1 (Converse). For a (K, q,M) distributed data
shuffling system, the worst-case load under the constraint
of uncoded cache placement is lower bounded by the lower
convex envelope of the following memory-load pairs(

M

q
= m,

R

q
=

K−m

m

K

K− 1

)
u, dist,conv

, ∀m ∈ [K]. (15)

The proof of Theorem 1 is inspired by the induction method
proposed in [11, Thm.1] for the distributed computing prob-
lem. However, there are two main differences in our proof: (i)
we need to account for the additional constraint on the cached
content in (5), and (ii) our cache placement is not restricted to
be symmetric (across files) by the problem definition. We note,
by comparing the converse bounds in (8) and in (15), that the
“price” of distributed communication under the constraint of
uncoded cache placement could be a factor of K

K−1 ≤ 2.
By extending the shared-link data shuffling scheme in (9)

(see Remark 2) to our distributed setting, the achievable
worst-case load is given by the following theorem (proof in
Appendix C):

Theorem 2 (Achievablity). For a (K, q,M) distributed data
shuffling system, the worst-case load under the constraint of
uncoded cache placement is upper bounded by the lower
convex envelope of the following memory-load pairs(

M

q
= 1 + g

K− 1

K
,
R

q
=

K− g

g

)
u, dist,ach

, ∀g ∈ [K]. (16)

A limitation of the achievable scheme in Theorem 2 is that,
in time slot t + 1, each user k ∈ [K] does not leverage the

1 1.5 2 2.5 3 3.5 4
M

0

0.5

1

1.5

2

2.5

3

3.5

4

W
or

st
-c

as
e 

lo
ad

Distributed data shuffling scheme in Theorem 2

Distributed data shuffling scheme in Theorem 3

Outer bound under the constraint of uncoded placement

for distributed data shuffling problem

Optimal shared-link data shuffling scheme in

[Elmahdy and Mohajer, ISIT 18]

Fig. 1: The memory-load trade-off for a distributed data
shuffling problem with K = N = 4.

cached subfiles (Fi,W : i ∈ At
k, k /∈ W). We overcome this

limitation by the scheme in Theorem 3 (proof in Appendix D):

Theorem 3 (Exact Optimality 1). For a (K, q,M) distributed
data shuffling system, the worst-case load under the constraint
of uncoded cache placement in Theorem 1 is achievable for
m ∈ {1,K− 2,K− 1}; the case m = K is trivial.

We note that Theorem 3 is neither an extension of [8,
Thm.4] nor of [9, Thm.4] from the shared-link to the dis-
tributed setting. As it will become clear from the details in
Appendix D, our scheme has a simpler way to generate the
multicast messages transmitted by the workers, and it applies
to any shuffle, not just to the worst case one.

From Theorem 3 we can immediately conclude:

Corollary 1 (Exact Optimality 2). For a (K, q,M) distributed
data shuffling system, the lower bound on the worst-case load
under the constraint of uncoded cache placement in Theorem 1
is achievable for K ≤ 4.

Finally we have the following order optimality result (proof
in Appendix E):

Theorem 4 (Order Optimality). For a (K, q,M) distributed
data shuffling system under the constraint of uncoded cache
placement, the achievable schemes in Theorem 2 achieves the
converse bound in Theorem 1 to within a factor 2.

We conclude this section with some numerical results. Fig. 1
plots our converse and achievable bounds on the worst-case
load under the constraint of uncoded cache placement for the
(K, q,M) = (4, 1,M) distributed data shuffling problem. For
comparison, we also plot the optimal shared-link memory-
load tradeoff in (8). In this case, Theorem 1 is tight and the
distributed data shuffling increases the communication load
of the share-link case by a factor of K

K−1 = 4
3 , under the

constraint of uncoded cache placement. We conjecture that
Theorem 1 is tight under the constraint of uncoded placement
for any number of workers and memory size.
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IV. CONCLUSIONS

In this paper, we introduced the distributed data shuffling
problem and studied its fundamental limits. We proposed
a converse bound under the constraint of uncoded cache
placement and two achievable schemes. In general, under
the constraint of uncoded cache placement, our schemes are
optimal to within a factor two, and exactly optimal for certain
large memory sizes or no more than four workers.

Acknowledgments: The work of K. Wan is supported by
Labex DigiCosme and D. Tuninetti is supported by in part by
NSF 1527059.

APPENDIX A
PROOF OF THEOREM 1

The worker who must store file Fi, i ∈ [N], by the end of
time slot t is denoted by uti, i.e.,

uti := k, if i ∈ At
k. (17)

We want to lower bound maxAt+1

∑
k∈[K] R

At→At+1

k for a
fixed At.

After the storage update phase in time slot t, without loss
of generality we can divide each file into subfiles as

Fi =
(
Fi,W :W ⊆ [K] \ {uti}

)
, (18)

where Fi,W represents the bits of Fi exclusively cached by
workers in W ∪ {uti} at the end of time slot t. For each file
Fi, let Fi,W = ∅ if uti ∈ W . Note that, as opposed to D2D
caching and distributed computation, not all the subfiles exist
for each file, i.e., the division into subfiles is asymmetric across
files.

At time slot t + 1, we first consider a permutation of [K]
denoted by (d1, . . . , dK), where dk 6= k for each k ∈ [K]. We
let At+1

k = At
dk

. Obviously, the worst-case load is not less
than the load in this case. We define

VS := {k ∈ S : dk ∈ S}, ∀S ⊆ [K] : |S| > 0 (19)

where VS represents the set of workers k ∈ S whose
demanded files indexed by At+1

k = At
dk

should be cached
by some workers in S by the end of time slot t. For example,
if K = 4 and (d1, . . . , dK) = (2, 3, 4, 1), we have V{2,3} = {2}
because d2 = 3, d3 = 4 and thus the requested files of user 2
in time slot t+1 are requested by user d2 = 3 ∈ {2, 3} in time
slot t. Similarly, we have V{2,4} = ∅ and V{1,2,4} = {1, 4}.
In addition, we define

Xt+1
S := {Xt+1

k : k ∈ S} (20)

Y t+1
S :=

{
Fi : i ∈ ∪k∈SAt+1

k

}
∪ {Zt

k : k ∈ S} (21)

=
{
Fi : i ∈ ∪k∈S(At+1

k ∪ At
k)
}

(22)

∪
{
Fi,W : i ∈ [N],W ⊆ ([K] \ {uti}),W ∩ S 6= ∅

}
(23)

where Y t+1
S in (21) represents the bits either cached or

requested by any worker in S .
With the above definitions, we have the following lemma

(whose poof can be found in Appendix B and was inspired by
the induction argument in [11]):

Lemma 1. For each set non-empty S ⊆ [K], we have

H(Xt+1
S |Y

t+1
[K]\S) ≥

|S|−1∑
g=0

∑
k∈VS

∑
i∈At+1

k∑
W⊆S\{k,uti}:|W|=g

|Fi,W |
g + 1

. (24)

Lemma 1 is the key novel contribution of our proof. The
bound in (24) can be thought of as follows: H(Xt+1

S |Y
t+1
[K]\S) is

lower bounded only by requested subfiles by the workers in VS
(instead of in S as in the distributed computing problem [11])
because each requested file by the workers in S \ VS was
requested in the previous time slot by some workers in [K]\S
because of the cache constraint in (5) and the definition of VS
in (19).

From Lemma 1 with S = [K], we have

H(Xt+1
[K] ) ≥

K−1∑
g=0

∑
k∈[K]

∑
i∈At+1

k∑
W⊆([K]\{k,uti}):|W|=g

|Fi,W |
g + 1

. (25)

We next consider all the permutations (d1, . . . , dK) of [K]
where dk 6= k for each k ∈ [K], and sum together the
inequalities in the form of (25). For an integer g ∈ [0 : K−1],
by the symmetry of the problem, the subfiles Fi,W where
i ∈ [N], W ⊆ [K] \ {uti} and |W| = g appear the same
number of times in the final sum. In addition, the total number
of these subfiles in general is N

(
K−1
g

)
and the total number of

such subfiles in each inequality in the form of (25) is N
(
K−2
g

)
.

So we obtain

R?
u ≥

K−1∑
g=0

∑
i∈[N]

∑
W⊆([K]\{uti}):|W|=g

(
K−2
g

)
(g + 1)

(
K−1
g

) |Fi,W | (26)

=
K−1∑
g=0

xgN
1− g/(K− 1)

g + 1
(27)

=
K−1∑
g=0

xg
K− (g + 1)

g + 1

K

K− 1
q, (28)

where we defined xg as the total length of the subfiles cached
by g + 1 users normalized by NB,

0 ≤ xg :=
∑
i∈[N]

∑
W⊆([K]\{uti}):|W|=g

|Fi,W |
NB

, (29)

which must satisfy∑
g∈[0:K−1]

xg = 1, (total size of all files), (30)

∑
g∈[0:K−1]

gxg + 1 ≤ KM

N
, (total cache size). (31)

We use the method which we developped in [6] to bound R?
u

from (27) under the constraints in (30) and (31). For each
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integer p ∈ [0 : K − 1], we multiply (30) by N 2−p/(K−1)
p+2 to

obtain
K−1∑
g=0

2− p/(K− 1)

p+ 2
Nxg =

2− p/(K− 1)

p+ 2
N, (32)

and we multiply (31) by −N 1+1/(K−1)
(p+1)(p+2) to have

K−1∑
g=0

−N 1 + 1/(K− 1)

(p+ 1)(p+ 2)
gxg ≥ −

1 + 1/(K− 1)

(p+ 1)(p+ 2)
(KM− N).

(33)

We put (32) and (33) into (27) to obtain,

R?
u ≥

K∑
g=0

(p− g)(p− g + 1)(1 + 1
K−1 )

(g + 1)(p+ 1)(p+ 2)
Nxg (34)

− K+ K/(K− 1)

(p+ 1)(p+ 2)
M+

2p+ 3− p2+p−1
K−1

(p+ 1)(p+ 2)
N (35)

≥ −K+ K/(K− 1)

(p+ 1)(p+ 2)
M+

2p+ 3− p2+p−1
K−1

(p+ 1)(p+ 2)
N. (36)

Hence, for each integer p ∈ [0 : K − 1], the bound in (36)
becomes linear in terms of M. When M = q(p+1), from (36)
we have R?

u ≥
1−p/(K−1)

p+1 N. When M = q(p + 2), from (36)
we have R?

u ≥
1−(p+1)/(K−1)

p+2 N. In conclusion, we prove that
R?
u is lower bounded by the memory-sharing of the points(
M = q(g + 1),R = q 1−g/(K−1)

g+1

)
, where g ∈ [0 : K − 1].

This proves Theorem 1.

APPENDIX B
PROOF OF LEMMA 1

This lemma is proved by induction, inspired by [11].
Case |S| = 1: If S = {k} where k ∈ [K], we have that
V{k} = ∅ (by dk 6= k because of the chosen permutations)
and thus the RHS of (24) is 0; thus (24) holds for |S| = 1
because entropy is non-negative.

Case |S| ≤ s: Assume that (24) holds for all non-empty
S ⊆ [K] where |S| ≤ s for some integer s ∈ [K− 1].

Case |S| = s + 1: Having assumed that the lemma holds
for all S ⊆ [K] where |S| ≤ s, we aim to show that for any
set J ⊆ [K] where |J | = s+ 1, we have

H(Xt+1
J |Y

t+1
[K]\J ) ≥

|J |−1∑
g=0

∑
k∈VJ

∑
i∈At+1

k

∑
W⊆(J\{k,uti}):|W|=g

|Fi,W |
g + 1

. (37)

From

H(Xt+1
J |Y

t+1
[K]\J )

=
1

|J |
∑
k∈J

(
H(Xt+1

J\{k}|X
t+1
k , Y t+1

[K]\J ) +H(Xt+1
k |Y t+1

[K]\J )
)

≥ 1

|J |

(∑
k∈J

H(Xt+1
J\{k}|X

t+1
k , Y t+1

[K]\J ) +H(Xt+1
J |Y

t+1
[K]\J )

)
,

we have

(|J | − 1)H(Xt+1
J |Y

t+1
[K]\J ) (38)

≥
∑
k∈J

H(Xt+1
J\{k}|X

t+1
k , Y t+1

[K]\J ) (39)

≥
∑
k∈J

H(Xt+1
J\{k}|Z

t
k, X

t+1
k , Y t+1

[K]\J ) (40)

=
∑
k∈J

H(Xt+1
J\{k}, {Fi : i ∈ At+1

k }|Zt
k, X

t+1
k , Y t+1

[K]\J ) (41)

=
∑
k∈J

H({Fi : i ∈ At+1
k }|Zt

k, Y
t+1
[K]\J ) (42)

+
∑
k∈J

H(Xt+1
J\{k}|{Fi : i ∈ At+1

k }, Zt
k, Y

t+1
[K]\J ) (43)

=
∑
k∈J

H({Fi : i ∈ At+1
k }|Zt

k, Y
t+1
[K]\J ) (44)

+
∑
k∈J

H
(
Xt+1
J\{k}|Y

t+1
([K]\J )∪{k})

)
, (45)

where (41) follows because {Fi : i ∈ At+1
k } is a function of

(Zt
k, X

t+1) (see decoding constraint in (3)), where (42)-(43)
follow because Xt+1

k is a function of Zt
k (see the encoding

constraint in (2)), and (45) from the definition in (21).
Next we would like to bound (44) by using the inde-

pendence of the subfiles and bound (45) by the induction
assumption. More precisely, we first focus on (44). For each
k ∈ J , if k /∈ VJ , we have {Fi : i ∈ At+1

k } ⊆ Y t+1
[K]\J . So

for each k ∈ J , by independence of subfiles, we have

H({Fi : i ∈ At+1
k }|Zt

k, Y
t+1
[K]\J ) (46)

=

{∑|J |−1
g=0

∑
i∈At+1

k

∑
W⊆(J\{k,uti}):|W|=g |Fi,W |, k ∈ VJ

0 otherwise

and thus we rewrite (44) as∑
k∈J

H({Fi : i ∈ At+1
k }|Zt

k, Y
t+1
[K]\J ) =

∑
k∈VJ

∑
g∈[0:|J |−1]∑

i∈At+1
k

∑
W⊆(J\{k,uti}):|W|=g

|Fi,W |. (47)

We then focus on (45). By the induction assumption,∑
k∈J

H
(
Xt+1
J\{k}|Y

t+1
([K]\J )∪{k}

)
≥
∑
k∈J

∑
u∈VJ\{k}

|J |−2∑
g=0

∑
i∈At+1

u

∑
W⊆(J\{k,u,uti}):|W|=g

|Fi,W |
g + 1

. (48)

In order to combine (47) with (48), both terms need to have
the same form of summations. Let us focus on one worker
u′ ∈ VJ and one subfile Fi′,W′ where i′ ∈ At+1

u′ and W ′ ⊆
J \ {u′, uti′} : |W ′| = g. On the RHS of (48), for each k ∈
J \ (W ′ ∪ {u′} ∪ {uti}), it can be seen that Fi′,W′ appears
once in the sum∑

g∈[0:|J |−2]

∑
u∈VJ\{k}

∑
i∈At+1

u

∑
W⊆(J\{k,u,uti}):|W|=g

|Fi,W |
g + 1

,
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hence, the coefficient of Fi′,W′ in the RHS of (48) is (|J | −
g − 2)/(g + 1). Thus, from (48), we have∑

k∈J

H
(
Xt+1
J\{k}|Y

t+1
[K]\J )∪{k}

)
(49)

≥
∑

u′∈VJ

∑
g∈[0:|J |−2]

∑
i′∈At+1

u′∑
W′⊆(J\{u′,ut

i′}):|W
′|=g

|Fi′,W′ |(|J | − g − 2)

g + 1
(50)

=
∑

u′∈VJ

∑
g∈[0:|J |−1]

∑
i′∈At+1

u′∑
W′⊆(J\{u′,ut

i′}):|W
′|=g

|Fi′,W′ |(|J | − g − 2)

g + 1
. (51)

We take (47) and (51) into (45) to obtain,

H(Xt+1
J |Y

t+1
[K]\J )

≥ 1

|J | − 1

∑
k∈VJ

|J |−1∑
g=0

∑
i∈At+1

k∑
W⊆(J\{k,uti}):|W|=g

|Fi,W |+
1

|J | − 1

∑
k∈VJ

|J |−1∑
g=0

∑
i∈At+1

k∑
W⊆(J\{k,uti}):|W|=g

|Fi,W |(|J | − g − 2)

g + 1
(52a)

=
∑
k∈VJ

∑
g∈[0:|J |−1]

∑
i∈At+1

k

∑
W⊆(J\{k,uti}):|W|=g

|Fi,W |
g + 1

.

(52b)

APPENDIX C
PROOF OF THEOREM 2

Storage Update Phase in Time Slot t: The storage update
phase is the same as the scheme in Remark 2.

Data Shuffling Phase in Time Slot t + 1: The data
shuffling phase is inspired by the D2D caching delivery phase
in [10]. Recall that At+1

k,W := {Fi,W : i ∈ At+1
k \ At

k}, where
W ⊆ [K] and |W| = g, and that |At+1

k,W | ≤ qB/
(
K
g

)
, where

the equality holds if and only if At+1
k ∩ At

k = ∅. We divide
each At+1

k,W into |W| non-overlapping and equal-length pieces,
At+1

k,W = {At+1
k,W(j) : j ∈ W}. For each set J ⊆ [K] where

|J | = g + 1, each worker j ∈ J broadcasts

W t+1
j,J = ⊕

k∈J\{j}
At+1

k,J\{k}(j). (53)

It can be seen that each subfile in W t+1
j,J is cached in the

memory of worker j at the end of time slot t. In addition,
each worker k ∈ J \ {j} requests At+1

j,J\{k}(k) and knows
At+1

j,J\{k1}(k1) where k1 ∈ J \ {k, j} such that it can recover
At+1

j,J\{k}(k). Hence, the worst-case load is N(1− g/K)/g =

q(K− g)/g as claimed in Theorem 2.

APPENDIX D
PROOF OF THEOREM 3

We focus on M = qm, where m ∈ {1,K− 2,K− 1}.
Storage Update Phase in Time Slot t: The storage update

phase is the same as the improved shared-link data shuffling
scheme in [8]. For each worker k and each file Fi where
i ∈ At

k, we divide Fi into
(
K−1
m−1

)
non-overlapping and equal-

length subfile, each of which contains B/
(
K−1
m−1

)
bits. Each

subfile is denoted by Fi,W cached by workers in W∪{k} for
each W ⊆ ([K] \ {k}) where |W| = m − 1. Notice that for
other sets W , we let Fi,W be the empty set. It can be seen
that worker k caches the whole file of Fi where i ∈ At

k and(
K−2
m−2

)
B/
(
K−1
m−1

)
bits of each file Fj where j /∈ At

k. Hence, the
total number of cached bits of worker k is

q+ (N− q)

(
K−2
m−2

)(
K−1
m−1

) = q+ (m− 1)(N− q)/(K− 1) = mq.

In addition, it can also be seen that each file Fi where i ∈ At
k

is cached by worker k. So the cache constraints are satisfied.2

A. M = qm where m = 1

Data Shuffling Phase in Time Slot t + 1: Each worker
k ∈ [K] broadcasts each file Fi where i ∈ At+1

k \ At
k. So the

achieved worst-case load is N.

B. M = qm where m = K− 2

Data Shuffling Phase in Time Slot t + 1: We divide all
the N files into q non-overlapping and equal-length groups,
[N] = {Hi : i ∈ [q]}, where each group contains K files. We
impose that each file in one group is requested by a different
worker in time slot t+ 1. In other words, for each group Hi

and each worker k ∈ [K], we have |Hi ∩ At+1
k | = 1.

We focus on one group Hi. We denote the set of workers
k ∈ [K] where

(
Hi ∩ At+1

k

)
⊆ At

k by U(Hi). For each set
J ⊆ [K] where |J | = m + 1 = K − 1, we generate the
following multicast message

V t+1
J (Hi) = ⊕

k∈J
FHi∩At+1

k ,J\{k,ut
Hi∩A

t+1
k

}. (54)

Since Hi ∩ At+1
k only contains one element, in (54) with

an abuse of notation we let Hi ∩ At+1
k be this element.

Obviously, each worker k ∈ J knows all the subfiles
FHi∩At+1(k1),J\{k1,utHi∩At+1(k1)

}, where k1 ∈ J \ {k}. For

each worker k ∈ J , we can see that if utHi∩At+1
k

/∈ J or
k ∈ U(Hi), the subfile FHi∩At+1

k ,J\{k,ut
Hi∩A

t+1
k

} is empty,

and thus V t+1
J (Hi) is already known by user k before the

delivery phase.
We divide our consideration into three cases, |U(Hi)| = 0,
|U(Hi)| = 1 and |U(Hi)| > 1.

2 This storage update phase for each worker k ∈ [K] could be done with
Zt−1
k and Xt

j where j ∈ [K] \ {k}. More precisely, For each file Fi where
i ∈ At

k \A
t−1
k , worker k stores the whole file Fi in the cache. For each file

At−1
k \ At

k , instead of storing the whole file Fi, worker k only stores the
bits of Fi which was cached by worker uti at the end of time slot t− 1. For
other files, worker k does not change the cached bits.
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• |U(Hi)| = 0. For each set J ⊆ [K] where |J | = m+1 =
K − 1, since |J | = K − 1, among all the workers in J ,
there is exactly one worker in J (assumed to be k) where
utHi∩At+1

k

/∈ J . We then let user k transmit V t+1
J (Hi).

Hence, the load to transmit the files in Hi denoted by
Rt+1
Hi

is equal to K/
(
K−1
m−1

)
.

• |U(Hi)| = 1. We assume the user in U(Hi) is j1. So
j1 does not need to recover any file in Hi. For the set
J ⊆ [K] where |J | = m + 1 = K − 1 and j1 /∈ J ,
V t+1
J (Hi) contains exactly |J | subfiles. we divide each

subfile Fi,W in (54) into |J | − 1 non-overlapping and
equal-length pieces, Fi,W = {Fi,W,j : j ∈ J \ {k2}},
where i ∈ At+1

k2
. We let each worker k3 ∈ J broadcast

V t+1
k3,J (Hi) = ⊕

k∈J\{k3}
FHi∩At+1

k ,J\{k,ut
Hi∩A

t+1
k

},k3
.

(55)

We then focus on one user j2 6= j1. For each set J ⊆ [K]
where |J | = m+1 = K−1 and k ∈ J , if utHi∩At+1

j2

/∈ J ,

j2 knows V t+1
J (Hi) before the delivery phase. Hence,

among all the K − 1 messages V t+1
J (Hi) where J ⊆

[K], |J | = m + 1 = K − 1 and k ∈ J , each user in
[K] \ {j1} knows one message In addition, those K − 1
messages are known by user j1. So we let user j1 transmit
(K− 2)B/

(
K−1
m−1

)
random linear combinations of all bits

in those K − 1 messages. Totally, in this case, Rt+1
Hi

=
(m+1)/m+K−2

( K−1
m−1)

.

• |U(Hi)| > 1. For each set J ⊆ [K] where |J | = m+1 =
K − 1 and ([K] \ U(Hi)) ⊆ J , there must exist at least
one user in J ∩ U(Hi) who knows V t+1

k3,J (Hi). Hence,
we let this user to transmit V t+1

J (Hi). The number of
such sets J is |U(Hi)|. We then focus on one user
j2 * U(Hi). Among all of the remaining K − |U(Hi)|
sets J , there exists exactly one J such that V t+1

J (Hi)
is known by j2. In addition, each user in U(Hi) knows
V t+1
J (Hi) for all of the remaining K − |U(Hi)| sets
J . Hence, we select one user in U(Hi) to transmit
(K− |U(Hi)| − 1)B/

(
K−1
m−1

)
random linear combinations

of all bits in those K−|U(Hi)| messages. Totally, in this
case, Rt+1

Hi
= K−1

( K−1
m−1)

.

In conclusion, considering all the groups, the achieved worst-
case load is qK/

(
K−1
m−1

)
= K−m

m
K

K−1q.

C. M = qm where m = K− 1

Data Shuffling Phase in Time Slot t+1: For each worker
k ∈ [K], we let Dt+1(k) := At+1

k \At
k. Since m = K− 1 and

each file i ∈ Dt+1(k) is known by worker uti, we can see that
Dt+1(k) is known by all the workers [K] \ {k}. Hence, we
divide Dt+1(k) into K − 1 non-overlapping and equal-length
pieces, Dt+1(k) = {Dt+1

k1
(k) : k1 ∈ ([K] \ {k})}.

We then let each worker k ∈ [K] broadcasts

T t+1
k,J := ⊕

j∈([K]\{k})
Dt+1

k (j). (56)

Hence, the worst-case load is N 1−(m−1)/(K−1)
m = K−m

m
K

K−1q.

APPENDIX E
PROOF OF THEOREM 4

Let RThm.(2)(M) be the load achieved by the scheme in
Theorem 2. From Theorem 2, for each g ∈ [K− 1], we have

M1 =
(
1 + g

K− 1

K

)
q, RThm.(2)(M1) = q

K− g

g
;

M2 =
(
1 + (g + 1)

K− 1

K

)
q, RThm.(2)(M2) = q

K− g − 1

g + 1
.

Hence, by memory-sharing between above two point we get
the load for M3 = (1 + g)q as

RThm.(2)(M3) =
N
(
K2(g + 1) + g(g + 1)− K(g2 + 3g + 1)

)
(K− 1)Kg(g + 1)

.

(57)

From Theorem 1, we know that

R?
u(M3) ≥ N

1− g/(K− 1)

g + 1
. (58)

Hence, from (57) and (58), we have

RThm.(2)(M3)

R?
u(M3)

≤
(
K2(g + 1) + g(g + 1)− K(g2 + 3g + 1)

)
(K− 1)Kg

(
1− g/(K− 1)

)
= 1 +

K2 + g2 + g − 2Kg − K

Kg(K− g − 1)

= 1− 1

K
+

1

g
< 2. (59)

When M = q, the achievable scheme in Appendix D-A
achieves the converse bound R?

u = N. Hence, from (59),
R?
u = N, and Theorem 1, we can see our proposed schemes

are order optimal within a constant factor of f, where f < 2.
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