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I. Introduction

Soft adhesives are conformable and deformable binding agents between two surfaces.
Engineered soft adhesives have become part of our daily life, e.g., medical bandages for wound
healing, stretchable brace tapes for joint protection, and double-sided tapes for paper sticking. Soft
adhesives are usually categorized as either soft wet adhesives (SWAs) or soft dry adhesives
(SDAs). SWAs bond surfaces together through either chemical reactions or mechanical loading
(Czech et al., 2013;Cho et al., 2019;Yuk et al., 2019;Chen et al., 2020a). For example, a well-
known type-class of SWASs is pressure-sensitive adhesives (PSAs) which consist of a viscoelastic
bonding agent that can instantaneously form a bond to the adherend under applied pressure (Creton,
2003;Czech and Kowalczyk, 2011). Acrylics, polyether, silicones, polyesters, and polyurethanes
are commonly used bonding agent for PSAs (Singh et al., 2011;Cilurzo et al., 2012). Due to their
viscous nature, PSAs can flow to conform to rough surfaces upon compression, and the inherent
tackiness and low surface energy of the adhesive materials facilitate strong bonding onto a variety
of substrates (Singh et al., 2014). However, with the rapid development of bioelectronics and the
increasing demand for seamless integration between humans and machines, conventional SWAs
are facing some challenges. First, despite their relatively strong bonding capability, the tacky
binding agent can be easily contaminated with impurities (e.g., dust, sebum, etc.), limiting both
the ability to reposition and reuse. Second, the binding agent may contain chemicals harmful to
humans, resulting in irritation (Kawahara and Tojo, 2007), contact dermatitis (Christoffers et al.,
2014), and even injury or damage (Matsumura et al., 2013;Hwang et al., 2018). In contrast, SDAs
bond by employing physical interactions such as electrostatic attraction, van der Waals (vdW)
forces, suction, or friction (Eisenhaure and Kim, 2017). In general, SDAs require relatively smooth
surfaces to enable the-such physical interactions, e.g., no air leakage or intimate contact for vdW
interaction, thus they were not used as widely as SWAs. But in the last two decades, SDAs have
garnered tremendous attention with great promise in the fields of healthcare, soft robotics, and
human-machine interface (Brodoceanu et al., 2016;Li et al., 2016;Xiaosong et al., 2019;Chen et
al., 2020b). Of particular interest are SDAs that are capable of repeated attachment and detachment,
whose usefulness has been demonstrated in many exciting applications such as breathable skin
patches (Kwak et al., 2011), robotic footpads or grippers (Gorb et al., 2007), and reusable bio-
integrated electronics (Hwang et al., 2018).



II. Pillar- and Crater-Enabled SDAs

So far, the most widely studied SDAs are surfaces with arrays of micro-pillars. The
inspiration came from terrestrial species including lizards and geckos whose toe pads are covered
by intricate fibrils that enable strong attachment as well as easy release (Autumn et al.,
2000;Autumn et al., 2002;Arzt et al., 2003;Gao and Yao, 2004;Hansen and Autumn, 2005;Yao
and Gao, 2006). Autumn et al. (Autumn et al., 2000) first discovered the hierarchical lamellae and
setae structures of gecko toe pads by scanning electron microscopy (SEM). There, each seta
branches into hundreds of 200-nm thin spatula, capable of conforming to curvilinear and rough
surfaces. The normal adhesive strength of those toe pads was measured at of 100 kPa (Autumn et
al., 2000), which is comparable to that of a 3M Scotch™ tape (200 kPa). The strong adhesion of
the gecko toe pads was solely attributed to van der Waals (vdW) forces between the nanoscale
spatula and the target surface, rather than chemical bonding (Autumn et al., 2002). Aside from the
remarkable attachment performance, the fibrillary system also exhibits superior reversibility and

self-cleaning capability (Hansen and Autumn, 2005).

Figures 1A-1E showcase several representative synthetic micro-scale surface features
resembling gecko fibrils. The simplest design is micro-pillars with flat tips (Del Campo and Arzt,
2007;del Campo et al., 2007a;Del Campo et al., 2007b) (Figure 1A). More advanced designs
involve micro-pillars with hierarchy (Greiner et al., 2009;Wang et al., 2014) (Figure 1B). Spatula
tips (Del Campo and Arzt, 2007;del Campo et al., 2007a) (Figure 1C) have been designed to more
closely mimic the gecko’s toe pads. Emulating the design principle of the tilting setac on gecko’s
toe pads, slanted structures have been widely exploited to generate directional adhesion (Figure
I1D) (Autumn et al., 2006a;Murphy et al., 2009;:Moon et al., 2010;Afferrante and Carbone,
2012;Jin et al., 2014;Wang et al., 2014;Wang et al., 2015;Seo et al., 2016;Wang, 2018). #This
represents a breakthrough in developing reversible adhesives that truly resemble their natural
prototypes. Among all the tip geometries, the mushroom-like shape (Figure 1E) stands out as it
exhibits large adhesive strength by reducing the stress concentration at the pillar-substrate
interfaces (del Campo et al., 2007a;Carbone et al., 2011;Carbone and Pierro, 2012;Bae et al.,
2013;Wang et al., 2014;Marvi et al., 2015;Kim et al., 2016). The vibrant research on micro-pillar-
based SDAs has been summaried by many excellent review articles, with various focuses on the

adhesion mechanisms, design principles, fabrication methods, and performance characterizations
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(Pattantyus-Abraham et al., 2013;Zhou et al., 2013;Sahay et al., 2015;Eisenhaure and Kim,
2017;Xiaosong et al., 2019). Figures 1F-1L display examples of another type of SDAs, suction-

or crater-based adhesives, which is the focus of this paper and will be discussed in detail later.

Despite extensive research in the last two decades, as far as applications are concerned,
micro-pillar-enabled SDAs are facing some major barriers. First, according to “contact splitting”
theory (Arzt et al., 2003;Chan et al., 2007;Kamperman et al., 2010), the adhesion can be enhanced
by splitting up the contact with the adherend into finer subcontacts, enabled by extremely tiny
fibrils. However, scaling-down the pillar size faces fundamental physical limitations and
dramatically increases manufacturing difficulties and costs. Those challenges have been
recognized in both electron beam lithography (Pease, 1981;Vieu et al., 2000) and nano-embossing
(Becker and Heim, 2000;Kim et al., 2007). Furthermore, slender pillars are prone to buckling and
collapsing, resulting in undesirable entanglements and/or mats (see Figure 2A). In fact, buckling
may even lead to rupture and detachment (Chan et al., 2007;Del Campo and Arzt, 2007;Greiner et
al., 2007;Kim et al., 2007;Kim et al., 2016;Eisenhaure and Kim, 2017). All of these degradation
mechanisms may significantly impair the adhesive strength, leading to limited robustness and
reusability. On a different note, it has been widely reported that micro-pillars may lose their van
der Waals adhesion on wet surfaces or in aquatic environments (Buhl et al., 2009;Pesika et al.,
2009;Baik et al., 2017;Cadirov et al., 2017;Ma et al., 2018). A typical adhesion test shown in
Figure 2B unveils that humidity dramatically decreases the adhesion of micro-pillar arrays
(Cadirov et al., 2017). This is consistent with another experimental observation that micro-pillar
arrays almost completely lose adhesion with moisture or underwater (see the green bars in Figure
2C) (Baik et al., 2017). Figure 2D, taken from the same paper (Baik et al., 2017), highlights the

adhesion of cratered surfaces, which will be discussed later.

According to Bartlett ef al. (Bartlett et al., 2012;Bartlett and Crosby, 2014), the adhesive

force of micro-pillars can be scaled as F,4 ~\/A_/C where A is the actual contact area and C is the
system compliance in the loading direction. Based on this scaling law, aside from enlarging
effective contact area A, the adhesive force may also be enhanced by decreasing the system
compliance C. An easy way to minimize the compliance C is by utilizing stiff materials. Here, we
summarize existing data from the literature in an Ashby plot (Figure 3, numbers are listed in Table

1 and Table 2) where the experimentally measured normal adhesive strength is plotted versus
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material Young’s modulus (Geim et al., 2003;Sitti and Fearing, 2003;Kim and Sitti, 2006;Del
Campo et al., 2007b;Lee et al., 2008;Lu et al., 2008;Cheung and Sitti, 2009;Davies et al.,
2009;Murphy et al., 2009;Parness et al., 2009;Sameoto and Menon, 2009;Kwak et al., 2011;Bae
et al., 2013;Tsai and Chang, 2013;Jin et al., 2014;Fischer et al., 2016;Kim et al., 2016;Drotlef et
al., 2017;Hu et al., 2017). In this plot, the purple zone represents pillar-based adhesives in dry
environments, the orange zone highlights crater-based adhesives under normal ambient conditions,
and the green zone indicates crater-based adhesives under high humidity, wet or underwater
environments. In particular, setae (material: S-keratin with £ ~ 1-2GPa) on gecko toe pads can
produce ~100 kPa adhesive strength (Autumn et al., 2000; Autumn et al., 2006b;Huber et al., 2008)
as highlighted by the gecko icon in the plot. To achieve adhesion on par with gecko toe pads, stiff
materials are usually employed such as polythiophene nanotubes (£ ~ GPa) (Lu et al., 2008) and
carbon nanotubes (E ~ TPa) (Zhao et al., 2006). But reducing the compliance C would also
inherently compromise the softness of the adhesive and their conformability to curvilinear surfaces,
especially when the surface is deformable (e.g., human skin), (Qiao et al., 2015;Wang and Lu,
2016;Wang et al., 2017a), which limits their applications. However, when micro-pillars are
fabricated out of soft materials (E < 3MPa), their adhesive performance is significantly

compromised as shown in Figure 3, resulting in two distinctive purple zones.

Another class of reusable SDAs emerged as arrays of micro-craters (i.e., dimples or
depressions engineered on polymer surfaces). In fact, utilizing suction for attachment has been
widely observed in nature. The arms of aquatic cephalopods such as squid and octopus are
equipped with hundreds of suckers for anchoring and object manipulation (Smith, 1991;Kier and
Smith, 2002;Von Byern and Klepal, 2006;Tramacere et al., 2013;Tramacere et al., 2014b). The
pressure drop inside the sucker, termed negative pressure, can reach 300 kPa for octopus and 800
kPa for decapod (Smith, 1991;Smith, 1996). Cephalopod suckers have been emulated on aquatic
robots using active pumps (Wang et al., 2017¢;Shintake et al., 2018) as well as passive adhesive
tapes (Choi et al., 2016;Baik et al., 2017). Passive cratered surfaces have demonstrated remarkable
adhesion capabilities in recent years. Just to name a few, in 2014, Chang et al. (Chang et al., 2014)
created an array of submicron-sized craters on UV resin (Figure 1G) and measured adhesive shear
strengths as high as 750 kPa on silicon wafers (Chang et al., 2014). In 2015, Choi ef al. fabricated
an array of 1-um-diameter craters on the surface of a multilayer polydimethylsiloxane (PDMS)

(Figure 1H) and the measured adhesive strength exceeded that of the same PDMS with either flat
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or pillared surface (Choi et al., 2016). Also in 2015, Akerboom et al. fabricated close-packed nano-
dimples on 10:1 (base-to-curing agent ratio) PDMS (Figure 1I) and found a larger pull-off force
in comparison to flat PDMS surfaces (Akerboom et al., 2015). In 2017, Baik et al. fabricated dome-
shaped protuberances within micro-craters (Figure 1J), whose adhesive strength was found to be
2-3 times higher than micro-pillars in dry condition (Baik et al., 2017). Similarly, enhanced
adhesion has been reported by Nanni ef al. who engineered PDMS with square-shaped craters

(Figure 1K) (Nanni et al., 2015).

Beyond simple pillars or craters, researchers have combined the pillar effects with the
suction mechanism. It has been experimentally confirmed that suction contributed 20% towards
the total adhesive force in mushroom-like micro-pillars (Varenberg and Gorb, 2008; Tinnemann et
al., 2019). The authors argued that vacuum may be generated between the thin mushroom-like tip
and the surface during the detachment. In fact, micro-pillar stalks terminated with concave dome
tip(Baik et al., 2018) (Figure 1F) or funnel-shaped tip (Fischer et al., 2017) (Figure 1L) have been
realized and adhesive strength has been elevated to an ultrahigh value of 5.6 MPa (Fischer et al.,
2017), which is gigantic compared with kPa-range adhesive strengths for simple pillars (e.g.,
Figure 1A-1E) or simple craters (Figure 1G-1K).

Although both are SDAs, crater-enabled adhesives have the following advantages i
relative to pillar-enabled adhesives: ease of fabrication, pressure-sensitive adhesion, excellent wet
adhesion, superior scratch resistance and reusability, and high material compliance. Generally,
cratered surfaces are engineered by molding a soft elastomer on a negative template with domes.
Such a fabrication method is generally easier than the process to produce hierarchical (Del Campo
and Arzt, 2007;Greiner et al., 2009) or composite micro-pillars (Bae et al., 2013;Drotlef et al.,
2019). Distinct from the micro-pillars whose adhesive strength is usually fixed once fabricated
(Murphy et al., 2009;Mengiic et al., 2012;Chary et al., 2013), the adhesion of cratered surfaces
depends on the preload (Akerboom et al., 2015;Baik et al., 2019b). It is also worth noting that
crater arrays, similar to octopus suckers, show a conspicuously enhanced adhesive strength
underwater or on wet surfaces (see the red bar in Figure 2¢ and the green domain in Figure 3).
Also, without delicate protruding structures, cratered surfaces are more scratch resistant and
reusable. For example, Baik et al.(Baik et al., 2017) demonstrated that the adhesive force of craters

remained almost unchanged after 10000 cycles of attachment and detachment (Figure 2D). Last
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but not least, as presented in Figure 3, crater-enabled SDAs are capable of producing higher

adhesion while maintaining the desirable levels of material softness. Such high softness endows

them with exceptional deformability as well as conformability on deformable, rough surfaces
including bio-tissues (Choi et al., 2016). These advantages of crater-based adhesives have enabled
many exciting applications including wall-climbing robots (Aksak et al., 2008;Sahay et al., 2015),
object manipulation (Chang et al., 2014) such as wafer handling (Lee et al., 2016), and bio-
integrated medical devices (Chun et al., 2018;Hwang et al., 2018;0h et al., 2018;Baik et al.,
2019a;Baik et al., 2019¢;Kim et al., 2019;Iwasaki et al., 2020).

Let us point out that harnessing suction for attachment is ubiquitous. Thin-walled suction
cups are widely used in everyday suction hooks and climbing robot pads (Figure 4A) (Yoshida
and Ma, 2010;Manabe et al., 2012) due to their strong attachment and quick release. By assembling
suction cups onto a tapered elastomeric arm, Xie ef al. recently demonstrated a soft actuator that
was capable of grasping objects of various shapes (Figure 4B) (Xie et al., 2020). The same group
also provided a feasible solution for preventing air leakage when gripping rough surfaces by
programming the compliance of the sucker. The sucker was made of electrically responsive
organohydrogel, which softened under high voltage, giving rise to conformable contact with rough
surfaces (Figure 4C) (Zhuo et al., 2020). Theoretical analysis and experimental measurements have
been carried out to understand both the attachment and detachment behaviors of suction cups. For
instance, by actively pumping out the air through a connected tube, Liu ef al.(Liu et al., 2006) has
reported the relationship between the negative pressure inside the cup and the active area, i.e. the
area not in contact between the cup and the substrate. The suction force can be readily obtained
through negative pressure multiplied by the active area. Different from air-pumping, Ge et al.
proposed a pushing-detaching framework for characterizing the suction force of a commonly used
passive suction cup (Figure 4D) (Ge et al., 2015). The process is illustrated in Figure 4D. In the
beginning, the cup is resting on the substrate surface. Then a preload is applied to deform the
suction cup such that air inside the cup is squeezed out and the suction cup successfully attaches
to the substrate. To detach it, a pulling force is applied until it reaches the pull-off force. Based on
this process, the suction force of the cup has been modeled and experimentally validated. However,
such analysis is only applicable to thin-walled suction cups rather than craters which are dimples

on the surface surrounded by the polymer matrix.



Despite a significant body of experimental evidence that suction is a significant adhesion
mechanism for cratered surfaces, until recently, theoretical understanding and consequently
model-guided design procedures were lacking. Our recent series of werk-papers were a searece
attempt intended to remedy this situation. We have developed an integrated computational-
experimental-modeling approach for the quantitative characterization and understanding of the
suction behaviors for various cratered surfaces under both dry and wet conditions. In the next
section, we summarize our results by focusing on four factors controlling suction of isolated craters
(Figure. 5): Young’s modulus of the polymer matrix (Figure 5A) (Qiao et al., 2017), crater shape
(Figure 5B) (Qiao et al., 2017;Wang et al., 2019), air/underwater ambient environment (Figure 5C)
(Wang et al., 2017b;Qiao et al., 2018), and elasto-capillary effect on micro/nano-craters (Figure
5D) (Wang et al., 2017b). In Section IV, we will discuss cratered surfaces and address the

importance of the crater areal fraction as defined by the ratio between the projected area of crater

and the base plane area of specimen (Figure SE) (Wang et al., 2019) and patterns (Figure 5F)

(Wang et al., 2019) of cratered arrays.

I11. Isolated Craters

This section summarizes our results for isolated craters. The term isolated means that the
crater dimensions are much smaller than all other specimen dimensions, and therefore the
specimen can be regarded as a semi-infinite solid, where the only relevant dimensions are those of

the crater.
3.1. Isolated craters in air

We begin this section by considering isolated craters in air as a precursor to considering the

presence of liquids on the performance of isolated craters.

3.1.1. Modeling framework

Following the earlier work on thin-walled suction cups (Ge et al., 2015), a loading-
unloading process is established for calculating the suction force of an isolated crater, as illustrated

by Figures 6A-6C. Initially, the air inside the crater is characterized by the ambient pressure, pg,



volume V},, and number of molecules N, (Figure 6A). The suction effect is realized in the

following two steps:

1. The specimen is subjected to a remote compressive stress g, which squeezes air out of
the crater. We refer to ¢ as the preload, and denote the state at the end of this step by
the triplet (p4,V;, N;) (Stage 1, Figure 6B).

2. The specimen is unloaded in such a manner that air does not return to the crater and the
crater springs back. This action results in a pressure drop inside the crater which
produces the suction force. At the end of this step, the air in the crater is characterized

by the triplet (p,, V5, N,) (Stage 2, Figure 6C). Accordingly, the pressure drop is
—Ap=p1—p2
and the suction force

F = —ApA, (1)

where A, is the projected area of the crater at Stage 2.
Key assumptions adopted in this framework are:
(a) The air flows freely out of the crater upon loading (Step 1), so that p; = p,.
(b) No air exchange takes place upon unloading (Step 2), so that N, = Nj.
(c) The entire process is isothermal and air is an ideal gas, so that p;V; = p, V5.

Assumptions (a) and (b) are consistent with the abovementioned models of thin-walled suction
cups (Liu et al., 2006;Ge et al., 2015). However, in our experiment, to be discussed later,
Assumption (a) is hard to achieve without a vent hole drilled in the substrate. Therefore, future
research is required to realize Assumption (a) without any vent hole. Furthermore, secure sealing
after loading should be validated to justify Assumption (b). With these three assumptions, the

pressure drop can be related to the crater volumes as

~ap=(1-72) o o)

2

Therefore, the suction force becomes



F= (1 - %) Doy 3)

If the ambient pressure is equal to the atmospheric pressure p, , we can define the suction-induced

effective adhesive strength as

s = 5= (1) e @
According to this equation, obtaining a large value of o, requires both small V; after loading,
and large A, and V; after unloading. The maximum possible g, s is atmospheric pressure, i.€., po,
which can be achieved when the crater is fully closed after loading, i.e., V; = 0, and recovers to

A, = A, after unloading.

3.1.2. Simulation and experimental setups

Axisymmetric finite element models (FEM) for isolated craters were built to simulate the
suction force using commercial software, ABAQUS 6.13 (Figure 6D). The built-in function
*FLUID CAVITY was implemented to model the ideal gas behavior inside the craters. The
specimen/substrate interface was assumed to be frictionless, and the substrate was assumed to be
rigid. The material behavior of 30:1 PDMS was characterized as an incompressible neo-Hookean
model with Young’s modulus E = 141.9 kPa according to our measurements(Qiao et al., 2017).
Experimentally, polydimethylsiloxane (PDMS) with base-to-curing-agent mass ratio equal to 30:1
was cured at 70°C for 12 h to mold specimens with and without craters (see inset in Figure 6E). A
small vent hole with diameter of 0.8 mm was drilled in the rigid plate and roughly aligned with
the center of the crater. Oil lubricant was applied at the specimen/plate interface. Loading and
unloading tests were carried out with the vent hole open during loading and closed during
unloading and the pull-off force was measured. A representative experimental loading-unloading
curve is given in Figure 6E. The suction force can be readily calculated by subtracting the adhesive
force over the contact zone (which is very small and independent of preload) from the measured

pull-off force at the pull-off point (Qiao et al., 2017).
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3.1.3. Results

Spherical-cap-shaped (SCS) craters with various aspect ratios were studied both
numerically and experimentally. The schematic of a SCS crater is shown in Figure 5B where the
base radius and height of the craters are labeled as a and b, repectively. Figure 6F plots the
effective adhesive strength o, as a function of preload for two aspect ratios, b/a = 1 (blue) and
b/a = 2/3 (red). Experimental results are plotted as markers and FEM results as solid curves. The
following conclusions can be drawn from Figure 6F. First, suction-enabled adhesion intrinsically
depends on preload, and generally higher suction force can be achieved by increasing the preload.
Second, when the preload is large enough to fully close the crater at Stage 1, further compression
will not enhance the suction anymore as shown by the plateau of the two curves. Third, under

small preloads, shallower craters generate higher suction forces than deeper ones.

It is also worth noting that experimental and FEM results agree well. Therefore, such a
simulation approach can be confidently used for characterizing other cratered specimens, e.g., of
different Young’s moduli and crater shapes. A contour plot for the effective adhesive strength as
a function of material Young’s modulus E and aspect ratio b/a is given in Figure 6G. Results
presented in Figure 6G are evaluated at full closure, i.e., —Ap = p, is attained for all scenarios. It
is clear that deeper craters with stiffer matrices are capable of producing larger suction provided
full closure at Stage 1. Note that it is an opposite conclusion compared with what we discussed in
Figure 6F — shallower crater generates higher suction provided the same preload. This can be

understood as follows: it is easier for shallower craters to reach full closure when the preload is

small, i.e., a smaller V;, thus achieve a higher suction force according to Eq. (4). However, when

the preload is large enough to fully close craters, i.e., V; = 0, deeper craters will spring back more

with a larger projected area, i.e., a large A,, giving rise to a higher suction force.-The black curve

in Figure 6G represents an iso-strength curve of g,¢r = 80 kPa. Note that crater shape is limited

to a spherical cap in Figure 6G and is varied by choosing different aspect ratios. Other shapes such
as spheroidal (Qiao et al., 2017) and cylindrical (Wang et al., 2019) craters have also been

investigated but are not discussed in this review.

11



3.2. Macroscopic, isolated craters underwater

Similar to suction cups on aquatic cephalopods (Tramacere et al., 2014a;Tramacere et al.,
2014b), craters underwater also exhibit much larger adhesive strength than those in air (see Figure
3). This is addressed by considering a cratered specimen resting on a fixed rigid platform, both

submerged in liquid at depth h (Figure 5C). The ambient pressure is now

Po = pgh + pa )
where p is the liquid density and g is the gravitational constant. Assume that the suction force is
still generated through a loading-unloading process as illustrated in Figure 6A but in an aquatic
environment. Similar to air-filled craters, the pressure inside the crater at States 0 and 1 are
assumed to be the same, i.e., p; = py and the number of liquid molecules remains unchanged
during State 2, i.e., N; = N,. However, rather than adopting the ideal gas relationship p,V; = p,V5,
the liquid inside the crater is assumed to be incompressible, so that VV; = V,. Both FEM and
experiments were conducted to quantify the underwater suction under various preloads (Qiao et

al., 2018).
3.2.1. Zero liquid depth

We begin the discussion by first forming an understanding when h = 0, py = p,. Results
for a hemispherical crater in air (blue) and underwater (red) at h = 0 are displayed in Figure 7A.
It is obvious that craters of both fillings experience an increase in suction with growing preload,
whereas the liquid-filled craters exhibit a faster increase due to the stronger constraint on the
polymer matrix under volume conservation, i.e., V; = V,, compared with the ideal gas relation,
p1V1 = p,V,. Also, for both cases, FEM results (solid curves) are in excellent agreement with
experiment (circular markers) when the preload is smaller than 80 kPa, while the two_responses
starts to deviate as the preload further increases. For the crater in air, such a discrepancy can be
successfully resolved by adding an experimentally extracted retraction strain in FEM (green open
diamond markers in Figure 7A) because the strain at pull-off is diseernably-discernibly higher than

the strain at full unloading when the specimen is subjected to large preload. For the crater

underwater, however, the discrepancy could come from the-vaporization of the liquid inside the

crater when the internal pressure is extremely low or close to zero.
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Figure 7B plots the normalized pressure drop obtained by FEM as a function of preload for
both air-filled and liquid-filled hemispherical craters. The blue curve clearly shows that the
pressure drop of the air-filled crater gradually increases with growing preload and eventually
reaches a plateau of —4p = p, when fully closed, i.e., vacuum, at oy = 140 kPa as highlighted by
the vertical dashed magenta line. However, the crater underwater undergoes a faster pressure drop
than those in air such that it reaches vacuum (i.e. —4p = p,) prior to the full closure. The
intersection of the horizontal dashed black line of —4p = p, and the curve of —A4p/p,(0)
determines a critical preload of gy = 80 kPa. The critical preload suggests a threshold above

which the liquid in the crater will vaporize. Ia-the-simplest-pietureln other words, when o < a?,

the liquid inside the crater remains as an incompressible fluid, while when ¢ > ¢?, it should
rapidly vaporize even in-at room temperature. This liquid-to-gas phase transition violates the
assumption of an incompressible fluid. Hence the FEM results beyond this point are no longer
meaningful. It is also worth pointing out that when the craters are fully closed at o = 140 kPa,
the craters in air or water behave essentially the same as —Ap = p,, is realized for both craters if
h = 0. This explains the fully overlapped experimental results at o = o as highlighted by the

vertical magenta dashed line in Figure 7A.
3.2.2. Finite liquid depth

It is interesting to realize that the red curve in Figure 7B should be applicable to any h >
0 as long as both the polymer matrix and the liquid inside the crater are incompressible. This is
because the hydrostatic pressure term pgh in Eq. (5)(5) has no effect on the deformation of the
incompressible matrix. Different h’s only dictate the critical preload for vaporization, g, beyond
which the FEM results are invalid. This can be understood by looking at the “phase diagram” in
Figure 7C where the horizontal axis is the preload o and the vertical axis is the normalized liquid
depth pgh/p,. The yellow regimes are non-vaporization zones in which the pressure drop is h-
independent. The red regime is where vaporization is expected to occur. The cyan regime
represents complete vacuum. Right before vaporization occurs, the pressure drop simply equals
the ambient pressure i.e., —Ap = p, + pgh. Thus, when o < ¢, no vaporization would take place
for any h as p, is still positive after unloading. When ¢ < o < gr, we can introduce a function
to represent the red curve in Figure 7B, say —4p/p,(0) = f (o) for 0 < o < o5 . Then o, can be

obtained by solving f (o) = 1 + pgh/p, for a given liquid depth h. If pgh/p, = f(0) — 1, the
13



liquid still remains incompressible fluid; otherwise, the liquid vaporizes. When o = o5, the
hemispherical crater attains full closure with complete vacuum, leading to —4p = p, + pgh.
Therefore, when the crater is fully closed, craters in deeper water will produce a higher suction

force.

In summary, craters underwater, on the one hand, are capable of producing higher suction
force than those in air due to the volume constraints; on the other hand, vaporization may take

place, which undermines the suction.

3.3. Isolated craters in air with surface tension

Up to this point, we neglected polymer surface tension, which may become important for
small craters on a soft matrix. The significance of surface tension can be realized by examining
molded polymer surfaces. A commonly adopted fabrication method for cratered surfaces is
molding polymers out of a negative template, which are usually created using either
micromachining (Choi et al., 2016) or colloidal lithography (Chang et al., 2014;Akerboom et al.,
2015). Such methods work well for relatively stiff polymers such as UV resin (E~ GPa) (Chang et
al., 2014) or even 10:1 PDMS (£~ MPa) (Akerboom et al., 2015). However, molding microscale
craters on soft polymer sheet, e.g. 40:1 PDMS (£~100 kPa) (Choi et al., 2016), resulted in much
smaller crater size compared with the domes on the template after demolding. This can be
attributed to the so-called elasto-capillarity effects in which the polymer surface tension is a

driving force for diminishing the sizes of craters when the crater length scale is comparable to the

elasto-capillary length defined as L, = y/E where y is the surface tension of the polymer (Roman
and Bico, 2010;Liu and Feng, 2012;Bico et al., 2018). To attain the desired crater shape, adding a
stiffer reinforcing layer inside the crater has proven to be effective. The schematic of a reinforced
crater is depicted in Figure 5D. The thickness and Young’s modulus of the reinforcing layer are
denoted as t and E;, respectively. The effect of surface tension is equivalently interpreted as a
normal traction t,, = ky on the inner surface of the crater (shown by blue arrows), where k is the
sum of the two principal curvatures. To quantitatively characterize the effects of surface tension
and reinforcing shell on the suction force generated by those craters, a demolding step was added
prior to loading and unloading (Wang et al., 2017b). Therefore, the entire process of suction

generation becomes demolding, loading, and unloading steps.
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We investigated the surface tension effect by considering isolated hemi-spherical craters
with reinforcements parameterized by their thickness and Young’s modulus. A contour plot for
the effective adhesive strength g, as a function of normalized thickness t/a and modulus E;/E
is presented in Figure 8. It clearly suggests that there is an optimal combined range of t/a and
E;/E to generate large suction. When the reinforcing shell is too thin or too soft, it is simply too
weak to resist the surface tension effect. When the reinforcing shell is too thick or too stiff, it
preserves the crater shape after demolding, but it also prevents the crater from deformation during
loading. As aresult, a large V; leads to small g according to Eq. (4(4). The effect of strong and
weak reinforcing shells is best visualized by the supplementary videos of (Wang et al., 2017b).
Therefore, the optimal choice of t/a andE;/E for large osf lies in the domain E;/E € (20,50)
and t/a € (0.025,0.15) as shown by the red regime in Figure 8.

In fact, adding a reinforcing layer may even enhance the suction force for craters with
negligible surface tension effects. - This is because a thin reinforcing layer can assist the crater to
spring back upon unloading, while leaving the overall structural stiffness almost unchanged (Qiao
etal.,2017). Surprisingly, a reinforced SCS crater with aspect ratio b/a = 0.85 shows a maximum
Ocrr = 1.2p,, which is higher than the atmospheric pressure because A, > A is achieved due to

wrinkling instabilities on the crater inner surface. Such a wrinkling instability is because of the

stiffness mismatch between the reinforcing layer and the polymer matrix when being compressed.

Although the wrinkled surface may enlarge the projected area of the crater after unloading, it is

not easy to control, thus it is not within the scope of the current analysis. A detailed discussion can

be found in (Qiao et al., 2017).

IV.  Crater Arrays in Air

Isolated craters discussed in the previous section represent cratered surfaces with very
small crater areal fraction, i.e., ¢ — 0, such that the interaction between craters is negligible. When
craters are closely packed, the behavior of each crater may be affected by its neighboring craters.
Actually, experimental evidence has shown that the crater areal fraction is another crucial
geometric parameter that governs the adhesive strength. For example, Nanni ef al. measured the

adhesion of elastomeric surfaces structured with micro-dimples of different areal fractions (Figure
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1K) (Nanni et al., 2015). They observed that the adhesive strength exhibits a non-monotonic
dependence on the crater areal fraction. In addition to the areal fraction, different patterns of crater
arrays have been reported such as hexagonal (Figures 11 and 1J) and square (Figure 1K). In this
section, we briefly discuss our recent progress in simulating the suction effects in hexagonal-

patterned arrays (HPA) and square-patterned arrays (SPA) with various ¢’s.

Consider two polymer sheets with the same total base plane area of A;. Then the crater area

fraction is defined as ¢p = A,/A;. One is engineered with SPA (Figure 5E) and the other with HPA

(Figure 5F). Different from simulations for isolated craters where axisymmetric models were used,
simulations for crater arrays demand three-dimensional models and periodic boundary conditions.
The suction force is still generated via the loading-unloading process as illustrated in Figure 6A.
The normalized total suction force of the polymer sheet (F;/(poA;)) is obtained and plotted as a
function of ¢ in Figure 9, where red represents HPA and blue SPA. Shaded bars correspond to a
relatively small preload of 50 kPa and solid ones for a large preload of 120 kPa. Note that results
presented in Figure 9 are for SCS crater arrays with crater aspect ratio of b/a = 2/3 and matrix
Young’s modulus of E = 141.9 kPa. The aspect ratio b/a = 2/3 is intentionally selected since
the initial volume of a cylinder-shaped crater with b/a = 2/3 is identical to that of a SCS crater
with aspect ratio b/a = 1. Figure 9 clearly shows that under a small preload of 50 kPa (shaded
bars), the total suction force increases with growing ¢. The reason is twofold. First, crater arrays
with large ¢ tend to have lower structural stiffness, leading to a larger deformation under the same
preload, i.e., small V; produces large F according to Eq. (3)(3). Second, large ¢ means more
craters are contributing to F;. However, under a large preload, e.g. 120 kPa, the total suction force
exhibits a non-monotonic dependence on ¢ and the maximum is achieved when ¢ €
(54.5%, 64.9%). This is because, when o = 120 kPa, craters are fully closed after loading and
craters with large ¢ may not recover after unloading due to low structural stiffness. Therefore, one
can conclude that the interaction between craters may impair the overall adhesive strength of the
polymer sheet under large preload. This non-monotonic trend is essentially similar to the
experimental observation reported by Nanni ef a/ (Nanni et al., 2015). It is also worth noting that

the difference between SPA and HPA is not significant for the same ¢ according to Figure 9.
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V. Summary and Outlooks

Reversible-Progress in the development of reversible SDAs is-has been afield-undergoing
rapid-development. So far, micro-pillared surfaces have been regarded as the primary option. In

this review, we focus on cratered surfaces as an alternative, with the emphasis on our recent
mechanistic understandings of suction effects of craters arrays. Through theoretical analysis,
numerical simulation, and experimental measurements, the effect of polymer matrix stiffness,
crater shape, air/water ambient environments, elasto-capillarity, crater area fraction, and pattern of

crater arrays are systematically studied.

However, there is a major limitation in the present modeling framework, related to the
simplified loading-unloading process for realizing suction effects as illustrated by Figures 6A-6C.
First, the substrate is assumed to be rigid and the crater/substrate interface is assumed to be
frictionless. Deformable substrates (e.g., skin) and interfacial friction may prevent the venting of
air/liquid during loading, and thus diminish the suction effects. Second, effective venting during
loading and tight sealing during unloading and beyond, play crucial roles in strong and sustained
adhesion, which should be a future direction for the design of cratered surfaces. Moreover, existing
models cannot explain the experimental findings that even with exactly the same crater shape,
areal fraction, and pattern, crater arrays may still exhibit different adhesive strength when the size
of the crater varies (Baik et al., 2017). This size effect (not pertaining to elasto-capilarity) remains
unresolved. In addition to passive cratered surfaces, reversible suction-based adhesion can also be
enabled by active materials in response to external stimuli, such as temperature (Lee et al., 2016)

or magnetic field (Yuetal., 2018;Linghu et al., 2019), which have not been systematically modeled.

Another potential direction for future work is to employ cohesive zone modeling in the
analysis of the performance of cratered surfaces. This would allow for the intrinsic interactions
(normal and shear) between contacting surfaces to be accounted for. In addition, such an approach
would allow the strength and adhesion energy of different configurations to be compared, rather
than relying solely on strength comparisons, which is the current practice. There may be
performance regimes that are strength controlled and others that are dominated by energy
considerations. This could result in the development of a richer parameter space for exploring the

performance of cratered surfaces.
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In summary, cratered surfaces represent a new class of SDAs with strong adhesion,
remarkable reusability, and superior biocompatibility. After about six years of studies, research

into the performance of cratered SDAs are still in its infancy. Preliminiary understandings

summarized in this review were achieved under many simplifications and assumptions. The
mechanics and realization of practically useful cratered SDAs are still elusive with wide open
oppurtunities. Fhe-Our understanding of the underlying mechanisms, exploration of optimal design,
and employment of active materials require the collective wisdom of both mechanical engineers

and material scientists.

18



Author Contributions

L. Wang, K. Ha, G.J. Rodin, K. Liechti, N. Lu participated fully to the data acquisition, analysis,

and paper writing. All authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Acknowledgements All authors acknowledge the support from the National Science Foundation
(NSF) Division of Civil, Mechanical and Manufacturing Innovation (CMMI) award (Grant No.
1663551). Liu Wang acknowledges the Warren A. and Alice L. Meyer endowed graduate
fellowship awarded by the Cockrell School of Engineering at the University of Texas at Austin.
Kyoung-Ho Ha acknowledges the Philip C. and Linda L. Lewis Foundation Graduate Fellowship

in Mechanical Engineering at the University of Texas at Austin.

19



Table 1. Micro-Pillar-Enabled SDAs

. Pillar
. Modulus Normal Tip .
Material (MPa) Adhesion (kPa) diameter(um) lz::llrgnt)h Tip Shape Reference
P O;Iy;ﬂg’tﬁgzne 1500 800 0.2 12 Nanohair (Lu et al., 2008)
(Kim and Sitti,
Polyurethane 3 180 4.5 20 Mushroom 2006)
Sylgard 184 1-10. 111-219 40 100 Mushroom (Davies et al,
2009)
. (Zhao et al.,
MWCNT 10E5 117 0.02-0.03 5-10. Fiber 2006)
. : (Sameoto and
Sylgard 184 1-10 100-180 10 20 Mushroom Menon, 2009)
Gecko . . (Autumn et al.,
(B —keratin) 1500 100 Hierarchical 2000)
(Del Campo et al.,
Sylgard 184 0.76 5 10 30 Mushroom 2007b)
Graded PDMS 5. 92.5 2 2 Round (Tsai and Chang,
2013)
Polyurethane 2.9 24 50 100 Mushroom (Cheung and Sitti,
2009)
. (Murphy et al.,
Polyurethane 3 50 35 100 Tilted 2009)
. . . . (Geim et al.,
Polyimide 2500 30 0.2-4 0.15-2 Fiber 2003)
PDMS 2-3 22.5 20 55 Mushroom (Hu et al., 2017)
(Kwak et al.,
PDMS 2 13 5 5-20. Mushroom 2011)
PDMS 1.5-3.5 13 5 30 Mushroom (Kim et al., 2016)
PDMS 2-3 12.5 13 80 Tilted (Jin et al., 2014)
PDMS 2-3. 10.5 100 Wedge (Tao et al., 2017)
PDMS 2.8-8.2 7.5-18 5 20 Mushroom (Bae etal., 2013)
PDMS 2.3, 7.5-14 60-95 120 Mushroom ~ (Drotefetal,
2017)
. (Parness et al.,
Silicones 1.75-2.63 5.1 50 200 Wedge 2009)
Silicone rubber 0.57 0.028 0.2 60 Fiber (Sitti and Fearing,

20

2003)



Table 2. Crater-Enabled SDAs

. . Normal
Material Modulus Shape Amb.lgnt Diameter Adhesion Reference
(MPa) condition (pm)
(kPa)
30 15
In Air 100 26
300 25 .
s-PUA 1.5 Protuberance a(lBazllgle;)
30 25 °
Underwater 100 42
300 15
30 20
In Air 100 30
1000 8 i
0.8 Concave a(lBazll(;leg)
30 32 ?
Underwater 100 115
1000 55
Concave with . (Oh et al.
PDMS ’
2.2 fim In Air 5 13 2018)
In Air 60
(Kim et
0-5 30 al., 2019)
Underwater 45
Protuberance
In Air 18 (Ch
un et
0.2 30 al., 2018)
Underwater 13
. (Choi et
PDMS 0.105 Concave In Air 1 1.5 al., 2016)
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Figure Captions

Figure 1 Examples of nature-inspired SDAs. (A)-(E) Gecko-inspired synthetic micro-pillars with various
tip geometries: (A) flat tip (reprinted with permission from ref (Del Campo et al., 2007b)); (B) hierarchical
tip (reprinted with permission from ref (Greiner et al., 2009)); (C) spatular tip (reprinted with permission
from ref (Del Campo and Arzt, 2007)); (D) slanted tip (reprinted with permission from ref (Murphy et al.,
2009)); (E) mushroom-like tip (reprinted with permission from ref (Wang et al., 2014)). (f) A combinational
structure — micro-pillars with concave tip (reprinted with permission from ref (Baik et al., 2018)). (G)-(K)
Octopus-inspired synthetic micro-suckers or craters: (G) nano-craters on UV resin surfaces (reprinted with
permission from ref (Chang et al., 2014)); (H) reversible adhesive skin patch with micro-craters on
multilayer PDMS (reprinted with permission from ref (Choi et al., 2016)); (I) micro-craters on PDMS
surface (reprinted with permission from ref(Akerboom et al., 2015)); (J) micro-craters with interior
protuberances (reprinted with permission from ref (Baik et al., 2017)); (K) square-patterned micro-craters
on PDMS surface (reprinted with permission from ref (Nanni et al., 2015)). (L) Another combinational

structure — pillar with funnel-shaped tip (reprinted with permission from ref (Fischer et al., 2017)).

Figure 2 Limitations of pillared surfaces and advantages of cratered surfaces as SDAs. (A) A scanning
electron microscopy (SEM) image of pillar condensation. (reprinted with permission from ref (Kim et al.,
2007)). (B) Adhesion force of micro-pillars as a function of relative humidity (reprinted with permission
from ref (Cadirov et al., 2017)). (C) Adhesive strengths of various pillared and cratered structures where
red: protuberance-shaped crater; blue: perforated cylinders; green: cylindrical pillar; brown: cylindrical hole;
black: flat surface (reprinted with permission from ref (Baik et al., 2017)). (D) Repeatable adhesion of the
crater-enabled SDAs after more than 10000 cycles of attachment and detachment (reprinted with permission

from ref (Baik et al., 2017)).

Figure 3 An Ashby plot of normal adhesive strength vs. material Young’s modulus for both pillar-enabled
and crater-enabled SDAs. Purple regimes enclose data of pillared surfaces in air. The orange regime denotes

craters in air and the green regime represents craters underwater.

Figure 4 Suction cup example applications and models. (A) Wall-climbing robots with suction cups as
attaching components (reprinted with permission from ref (Yoshida and Ma, 2010)). (B) A suction-cup-

based tapered soft actuator capabile of gripping objects of various shapes (reprinted with permission from
22



ref (Xie et al., 2020)). (C) An organohydrogel-based soft gripper with electrically programmable stiffness
for achieving conformable contact with rough surfaces. (reprinted with permission from ref (Zhuo et al.,
2020)). (D) Schematics of a pressing-detaching process of a suction cup (reprinted with permission from

ref (Ge et al., 2015)).

Figure 5 Six factors that affect the suction effects of crater arrays discussed in this review article: (A) matrix
modulus; (B) crater shape, (C) ambient environment; (D) elasto-capillarity at small length scale; (E) crater

area fraction; (F) the pattern of a crater array.

Figure 6 The model of a macroscopic, isolated crater in air. (A)-(C) Schematics of the loading-unloading
process that generates suction. (D) An axisymmetric finite element model (FEM) for simulating isolated
craters. (E) A representative loading-unloading-retraction curve for a cratered specimen. The inset shows
the experimental setup. (F) Effective adhesive strength as a function of the preload for spherical-cap-shaped
(SCS) craters with aspect ratios b/a = 2/3 and 1. (G) A contour plot for effective adhesive strength g5 f
as a function of the matrix Young’s modulus E and crater aspect ratio b/a. (reprinted with permission

from(Qiao et al., 2017))

Figure 7 Experimental and modeling results for craters underwater. (A) Effective adhesive strength g5 ¢
as a function of preload o for craters in air (blue) and underwater (red). Curves are FEM results at the
unloading point. Solid markers are experimental results and open diamond markers are FEM results at the
pull-off point. (B) Pressure drop as a function of preload o. For craters filled with liquid, when internal
pressure approaches zero, rapid vaporization can happen at room temperature, which violates the
incompressible fluid assumption. (C) Phase diagram of pressure drop as a function of liquid depth h and

preload o. (reprinted with permission from(Qiao et al., 2018))

Figure 8. A contour plot of effective adhesive strength o,7s as a function of normalized thickness and
Young’” modulus of the reinforcing layer. Results are obtained under full closure with an elasto-capillary

number y/(Ea) = 1/3. (reprinted with permission from(Wang et al., 2017b))
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Figure 9 Normalized total suction force F;/(pyA;) as a function of crater area fraction ¢ for crater arrays
with fixed crater shape (SCS with b/a = 2/3) and matrix Young’s modulus £ = 141.9 kPa. Red represents
hexagonal pattern arrays (HPA) and blue for square-patterned arrays (SPA). Shaded bars are for small
preload case (o = 50 MPakPa) and solid bars are for large preload case (o = 120 MPakPa). (reprinted with
permission from(Wang et al., 2019))
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