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We study the transverse dynamical susceptibility of an antiferromagnetic spin-1/2 chain in the presence
of a longitudinal Zeeman field. In the low magnetization regime in the gapless phase, we show that the
marginally irrelevant backscattering interaction between the spinons creates a nonzero gap between two
branches of excitations at small momentum. We further demonstrate how this gap varies upon introducing a
second neighbor antiferromagnetic interaction, vanishing in the limit of a noninteracting “spinon gas.” In
the high magnetization regime, as the Zeeman field approaches the saturation value, we uncover the
appearance of two-magnon bound states in the transverse susceptibility. This bound state feature
generalizes the one arising from string states in the Bethe ansatz solution of the integrable case. Our
results are based on numerically accurate, unbiased matrix-product-state techniques as well as analytic

approximations.
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Introduction.—The nearest-neighbor antiferromagnetic
spin-1/2 chain [1] serves as a paradigmatic model of
strongly correlated systems. In particular, it is an estab-
lished setting in which the existence of fractionalized
quasiparticles, deemed spinons, is incontrovertible.
Spinons are the elementary excitations for magnetic fields
below the critical saturation field, above which the ground
state becomes fully polarized. In the saturated regime, the
elementary excitations are instead simple (not fractional-
ized) magnons, or spin waves. A quasiparticle is, by
definition, an excitation which, when isolated, propagates
freely with minimal decay. However, in general, when
multiple quasiparticles are present, they interact, and in a
strongly correlated system, they interact strongly. Such
interactions are present both for fractionalized and ordinary
excitations, but impact the physics particularly strongly in
the former case, as any local operator creates in this case
more than one quasiparticle.

In this manuscript, we focus on dynamical signatures,
i.e., features in the frequency-dependent spin correlations,
of such quasiparticle interactions, in the presence of a
magnetic field. Extensive numerical studies [2—7] of the
dynamical correlation functions have been carried out in
the Heisenberg limit, for which a Bethe ansatz solution
exists. Consequently, the general structure of the correla-
tions, and their deconstruction in terms of spinons, is

ahlished. Here, we go beyond the integrable
is broad picture a detailed analytical
s of quasiparticle interactions, in both
agnetic field (magnetization) regimes.
low magnetization case, we employ a
eory in which spinon interactions are
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parametrized by the marginally irrelevant current-current
backscattering coupling g. We show that this coupling
creates a gap between two branches of excitations at zero
momentum, which is equal to gM, where M is the
magnetization, thus directly revealing the strength of
interactions between spinons. We note that the fermionic
field theory used here and the results we obtain for it have a
direct parallel to a recent study by two of us on two
dimensional spin liquids with a spinon Fermi surface [8].
The results herein thus serve in part as a proof of principle
for the two dimensional case, with the major advantage
that here the results are vetted by unbiased numerical
simulations.

In the regime of large magnetization, the natural qua-
siparticles are spin flip magnons (spins antialigned with the
field), leading to a dominant single branch in the dynamical
susceptibility. We show, however, that two-magnon bound
states appear as an additional higher energy branch due to
interaction of the “probe” magnon with those already
present in the ground state. The spectral weight of this
higher energy branch is thus directly proportional to the
strength of interactions, as well as the density of ground
state magnons. Previous studies of the Heisenberg chain
[2,3] have indeed identified the Bethe ansatz string to be
related to two-magnon bound states in the high magneti-
zation regime. However, here we show that this is not
unique to the integrable chain limit, and provide a simple
understanding which does not require the specialized Bethe
ansatz formalism.

We test these analytical predictions by comparison to
computations using numerical matrix-product-state
(MPS) techniques [9]. In the small magnetization regime,
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we tune the spinon interaction g by including a second-
neighbor exchange coupling J,, while in the large mag-
netization regime, magnon-magnon interactions are tuned
by introducing magnetic anisotropy of the XXZ form. In
both limits matrix-product-state calculations compare
excellently with the theoretical predictions as the
respective parameters controlling the density of quasi-
particles and the strength of interactions between them are
varied.

Model.—We consider a spin-1/2 chain, with antiferro-
magnetic nearest-neighbor coupling, J; > 0, and next-
nearest-neighbor coupling J, in longitudinal Zeeman field
B. The Hamiltonian of the system is given by

-

H = ZJIS:I i+1) +J2(Si'§i+2)n_BS§’ (1)

where S; is a spin-1/2 operator on site i. We allow
for anisotropic interactions and denote (S .S )
Sij—i—SyS +nS;S5. In the isotropic case, =1, and
for B =0, the system undergoes a phase transition at
J, =J,.~0.241J,, between a gapless and a dimerized
phase [10,11]. In the following we will consider the regime
Jy £J,,. in which the system remains gapless.

We study the transverse susceptibility y*(k,w) imagi-
nary part of which determines dynamical structure factor
ST~ (k,w) of the dynamical correlations at zero temper-
ature, namely

St (k, ) = /_ : drei®! i e~ki(S7(1)S5(0))

j=o

= [(m|S¢|0)28(e - E,), (2)

where |0) denotes the ground state of the system.

Our numerical calculations are carried out using the
ITensor library [12]. To obtain the spectral function (2) we
first obtain the ground state of the system using density
matrix renormalization group (DMRG) [13]. We then
perform time evolution up to times 7, = 80J7' using
time-evolution block-decimation (TEBD) [14]. Our analy-
sis is done on finite systems of length N = 400 sites with
open boundary conditions [15,16].

Low magnetization.—In the discussion below we focus
on the isotropic case, i.e., # = 1. The low energy effective
description of the J;—J, chain is given by an SU(2), Wess-
Zumino-Witten conformal field theory. As discussed in
Refs. [18-20], this theory has a convenient fermion
representatlon which is faithful and simple for the

giamabin currents we study here. We denote
ng fermionic spinons which constitute
by Wr(r).s» Where s = 1, | i 1s the spm
current is given by Jg = zz/me;/R,
tes two-component spinor p =
similarly for ;). The low energy

Hamiltonian is given by H = Hy + V, where H, corres-
ponds to the noninteracting part

Hy=1 / dxlh (=0 wr +wi@gw] ()

(here v is the Fermi velocity), and V is the backscattering
interaction

1 1

The Hamiltonian H, + V appears as an interacting fermion
problem for the spinons, an approach we will follow below.
In a standard bosonization framework g gives rise to a
nonlinear cosine term. In a renormalization group treat-
ment, g > 0 is marginally irrelevant and as a function of its
energy argument E flows logarithmically to zero at low
energies [18,21,22], producing subtle logarithmic modifi-
cations to the temperature dependence of thermodynamic
quantities such as susceptibility and specific heat [23-27].
The bare value of g depends on J, and changes sign at the
critical value, i.e., g~ c(Jo. —Jp) with ¢ > 0 [11].

As we now show, the consequences of the nonzero g > 0
are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M, which is the
sum of the right and left spin currents

HB :—B/dxM,

In the presence of the Zeeman field, renormalization group
flow of g toward zero is cut off at E = B [16,22,28] and
moreover distinguishes the effects of the diagonal and
spin flip components of the interactions in Eq. (4).
Consequently, we must consider them separately and
carefully. First, let us take g=0 and introduce the
Zeeman field B. In the spinon framework, the Zeeman
field simply induces a spin splitting of the two spinon
bands. The dynamical susceptibility is then

M=JF+5. (5

M + yovk M — yovk 2M
_)
w—B—vk ®—B+vki-0w—B’

Xo (k.w) = (6)
where yq = 1/(27v) is the noninteracting uniform suscep-
tibility. There are two branches with linear dispersion and
constant spectral weight, as shown by the dashed lines in
Fig. 1. Note that the form at k = 0 is more robust than for
k > 0, and is in fact exact provided the Hamiltonian in the
absence of Zeeman field has SU(2) symmetry. This
“Larmor theorem” [22] follows simply from the fact that
in this case [Sg,, H] = BSg,, where S5, = >, S7.

Now consider the interaction g. Importantly, response at
the energy of the order of the Zeeman energy B, see (0), is
determined by g = g(B) #0 in (4) which is small and
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FIG. 1. Transverse susceptibility y* (k, ) obtained in the small
k, and low magnetization regime. (a) The dispersion w. (k) is
given by the green (brown) solid line for gM /B = 1/2 and green
(brown) dashed line for g = 0. (b) The intensity of the upper
(lower) branch A is the green (brown) solid line for gM /B =
1/2 and green (brown) dashed line for g = 0.

finite. The diagonal J3J5 term in Eq. (4) leads for M > 0 to
a simple increase of the spin splitting of the spinon bands
by the energy A = gM/2. Consequently, the full spin
splitting is B + A and naively the poles in Eq. (6) would
be shifted vertically to B + A £ vk. This clearly violates
the Larmor theorem. The contradiction is resolved
by including the spin flip part of the interaction
J4J7 + H.c., which results in the formation of a bound
state between the particle and hole (exciton) created by the
spin operator S*. The two effects together are captured by a
random phase approximation summation of ladder dia-
grams for the susceptibility, as described in [16], leading to

the result
A (k) A_(k)
ko) =M[— :
(k@) <a)—a)+(k) o —w_(k)

#’k* — BA

Ay =1+ =22

BVA* + 7k
w. (k) = B+ A+ A2+ 2k (7)

Here # = vy/1 — ¢g°¢%/4. This is plotted schematically in
Fig. 1. The downward branch w_(k) has finite residue
which approaches 2M for k — 0 and w_(k) — B, satisfy-
ing the Larmor theorem. The spectral weight of the upward
branch @, (k) vanishes quadratically A, (k) e #?k* for
k — 0, when w, (k) > B + 2A. Both branches scale lin-
early with 9k for sufficiently large momenta 7k > A.
Within our low energy approximation the k=0 gap
between the two branches is given by 2A =
@, (0) —w_(0) = gM. Higher order in g and B contribu-
tions can modify it.

We now compare our analytical analysis to numerical
results, which are consistent with earlier studies of the
Helsenberg chain [3,5-7]. These works observed a finite

@aimaddress its origin and systematics. The
ons obtained numerically are shown in
spectral weight of the upper branch
to obtain the gap 2A we extract the
momenta [see Figs. 2(b) and 2(d)],
hes to the form expected from Eq. (7),
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FIG.2. Dynamical correlations S*~ (k, @) obtained numerically
for Zeeman field of B/J, =1. (a),b) J, =0, (c)(d)
Jo/Jy =0.24. In (a),(c) the red dashed line indicates a fit to
the analytic expression in Eq. (7) valid in the vicinity of k = 0. In
(b),(d) cuts of the dynamical correlations are shown for fixed
values of k. Finite times used in the numerical time evolution lead
to broadening of the spectral features beyond their intrinsic line-
shape, as is apparent, e.g., for the response at k = 0.

and extrapolating to k = 0. The resulting gap versus
magnetization, as J, is varied, is shown in Fig. 3(a). We
account for higher order M? corrections to A by fitting the
curves shown in Fig. 3 to the form 2A = gM + aM?, and
extract g(J,) which is plotted in Fig. 3(b). Additional data
for ferromagnetic J, < 0, which enhances g beyond that of
the nearest-neighbor limit, is given in [16]. Extrapolating
g(J») to zero, we find that g vanishes at J,/J, = 0.239 +
0.005 in agreement with the critical value J, ./J; ~ 0.241
[11] up to numerical uncertainties. Fixed momentum cuts
of the St~ (k,w) [Figs. 2(b) and 2(d)] show that, as
predicted by Eq. (7), the spectral weight of the upper
branch is suppressed at small & for the Heisenberg case (the
generic situation), while the two branches have approx-
imately equal weight in the free spinon limit (J, = J, ).
High magnetization.—We next consider the limit of a
nearly polarized chain with low density of down spins, i.e.,
when the field is close to saturation value By, = (1 +1)J;.
In this limit it is useful to consider the mapping of spins to
spinless fermions defined by S; =[], ;(-=1)" ¢ and

T
0.1 0.2 0.24 0.3

Ja) Jy

FIG. 3. (a) The splitting at k = 0 as function of the magneti-
zation for different values of J,. (b) The backscattering inter-
action g, extracted from 2A vs M in (a).
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S§¢=1/2 — n;, where CIT denotes the fermionic creation
operator on site { and n; = cchi. We focus on the case with
J, = 0 first. The Hamiltonian (1) maps to

J
H= ZEI(C:[CHI +H.c.)+nJinn;  +(B—nJy)n;. (8)

At the saturation field B = By, the ground state is fully
polarized, |0) = |FM), and the only contribution to
the dynamical susceptibility is the one-magnon state
with momentum &, |1;) = (1/V/N)>_,, e*"S,|FM).
Consequently, the transverse correlations feature a sharp
cosine mode at @ = J;(1 + cosk) as can be seen in
Fig. 4(a). In the isotropic case, i.e., for n = 1, as the field
is lowered and the density of spin down particles increases,
we observe a splitting of the cosine mode as well as an
appearance of a new mode at higher energies @ > 2J; [see
Fig. 4(b)]. To understand this response it is useful to
compare to the limit of noninteracting fermions # = 0. The
dynamical correlations obtained in this limit are plotted in
Fig. 4(c). It is seen that the low energy response at ® < 2J;
is not altered significantly. Indeed, as shown in [16], the
splitting of the lower mode can be understood in the
noninteracting limit as originating from single particle
excitations above the Fermi sea [29]. The mode at higher
energies, however, is completely gone for # = 0, indicating
that its presence comes purely from interaction effects. In
fact, for the Heisenberg chain, it is known that this mode

(a) 4 400 (b) 4
34 3
2 9] 200 = 21
3 3
1 1
0 : 0 0
0 /2 T
k
4 —p 50
(©) 4 400 (d) 4 400
-
31 31 2 0
— — 0 T
2 o 200 = 2 200
3 3
14 14
0 . 0 0 . { Lo
0 /2 T 0 /2 T
k k

FIG. 4. Dynamical correlations S*~(k, w) obtained using den-
sity matrix renormalization group and time evolution in the high
magnetization regime. In (a)—-(c) we set J, = 0. (a) Saturated
chain, i.e., M = 1/2, a pure cosine dispersion is observed.
isotropic chain =1, (¢) M =0.45 in
mit # = 0. (d) Isotropic chain # =1 for
d) the inset shows the range @ > 2J; of the
a different color scale that allows for better
energy mode. The red dashed line corre-
hgnon bound state dispersion €, (k + 7).
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comes from Bethe ansatz string solutions, which can be
identified as two-magnon bound states close to the satu-
ration field [2,3]. Here, we show that it is a generic feature
of the interacting magnons which exists beyond the
integrable limit.

To examine two-particle bound state solutions we con-
sider a state with two down spins

m,n

Wi o KU (m — ). ©)

Because of translational invariance the two-particle wave
function y,, , can be written as above, with K denoting the
center of mass momentum of the pair of magnons. Looking
for eigenstates of the Hamiltonian (1) of the form above,
leads to an effective Schrodinger equation for f(m — n).
Requiring a bound solution (in which f decays at large
argument) we can check that such a solution exists for a
given K and obtain its energy, which lies above the two-
particle continuum. For J, = 0 the dispersion of the bound
state can be easily obtained analytically and is given by
€,(K,J, = 0) = 2B — J; sin*(K/2) [1], while for finite J,
we calculate the dispersion numerically [16].

To understand how the two-magnon bound states are
revealed in the transverse correlations, we consider for
simplicity the limit of a single down spin in the otherwise
polarized ground state of length N. This state is a caricature
of the many body ground state at a low density of spin flips
ngg = 1/2—M =1/N <1 close to but below the satu-
ration field. Note that since the minimum of the single
magnon dispersion is at momentum z for J; > 0 and
J,/J; < 1/4, the magnon present in the ground state will
occupy that momentum. Hence, we take |0) = |1,) in
Eq. (2). Now there is a contribution when (m| = (2¢| in
Eq. (2), which, by momentum conservation, gives a matrix
element |(2x|St|1.)* < Sgsir/N [16] (physically the
1/N factor appears because the spin flip created by S;
has only a small probability to occur near the spin flip
already present in the ground state). This implies the
appearance of response at energy @ = €,(k + ) with an
weight proportional to 1/N = 1/2 — M [16]. Plotting the
expected dispersion due to the two-magnon bound state on
top of the dynamical correlations obtained numerically
[dashed line in Figs. 4(b) and 4(d)] we find an excellent
agreement between the two [16]. We note that a similar
argument has been used to explain the appearance of a
bound state in the structure factor of a frustrated ladder
upon slight magnetization of a gapped phase in Ref. [32].

Note that as opposed to the low magnetization
regime, where the splitting between the modes at k = 0
vanishes at J, — J, ., in the high magnetization regime the
splitting between the modes remains finite, and from the
aforementioned analysis is explicitly determined by
the two-magnon bound state at K =z [33,34] to be
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2A =J,=3J,+J3/(J; —J,) [16]. This highlights the
fact that the nature and the origin of the high energy mode
in the low and high magnetization regimes is very different.
While in the low-magnetization regime the high energy
mode describes a continuum of excitations and the low
energy mode is a sharp collective excitation of spinons [8],
in the high magnetization regime the situation is reversed:
the low energy modes in the response form a continuum of
psinon excitations (a nomenclature introduced in Ref. [35])
while the high energy mode is a sharp two-magnon bound
state.

Discussion.—Our study is complementary to a prior body
of work on spectral functions of one dimensional systems
beyond conventional Luttinger liquid theory [36,37], which
discussed Heisenberg and related chains but focused on zero
magnetic field. Other studies in small nonzero magnetic
fields were motivated in part by electron spin resonance. The
pioneering work of Oshikawa and Affleck noted the
irrelevance of backscattering at zero field, and argued that
the Larmor theorem shows that it has a negligible effect in
small fields [22]. A later study by Karimi and Affleck [38]
included nonlinear terms in the fermion dispersion, as well
as the effect of the longitudinal part of the backscattering
interaction, but not the transverse interactions; hence this
misses the formation of the bound state at k — 0.

We are optimistic that these results might be observed in
experiment. Indeed there are a number of recent studies that
observed spectral features interpreted as Bethe string states
via high-resolution terahertz spectroscopy [39] and inelas-
tic neutron scattering [40]. Earlier neutron scattering
studies in nonzero magnetic field [41,42] also contain
hints of the interaction signatures discussed here. In an
ultracold atomic realization of a Heisenberg chain, bound
states have been observed by quite different real time
protocols [43,44]. The implications of our results for the
spectral features at partial polarization to such real time
experiments is an interesting direction for future studies.
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