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We study the transverse dynamical susceptibility of an antiferromagnetic spin-1=2 chain in the presence
of a longitudinal Zeeman field. In the low magnetization regime in the gapless phase, we show that the
marginally irrelevant backscattering interaction between the spinons creates a nonzero gap between two
branches of excitations at small momentum. We further demonstrate how this gap varies upon introducing a
second neighbor antiferromagnetic interaction, vanishing in the limit of a noninteracting “spinon gas.” In
the high magnetization regime, as the Zeeman field approaches the saturation value, we uncover the
appearance of two-magnon bound states in the transverse susceptibility. This bound state feature
generalizes the one arising from string states in the Bethe ansatz solution of the integrable case. Our
results are based on numerically accurate, unbiased matrix-product-state techniques as well as analytic
approximations.
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Introduction.—The nearest-neighbor antiferromagnetic
spin-1=2 chain [1] serves as a paradigmatic model of
strongly correlated systems. In particular, it is an estab-
lished setting in which the existence of fractionalized
quasiparticles, deemed spinons, is incontrovertible.
Spinons are the elementary excitations for magnetic fields
below the critical saturation field, above which the ground
state becomes fully polarized. In the saturated regime, the
elementary excitations are instead simple (not fractional-
ized) magnons, or spin waves. A quasiparticle is, by
definition, an excitation which, when isolated, propagates
freely with minimal decay. However, in general, when
multiple quasiparticles are present, they interact, and in a
strongly correlated system, they interact strongly. Such
interactions are present both for fractionalized and ordinary
excitations, but impact the physics particularly strongly in
the former case, as any local operator creates in this case
more than one quasiparticle.
In this manuscript, we focus on dynamical signatures,

i.e., features in the frequency-dependent spin correlations,
of such quasiparticle interactions, in the presence of a
magnetic field. Extensive numerical studies [2–7] of the
dynamical correlation functions have been carried out in
the Heisenberg limit, for which a Bethe ansatz solution
exists. Consequently, the general structure of the correla-
tions, and their deconstruction in terms of spinons, is
already well established. Here, we go beyond the integrable
limit, and add to this broad picture a detailed analytical
theory of the effects of quasiparticle interactions, in both
the low and high magnetic field (magnetization) regimes.
Specifically, in the low magnetization case, we employ a
continuum field theory in which spinon interactions are

parametrized by the marginally irrelevant current-current
backscattering coupling g. We show that this coupling
creates a gap between two branches of excitations at zero
momentum, which is equal to gM, where M is the
magnetization, thus directly revealing the strength of
interactions between spinons. We note that the fermionic
field theory used here and the results we obtain for it have a
direct parallel to a recent study by two of us on two
dimensional spin liquids with a spinon Fermi surface [8].
The results herein thus serve in part as a proof of principle
for the two dimensional case, with the major advantage
that here the results are vetted by unbiased numerical
simulations.
In the regime of large magnetization, the natural qua-

siparticles are spin flip magnons (spins antialigned with the
field), leading to a dominant single branch in the dynamical
susceptibility. We show, however, that two-magnon bound
states appear as an additional higher energy branch due to
interaction of the “probe” magnon with those already
present in the ground state. The spectral weight of this
higher energy branch is thus directly proportional to the
strength of interactions, as well as the density of ground
state magnons. Previous studies of the Heisenberg chain
[2,3] have indeed identified the Bethe ansatz string to be
related to two-magnon bound states in the high magneti-
zation regime. However, here we show that this is not
unique to the integrable chain limit, and provide a simple
understanding which does not require the specialized Bethe
ansatz formalism.
We test these analytical predictions by comparison to

computations using numerical matrix-product-state
(MPS) techniques [9]. In the small magnetization regime,
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we tune the spinon interaction g by including a second-
neighbor exchange coupling J2, while in the large mag-
netization regime, magnon-magnon interactions are tuned
by introducing magnetic anisotropy of the XXZ form. In
both limits matrix-product-state calculations compare
excellently with the theoretical predictions as the
respective parameters controlling the density of quasi-
particles and the strength of interactions between them are
varied.
Model.—We consider a spin-1=2 chain, with antiferro-

magnetic nearest-neighbor coupling, J1 > 0, and next-
nearest-neighbor coupling J2 in longitudinal Zeeman field
B. The Hamiltonian of the system is given by

H ¼
X
i

J1ðS⃗i · S⃗iþ1Þη þ J2ðS⃗i · S⃗iþ2Þη − BSzi ; ð1Þ

where S⃗i is a spin-1=2 operator on site i. We allow
for anisotropic interactions and denote ðS⃗i · S⃗jÞη≡
Sxi S

x
j þ Syi S

y
j þ ηSziS

z
j. In the isotropic case, η ¼ 1, and

for B ¼ 0, the system undergoes a phase transition at
J2 ¼ J2;c ≈ 0.241J1, between a gapless and a dimerized
phase [10,11]. In the following we will consider the regime
J2 ≤ J2;c in which the system remains gapless.
We study the transverse susceptibility χ�ðk;ωÞ imagi-

nary part of which determines dynamical structure factor
Sþ−ðk;ωÞ of the dynamical correlations at zero temper-
ature, namely

Sþ−ðk;ωÞ ¼
Z

∞

−∞
dteiωt

X∞
j¼−∞

e−ikjhSþj ðtÞS−0 ð0Þi

¼
X
m

jhmjS−k j0ij2δðω − EmÞ; ð2Þ

where j0i denotes the ground state of the system.
Our numerical calculations are carried out using the

ITensor library [12]. To obtain the spectral function (2) we
first obtain the ground state of the system using density
matrix renormalization group (DMRG) [13]. We then
perform time evolution up to times tmax ¼ 80J−11 using
time-evolution block-decimation (TEBD) [14]. Our analy-
sis is done on finite systems of length N ¼ 400 sites with
open boundary conditions [15,16].
Low magnetization.—In the discussion below we focus

on the isotropic case, i.e., η ¼ 1. The low energy effective
description of the J1–J2 chain is given by an SUð2Þ1 Wess-
Zumino-Witten conformal field theory. As discussed in
Refs. [18–20], this theory has a convenient fermion
representation which is faithful and simple for the
Hamiltonian and spin currents we study here. We denote
the right(left) moving fermionic spinons which constitute
the low energy theory by ψRðLÞ;s, where s ¼ ↑;↓ is the spin.
The respective spin current is given by J⃗R ¼ 1

2
ψ†
Rσ⃗ψR,

where ψR denotes two-component spinor ψR ¼
ðψR↑;ψR↓ÞT (and similarly for ψL). The low energy

Hamiltonian is given by H ¼ H0 þ V, where H0 corres-
ponds to the noninteracting part

H0 ¼ v
Z

dx½ψ†
Rð−i∂xÞψR þ ψ†

Lði∂xÞψL� ð3Þ

(here v is the Fermi velocity), and V is the backscattering
interaction

V ¼ −g
Z

dx½JzRJzL þ 1

2
JþRJ

−
L þ 1

2
J−RJ

þ
L �: ð4Þ

The HamiltonianH0 þ V appears as an interacting fermion
problem for the spinons, an approach we will follow below.
In a standard bosonization framework g gives rise to a
nonlinear cosine term. In a renormalization group treat-
ment, g > 0 is marginally irrelevant and as a function of its
energy argument E flows logarithmically to zero at low
energies [18,21,22], producing subtle logarithmic modifi-
cations to the temperature dependence of thermodynamic
quantities such as susceptibility and specific heat [23–27].
The bare value of g depends on J2 and changes sign at the
critical value, i.e., g ∼ cðJ2;c − J2Þ with c > 0 [11].
As we now show, the consequences of the nonzero g > 0

are more dramatic and directly evident in the spectral
features in the presence of a Zeeman field. A longitudinal
Zeeman field couples to the magnetization M, which is the
sum of the right and left spin currents

HB ¼ −B
Z

dxM; M ¼ JzR þ JzL: ð5Þ

In the presence of the Zeeman field, renormalization group
flow of g toward zero is cut off at E ¼ B [16,22,28] and
moreover distinguishes the effects of the diagonal and
spin flip components of the interactions in Eq. (4).
Consequently, we must consider them separately and
carefully. First, let us take g ¼ 0 and introduce the
Zeeman field B. In the spinon framework, the Zeeman
field simply induces a spin splitting of the two spinon
bands. The dynamical susceptibility is then

χ�0 ðk;ωÞ ¼
M þ χ0vk
ω − B − vk

þ M − χ0vk
ω − Bþ vk

→
k→0

2M
ω − B

; ð6Þ

where χ0 ¼ 1=ð2πvÞ is the noninteracting uniform suscep-
tibility. There are two branches with linear dispersion and
constant spectral weight, as shown by the dashed lines in
Fig. 1. Note that the form at k ¼ 0 is more robust than for
k > 0, and is in fact exact provided the Hamiltonian in the
absence of Zeeman field has SU(2) symmetry. This
“Larmor theorem” [22] follows simply from the fact that
in this case ½Sþtot; H� ¼ BSþtot, where Sþtot ¼

P
i S

þ
i .

Now consider the interaction g. Importantly, response at
the energy of the order of the Zeeman energy B, see (6), is
determined by g ¼ gðBÞ ≠ 0 in (4) which is small and
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finite. The diagonal JzRJ
z
L term in Eq. (4) leads forM > 0 to

a simple increase of the spin splitting of the spinon bands
by the energy Δ ¼ gM=2. Consequently, the full spin
splitting is Bþ Δ and naively the poles in Eq. (6) would
be shifted vertically to Bþ Δ� vk. This clearly violates
the Larmor theorem. The contradiction is resolved
by including the spin flip part of the interaction
JþRJ

−
L þ H:c:, which results in the formation of a bound

state between the particle and hole (exciton) created by the
spin operator Sþ. The two effects together are captured by a
random phase approximation summation of ladder dia-
grams for the susceptibility, as described in [16], leading to
the result

χ�ðk;ωÞ ¼ M

�
AþðkÞ

ω − ωþðkÞ
þ A−ðkÞ
ω − ω−ðkÞ

�
;

A�ðkÞ ¼ 1� ṽ2k2 − BΔ
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ṽ2k2

p ;

ω�ðkÞ ¼ Bþ Δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ṽ2k2

p
: ð7Þ

Here ṽ ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2χ20=4

p
. This is plotted schematically in

Fig. 1. The downward branch ω−ðkÞ has finite residue
which approaches 2M for k → 0 and ω−ðkÞ → B, satisfy-
ing the Larmor theorem. The spectral weight of the upward
branch ωþðkÞ vanishes quadratically AþðkÞ ∝ ṽ2k2 for
k → 0, when ωþðkÞ → Bþ 2Δ. Both branches scale lin-
early with ṽk for sufficiently large momenta ṽk ≫ Δ.
Within our low energy approximation the k ¼ 0 gap
between the two branches is given by 2Δ ¼
ωþð0Þ − ω−ð0Þ ¼ gM. Higher order in g and B contribu-
tions can modify it.
We now compare our analytical analysis to numerical

results, which are consistent with earlier studies of the
Heisenberg chain [3,5–7]. These works observed a finite
gap, but did not address its origin and systematics. The
dynamical correlations obtained numerically are shown in
Fig. 2. Since the spectral weight of the upper branch
vanishes at k ¼ 0, to obtain the gap 2Δ we extract the
dispersion at small momenta [see Figs. 2(b) and 2(d)],
fitting the two branches to the form expected from Eq. (7),

and extrapolating to k ¼ 0. The resulting gap versus
magnetization, as J2 is varied, is shown in Fig. 3(a). We
account for higher order M2 corrections to Δ by fitting the
curves shown in Fig. 3 to the form 2Δ ¼ gM þ αM2, and
extract gðJ2Þ which is plotted in Fig. 3(b). Additional data
for ferromagnetic J2 < 0, which enhances g beyond that of
the nearest-neighbor limit, is given in [16]. Extrapolating
gðJ2Þ to zero, we find that g vanishes at J2=J1 ¼ 0.239�
0.005 in agreement with the critical value J2;c=J1 ≈ 0.241
[11] up to numerical uncertainties. Fixed momentum cuts
of the Sþ−ðk;ωÞ [Figs. 2(b) and 2(d)] show that, as
predicted by Eq. (7), the spectral weight of the upper
branch is suppressed at small k for the Heisenberg case (the
generic situation), while the two branches have approx-
imately equal weight in the free spinon limit (J2 ≈ J2;c).
High magnetization.—We next consider the limit of a

nearly polarized chain with low density of down spins, i.e.,
when the field is close to saturation value Bsat ¼ ð1þ ηÞJ1.
In this limit it is useful to consider the mapping of spins to
spinless fermions defined by S−i ¼ Q

j<ið−1Þnjc†i and

(a) (b)

(c) (d)

FIG. 2. Dynamical correlations Sþ−ðk;ωÞ obtained numerically
for Zeeman field of B=J1 ¼ 1. (a),(b) J2 ¼ 0, (c),(d)
J2=J1 ¼ 0.24. In (a),(c) the red dashed line indicates a fit to
the analytic expression in Eq. (7) valid in the vicinity of k ¼ 0. In
(b),(d) cuts of the dynamical correlations are shown for fixed
values of k. Finite times used in the numerical time evolution lead
to broadening of the spectral features beyond their intrinsic line-
shape, as is apparent, e.g., for the response at k ¼ 0.

(a) (b)

FIG. 3. (a) The splitting at k ¼ 0 as function of the magneti-
zation for different values of J2. (b) The backscattering inter-
action g, extracted from 2Δ vs M in (a).

(a) (b)

FIG. 1. Transverse susceptibility χ�ðk;ωÞ obtained in the small
k, and low magnetization regime. (a) The dispersion ω�ðkÞ is
given by the green (brown) solid line for gM=B ¼ 1=2 and green
(brown) dashed line for g ¼ 0. (b) The intensity of the upper
(lower) branch A� is the green (brown) solid line for gM=B ¼
1=2 and green (brown) dashed line for g ¼ 0.

PHYSICAL REVIEW LETTERS 125, 187201 (2020)

187201-3

The Trial Version



Sz ¼ 1=2 − ni, where c†i denotes the fermionic creation
operator on site i and ni ¼ c†i ci. We focus on the case with
J2 ¼ 0 first. The Hamiltonian (1) maps to

H¼
X
i

J1
2
ðc†i ciþ1þH:c:ÞþηJ1niniþ1þðB−ηJ1Þni: ð8Þ

At the saturation field B ¼ Bsat, the ground state is fully
polarized, j0i ¼ jFMi, and the only contribution to
the dynamical susceptibility is the one-magnon state
with momentum k, j1ki ¼ ð1= ffiffiffiffi

N
p ÞPm eikmS−mjFMi.

Consequently, the transverse correlations feature a sharp
cosine mode at ω ¼ J1ð1þ cos kÞ as can be seen in
Fig. 4(a). In the isotropic case, i.e., for η ¼ 1, as the field
is lowered and the density of spin down particles increases,
we observe a splitting of the cosine mode as well as an
appearance of a new mode at higher energies ω > 2J1 [see
Fig. 4(b)]. To understand this response it is useful to
compare to the limit of noninteracting fermions η ¼ 0. The
dynamical correlations obtained in this limit are plotted in
Fig. 4(c). It is seen that the low energy response at ω < 2J1
is not altered significantly. Indeed, as shown in [16], the
splitting of the lower mode can be understood in the
noninteracting limit as originating from single particle
excitations above the Fermi sea [29]. The mode at higher
energies, however, is completely gone for η ¼ 0, indicating
that its presence comes purely from interaction effects. In
fact, for the Heisenberg chain, it is known that this mode

comes from Bethe ansatz string solutions, which can be
identified as two-magnon bound states close to the satu-
ration field [2,3]. Here, we show that it is a generic feature
of the interacting magnons which exists beyond the
integrable limit.
To examine two-particle bound state solutions we con-

sider a state with two down spins

j2Ki ¼
X
m;n

ψm;nS−mS−n jFMi;

ψm;n ∝ eiK½ðmþnÞ=2�fðm − nÞ: ð9Þ

Because of translational invariance the two-particle wave
function ψm;n can be written as above, with K denoting the
center of mass momentum of the pair of magnons. Looking
for eigenstates of the Hamiltonian (1) of the form above,
leads to an effective Schrodinger equation for fðm − nÞ.
Requiring a bound solution (in which f decays at large
argument) we can check that such a solution exists for a
given K and obtain its energy, which lies above the two-
particle continuum. For J2 ¼ 0 the dispersion of the bound
state can be easily obtained analytically and is given by
ϵ2ðK; J2 ¼ 0Þ ¼ 2B − J1 sin2ðK=2Þ [1], while for finite J2
we calculate the dispersion numerically [16].
To understand how the two-magnon bound states are

revealed in the transverse correlations, we consider for
simplicity the limit of a single down spin in the otherwise
polarized ground state of length N. This state is a caricature
of the many body ground state at a low density of spin flips
nSF ¼ 1=2 −M ¼ 1=N ≪ 1 close to but below the satu-
ration field. Note that since the minimum of the single
magnon dispersion is at momentum π for J1 > 0 and
J2=J1 < 1=4, the magnon present in the ground state will
occupy that momentum. Hence, we take j0i ¼ j1πi in
Eq. (2). Now there is a contribution when hmj ¼ h2Kj in
Eq. (2), which, by momentum conservation, gives a matrix
element jh2KjS−k j1πij2 ∝ δK;kþπ=N [16] (physically the
1=N factor appears because the spin flip created by S−k
has only a small probability to occur near the spin flip
already present in the ground state). This implies the
appearance of response at energy ω ¼ ϵ2ðkþ πÞ with an
weight proportional to 1=N ¼ 1=2 −M [16]. Plotting the
expected dispersion due to the two-magnon bound state on
top of the dynamical correlations obtained numerically
[dashed line in Figs. 4(b) and 4(d)] we find an excellent
agreement between the two [16]. We note that a similar
argument has been used to explain the appearance of a
bound state in the structure factor of a frustrated ladder
upon slight magnetization of a gapped phase in Ref. [32].
Note that as opposed to the low magnetization

regime, where the splitting between the modes at k ¼ 0
vanishes at J2 → J2;c, in the high magnetization regime the
splitting between the modes remains finite, and from the
aforementioned analysis is explicitly determined by
the two-magnon bound state at K ¼ π [33,34] to be

(a) (b)

(c) (d)

FIG. 4. Dynamical correlations Sþ−ðk;ωÞ obtained using den-
sity matrix renormalization group and time evolution in the high
magnetization regime. In (a)–(c) we set J2 ¼ 0. (a) Saturated
chain, i.e., M ¼ 1=2, a pure cosine dispersion is observed.
(b) M ¼ 0.45 for an isotropic chain η ¼ 1, (c) M ¼ 0.45 in
the noninteracting limit η ¼ 0. (d) Isotropic chain η ¼ 1 for
J2=J1 ¼ 0.24. In (b),(d) the inset shows the range ω > 2J1 of the
response function on a different color scale that allows for better
visibility of the high energy mode. The red dashed line corre-
sponds to the two-magnon bound state dispersion ϵ2ðkþ πÞ.
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2Δ ¼ J1 − 3J2 þ J22=ðJ1 − J2Þ [16]. This highlights the
fact that the nature and the origin of the high energy mode
in the low and high magnetization regimes is very different.
While in the low-magnetization regime the high energy
mode describes a continuum of excitations and the low
energy mode is a sharp collective excitation of spinons [8],
in the high magnetization regime the situation is reversed:
the low energy modes in the response form a continuum of
psinon excitations (a nomenclature introduced in Ref. [35])
while the high energy mode is a sharp two-magnon bound
state.
Discussion.—Our study is complementary to a prior body

of work on spectral functions of one dimensional systems
beyond conventional Luttinger liquid theory [36,37], which
discussed Heisenberg and related chains but focused on zero
magnetic field. Other studies in small nonzero magnetic
fields were motivated in part by electron spin resonance. The
pioneering work of Oshikawa and Affleck noted the
irrelevance of backscattering at zero field, and argued that
the Larmor theorem shows that it has a negligible effect in
small fields [22]. A later study by Karimi and Affleck [38]
included nonlinear terms in the fermion dispersion, as well
as the effect of the longitudinal part of the backscattering
interaction, but not the transverse interactions; hence this
misses the formation of the bound state at k → 0.
We are optimistic that these results might be observed in

experiment. Indeed there are a number of recent studies that
observed spectral features interpreted as Bethe string states
via high-resolution terahertz spectroscopy [39] and inelas-
tic neutron scattering [40]. Earlier neutron scattering
studies in nonzero magnetic field [41,42] also contain
hints of the interaction signatures discussed here. In an
ultracold atomic realization of a Heisenberg chain, bound
states have been observed by quite different real time
protocols [43,44]. The implications of our results for the
spectral features at partial polarization to such real time
experiments is an interesting direction for future studies.
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