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We propose and investigate a simple one-dimensional model for a single-channel quantum wire hosting
electrons that interact repulsively and are subject to a significant spin-orbit interaction. We show that an external
Zeeman magnetic field, applied at the right angle to the Rashba spin-orbit axis, drives the wire into a correlated
spin-density wave state with gapped spin and gapless charge excitations. By computing the ground-state
degeneracies of the model with either (anti)periodic or open boundary conditions, we conclude that the correlated
spin-density state realizes a gapless symmetry-protected topological phase, as the ground state is unique in the
ring geometry while it is twofold degenerate in the wire with open boundaries. Microscopically the twofold
degeneracy is found to be protected by the conservation of the magnetization parity. Open boundaries induce
localized zero-energy (midgap) states which are described, at the special Luther-Emery point of the model,
by Majorana fermions. We find that spin densities at the open ends of the wire exhibit unusual long-ranged
correlations despite the fact that all correlations in the bulk of the wire decay in a power-law or exponential
fashion. Our study exposes the crucial importance of the long-ranged string operator needed to implement the
correct commutation relations between spin densities at different points in the wire. Along the way we rederive
the low-energy theory of Galilean-invariant electron systems in terms of current operators.
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I. INTRODUCTION

The search for condensed matter realization of Majorana
fermions has been at the center of intense theoretical and
experimental efforts in the last decade. It is strongly motivated
by the promise of topological quantum computing as well as
by its fundamental importance to our current understanding
of numerous topological phases of matter [1,2]. Topological
superconducting wires represent one of the most promising
platforms for realizing Majorana end states [3–6]. By now,
several experimental groups have reported transport and STM
tunneling data consistent with Majorana physics [7–11], and
many more studies are currently under way.

A topological superconducting wire is obtained by bring-
ing a semiconducting quantum wire with significant spin-orbit
interaction into close contact with an s-wave superconductor
and then applying an external (Zeeman) magnetic field in the
direction orthogonal to the Rashba spin-orbit axis of the wire
[5,6,12]. Provided that the chemical potential lies within the
gap induced by the Zeeman field, the wire effectively realizes
a one-dimensional p-wave superconductor which features lo-
calized Majorana states at the open ends of the wire (more
generally, at the boundaries between topological and trivial
phases). A single-channel topological superconducting wire
has been generalized to more complex/other geometries such
as multichannel wires [13,14], wires with periodic modula-
tion of the spin-orbit potential [15], and chains of magnetic
adatoms on the surface of a superconductor [16,17]. Realistic
modeling of semiconductor-superconductor heterostructures
has been developed [18,19].

Electron interactions are very important in zero- and
one-dimensional systems [20,21] and their effect on the topo-
logical properties of the suggested quantum wire setup was
investigated early on [22–24], and some exact/rigorous results
were obtained [25,26]. In parallel, a search for strongly inter-
acting wires with algebraic superconducting correlations [27]
which would remove the need for close proximity of the wire
to the macroscopic superconductor has begun. Kitaev’s toy
p-wave superconductor model is characterized by the twofold
degeneracy of the ground states with different fermion pari-
ties, i.e., between the ground states with an even and an odd
number of fermions in the wire with open ends [1,28]. This
degeneracy makes it clear that in a wire with a fixed total
number of electrons the conservation of the subband parity
acquires crucial importance. One-dimensional models with
superconducting interband interactions conserving subband
parity [27,29–33] are found to possess twofold degeneracy in
their ground state and thus represent one-dimensional topo-
logical states with exponentially localized Majorana modes
at their open ends. Interestingly, their topological nature is
preserved despite the presence of the critical center-of-mass
fluctuations in the bulk.

Subband parity, in the form of a specific magnetization par-
ity, plays the key role in our work as well. Unlike most of the
previous studies, however, we present a physical realization
of the parity-conserving system in a realistic quantum wire
with purely repulsive electron-electron interaction. Our key
finding is that localized Majorana end states can be realized
in a simpler setting which does not require proximity to an
s-wave superconductor. All that is needed is a single-channel
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quantum wire with significant spin-orbit and strong repulsive
interactions between electrons. Applying an external mag-
netic field in the direction orthogonal to the spin-orbit axis
of the wire drives its many-electron state into a correlated
spin-density wave (SDW) phase with a finite spin gap in the
bulk and nontrivial magnetic correlations [34] and transport
properties [35,36]. No superconductivity or fine tuning of
the chemical potential is required. We show below that these
Majorana zero-energy states live in the particle-hole sector of
the many-body problem and can be thought of as spin density
operators localized near the wire’s ends.

Our paper is rather technical and is based on the bosoniza-
tion technique as developed in Refs. [37–40] and designed
to account for the periodic, antiperiodic, and open boundary
conditions. It is organized as follows. In Sec. II we formulate
the Hamiltonian of the problem and show, with the help of
renormalization group (RG) arguments, that the wire flows
to strong coupling describing an interesting correlated SDW
state. Focusing first on the wire in the ring geometry, which
depending on the parity of the magnetization corresponds
to either periodic boundary conditions (PBC) or antiperiodic
boundary conditions (anti-PBC), we show that its ground
state is unique. In Sec. III we consider the wire with open
boundary conditions (OBC) and derive its effective fermion
Hamiltonian at the special Luther-Emery point. The effective
Hamiltonian is solved in Sec. IV, where we find that the
ground state is twofold degenerate. The physical importance
of the magnetization parity and the physical manifestations
of the discovered Majorana modes are analyzed in Sec. V.
Our findings and physical insights derived from them are
summarized in Sec. VI. Numerous technical details of our
calculations are described in three extended appendices.

II. HAMILTONIAN

We consider a single-channel quantum wire, the Hamilto-
nian of which consists of three main contributions, Hwire =
He + Vso + Vz. Here He = He,0 + Hint describes an ideal
quantum wire,

He,0 =
∑

s

∫
dx �†

s (x)

(
− ∂2

x

2m
− μ

)
�s(x), (1a)

Hint = 1

2

∑
s,s′

∫
dxdx′ U (x − x′)�†

s (x)�†
s′ (x′)�s′ (x′)�s(x),

(1b)

where He,0 is the kinetic energy with chemical potential
μ, U (x) is the screened Coulomb electron-electron (e-e) in-
teraction, and s =↑,↓ is the spin index. The electrons are
perturbed by the spin-orbit interaction

Vso =
∑
s,s′

∫
dx �†

s (x)
(− iαRσ

y
ss′∂x

)
�s′ (x) (2)

as well as Zeeman magnetic field which we take to be directed
along the ẑ axis, �B = Bẑ,

Vz =
∑
s,s′

∫
dx �†

s (x)
(
−gμB

2
σ z

ss′B
)
�s′ (x). (3)

1

2

kx
RkF
B

FIG. 1. Schematics of the Cooper scattering process. Spin-orbit
interaction is directed along the ŷ axis; Zeeman magnetic field is
applied along the ẑ axis. Two electrons in, say, subband 1 (repre-
sented by black points) are scattered into the opposite Fermi points
in subband 2 (shown by green points). In the conjugate process two
electrons initially in band 2 are scattered into band 1.

The spin-orbit interaction (2) is obtained from the standard
Rashba interaction, αRẑ · �p × �σ , by replacing the transverse
component of the electron momentum �p by its zero expecta-
tion value, py → 〈py〉 = 0. Corrections to this approximations
are known to be very small [35,36].

Obviously Hwire does not conserve spin—this fact is of
crucial importance for our investigation. The key consequence
of this can be understood by considering a limit of strong
magnetic field μ 	 b ≡ gμBB 	 2αRkF , where kF denotes
the Fermi momentum of the unperturbed Hamiltonian He,0,
Eq. (1a). In this limit Hwire describes the standard problem
of a partially magnetized quantum wire with two Zeeman-
split subbands. In the absence of the spin-orbit interaction
no scattering processes between these subbands are possi-
ble, simply because their spin wave functions are described
by the orthogonal spinors, spin up (↑) and spin down (↓)
states. This is just the consequence of the spin conservation.
However, any finite spin-orbit interaction αR �= 0 breaks spin
conservation and immediately allows for a new scattering
process: the Cooper scattering [41]. This momentum- and
energy-conserving process describes scattering of the pair of
electrons at ±kF Fermi points of, say, the majority subband
(↑) into a similar pair of electrons in the minority (↓) subband,
and vice versa, see Fig. 1. That is, a pair of electrons with
spin Sz = +1 is converted into that with spin Sz = −1 and
vice versa. This superconducting, or Josephson-like scattering
(hence the name Cooper), conserves fermion parity of each
of the subbands and plays a crucial role in the following
discussion.

Such a two-subband description can be straightforwardly
extended to the physically most important regime of com-
parable Zeeman and spin-orbit energies, b ≈ 2αRkF , see
for example Ref. [36]. We, however, will follow a less
cumbersome approach, based on the chiral rotation trick, as
detailed below. The end result of these complimentary calcu-
lations is the same [36].
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A. Spin current formulation of the quantum wire with periodic
boundary conditions

1. Chiral fermions

Our approach to the problem consists in treating perturba-
tions Vso and Vz on equal footing. Initially, we turn off the
perturbations Vso and Vz. We express fermion fields �s(x) in
terms of low-energy modes �Rs and �Ls that live near +kF

and −kF Fermi points, correspondingly,

�s(x) = �Rs(x)eikF x + �Ls(x)e−ikF x. (4)

The Fermi-momentum kF = √
2mμ is determined by the

electron density in the usual way, kF = πN0
s /L, where L is

the length of the wire and N0
s = N0

R,s + N0
L,s = 2N0

R,s is the
total number of fermions of spin projection s. It is written
in terms of the numbers N0

R/L,s of chiral fermions in the
wire. The choice of N0

R,s = N0
L,s made here corresponds to

considering the state with no charge current in the ground
state, j0

ρ =∑s(N
0
R,s − N0

L,s) = 0. In the absence of the exter-
nal magnetic field the ground state magnetization is zero as
well, M0 = (N0

↑ − N0
↓ )/2 = 0.

Consider the wire in the closed loop geometry, with the
chiral fermions (4) obeying the periodic boundary conditions
(PBC) such that �R/L,s(0) = �R/L,s(L). Note that eikF L = 1
due to our choice kF = 2πN0

R,s/L explained below (4).
In terms of the chiral fermion fields �Rs and �Ls, the

kinetic energy is simply

He,0 =
∑

s

∫
dx(−ivF �

†
Rs∂x�Rs + ivF �

†
Ls∂x�Ls), (5)

where vF = kF /m is the Fermi velocity. It is useful at this
stage to write the kinetic energy as a sum of commuting
charge and spin parts (Sugawara construction), He,0 = H0

ρ +
H0

σ , where

H0
ρ = πvF

2

∫
dx
(
J2

R + J2
L

)
, (6)

H0
σ = 2πvF

3

∑
a=x,y,z

∫
dx
(
Ja

RJa
R + Ja

L Ja
L

)
. (7)

Here we introduced normal-ordered charge currents

JR =
∑

s

:�†
Rs�Rs : , JL =

∑
s

:�†
Ls�Ls : , (8)

and spin currents (a = x, y, z)

Ja
R =

∑
s,s′

:�†
Rs

σ a
ss′

2
�Rs′ : , Ja

L =
∑
s,s′

:�†
Ls

σ a
ss′

2
�Ls′ : . (9)

As described in Appendix A, the interaction part of the
Hamiltonian (1a) separates into charge and spin parts as well,
Hint = Hint,ρ + Hint,σ , where

Hint,ρ = 1

4
(2U0 − U2kF )

∫
dx (JR + JL )2, (10a)

Hint,σ = −g
∫

dx �JR · �JL. (10b)

Here Uq denotes the qth component of the Fourier transform
of the e-e interaction U (x), and g = 2U2kF denotes the magni-
tude of the spin backscattering interaction.

We now turn on the perturbations Vso and Vz. The Zeeman
magnetic field b = gμBB couples to the sum of spin currents
(magnetization)

Vz = −b
∫

dx
(
Jz

R + Jz
L

)
, (11)

while the spin-orbit interaction couples to their difference,
since the Rashba term (2) is odd under spatial inversion (x →
−x) which interchanges right- and left-moving excitations
[35],

Vso = 2αRkF

∫
dx
(
Jy

R − Jy
L

)
. (12)

2. Chiral rotations

It is crucial to notice now that H0
σ possesses an extended

SU (2) × SU (2) symmetry of independent rotations of the
right- and left-moving currents. Our solution of the problem
[36,42] exploits this extended symmetry. Namely, we next
rotate �JR and �JL about the x̂ axis in opposite directions so as to
bring “vectorial” perturbation V = Vso + Vz into the standard
Zeeman form, with total field h =

√
b2 + (2αRkF )2 along the

ẑ axis

V = −h
∫

dx
(
Mz

R + Mz
L

)
. (13)

The required chiral rotation is given by

�JR = Rx(βR) �MR, �JL = Rx(βL ) �ML, (14)

where the rotation matrix Rx is

Rx(β ) =
(1 0 0

0 cos β − sin β

0 sin β cos β

)
. (15)

The rotation angles are given by

βR = −βL = β = arctan(2αRkF /b). (16)

These rotations do not affect H0
σ (7), which retains its form in

the rotated M basis

H0
σ = 2πvF

3

∑
a=x,y,z

∫
dx
(
Ma

RMa
R + Ma

LMa
L

)
, (17)

where vF here is understood as the one including the shift
−U2kF /3 found in (A16).

In terms of the right- and left-moving fermions, the ro-
tation (14) corresponds to the rotation of spinors �R/L =
(�R/L↑, �R/L↓)T and ψR/L = (ψR/L↑, ψR/L↓)T ,

�R = e−iβσ x/2ψR, �L = eiβσ x/2ψL. (18)

This observation makes clear that the charge currents (8) do
not transform under the rotations (14) and (18)—the Hamil-
tonian of the charge sector H0

ρ + Hint,ρ is not affected. The

new fermions parametrize the rotated currents �MR/L in the
same way as the old ones parametrize the currents �JR/L . For
example, under the right rotation Rx(β )

�JR = :�†
R

�σ
2

�R : → �MR = :ψ†
R

�σ
2

ψR : . (19)
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The interaction in the spin sector Hint,σ (10b) is strongly
modified by the rotation and changes to

Hint,σ = −g
∫

dx �MRRT
x (βR)Rx(βL ) �ML

= −g
∫

dx
[
Mx

RMx
L + cos χ

(
My

RMy
L + Mz

RMz
L

)
+ sin χ

(
My

RMz
L − Mz

RMy
L

)]
, (20)

where χ = βR − βL = 2β is the relative rotation angle.
Observe that the net field h, (13), points along the ẑ axis.

The magnetic field induces incommensurate fluctuations in
the system which make some of the terms in (20) oscillate fast
with the coordinate. It is easy to see that h can be absorbed into
the kinetic energy of fermions ψR/L by a simple x-dependent
transformation

ψR → eitϕxσ z/2ψR, ψL → e−itϕxσ z/2ψL, tϕ = h/vF . (21)

As a result of this shift the transverse components Mx
R/L ±

iMy
R/L = M±

R/L of the rotated spin current acquire oscillat-
ing position-dependent factors, M+

R → M+
R e−itϕx and M+

L →
M+

L eitϕx. The immediate consequence of this is that many
terms in Hint,σ (20) acquire x-dependent oscillations,

Hint,σ = −g
∫

dx

{
cos χMz

RMz
L + sin2 χ

2

2
(M+

R M+
L + H.c.)

+ cos2 χ

2

2
(M+

R M−
L e−i2tϕx + H.c.)

+ i
sin χ

2

[(
Mz

LM−
R + Mz

RM+
L

)
eitϕx − H.c.

]}
. (22)

Provided that the running backscattering coupling con-
stant g/vF is small, all oscillating terms, which represent
momentum-nonconserving two-particle scattering processes,
average out to zero. Assuming this, we are allowed to drop all
oscillating terms in (22) and obtain the nonoscillating part of
the spin-interaction Hamiltonian as

Hint,σ = −
∫

dx
[
gc
(
Mx

RMx
L − My

RMy
L

)+ gzM
z
RMz

L

]
= −

∫
dx

∑
a=x,y,z

gaMa
RMa

L, (23)

where

gx = −gy = gc = g
1 − cos χ

2
= g(2αRkF )2

b2 + (2αRkF )2
, (24)

gz = gcos χ = g
b2 − (2αRkF )2

b2 + (2αRkF )2
. (25)

Note that at this point the complete Hamiltonian of the
spin sector is given by the sum of equations (17) and (23).
Importantly, the magnetic field is absent from it; it is absorbed
into renormalization of the Fermi momenta kF → kFs. In fact,
the coupling constants ga in (23) have implicit dependence
on h acquired through renormalization-group transformation
from the original energy scale (of the order of the band width)
to the effective magnetic field h.

The meaning of (21) is simple. It represents splitting of
the Fermi momentum kF into the spin-dependent ones kFs =

kF + stϕ/2. Given that kF is determined by the particle den-
sity, kF = πN0/L, the development of the spin-dependent
Fermi momenta kFs = πNs/L describes the appearance of the
finite magnetization with N↑ > N↓. Therefore, �kF = tϕ/2 =
π (N↑ − N0

↑ )/L, so that tϕL = 2π (N↑ − N0
↑ ) = 2πM is an in-

teger multiple of 2π , since N↑ and N0
↑ are integers describing

the number of spin-↑ electrons in the system with finite h and
zero h, respectively. The magnetization M = (N↑ − N↓)/2 is
also an integer.

After making the transformations, the fermions ψRs and
ψLs obey the boundary conditions

ψR(0) = eiσztϕL/2ψR(L) = (−1)MψR(L), (26a)

ψL(0) = e−iσztϕL/2ψL(L) = (−1)MψL(L). (26b)

The boundary conditions depend on the parity of the mag-
netization M: periodic for even M and antiperiodic for odd
M. It is appropriate to note here that even though our sub-
sequent analysis will show that the magnetization M is not a
conserved quantity in the ground state of the interacting wire,
the magnetization parity (−1)M is conserved in the ground
state. Therefore the boundary condition (26) is well defined.

The antiperiodic boundary condition for odd M can be
implemented by introducing a magnetic flux threading the
ring under the periodic boundary condition. Thus we replace
∂x with ∂x − iπλ/L in the kinetic energy He,0 in (5) or equiv-
alently we add

Hflux = πλvF

L

∫
dx (JL − JR) (27)

to the charge part of the kinetic energy H0
ρ . Here we demand

the integer parameter λ to be

λ =
{

0 for (−1)M = 1,

1 for (−1)M = −1.
(28)

3. RG analysis

Equations (17) and (23) represent a nontrivial interacting
problem, analysis of which requires renormalization group
(RG) treatment. Let us assume for the moment that the wire
length L is large so that finite-size effects are negligible. The
couplings ga obey the famous Berezinskii-Kosterlitz-Thouless
(BKT) RG flow [20,21],

dgx

d�
= − gygz

2πvF
,

dgy

d�
= − gxgz

2πvF
,

dgz

d�
= − gxgy

2πvF
,

(29)

where � = log(α′/α) describes increase of the short-distance
cutoff from α to α′. As discussed in detail in Ref. [43],
the solution to the RG equations (29) depends on the initial
values [(24) and (25)] of the couplings involved. Noting that
d (g2

x − g2
y)/d� = 0 and the fact that for � = 0 gx + gy = 0, we

conclude that gx(�) = −gy(�) = gc(�) for all �. Equation (29)
then reduces to the two coupled equations

dgz

d�
= g2

c

2πvF
,

dgc

d�
= gcgz

2πvF
, (30)

which too are characterized by the integral of motion Y =
g2

z (�) − g2
c(�).
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It turns out that the solution is towards strong coupling,
meaning that gz,c(�) → +∞ for sufficiently large �, for all
possible angles χ ∈ (0, π ) [43]. This diverging solution im-
plies an instability towards a correlated spin state with a
nonvanishing excitation gap in the spin sector. The spin gap
can be estimated as �σ ∼ (vF /α)e−�0 where �0 is the RG
scale at which the dimensionless coupling constants diverge.
The minimal value of �0, corresponding to the strongest insta-
bility, occurs for Y = 0. This corresponds to cos χ = 1/3 and
implies b = 2

√
2αRkF . Therefore, the correlated spin state is

strongest when Zeeman energy is comparable to the spin-orbit
energy.

At Y = 0 RG equations (30) simplify to a single equation,

dgz

d�
= g2

z

2πvF
, (31)

whose solution is given by gz(�) = gz(0)/[1 −
gz(0)�/(2πvF )], and gc(�) is described by the same equation.
Thus �0 = 2πvF /gz(0) = 6πvF /g. The corresponding gap is
exponentially small, �σ ∼ (vF /α) exp(−6πvF /g).

An important clarification is in order here. Reference [44]
has showed that quadratic in spin-orbit interaction terms affect
the RG flow significantly, via the change of the initial values
of the coupling constants, in the limit b � αRkF . Under these
conditions the ground state is actually an anisotropic Luttinger
liquid [43,44]. This, however, does not affect the conclusion
of the flow towards the strong coupling in the optimal case of
b ≈ αRkF , on which we are focusing here.

4. Bosonized form

The physics of the spin gap phase is conveniently discussed
with the help of Abelian bosonization, a brief description of
which is summarized in Appendix B 1. With this powerful
technique the charge Hamiltonian Hρ = H0

ρ + Hint,ρ + Hflux

turns into

Hρ =
∫

dx
1

2

[
vρ

Kρ

: (∂xφρ )2 : + vρKρ : (∂xθρ )2 :

+ 2
√

2πλvF

L
∂xθρ

]
, (32)

where [φρ (x), ∂yθρ (y)] = iδ(x − y), and

Kρ =
(

1 + 2U0 − U2kF

πvF

)−1/2

, (33a)

vρ = vF

(
1 + 2U0 − U2kF

πvF

)1/2

. (33b)

Note that the relation vρKρ = vF holds, which is a conse-
quence of Galilean invariance and guarantees the 2π -flux
periodicity irrespective to the Coulomb interaction [41,45,46].

The noninteracting spin Hamiltonian (17) turns into that of
a free conjugated pair of bosons, φσ and θσ ,

H0
σ =

∫
dx

vF

2
[(∂xφσ )2 + (∂xθσ )2], (34)

where the bosonic fields obey the commutation relation
[φσ (x), ∂yθσ (y)] = iδ(x − y). The bosonized form of the in-

teraction (23) is obtained as

Hint,σ =
∫

dx

{
− gz

8π
[(∂xφσ )2 − (∂xθσ )2]

− gc

(2πα)2
cos(

√
8πθσ )

}
, (35)

where α is a short-distance cutoff. From (34) and (35) we
obtain

Hσ =
∫

dx

[
vσ

2Kσ

(∂xφσ )2 + vσ Kσ

2
(∂xθσ )2

− gc

(2πα)2
cos(

√
8πθσ )

]
, (36)

where we introduced dimensionless Luttinger parameter Kσ

and renormalized spin velocity vσ ,

Kσ =
√

1 + gz/4πvF

1 − gz/4πvF
, (37a)

vσ = vF

√
1 − (gz/4πvF )2, (37b)

and we set ηR↑ηR↓ηL↑ηL↓ = 1. The nonlinear cosine term
cos(

√
8πθσ ) in (36) describes intersubband pair-tunneling

processes, the Cooper scattering in Fig. 1, and is respon-
sible for the opening of the spin gap. We note in passing
that the above analysis can be easily extended to the case
of nonorthogonal spin-orbit and Zeeman field directions
[36,44,47]. In this case M+

R M+
L in (22) [or, equivalently,

cos(
√

8πθσ ) term in (36)] also acquire oscillating factors
and therefore “average out” of the Hamiltonian. Physically,
this corresponds to momentum-nonconserving pair tunneling
between the two subbands [36] and results in the restoration
of the critical Luttinger liquid ground state.

We see that the growth of gc under RG flow leads to the
growth of Kσ . According to the standard Tomonaga-Luttinger
liquid phenomenology [20,21], this indicates the development
of attractive interactions in the spin sector and associated
superconductinglike behavior of various physical observables.
A large positive value of gc implies the development of the
correlated state with cos(

√
8πθσ ) = +1. This state is twofold

degenerate, with
√

2πθ (1)
σ = 0 and

√
2πθ (2)

σ = π (mod 2π )
describing two equivalent spin states.

The physical meaning of the obtained spin correlated state
can be inferred from the behavior of spin density, as was done
previously in Refs. [36,44], and corresponds to the Ising-type
algebraic spin density wave (SDW) order. Specifically, we are
interested in the 2kF component of the spin density Sa

2kF
(x) =

Na(x)e−i2kF x + H.c., where

Na(x) = 1
2�

†
R(x)σ a�L(x), a = x, y, z. (38)

With the help of (18) and (21), Na reduces to the form

Nx = cos βÑx + i sin β cos(tϕx)Ñ0 + sin β sin(tϕx)Ñz, (39)

Ny = Ñy, (40)

Nz = cos(tϕx)Ñz − i sin(tϕx)Ñ0, (41)
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where we have defined Ña=0,x,y,z = 1
2ψ

†
Rσ aψL, and σ 0 de-

notes the identity matrix. Using the standard bosonization
(described in Appendix B 1), we obtain

Ñ0 = ηR↑ηL↑
2πα

e−i
√

2πφρ−2π ix/L cos(
√

2πφσ ), (42a)

Ñx = iηR↑ηL↓
2πα

e−i
√

2πφρ−2π ix/L sin(
√

2πθσ ), (42b)

Ñy = −iηR↑ηL↓
2πα

e−i
√

2πφρ−2π ix/L cos(
√

2πθσ ), (42c)

Ñz = −iηR↑ηL↑
2πα

e−i
√

2πφρ−2π ix/L sin(
√

2πφσ ). (42d)

It is now easy to observe that in the ground state of the sine-
Gordon Hamiltonian (36) only the spin part of Ñy acquires a
nonvanishing expectation value—the spin density ‘wants’ to
line up along the ŷ axis, which is the spin-orbit axis; see (2).
Therefore we can write, choosing the gauge ηR↑ηL↓ = i [36],(Sx

Sy

Sz

)
2kF

∝ cos

[√
2πφρ (x) + 2kF x + 2πx

L

]( 0
±1
0

)
, (43)

up to the “short-ranged” corrections involving field φσ , cor-
relation functions of which decay exponentially on the scale
vσ /�σ . The ±1 part of the above equation corresponds to
the choice of degenerate ground states θ (1,2)

σ . Gapless charge
fluctuations, however, prevent the true symmetry breaking
from happening. Equations (39), (42), and (43) show that spin
correlations in the obtained SDW state are highly anisotropic
in spin space and their spatial decay is controlled by the
gapless charge sector of the wire.

It is also useful to consider the 2kF component of the
charge density, ρ2kF

(x) = ρ(x)e−i2kF x + H.c., where

ρ = �
†
R�L = ψ

†
Re−itϕxσ z/2eiβσ x

e−itϕxσ z/2ψL. (44)

We find

ρ = 2 cos β cos(tϕx)Ñ0 − 2i cos β sin(tϕx)Ñz + 2i sin βÑx.

(45)

We see that ρ2kF (x) is nullified by the SDW ground state.
This means that weak scalar impurity, the potential of which
couples to ρ2kF , renormalizes to zero—electron backscattering
is suppressed [36].

Finally, it is interesting to note that Hσ (36) at Kσ = 2 is
just a bosonized Hamiltonian of a one-dimensional p-wave
superconductor, which is known to be a topological supercon-
ductor of class D [1,48] having a zero-energy Majorana mode
at each end. Hence we can anticipate that our quantum wire
model may also host a localized Majorana-like zero mode at
the end of the wire, even though no superconducting order is
present in the ground state. This is indeed the case as shown
in Sec. III.

5. Ground state of a finite ring

From the RG analysis explained above, we have found
that the ground state of the spin gap phase has Ising-type
SDW quasi-long-range order. Here, however, we show that
the ground state of the wire is unique under the ring geometry.

To this end, we need to pay close attention to zero modes
in the low-energy Hamiltonian Hρ + Hσ [46,49]. As shown in
Appendix B 1, the zero modes obey the selection rules (B30)
and (B31). We restrict ourselves to the even particle number
parity case when

(−1)Nρ = (−1)Jρ = (−1)Nσ = (−1)Jσ = 1 (46)

and reproduce (B31) here for completeness

(−1)
1
2 (Nρ+Jρ ) = (−1)

1
2 (Nσ +Jσ ). (47)

Substituting (B1) into (32) and keeping only the zero-mode
terms, we find

H0
ρ = π

4L

(
vρ

Kρ

N2
ρ + vF Nρ + vF J2

ρ − 4λvF Jρ

)
, (48)

which is minimized when Jρ = 2λ. We note that λ is related
to the magnetization; see Eq. (28).

Similarly, the zero-mode part of the spin Hamiltonian Hσ

is

H0
σ = πvσ

4L

(
1

Kσ

N2
σ + Kσ J2

σ

)
− gcγ

(2πα)2

∫ L

0
dx cos

(√
8πθ0

σ − 2πJσ x/L
)
, (49)

where θ0
σ is defined by

θ0
σ = 1√

2

(
φ0

L↑ − φ0
R↑ − φ0

L↓ + φ0
R↓
)
, (50)

and the renormalization factor γ from finite-frequency modes
is

γ =
(2πα

L

)2/Kσ

. (51)

Assuming that gc is renormalized to strong coupling, we find
that H0

σ is minimized when (Jσ , ei
√

2πθ0
σ ) = (0, 1) or (0,−1).

It follows from the commutation relation[
θ0
σ , Nσ

] = i

√
2

π
(52)

that

ei
√

8πθ0
σ Nσ e−i

√
8πθ0

σ = Nσ − 4,
{
ei

√
2πθ0

σ , eiπNσ /2
} = 0.

(53)
We see that Nσ is not conserved but the parity (−1)Nσ /2 is
conserved.

Let us introduce eigenstates of ei
√

2πθ0
σ :

ei
√

2πθ0
σ |a〉 = |a〉, ei

√
2πθ0

σ |b〉 = − |b〉. (54)

Since the two states |a〉 and |b〉 minimize the potential
−gc cos(

√
8πθ0

σ ), they are candidates for ground states of
H0

σ . However, they are not eigenstates of a parity operator
(−1)Nσ /2.

Let us define

|+〉 = 1√
2

(|a〉 + |b〉), |−〉 = 1√
2

(|a〉 − |b〉). (55)

We find from (53) that |+〉 and |−〉 are, respectively, the even
and odd parity state,

eiπNσ /2|+〉 = |+〉, eiπNσ /2|−〉 = −|−〉. (56)
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The discussion above follows that in Ref. [27] closely. It
follows from (47) with Jσ = 0 that

(−1)
1
2 (Nρ+Jρ ) =

{+1 for |+〉,
−1 for |−〉. (57)

We are now ready to see that the ground state of H0
ρ + H0

σ

is unique in the ring geometry. Since we seek the ground state
for a fixed number of electrons, we can set Nρ = 0.

(i) Suppose (−1)
1
2 (Nρ+Jρ ) = +1. With Nρ = 0 we have

that Jρ/2 = even and can set Jρ = 0 to minimize the charge
Hamiltonian (48). By (47) we have (−1)

1
2 (Nσ +Jσ ) = +1 too.

Now, (49) [and also (36)] is minimized by Jσ = 0 when the
field configuration in the argument of the cosine in (49) and
(36) is uniform, i.e., does not have kinks. This is easiest to
see by thinking of the full field θσ in (36) and following its
definition in Appendix B 1, see (B32). Then we find θσ (0) =
θσ (L) and the kink-free configuration of θσ satisfies this.
With Jσ = 0 we have (−1)Nσ /2 = (−1)M = +1 and hence the
ground state is the state |+〉. Note also that (−1)M = 1 means
λ = 0, see (28), and therefore the choice of Jρ = 0 indeed
corresponds to the energy minimum.

Let us now ask what is the lowest energy for the state |−〉?
In this state (−1)Nσ /2 = −1 but then our initial assumption
(−1)

1
2 (Nρ+Jρ ) = +1 and (47) require that (−1)

1
2 (Nσ +Jσ ) = +1.

This is only possible if Jσ = ±2. (More generally, Jσ = ±2 +
4n, but this will lead to a multikink spin sector configu-
ration with yet higher energy.) But then the field θσ must
obey θσ (L) = θσ (0) − √

π/2Jσ so that it experiences discon-
tinuity (kink) at x = 0 (which is the same as x = L in the
ring geometry). This boundary condition forces θσ to have
another kink somewhere on the ring, at some 0 < xk < L.
The lowest energy of the state with such a two-kink config-
uration (one at xk and another at x = 0 = L) is higher than
that of the kink-free configuration. Calculating this energy
difference is not easy but the relevance of the cosine po-
tential in (36) means that it is of the order of gc/ξ , where
ξ = �/vσ is the correlation length of the correlated SDW
state. The energy difference remains finite in the limit L →
∞.

We therefore see that in the case of (−1)
1
2 (Nρ+Jρ ) = +1

the ground state of the wire is given by |+〉, i.e., the state
with the positive magnetization parity. The state with negative
magnetization parity |−〉 has much higher energy.

(ii) Next consider (−1)
1
2 (Nρ+Jρ ) = −1, which for Nρ =

0 means Jρ/2 = odd. Now the identity (47) requires
(−1)

1
2 (Nσ +Jσ ) = −1. Therefore the kink-free configuration

of the spin sector, one with Jσ = 0, requires (−1)Nσ /2 =
(−1)M = −1. By (28) this means that λ = 1 and hence the
charge sector energy is minimized by Jρ = 2. The odd-parity
state |−〉 is the lowest-energy state.

The other, positive magnetization parity state |+〉 must
have finite spin current Jσ = ±2 which therefore forces the
spin sector into a two-kink configuration and results in the
higher energy for it.

We note that the energy difference between the lowest-
energy state |+〉 under (−1)

1
2 (Nρ+Jρ ) = +1 and the lowest-

energy state |−〉 under (−1)
1
2 (Nρ+Jρ ) = −1 is of order 1/L due

to the charge Hamiltonian (48).

The presented arguments establish that the ground state of
the wire in the correlated SDW state is unique in the ring
geometry. It is worth noting that the gapless charge sector has
played an important role in this conclusion, via the “super-
selection” rules (46) and especially (47). We’ll see below that
this is not the case in the case of the open wire, i.e., the wire
with two open ends.

III. FINITE WIRE WITH OPEN BOUNDARIES

Now we turn to the case of our main interest, i.e., a finite
wire with open boundaries at x = 0 and x = L, where �s(x =
0) = 0 = �s(x = L). Equation (4) shows that OBC for the
original fermions means �Rs(0) = −�Ls(0) and �Rs(L) =
−�Ls(L). The last relation follows from eikF L = 1, as ex-
plained below (4).

In order for the rotated fermions to obey simple boundary
conditions which do not mix components with different spin
indices s, it proves very convenient to change the direction of
the external magnetic field to be along the x̂ axis, �B = Bx̂, and
not along the ẑ axis as written in (3). This choice does not
change the physics of the problem because the magnetic field
and spin-orbit interaction remain orthogonal to each other and,
therefore, the correlated SDW phase is preserved. Detailed
arguments in Appendix C show how this chiral rotation about
the ẑ axis is done and, following the steps described there,
one finds that the rotated fermions ψL/R,s(x) introduced in
(C15) satisfy the boundary condition (C19). In terms of s
components it is just

ψL,s(xo) = −eisβψR,s(xo), (58)

where up/down spin projection s =↑= +1, s =↓= −1 in
the rotated basis and xo = 0, L denotes the two open ends of
the wire.

After the chiral rotation (C4), the total magnetic field h =√
b2 + (2αRkF )2 experienced by electrons is pointing along

the x̂ axis. Subsequent manipulations [summarized as steps
(1)–(3) in Appendix C] are needed in order to absorb h into the
redefined Fermi momenta. Therefore up- and down-pointing
spins s =↑,↓ in (58) and elsewhere in this section actually
represent spins pointing along the positive and negative x̂ axis
in the rotated frame.

The resulting Hamiltonian is split into charge Hamiltonian
and spin Hamiltonian and is written in terms of charge cur-
rents JR/L (x) (8), which are not affected by the performed
rotations, and spin currents Ka

R/L (x), which are related to ψR/L

by (C20). Both types of currents are expressed in terms of the
rotated fermions ψR/L(x).

We are now ready to write down the spin Hamiltonian of
the wire of finite length L with open boundaries at xo = 0, L.
It is formulated in terms of right-moving current �KR(x) and
reads [see (C36) and (C37)]

Hσ = H0
σ + Hint,σ , H0

σ = 2πvF

∫ L

−L
dx
[
Kz

R(x)
]2

, (59)

Hint,σ = −1

2

∫ L

−L
dx

(
gcKz

R(x)Kz
R(−x)

+ gx + gc

4
[e−i2βK+

R (x)K+
R (−x) + H.c.]

)
. (60)
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Our next task is to bosonize Hσ . The first line of (60)
represents quadratic correction to (59). Using (C35) we collect
quadratic boson terms of Hσ ,

H(2)
σ =

∫ L

−L
dx

{
vF [∂x�Rσ (x)]2 + gc

4π
∂x�Rσ (x)∂x�Rσ (−x)

}
+ πvσ M2

LKσ

. (61)

This part can be diagonalized with the help of another chiral
boson field �̃ (see Chap. 27 of [21])

�Rσ (x) =
√

Kσ

2
[�̃(x) − �̃(−x)] + 1

2
√

Kσ

[�̃(x) + �̃(−x)],

(62)
where Luttinger parameter Kσ is introduced in (37a). Observe
that under this transformation,

�Rσ (x) + �Rσ (−x) = 1√
Kσ

[�̃(x) + �̃(−x)]. (63)

The nonlinear operator in the second line of (60) is found,
with the help of Baker-Hausdorff identity eAeB = eA+Be[A,B]/2,
to be

e−i2βK+
R (x)K+

R (−x) = (F †
↑ F↓)2

(2πα)2
e−i

√
8π[�Rσ (x)+�Rσ (−x)]

×e−2π ix/Le−4πϒ(x)

= − (F †
↑ F↓)2

(2πα)2
e
−i
√

8π
Kσ

[�̃(x)+�̃(−x)]
.

(64)

Here

ϒ(x) = [�Rσ (x),�Rσ (−x)] = 1

4π
ln

(
eπα/L − e−i2πx/L

eπα/L − ei2πx/L

)
→ i

2π
tan−1

[
cot
(πx

L

)]
, (65)

which is obtained from (C32). The last line represents the limit
α/L → 0. This leads to e−i 2πx

L e−4πϒ(x) = −1 in (64).
Putting everything together, we find

H̃σ = πvσ M2

LKσ

+
∫ L

−L
dx H̃σ , (66a)

where

H̃σ = gx + gc

8(2πα)2

[
(F †

↑ F↓)2e
−i
√

8π
Kσ

[�̃(x)+�̃(−x)] + H.c.
]

+ vσ [∂x�̃(x)]2. (66b)

Equation (66a) is the chiral version of (36), with θσ

rescaled by
√

Kσ .
It is worth noting here that in the open wire geometry the

charge Jρ and the spin Jσ currents are necessarily absent [39],
and as a result the zero-mode part of (66a) consists of a single
term ∝M2/L. This also means that the “super-selection” rule
(46) reduces to (−1)Nρ = (−1)Nσ while (47), with Jρ = Jσ =
0, becomes its natural consequence. Altogether, this means
that global zero-mode constraints (46) and (47), which played
a crucial role in the ring geometry in Sec. II A 5, largely lose
their importance in the open wire geometry.

We now observe that at a special value Kσ = 2, which de-
fines the Luther-Emery point [40,50], the cosine term in (66b)
is proportional to the product of e−i

√
4π�̃(x) and e−i

√
4π�̃(−x),

suggesting, by comparison with (C32), that it can be written as
a bilinear form of fermionlike operators. Therefore, at Kσ = 2
a refermionization is possible. To that end, we introduce the
new spinless fermion operator via

f (x) = 1√
2πα

FeiπxM/Lei
√

4π�̃(x), (67)

where F ≡ F †
↓ F↑ is a new Klein factor. Observe that it satis-

fies all requirements of being the M-changing operator,

[M,F] = −F , [M,F†] = F†, F†F = FF† = 1.

(68)
The exponential in (66b) can now be rewritten, at Kσ = 2, as

(F†)2e−i
√

4π[�̃(x)+�̃(−x)] = e−i
√

4π�̃(x)F†e−i
√

4π�̃(−x)

×F†e2πϒ(x)

= e−i
√

4π�̃(x)F†e−i πxM
L

× ei πxM
L e−i

√
4π�̃(−x)F†e2πϒ(x)

= 2πα f †(x) f †(−x) ei πx
L e2πϒ(x).

(69)

To obtain the last equality above, we used F†e−iπxM/L =
e−iπxM/LF†eiπx/L. Observe that [�̃(x), �̃(−x)] = ϒ(x) and
that for |x| 	 α (65) gives

e2πϒ(x)eiπx/L = is(x), (70)

where s(x) = sgn[sin πx/L] is a 2L-periodic sign function

s(x) =
{ 1, x ∈ (0, L),

−1, x ∈ (−L, 0),
0, x = 0,±L.

(71)

Keeping small but finite α in (65) rounds discontinuities of
s(x) in finite intervals of order α around endpoints x = xo.
Equations (64) and (69) show that at Kσ = 2

e−i2βK+
R (x)K+

R (−x) = −is(x)

2πα
f †(x) f †(−x). (72)

The final ingredient is the kinetic energy which we, following
Ref. [40] and using formalism developed in Appendix B 2,
find to be∫ L

−L
dx f †(x)(−ivσ ∂x ) f (x)

= πvσ

2L
M(M + 1) +

∫ L

−L
dx vσ [∂x�̃(x)]2. (73)

Hence at Kσ = 2 the spin Hamiltonian (66a) can be written in
terms of new fermion operators (67) as

H̃σ =
∫ L

−L
dx

[
f †(x)(−ivσ ∂x ) f (x) + i�

2
s(x) f (x) f (−x)

+ i�

2
s(x) f †(x) f †(−x)

]
− πvσ M

2L
, (74)

where the spin gap is given by � = (gx + gc)/(8πα). Equa-
tion (74) describes a one-dimensional p-wave superconductor
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with the pairing potential changing sign at x = xo = 0,±L
[51], i.e., at the open boundaries of the wire in our origi-
nal problem. The sign function in (74) is required because
fermions anticommute, { f (x), f (−x)} = 0. The kink in � is
of profound importance to the low-energy excitations. We
show below that it induces a zero-energy self-conjugate state,
the Majorana mode, which is exponentially localized near the
boundary.

Note that although the Hamiltonian (74) does not con-
serve M due to the presence of the Klein factors F in
f (x), it does conserve ei2πM = eiπ (N↑−N↓ ), which follows from
[ei2πM ,F] = 0.

Moreover, (74) also conserves the magnetization parity
eiπM ,

eiπM = ei π
2 (N↑−N↓ ). (75)

This is because (74) contains squares of Klein factors F
and F†. As a result, we have to look on eiπMF2. How-
ever, the commutation relation (68) implies that [M,F2] =
−2F2 and therefore eiπMF2 = F2eiπMe−i2π = F2eiπM . That
is, [eiπM , H̃σ ] = 0, the magnetization parity (75) is conserved
by the Hamiltonian (74). The charge sector of the open wire
is described in Appendix C 6.

IV. SOLUTION OF THE REFERMIONIZED HAMILTONIAN

One-dimensional superconductor (74) is solved by the Bo-
golyubov transformation [52]

f (x) =
∑
n�0

[γnun(x) + γ †
n v∗

n (−x)], (76)

which diagonalizes (74) into the form

H̃σ = Eg.s. +
∑

n

εnγ
†
n γn. (77)

Here εn � 0 are the excitation energy, and γn are Fermi op-
erators satisfying {γn, γ

†
m} = δn,m and {γn, γm} = 0. Functions

u(x), v(x) are found with the help of the equation of motion

i∂t f (x) = [ f (x), H̃σ ]

= −πvσ

2L
f (x) − ivσ ∂x f (x) − i�sgn(x) f †(−x)

(78)

by expressing both sides of the last equality in terms of
fermion operators γn, γ

†
n with the help of (77) and (78). This

leads to the Bogolyubov-de Gennes equation(−ivσ ∂x − πvσ

2L i�s(x)
−i�s(x) ivσ ∂x + πvσ

2L

)(u(x)
v(x)

)
= ε
(u(x)
v(x)

)
. (79)

What are boundary conditions for f (x) and, as a result, for
u(x) and v∗(−x)? Equation (67) shows that f (x + 2L) =
ei2πM f (x), where we used 2L periodicity of �̃(x) and
the commutation relations (68). Correspondingly, the vector
(u(x), v∗(−x))T has the same boundary conditions as f (x). It
then follows that(u(L)

v(L)

)
= ei�

(u(−L)
v(−L)

)
, � = 2πM. (80)

Note that at x = 0 the vector (u(x), v(x))T is continuous.

As noted below (74), even though M is not conserved
by H̃σ , the exponential ei2πM remain unchanged and is con-
served, because anomalous f f and f † f † terms in H̃σ change
M by ±2. Therefore we can treat � in (80) as a real (non-
operator) phase, but distinguish the cases of M = integer and
M = half-integer,

� = 0 for M ∈ Z,

� = π for M ∈ Z + 1/2.
(81)

Particle-hole symmetry of (79) ensures that vector
(v∗(−x), u∗(−x))T describes states with energy −ε and sat-
isfies (80). Full solution of (79) consists of scattering states f̃ε
with energies ε above the gap � and localized in-gap states
f0, fL with nearly zero energy,

f (x) = f0(x) + fL(x) +
∫ ∞

�

dε f̃ε (x). (82)

We focus on the localized modes which, for 0 < x < L, are
described by(u0(x)

v0(x)

)
= A1√

2

(
1

−eiφ

)
e(−κ+i π

2L )x + B1√
2

(
1

e−iφ

)
e(κ+i π

2L )x.

(83)
The corresponding energy is ε = √�2 − v2

σ κ2, and we intro-
duced eiφ = (vσ κ + iε)/�. Solution on the negative half of
the wire, −L < x < 0, is given by the similar combination
with amplitudes A2, B2 and � → −� due to the oddness of
the function s(x). Boundary condition (80) and continuity of
(u(x), v(x))T at x = 0 can be written in the form of 4 × 4
matrix equation, acting on the vector (A1, B1, A2, B2)T , with
zero right-hand side. Setting determinant of that matrix to zero
produces the relation between ε and κ ,

tan2(φ) sinh2(κL) = cos2(�/2), (84)

which can be used to express everything in terms of κ as

� = vσ κ

√
1 + cos2 �/2

sinh2(κL)
,

ε = vσ κ
cos �/2

sinh(κL)
≈ 2� cos(�/2)e−�L/vσ . (85)

We used (81) which guaranties that cos �/2 � 0. It is worth
pointing out the surprising feature of the vanishing splitting
ε between the first excited state, localized at the opposite
ends of the wire, and the ground state of the wire for the
special value of the phase difference � = π (mod 2π ), when
M ∈ Z + 1/2 is half integer. The energy splitting ε is maxi-
mal when M ∈ Z, which corresponds to even 2M = N↑ − N↓.
Similar oscillatory dependence on the phase difference � has
been previously studied in Ref. [53] in a different context.

The most important physical message of (85) is that the
first excited state is exponentially close to the ground state.
For L 	 ξ = vσ /� it is essentially degenerate with it.

Straightforward algebra leads to

A1 = e2κL(1 − ie−κL+i�/2)C, B1 = i(eκL+i�/2 + i)C,

A2 = B∗
1, B2 = A∗

1. (86)
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Here C is the real normalization constant. To the leading order
C = √

κ/2e−2κL. Therefore, for 0 < x < L,(u0(x)
v0(x)

)
≈

√
κ

2

[( 1
−1

)
e−κx+iπx/2L + iei�/2

(1
1

)
eκ (x−L)+iπx/2L

]
,

(87)

where we neglected exponentially small corrections ∝e−κL to
the two end contributions describing exponentially localized
in-gap states near the left, x = 0, and the right, x = L, ends
of the wire. We also used (85) to replace e±iφ by 1 up to
exponentially small terms. For −L < x < 0 we similarly find(u0(x)

v0(x)

)
≈

√
κ

2

[
−ie−i�/2

(1
1

)
e−κ (x+L)+iπx/2L

+
( 1
−1

)
eκx+iπx/2L

]
. (88)

Equations (76), (87), and (88) finally allow us to express
exponentially localized end modes as

f0(x) ≈
√

κ

2
e−κx(γ0 − γ

†
0 ) for 0 < x � L, (89)

and

fL(x) ≈ −
√

κ

2
e−κ (L−x)ei�/2(γ0 + γ

†
0 ) for L − x � L.

(90)
Note that (89) and (90) describe self-conjugate Majorana
modes, f0 = − f †

0 and f †
L = e−i� fL. Namely, f0 and fL are

proportional to the independent Majorana modes, d1 and d2

defined via

γ0 = 1√
2

(d1 + id2) (91)

with

{d1, d2} = 0, (d1)2 = (d2)2 = 1
2 , (92)

such that

f0(0) = i

√
κ

2
d2, fL(L) = −ei�/2

√
κ

2
d1. (93)

The appearance of the independent Majorana modes at the
opposite ends of the quantum wire agrees with the original
proposal of Kitaev [1]. The ground state of the wire is doubly
degenerate since states |0〉 and |1〉 = γ

†
0 |0〉 have the same

energy [1], up to exponentially small energy difference ε

given by (85). Here |0〉 is the vacuum state of γn, γn|0〉 = 0
for n � 0.

Finally, we comment on the applicability of the present
analysis away from Kσ = 2. It is likely from (37a) that the
bare value of the Luttinger parameter Kσ is smaller than 2
for not too strong coupling (gz/4πvF < 3/5). However, Kσ is
renormalized according to the RG equation (30) and reaches
Kσ = 2 at some length scale, at which we can apply the refer-
emionization. In this sense the analysis above is applicable to
a broader range of parameters. Physically, the twofold ground-
state degeneracy is a direct consequence of the SDW order.

V. PHYSICAL MEANING OF THE MAJORANA MODE

A. Spin correlations in the bulk of the wire

Spin excitations of the open wire consist of massive propa-
gating modes f̃ε , with energy ε � �, and zero-energy modes
f0,L which are exponentially localized on the scale ξ = κ−1 =
vσ /� near xo = 0 and xo = L, correspondingly. We therefore
expect that spin correlations inside the open wire, for ξ �
x � L − ξ , should coincide with those in the ring geometry,
see Sec. II A 4.

To see how this comes about, we start with K+
R (x), (C38),

K+
R (x) ∝ e−i

√
4π[�̃(x)−�̃(−x)]−i

√
π [�̃(x)+�̃(−x)] (94)

and observe that according to (66a) the SDW ordered state
is characterized by the ordered, or “frozen,” symmetric
combination of spin fields �̃(x) + �̃(−x). Importantly, the
antisymmetric combination �̃(x) − �̃(−x) does not commute
with the symmetric one. Indeed, a simple calculation, similar
to the one in (65), shows that for −L < x, y < L

[�̃(x) + �̃(−x), �̃(y) − �̃(−y)]

= i

2

(
sgn(x − y) − sgn(x + y) + 2y

L

)
. (95)

Therefore the ordering (freezing) of the symmetric combina-
tion �̃(x) + �̃(−x) makes correlations of operators involving
the antisymmetric one �̃(x) − �̃(−x) short ranged, e.g., de-
caying exponentially with distance.

Now we turn to the 2kF component of the spin density
Na (38) and its rotated version (C39), (C40). Analysis in
Appendix C 5 shows that Ñx,y fields involve the symmetric
spin mode �̃(x) + �̃(−x) as well as an antisymmetric charge
one �Rρ (x) − �Rρ (−x). In the SDW phase the symmetric
spin mode is frozen, but charge excitations remain critical.
Moreover, Eq. (C43) and discussion around it shows that,
when the frozen value of the symmetric mode is substituted,
the spin part of Ñx vanishes while that of Ñy approaches
a constant value. Correspondingly, correlations of Ñy field
inside the wire decay algebraically with the exponent which
is controlled by the Luttinger constant of the charge mode
Kρ , in agreement with expressions (42c) and (43) for the
closed wire case. At the same time, correlations of compo-
nents Ñ0,z decay exponentially with the distance, because they
involve quantum-disordered antisymmetric spin combination
�̃(x) − �̃(−x). The described correspondence also shows
that �̃(x) + �̃(−x) plays the role of θσ , while �̃(x) − �̃(−x)
is analogous to φσ in Sec. II A 4.

B. End-to-end correlations

Correlations between the end regions of the wire, 0 < x <

ξ and L − ξ < x < L, are very different. Observe that for
x ≈ 0 the quantum-disordered combination vanishes, �̃(x) −
�̃(−x) ≈ 0. The same is true for x ≈ L due to the 2L peri-
odicity of the field �̃(x). At the same time the symmetric
combination simplifies to �̃(x) + �̃(−x) ≈ 2�̃(0). [Obvi-
ously, for x ≈ L we have �̃(x) + �̃(−x) ≈ 2�̃(L).] Using
(C38) and the definition of the fermion f (x) (67), we observe
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that

K+
R (0) = eiβ

√
2πα

f †(0),

K+
R (L) = − eiβ

√
2πα

e−iπM f †(L).

(96)

Equation (93) shows that fermion operators at the ends of the
wire reduce to the Majorana modes d1,2, and therefore the
same is true for the spin currents K+

R at the ends of the chain.
Note, however, the appearance of the “string” operator e−iπM

in K+
R (L) in (96). This string operator is in fact the magnetiza-

tion parity, introduced in Eq. (75). It represents a key integral
of motion of the problem and plays a very important role in
the subsequent analysis of the open wire.

It is this string operator that makes sure that spin densities
at x ∼ 0 and x ∼ L actually commute, as they must do (and
not anticommute, as they would if it was absent). At this point
it is important to observe that e±iπM and f (x), introduced in
(67), anticommute for all x. This is easy to see with the help
of identity (C9) of Ref. [40] and (68). Hence

{e±iπM , f (x)} = 0 = {e±iπM , f †(x)}. (97)

Next, Eq. (76) implies that, for all n,

{eiπM , γn} = 0 = {eiπM , γ †
n }. (98)

Therefore we can establish an operator identity

eiπM = ei�/2
∏

�

eiπγ
†
�
γ� = ei�/2

∏
�

(1 − 2γ
†
� γ�), (99)

which enforces Eqs. (97) and (98) and also insures that
ei2πM = ei� = ±1, since (1 − 2γ

†
� γ�)2 = 1 for every �. Here

phase � is the c number introduced in (80). Note that (99)
does not mean that M = �/(2π ) +∑� γ

†
� γ�.

At very low energies ε � �

eiπM ≈ ei�/2(1 − 2γ
†
0 γ0) = −2iei�/2d1d2. (100)

Therefore, while f †(L) ∼ d1, the magnetization parity acting
on it changes it into the Majorana mode d2, e−iπM f †(L) ∼
(d1d2)d1 = −d2. More accurately, we obtain

K+
R (L) = − eiβ

√
2πα

e−i� f †(0) = −e−i�K+
R (0). (101)

Therefore spin currents at the opposite ends of the wire are
equal, up to a complex prefactor. We see that they commute,
[K+

R (L), K+
R (0)] = 0, as they should. Note that without the

string operator e−iπM in (96) the spin currents in question
would anticommute, {K+

R (L), K+
R (0)} = 0, just as fermion op-

erators do. The string operator is crucial for obtaining the
correct result. From the quantum computing point of view,
the string operator spoils braiding statistics of the localized
end modes [54].

We also observe that K+
R (−L) = K+

R (L), thanks to ei2πM =
e−i2πM for the integer/half-integer M. The last line in (C35)
allows us to write the total spin current in terms of the
right-moving one,

K+(L) = K+
R (L) + K+

L (L) = (1 + e−i2β )K+
R (L)

= −e−i�K+(0). (102)

Therefore

K+(L)K−(0) = −e−i�K+(0)K−(0)

= −4 cos2(β ) e−i�K+
R (0)K−

R (0)

= − cos2(β ) e−i� κ

2πα
. (103)

This shows unusual long-ranged end-to-end correlations be-
tween spin currents at the opposite ends of the wire.

Equation (103) is to be contrasted with exponentially de-
caying correlations of K+

R in the bulk of the wire, as discussed
in Sec. V A above. The strength of the correlation between the
opposite edges is determined by the spin gap, κ ≈ �/vσ , see
(85).

Spin currents at the ends of the wire in the original basis
are related to Ka via (C4), when position-dependent rotation
(C22) reduces to matrix identity. Therefore at xo we obtain

J+
R/L (xo) = e∓iβK+

R/L(xo) (104)

and, correspondingly, find the original spin currents at the
ends of the wire are proportional to Majorana mode d2 as well,

J+(0) = J+
R (0) + J+

L (0) = 2e−iβK+
R (0) = 2√

2πα
f †(0),

J+(L) = −2e−i�e−iβK+
R (0) = −2e−i�

√
2πα

f †(0), (105)

where

f †(0) = −i

√
κ

2
d2. (106)

Since � = 0 or π , the above equation means that Jx(xo) = 0
while the ŷ component of �J (xo) is finite, Jy(xo) ∼ d2. The end-
to-end correlation of the uniform part of the spin density is
similarly long ranged,

J+(L)J−(0) = −e−i� κ

2πα
= −J+(L)J+(0). (107)

It differs from the same-position correlation of the spin den-
sity at the end of the wire only by the sign, J+(0)J−(0) =
κ/(2πα). The last equality in (107) reflects the fact that
J+(xo) = iJy(xo), as noted above. This behavior is schemat-
ically sketched in Fig. 2.

Next we look at the correlations of the staggered part �N
of the spin density. Equation (C41) shows that near the ends
of the wire staggered spin density is also proportional to
Majorana modes

N+(xo) ∝ e−i
√

2π [�Rρ (xo)−�Rρ (−xo)]e−i
√

π[�̃(xo)+�̃(−xo)]

= e−√
4π�̃(xo) ∼ f †(xo) (108)

because both �Rρ and �̃ are 2L periodic.
As a matter of fact, it is easy to argue that end-to-end

correlations of N+ field must be identical to those of J+ one,
(107). This is because at the ends of the open wire the total
spin density must vanish, and therefore

�S(xo) = �JR(xo) + �JL(xo) + [ �N (xo)e−i2kF xo + H.c.] = 0,

(109)
since in addition e±i2kF xo = 1. Hence indeed, staggered com-
ponents of the spin density possess the same end-to-end
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0 L/2 L− L

=

= 0

Jy(0)Jy(x)

x

FIG. 2. Schematics of the spin correlations in the SDW phase of
the open quantum wire. The ŷ component of spin density exhibits
long-ranged edge-to-edge correlations, Eq. (107), while the edge-
to-bulk correlations decay exponentially on the scale ξ = vσ /�, as
discussed in Sec. V A. Staggered components of the spin density, Ny,
behave similarly.

correlations as the uniform ones, (107). Technically, this hap-
pens because near the wire’s ends the charge exponential in
(108) can be expanded as 1 − i

√
8παd�Rρ/dx + ... and be

approximated by the unity. That is, near the wire’s ends charge
fluctuations are frozen out, while the spin part of N+ reduces
to the negative of the J+ one at the same time. Explicit calcula-
tion based on full expressions given in Appendix C 5 confirms
this natural conclusion. Once again, we see that spin density
exhibits an unusual long-range end-to-end correlations despite
the fact that in the bulk of the wire all correlations decay, some
exponentially fast (such as spin currents and N0,z) while others
algebraically (N±), as discussed in Sec. V A.

C. Twofold degeneracy and the magnetization parity

Proportionality of �J and �N to the fermion operators
f †(0) and f †(L) merits additional discussion. Consider the
wire with a fixed total number of electrons Nρ = N↑ + N↓.
Magnetization is M = (N↑ − N↓)/2. Therefore parities of
spin-↑ and -↓ band are (−1)N↑ = eiπNρ/2eiπM and (−1)N↓ =
eiπNρ/2e−iπM . It is sufficient to discuss just one of them, say
P1 = (−1)N↑ . Let us assume, for definiteness, that Nρ is even,
so that the factor eiπNρ/2 is real valued. Then 2M is also even
and hence eiπM has eigenvalues ±1. As discussed below (75),
Hamiltonian H̃σ conserves magnetization parity eiπM , and
therefore the parity P1 as well. Hence the ground state of H̃σ

is characterized by the definite parity P1. But anticommutation
of eiπM and f †(x), Eq. (97), implies that the expectation value
of f †(xo) in the state |φ〉 with definite fermion parity is zero.
Indeed,

0 = 〈φ|eiπM̂ f †(xo) + f †(xo)eiπM̂ |φ〉 = 2eiπM〈φ| f †(xo)|φ〉,
(110)

where eiπM on the right hand side of (110) is the eigenvalue of
the parity operator eiπM̂ in the state |φ〉, where we have used
M̂ for the magnetization operator M. Therefore we conclude
that the ground state expectation value of spin operators �J
and �N near the ends of the wire is zero, 〈φ|J+(xo)|φ〉 = 0 =

〈φ|N+(xo)|φ〉. As discussed above, the expectation value of
operators �J and �N in the bulk of the wire is zero, too.

We thus see that the ground state of the Hamiltonian (74)
is disordered but twofold degenerate. The degeneracy is topo-
logical; it comes from the degeneracy of many-body ground
states |0〉 and |1〉, which have opposite magnetization parities.
These states are defined via γ0|0〉 = 0 and |1〉 = γ

†
0 |0〉. Let |0〉

be an eigenstate of the parity eiπM̂ with eigenvalue eiπM = ±1,
that is

eiπM̂ |0〉 = eiπM |0〉. (111)

Then state |1〉 has the opposite parity,

eiπM̂ |1〉 = eiπM̂γ
†
0 |0〉 = −γ

†
0 eiπM |0〉 = −eiπM |1〉. (112)

Note that these two states share property (110), that is
〈0| f (xo)|0〉 = 〈1| f (xo)|1〉 = 0.

Conversely, we can construct states |u/d〉 = (|0〉 ±
|1〉)/

√
2, where the plus (minus) sign corresponds to the state

|u〉 (|d〉), for which the expectation value of J+, N+ operators
near the ends is finite,

〈u/d|γ0|u/d〉 = 1
2 (〈0| ± 〈1|)(γ0|0〉 ± γ0|1〉) = ± 1

2 〈0|γ0|1〉
= ± 1

2 , (113)

〈u/d|γ †
0 |u/d〉 = 1

2 (〈0| ± 〈1|)γ †
0 |0〉 = ± 1

2 .

But for these states magnetization parity is not defined

eiπM̂ |u/d〉 = eiπM

√
2

(|0〉 − (±)|1〉) = eiπM |d/u〉. (114)

Rather, the parity operator eiπM̂ represents Pauli matrix σ x in
the subspace spanned by the states |u〉 and |d〉.

The physical states of the open wire are of the type |0〉, |1〉
from the above, simply because they are characterized by the
definite magnetization parity. Fermi operator γ0 is introduced
in (91) and, according to the discussion above, can be con-
structed with the help of equations (89), (90), (96), and (104)
as

γ0 = −
√

2πα

κ
(J+

R (0) − ei�/2eiπM̂J+
R (L)), (115)

which makes explicit its nonlocal nature.
It is also useful to notice now that the single fermion

operator (C32) does not have simple expression in terms of
f because

ei
√

2π�Rσ (x) ∼ ei
√

π[�̃(x)+�̃(−x)]/2+i
√

π[�̃(x)−�̃(−x)] (116)

and therefore reduces to the “square root” of Majorana in
the x → xo limit, e.g., ψR(0) ∼ ei

√
π�̃(0) ∼ [ f (0)]1/2. At the

same time, in the bulk of the wire the presence of the dual
combinations �̃(x) + �̃(x) and �̃(x) − �̃(−x) in (116) imply
exponential decay of correlation functions of fermion operator
ψR with distance and time. That is, gapped behavior, just as
expected.

D. Instability of the twofold degeneracy to the
parity-breaking perturbations

There are several physically-reasonable perturbations
which violate the magnetization parity conservation [30].
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(i) Local magnetic field near the end of the wire, such as,
for example, due to the magnetic impurity δH ′ = �h1 · �S(a), lo-
cated at a short distance a < ξ = vσ /� from, for example, the
left end of the wire. Then a/ξ < 1 ensures that �h1 couples the
end modes of the wire. Using �S(x) = �J (x) + [ �N (x)e−i2kF x +
H.c.] and the fact that 2 �N (a) ≈ − �J (a), we find that δH1 ≈
[1 − cos(2kF a)]�h1 · �J (a). Now, the discussion around (105)
and (107) shows that �J (a) ≈ i

√
κ/(2πα)e−κa(γ0 − γ

†
0 )ŷ, so

that we can write δH1 = ih̃1(γ0 − γ
†
0 ) by absorbing all

nonessential constants into h̃1. In the low-energy subspace of
definite parity states {|0〉, |1〉} this perturbation is off-diagonal
and reduces to δH ′ = h̃1σ

y. Its eigenstates are those of the
Pauli matrix σ y, with energies ±h̃1, and they are not eigen-
states of the magnetization parity eiπM̂ .

Therefore this local perturbation breaks magnetization par-
ity conservation and removes the twofold degeneracy of the
ground state in favor of the unique state (|0〉 − i|1〉)/

√
2 with

energy −h̃1.
An interesting consequence of the end-to-end correlation

(107), which for 2M = even (see the beginning of this section
where Nρ = even was set) can be written as Jy(L)Jy(a) ≈
−κ/(2πα), is that δH ′ acting near the left end of the wire
causes finite polarization Jy(L) at its opposite, right end. This
kind of “long-distance rigidity” in the absence of rigid spin
correlations in the bulk of the wire is unusual and represents
a bosonic version of the teleportation phenomena previously
suggested for fermion Majorana states [55,56].

(ii) Next, consider applying the local magnetic field some-
where in the middle of the wire, so that the perturbation
still has the form δH ′ but now with ξ � a � L − ξ . The
uniform part of the spin density is exponentially suppressed
there and the field couples to the staggered part, Ñ (a). Since
�̃(x) + �̃(−x) is locked to the optimal value, δH ′ reduces to

δH ′ ≈ (h1x − ih1y)F†e−i πx
L (Nρ+1)e−i

√
2π[�Rρ (x)−�Rρ (−x)] + H.c.,

(117)

see (C41). The expectation value of this operator in a finite-
size system is proportional to (α/L)Kρ/2. This is because
projection of the charge-mode exponential to the ground state
gives, after normal ordering it,

e−i
√

2π [�Rρ (x)−�Rρ (−x)] →
(

πα

2L| sin(πx/L)|
)Kρ/2

(118)

for α � x � L. Note also that fermion changing operator F
in (105) violates the conservation of the magnetization par-
ity. Therefore such a perturbation, which has the meaning of
electron spin-flip backscattering off a magnetic impurity, also
breaks the twofold degeneracy of the ground state. Here the
breaking of the degeneracy due to the perturbation is smaller
than in the previous example (i); it vanishes algebraically with
the size of the system as h1(α/L)Kρ/2 and therefore is not
particularly important for sufficiently long wires.

VI. DISCUSSION

We found that ground states of the interacting wire in the
correlated SDW phase have all the features of the symmetry-
protected topological (SPT) state [28,57,58]. Indeed, in the

closed (ring) geometry the ground state is unique and is an
eigenstate of a definite magnetization parity eiπNσ /2. In the
open wire geometry, however, the ground states corresponding
to different magnetization parities eiπM are degenerate with
exponential accuracy e−L/ξ . The localized Majorana modes
that appear in this geometry are found to describe spin density
near the wire’s ends. Importantly, the expectation value of the
spin density in the state with definite magnetization parity is
zero everywhere in the wire, including its ends, and cannot
be used to distinguish the degenerate ground states. The cor-
related SDW state can therefore be classified as a SPT state
which is protected by the magnetization parity.

In the topological SDW state the spin sector is Ising
ordered along the y direction (the direction of the Rashba
spin-orbit interaction) while the charge sector is a gapless
Tomonaga-Luttinger liquid. The charge fluctuations weaken
the correlation of the Sy spins and make it quasi-long-ranged
in the bulk. However, at the ends of a wire the charge fluctu-
ations are frozen so that the long-range Ising spin correlation
between the end spins can manifest itself without being ob-
scured by charge fluctuations. In some sense this long-range
spin correlation is just the Ising order of the XYZ spin chain
covered by the critical charge fluctuations in the bulk. Nev-
ertheless, we regard the SDW state as a SPT state, because
its ground state degeneracy is determined by the boundary
conditions—the ground state is unique in the ring geometry
with both PBC and anti-PBC conditions and becomes twofold
degenerate in the open wire geometry. The degeneracy is
protected by the magnetization parity. Indeed, it takes a parity-
breaking perturbation to lift the ground state degeneracy, as
we show in Sec. V C.

It is important to note that without critical charge mode our
model would reduce to the transverse field Ising (TFI) chain
the ground state of which is not an SPT phase. This is seen
from the fact that in the ring geometry the TFI model retains
twofold degeneracy (with exponentially small in the system
size splitting) which is just the usual Ising Z2 degeneracy. In
our case it is the gapless charge mode which endows gapped
quantum wire with the SPT properties.

This observation is in agreement with several previous
studies of topological states of interacting quantum wires
[30,31,59,60] which found that the presence of the gapless
charge (more generally, center-of-mass) mode is crucial for
the ground state degeneracy. It must be added here that as
far as possible physical realization of the described physics
goes, the model studied here appears to be the simplest one.
Its realization requires only a quantum wire with significant
spin-orbit coupling and strong repulsive e-e interactions, and
all of these ingredients are readily available in the present-day
experimental setups.

Another important lesson of our study follows from the
fact that it is collective spin degrees of freedom, which are
described by bosonlike operators that become ‘topologically’
correlated. The difference between a one-particle fermion
operator and a two-particle boson operator is fundamental.
Simple one-particle fermion operators at different points must
anticommute, and naturally they do, as (91) and (93) show.
The two-particle operators, which necessarily are bosonlike,
such as the spin density here, on the other hand, must com-
mute when taken at different points. This is achieved with the
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help of the string operator e−iπM , as explained in Sec. V B.
Therefore two-particle operators at the opposite ends of the
wire must be proportional to each other, up to unessential
phase factors. This is the crucial difference between the fun-
damental degrees of freedom of the fermionic Kitaev chain
(one-dimensional p-wave superconductor), which are single
particles of BdG type [1,51], and the transverse field Ising
chain, where they are two-particle excitations of magnetic
kind, and we have rediscovered it here for the correlated SDW
wire.

We therefore arrive at the logical conclusion that many-
body states are not particularly good for realizing Majorana
degrees of freedom as long as they are based on some
kind of two-particle (boselike) operators. For single-particle
based constructions, such as weakly-interacting semiconduct-
ing quantum wires in contact with a superconductor, the
commutation requirement does not exist and therefore there
are no fundamental restrictions to realizing the sought-after
Majorana fermions in such platforms.

We nonetheless believe that our problem is interesting in
its own way. It shows how fractionalized degrees of freedom
emerge in a basic setup of a quantum wire with repul-
sive interactions only. The finding of the twofold degenerate
ground state with unusual long-ranged correlations between
the spin densities at the opposite ends of the open wire, while
the correlations in the bulk of the wire decay, at best, as
a power law, deserves further theoretical and experimental
studies.
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APPENDIX A: SCREENED COULOMB INTERACTION
AND SPIN-CHARGE SEPARATION

In this Appendix we derive the low-energy effective theory
in terms of current operators JR/L (x) and �JR/L(x). The key
idea of the derivation is similar to Refs. [45,61] although on
a technical level we proceed by employing operator-product
expansion (OPE) of fermion operators while these references
applied them in the bosonic language. We assume the limit
L → ∞ in this Appendix. We use simplified notations

Rs(x) = �Rs(x), Ls(x) = �Ls(x), (A1)

and write the electron density as

ρ(x) =
∑

s=↑,↓
: �†

s (x)�s(x) : = ρ0(x) + ρ2kF (x), (A2a)

where

ρ0(x) =
∑

s=↑,↓
[: R†

s (x)Rs(x) : + : L†
s (x)Ls(x) :]

= JR(x) + JL(x), (A2b)

ρ2kF (x) =
∑

s=↑,↓
[ e2ikF xL†

s (x)Rs(x) + e−2ikF xR†
s (x)Ls(x)].

(A2c)

The density-density interaction is decomposed into two parts

Hint = 1

2

∫
dx
∫

dy ρ(x)U (x − y)ρ(y) ≈ HF + HB, (A3)

where forward- and backward-scattering interactions are

HF = 1

2

∫
dx
∫

dy ρ0(x)U (x − y)ρ0(y), (A4)

HB = 1

2

∫
dx
∫

dy ρ2kF (x)U (x − y)ρ2kF (y). (A5)

Here we have discarded rapidly oscillating cross terms
(ρ0ρ2kF ).

The interaction potential U (x − y) is short ranged. Intro-
ducing new variables X = (x + y)/2 and x̃ = x − y, we can
rewrite the forward-scattering interaction HF as

HF ≈ 1

2

∫
dx̃ U (x̃)

∫
dX [ρ0(X )]2

= U0

2

∫
dx [JR(x) + JL(x)]2. (A6)

The product of ρ2kF in HB yields

ρ2kF (x)ρ2kF (y) ≈ e2ikF x̃
∑
μ,σ

L†
μ(x)Rμ(x)R†

σ (y)Lσ (y)

+ e−2ikF x̃
∑
μ,σ

R†
μ(x)Lμ(x)L†

σ (y)Rσ (y),

(A7)

where we have discarded rapidly oscillating terms (∝e±4ikF X ).
The backward-scattering interaction HB can be calculated us-
ing the operator-product expansions

L†
μ(x)Rμ(x)R†

σ (y)Lσ (y)

=
[

− iδμ,σ

2π x̃
+ : L†

μ(x)Lσ (y) :

][
iδμ,σ

2π x̃
− : R†

σ (y)Rμ(x) :

]
= δμ,σ

(2π x̃)2
− : L†

μ(X )Lσ (X ) :: R†
σ (X )Rμ(X ) :

+ iδμ,σ

2π x̃
[ : L†

σ (X )Lσ (X ) : + : R†
σ (X )Rσ (X ) : ]

+ iδμ,σ

4π
{ : [∂X L†

σ (X )]Lσ (X ) : − : L†
σ (X )∂X Lσ (X ) :

− : [∂X R†
σ (X )]Rσ (X ) : + : R†

σ (X )∂X Rσ (X ) : }
+ . . . , (A8)
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and

R†
μ(x)Lμ(x)L†

σ (y)Rσ (y)

=
[

− iδμ,σ

2π x̃
− : L†

σ (y)Lμ(x) :

][
iδμ,σ

2π x̃
+ : R†

μ(x)Rσ (y) :

]
= δμ,σ

(2π x̃)2
− : L†

σ (X )Lμ(X ) :: R†
μ(X )Rσ (X ) :

− iδμ,σ

2π x̃
[ : L†

σ (X )Lσ (X ) : + : R†
σ (X )Rσ (X ) : ]

+ iδμ,σ

4π
{ : [∂X L†

σ (X )]Lσ (X ) : − : L†
σ (X )∂X Lσ (X ) :

− : [∂X R†
σ (X )]Rσ (X ) : + : R†

σ (X )∂X Rσ (X ) : }
+ . . . . (A9)

The second term in the above expansions can be written in
terms of currents,∑

μ,σ=↑,↓
: L†

μ(x)Lσ (x) : : R†
σ (x)Rμ(x) :

= 1

2
JL(x)JR(x) + 2 �JL(x) · �JR(x), (A10)

and the fourth term (a kinetic energy density) can be written
as

− i

2

{
: [∂xL†

σ (x)]Lσ (x) : − : L†
σ (x)∂xLσ (x) :

− : [∂xR†
σ (x)]Rσ (x) : + : R†

σ (x)∂xRσ (x) :
}

= π

2

{
: [JL(x)]2 : + : [JR(x)]2 :

}
+ 2π

3

[
: �JL(x) · �JL(x) : + : �JR(x) · �JR(x) :

]
. (A11)

Combining these contributions, we obtain

HB =
∫

dx
∫

dx̃ U (x̃)
cos(2kF x̃)

2π2x̃2

−
∫

dx̃ U (x̃)
sin(2kF x̃)

2π x̃

∫
dx[JL(x) + JR(x)]

− U2kF

∫
dx

{
1

2
JL(x)JR(x) + 2 �JL(x) · �JR(x)

+ 1

4
{: [JL(x)]2 + [JR(x)]2 :}

+ 1

3
[: �JL(x) · �JL(x) : + : �JR(x) · �JR(x) :]

}
,

(A12)

where

U2kF =
∫

dx̃ U (x̃) cos(2kF x̃). (A13)

The first term on the right-hand side of (A12) is a constant, and
the second term is a renormalization of the chemical potential.
We thus keep the last contributions proportional to U2kF and
finally obtain

HF + HB = Hc + Hs + . . . , (A14)

with the charge part

Hc = 1

4
(2U0 − U2kF )

∫
dx [JR(x) + JL(x)]2, (A15)

and the spin part

Hs = −2U2kF

∫
dx �JL(x) · �JR(x)

− U2kF

3

∫
dx [: �JL(x) · �JL(x) : + : �JR(x) · �JR(x) :].

(A16)

The second line in (A16) gives renormalization of the velocity
vF in (7). We note that Hc is a functional of JR + JL, which is
a consequence of Galilean invariance.

APPENDIX B: BOSONIZATION

1. Bosonization under periodic boundary condition

Here we summarize bosonization rules for the ring geom-
etry [37,38,62]. We first define chiral bosonic fields

φRs(x) = φ0
Rs +

√
πx

L
NRs + ϕRs(x), (B1a)

φLs(x) = φ0
Ls +

√
πx

L
NLs + ϕLs(x), (B1b)

where s =↑,↓, and

[φRs(x), φRs′ (y)] = −[φLs(x), φLs′ (y)] = i

4
δs,s′sgn(x − y).

(B2)
The zero-mode operators satisfy the commutation relations

[
φ0

Rs, NRs′
] = −[φ0

Ls, NLs′
] = − iδs,s′√

4π
, (B3)[

φ0
Rs, NLs′

] = [
φ0

Ls, NRs′
] = [φRs, φLs′ ] = [NRs.NLs′ ] = 0.

(B4)

The fields ϕRs and ϕLs are periodic functions of x, ϕR/Ls(x +
L) = ϕR/Ls(x), and can be expanded as

ϕRs(x) =
∞∑

n=1

e−παn/L

√
4πn

(eiqnxan,Rs + e−iqnxa†
n,Rs), (B5)

ϕLs(x) =
∞∑

n=1

e−παn/L

√
4πn

(e−iqnxan,Ls + eiqnxa†
n,Ls), (B6)

where qn = 2π/L, α is a short-distance cutoff, and the boson
annihilation/creation operators obey the commutation rela-
tions

[an,Rs, a†
n′,Rs′ ] = [an,Ls, a†

Ls′ ] = δn,n′δs,s′ . (B7)

The fields with different chiralities commute,

[φRs(x), φLs′ (y)] = 0. (B8)
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The chiral fermion fields are written in terms of the chiral
bosonic fields as follows:

ψRs(x) = ηRs√
2πα

ei
√

4πφ0
Rs e2π iNRsx/L+i

√
4πϕRs (x)

= ηRs√
2πα

ei
√

4πφRs (x)+iπx/L, (B9)

ψLs(x) = ηLs√
2πα

e−i
√

4πφ0
Ls e−2π iNLsx/L−i

√
4πϕLs (x)

= ηLs√
2πα

e−i
√

4πφLs (x)−iπx/L, (B10)

where ηR/Ls obey the anticommutation relations

{ηRs, ηRs′ } = {ηLs, ηLs′ } = 2δs,s′ , {ηRs, ηLs′ } = 0. (B11)

The fermion field operators ψRs and ψLs satisfy the standard
anticommutation relations. The fermion density operators are
given by

: ψ
†
Rs(x)ψRs(x) : = 1√

π
∂xφRs(x), (B12)

: ψ
†
Ls(x)ψLs(x) : = 1√

π
∂xφLs(x), (B13)

and therefore the fermion number operators NRs and NLs,
defined by

NRs =
∫ L

0
dx

1√
π

∂xφRs(x), (B14)

NLs =
∫ L

0
dx

1√
π

∂xφLs(x), (B15)

are integer-valued operators. The charge current operators
defined in (8) are thus given by

JR(x) = 1√
π

∂x[φR↑(x) + φR↓(x)], (B16)

JL(x) = 1√
π

∂x[φL↑(x) + φL↓(x)]. (B17)

One can show, using e2π iNRs = e2πNLs = 1, that the fermion
fields satisfy the periodic boundary conditions, ψRs(x + L) =
ψRs(x) and ψLs(x + L) = ψLs(x).

The linearized kinetic energy is given by [40]∫ L

0
dx : ψ

†
Rs(−i∂x )ψRs : = π

L

(
N2

Rs + NRs
)

+
∫ L

0
dx : (∂xϕRs)2 :, (B18)∫ L

0
dx : ψ

†
Ls(i∂x )ψLs : = π

L

(
N2

Ls + NLs
)

+
∫ L

0
dx : (∂xϕLs)2 : . (B19)

We define nonchiral bosonic fields

φs(x) = φLs(x) + φRs(x), (B20)

θs(x) = φLs(x) − φRs(x), (B21)

and then introduce a pair of charge field operators,

φρ (x) = 1√
2

[φ↑(x) + φ↓(x)], (B22)

θρ (x) = 1√
2

[θ↑(x) + θ↓(x)], (B23)

and a pair of spin field operators,

φσ (x) = 1√
2

[φ↑(x) − φ↓(x)], (B24)

θσ (x) = 1√
2

[θ↑(x) − θ↓(x)]. (B25)

Finally, we introduce charge/spin number and current opera-
tors,

Nρ = NR↑ + NR↓ + NL↑ + NL↓, (B26)

Jρ = NR↑ + NR↓ − NL↑ − NL↓, (B27)

Nσ = NR↑ − NR↓ + NL↑ − NL↓, (B28)

Jσ = NR↑ − NR↓ − NL↑ + NL↓. (B29)

By definition these operators must satisfy the following rela-
tions [46]:

(−1)Nρ = (−1)Jρ = (−1)Nσ = (−1)Jσ , (B30)

(−1)
1
2 (Nρ+Jρ ) = (−1)

1
2 (Nσ +Jσ ). (B31)

It is easy to write down the explicit form of the spin boson θσ

which will be useful for discussions in Sec. II A 5,

θσ (x) = −
√

π

2

x

L
Jσ + 1√

2

(
φ0

L↑ − φ0
L↓ − φ0

R↑ + φ0
R↓

+ϕL↑ − ϕL↓ − ϕR↑ + ϕR↓
)
. (B32)

Observe that in the presence of a finite spin current Jσ �= 0
the spin field acquires a kink at x = 0 = L since then θσ (0) −
θσ (L) = √

π/2Jσ .

2. Bosonization under open boundary condition

Here we summarize bosonization rules for electrons in a
wire of length L with open boundaries [37,38,62–64]. We first
define chiral boson fields

φLs(x) =
√

π

4
+

√
πx

2L
Ns + θ0

s√
4π

+ �Ls(x), (B33)

φRs(x) =
√

π

4
+

√
πx

2L
Ns − θ0

s√
4π

+ �Rs(x), (B34)

where s =↑,↓, [
θ0

s , Ns′
] = iδs,s′ , (B35)

and �Ls and �Rs have mode expansions,

�Ls(x) = −�Rs(−x)

=
∞∑

n=1

e−πnα/2L

√
4πn

(e−iπnx/Lan,s + eiπnx/La†
n,s),

(B36)

165147-16

The Trial Version



MAJORANA END STATES IN AN INTERACTING QUANTUM … PHYSICAL REVIEW B 102, 165147 (2020)

which satisfy �Ls(x + 2L) = �Ls(x) and the same for �Rs(x).
In (B36) α is a short-distance cutoff. One can verify that the
chiral boson fields introduced above satisfy the commutation
relations

[φRs(x), φRs′ (y)] = −[φLs(x), φLs′ (y)]

= i

4
δs,s′sgn(x − y), (B37)

and

[φRs(x), φLs′ (y)] =

⎧⎪⎨⎪⎩
0, x = y = 0,

− i
4δs,s′ , 0 < x, y < L

− i
2δs,s′ , x = y = L.

(B38)

We define a pair of bosonic fields (s =↑,↓)

φs(x) = φLs(x) + φRs(x), (B39a)

θs(x) = φLs(x) − φRs(x), (B39b)

which satisfy the commutation relation,

[φs(x), θs′ (y)] = −iδs,s′�(x − y) (B40)

for 0 < x, y < L. The field φs(x) obeys the Dirichlet boundary
conditions at x = 0, L:

φs(0) =
√

π

2
, φs(L) = √

π

(
Ns + 1

2

)
. (B41)

We then introduce charge fields,

φρ (x) = 1√
2

[φ↑(x) + φ↓(x)], (B42a)

θρ (x) = 1√
2

[θ↑(x) + θ↓(x)], (B42b)

and spin fields,

φσ (x) = 1√
2

[φ↑(x) − φ↓(x)], (B43a)

θσ (x) = 1√
2

[θ↑(x) − θ↓(x)]. (B43b)

Fermion fields are written in terms of the chiral boson fields
ψs(x) = eikF xψRs(x) + e−ikF xψLs(x), where [39]

ψRs(x) = ηs√
2πα

ei
√

4πφRs (x)+iπx/2L

= iηs√
2πα

e−iθ0
s eiπNsx/Lei

√
4π�Rs (x), (B44)

ψLs(x) = ηs√
2πα

e−i
√

4πφLs (x)−iπx/2L

= −iηs√
2πα

e−iθ0
s e−iπNsx/Le−i

√
4π�Ls (x)

= −ψRs(−x). (B45)

Here ηs obeys the anticommutation relations

{ηs, ηs′ } = 2δs,s′ . (B46)

The electron density operator is given by

: ψ
†
Rs(x)ψRs(x) : = 1√

π
∂xφRs(x), (B47a)

: ψ
†
Ls(x)ψLs(x) : = 1√

π
∂xφLs(x). (B47b)

We define Klein factors [40]

Fs = ηse
−iθ0

s , (B48)

which satisfy

F †
s Fs = 1, [Fs, Ns] = Fs. (B49)

The operator Ns is integer valued and measures the number of
electrons with spin s,

Ns =
∫ L

0
dx[: ψ

†
Rs(x)ψRs(x) : + : ψ

†
Ls(x)ψLs(x) :]. (B50)

It follows that ψRs(x + 2L) = ψRs(x). The Fermi wave num-
ber is given by kF = πN0

s /L, where N0
s is another integer. We

see from (B45) that the open boundary conditions are satisfied

ψs(0) = ψs(L) = 0. (B51)

APPENDIX C: DETAILS OF THE ANALYSIS FOR THE
WIRE WITH OBC

1. Rotations

To treat the wire with open boundaries it is convenient to
orient external magnetic field along the x̂ axis, while the spin-
orbit axis continues to point along the ŷ axis. Such a choice
leads to chiral rotations about the ẑ axis, see below, and results
in convenient boundary conditions for rotated fermions ψ (x),
as we demonstrate now. Thus, the Zeeman magnetic field b =
gμBB couples to the magnetization along the x̂ axis,

Vx = −b
∫

dx
(
Jx

R + Jx
L

)
, (C1)

while the spin-orbit interaction couples to the difference of the
ŷ components of the currents,

Vso = 2αRkF

∫
dx
(
Jy

R − Jy
L

)
. (C2)

Using again extended SU (2) × SU (2) symmetry of the non-
interacting spin Hamiltonian with respect to independent
rotations of the right- and left-moving currents, we rotate spin
currents �JR and �JL about the ẑ axis in opposite directions
so as to bring “vectorial” perturbation V = Vso + Vx into the
standard Zeeman form, with total field h =

√
b2 + (2αRkF )2

along the x̂ axis

V = −h
∫

dx
(
Mx

R + Mx
L

)
. (C3)

Compare this with (13) where the field h is pointing along the
ẑ axis.

The required chiral rotation is given by

�JR = Rz(βR) �MR, �JL = Rz(βL ) �ML, (C4)
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where the rotation matrix is R

Rz(β ) =
( cos β sin β 0

− sin β cos β 0
0 0 1

)
. (C5)

The rotation angles are given by

βR = −βL = β = arctan(2αRkF /b). (C6)

These rotations do not affect H0
σ (7), which retains its form in

the rotated M basis

H0
σ = 2πvF

3

∑
a=x,y,z

∫
dx
(
Ma

RMa
R + Ma

LMa
L

)
. (C7)

In terms of the right- and left-moving fermions, the ro-
tation (C5) corresponds to the rotation of spinors �R/L =
(�R/L↑, �R/L↓)T ,

�R = eiβσ z/2� ′
R, �L = e−iβσ z/2� ′

L. (C8)

As before, the charge currents (8) do not transform under
the rotations (C4) and (C8)—the Hamiltonian of the charge
sector H0

ρ + Hint,ρ is not affected. The new (primed) fermions

parametrize the rotated currents �MR/L in the same way as
the old (unprimed) ones parametrize the currents �JR/L . For
example, under the right rotation Rz(β )

�JR = : �
†
R

�σ
2

�R : → �MR = : �
′†
R

�σ
2

� ′
R : . (C9)

The interaction in the spin sector Hint,σ (10b) is strongly
modified by the rotation and changes to

Hint,σ = −g
∫

dx �MRRT (βR)R(−βR) �ML

= −g
∫

dx
[
Mz

RMz
L + cos χ

(
My

RMy
L + Mx

RMx
L

)
+ sin χ

(
My

RMx
L − Mx

RMy
L

)]
, (C10)

where χ = βR − βL = 2β is the relative rotation angle.
The net field h, (C3), pointing along the x̂ axis, induces

incommensurate fluctuations in the system which makes some
of the terms in (C10) oscillate fast with the coordinate. To
account for this important effect we proceed as follows:

(1) We do a global rotation of �MR/L about the ŷ axis
in order to make external field h (C3) point along the ẑ
axis. This is achieved by the following transformation to
the new L basis, (Mx, My, Mz )T = Ry(π/2)(Lx, Ly, Lz )T =
(Lz, Ly,−Lx )T . The corresponding rotation for fermions
reads � ′

R/L → e−iπσ y/4� ′′
R/L. Here, similar to (C9), La

R/L = 1
2 :

�
′′†
R/Lσ a� ′′

R/L : .
Noninteracting Hamiltonian (5) is invariant under

constant-angle rotations (C8) and � ′
R/Ls → eiπσ y/4� ′′

R/Ls,
while the field-dependent term (C3) is rotated into
V = −h

∫
dx (Lz

R + Lz
L ). It is then easy to see that h can

be absorbed into fermions � ′′
R/L by a simple x-dependent

transformation

� ′′
R → eitϕxσ z/2� ′′

R, � ′′
L → e−itϕxσ z/2� ′′

L , tϕ = h/vF ,

(C11)
under which kinetic energy (5) transforms into that of rotated
� ′′ fermions plus

∫
dx h(Lz

R + Lz
L ) term which exactly com-

pensates the rotated V one.

(2) As a result of this shift the transverse components
Lx

R/L ± iLy
R/L = L±

R/L of the rotated spin current acquire os-
cillating position-dependent factors, L+

R → L+
R e−itϕx, L+

L →
L+

L eitϕx. The immediate consequence of this is that many terms
in Hint,σ (C10) acquire x-dependent oscillations,

Hint,σ = −g
∫

dx

{
cos χLz

RLz
L − cos χ − 1

4
(L+

R L+
L + H.c.)

+ cos χ + 1

4
(L+

R L−
L e−i2tϕx + H.c.)

− i
sin χ

2

[
(Lz

RL+
L + L−

R Lz
L )eitϕx − H.c.

]}
. (C12)

Provided that the running backscattering coupling con-
stant g/vF is small, all oscillating terms, which represent
momentum-nonconserving two-particle scattering processes,
average out to zero. Assuming this, we are allowed to drop all
oscillating terms in (12).

The meaning of (C11) is simple. It represents splitting
of the Fermi momentum kF into the spin-dependent ones
kFs = kF + stϕ/2. Given that kF is determined by the particle
density, kF = πN0

s /L, the development of the spin-dependent
Fermi momenta kFs = πNs/L describes the appearance of the
finite magnetization with N↑ > N↓ in the magnetized ground
state of the rotated system. Therefore, �kF = tϕ/2 = π (N↑ −
N0

↑ )/L, so that tϕL = 2π (N↑ − N0
↑ ) = −2π (N↓ − N0

↓ ) is an
integer multiple of 2π since Ns and N0

s are integers describing
number of spin-s electrons in the system with finite h �= 0 and
with zero h = 0, correspondingly.

(3) Having absorbed the h field (C3) in the preced-
ing step, we now apply global rotation back, by −π/2
about the ŷ axis, to the nonoscillating terms (first line)
in (22). So that (Lx, Ly, Lz )T = Ry(−π/2)(Kx, Ky, Kz )T =
(−Kz, Ky, Kx )T and we obtain nonoscillating part of the spin-
interaction Hamiltonian to be

Hint,σ = −
∫ L

0
dx
[
gxKx

RKx
L + gc

(
Kz

RKz
L − Ky

RKy
L

)]
= −

∫ L

0
dx gaKa

RKa
L , (C13)

where gx = gcos χ , gz = −gy = gc = g(1 − cos χ )/2. Here
the fermions rotate as � ′′

R/L → eiπσ y/4ψR/L . Note close sim-
ilarity of (C13) with (23) as well as the fact that the roles of x̂
and ẑ axes are interchanged in these two expressions.

Under steps (1)–(3) the noninteracting spin Hamiltonian
(C7) transforms into that in terms of spin currents Ka

R/L ,

H0
σ = 2πvF

3

∑
a=x,y,z

∫ L

0
dx
(
Ka

RKa
R + Ka

L Ka
L

)
. (C14)

At this stage the complete Hamiltonian of the spin sector is
given by the sum of equations (C14) and (C13). The magnetic
field is absent from the above Hamiltonian because it is ab-
sorbed into renormalization of the Fermi momenta kF → kFs.

Tracing the above steps (1)–(3) we find relation between
� ′

R/L and rotated fermions ψR/L, in terms of which the spin
Hamiltonian, (C14) and (C13), and the charge Hamiltonian,
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H0
ρ in (7) and Hint,ρ in (10a), are now formulated,

� ′
R(x) = e−iπσ y/4eitϕxσ z/2eiπσ y/4ψR = A(x)ψR(x),

� ′
L(x) = e−iπσ y/4e−itϕxσ z/2eiπσ y/4ψL = A(−x)ψL(x),

A(x) = σ 0 cos

(
tϕx

2

)
+ iσ x sin

(
tϕx

2

)
. (C15)

We are now in position to understand the boundary condition
for the rotated fermions. For the original fermions the open
boundary requires that �s(x = 0) = 0 = �s(x = L), which
means that their right- and left-moving components are related
as

�Rs(0) = −�Ls(0), �Rs(L) = −�Ls(L). (C16)

After the chiral rotation (C8) fermions � ′
R/L obey

� ′
Ls(0) = −eisβ� ′

Rs(0), � ′
Ls(L) = −eisβ� ′

Rs(L), (C17)

where s = +1 for the up spin and s = −1 for the down spin. In
matrix notations, (C17) is just � ′

L(xo) = −eiβσ z
� ′

R(xo), where
xo = 0, L denotes the wire’s open ends.

Next, Eq. (C15) shows how � ′
R/L(x) transform as a

result of global rotations in steps (1)–(3). Therefore the
boundary condition (C17) actually reads A(−xo)ψL(xo) =
−eiβσ zA(xo)ψR(xo). Observing that A−1(xo) = A(−xo), we
get

ψL (xo) = −A(xo)eiβσ zA(xo)ψR(xo) = −BψR(xo),

B =
(

cos(tϕxo) cos β + i sin β i cos β sin(tϕxo)
i cos β sin(tϕxo) cos(tϕxo) cos β − i sin β

)
.

(C18)

The matrix B reduces to eiβσ z
when tϕxo = π (N↑ − N↓) =

2πM, as discussed below (C12). Hence at the end of the day
(C18) leads to

ψL(xo) = −eiβσ z
ψR(xo), (C19)

so that boundary conditions for spinors ψR/L coincides with
those for � ′

R/L, see (C17).
Observe that by construction spin current operators Ka

R/L in
(C13) and (C14) are given by

Ka
R/L = : ψ

†
R/L

σ a

2
ψR/L : . (C20)

Relation between Ma
R/L and Ka

R/L currents is established with
the help of equations (C9), (C15), and (C20),

Ma
R(x) = : ψ

†
R(x)A†(x)

σ a

2
A(x)ψR(x) : . (C21)

We find that they are connected by an x-dependent rotation
about the x̂ axis,

�MR = Rx(−tϕx) �KR =
(1 0 0

0 cos(tϕx) sin(tϕx)
0 − sin(tϕx) cos(tϕx)

)
�KR,

�ML = Rx(tϕx) �KL. (C22)

Since at the boundary eitϕxo = 1, we find that there the two
operators coincide, Ma

R/L(xo) = Ka
R/L (xo).

In terms of the original spin currents the OBC �JR(xo) =
�JL(xo) becomes �MR(xo) = Rz(−2β ) �ML(xo), which means that

Mz
R(xo) = Mz

L(xo), M+
R (xo) = ei2βM+

L (xo). Given the relation
Ma

R/L(xo) = Ka
R/L (xo) derived above, we obtain that at the open

boundaries the currents Ka
R/L obey the same boundary condi-

tion as Ma
R/L

Kz
R(xo) = Kz

L(xo), K+
R (xo) = ei2βK+

L (xo), (C23)

and, moreover, at xo = 0, L the original currents Ja
R/L and Ka

R/L
are connected by chiral rotations (C5)

�JR(xo) = Rz(βR) �KR(xo),

�JL(xo) = Rz(βL ) �KL(xo).
(C24)

2. Hamiltonian and the RG analysis

We are now ready to write down the Hamiltonian of the
wire of finite length L with open boundaries at xo = 0, L. The
simplest way to derive the free part of the Hamiltonian is to go
back to the original fermion formulation, equations (5), (13),
and (C8), and observe that rotation (C8) leaves (5) invari-
ant. The same is not true for the x-dependent rotation (C15)
which, in addition to the kinetic energy of ψR/L fermions,
produces the opposite of (13) so as to cancel the field h
term (13) completely. This, of course, is exactly the purpose
of steps (1)–(3) and transformation (C15) as explained in
Appendix C 1. In this way we arrive at H0

σ in (C14).
It is useful to remark here that there is another, slightly

more involved, way to derive this result: start with equation
(C7) and apply rotations (C22) to it. Doing so requires one to
implement a careful point-splitting procedure and treat (Ma

R)2

as a limit of Ma
R(x)Ma

R(y), with subsequent limit x → y at the
end of the calculation. Then, using operator product expansion
(OPE) of SU(2) currents and fermion bilinears [21]

ψ
†
R/Ls(x)ψR/Ls(y) = ±i

2π (x − y)
+ : ψ

†
R/Ls(x)ψR/Ls(x) :,

Ka
R/L(x)Kb

R/L(y) = − δab

8π2(x − y)2
− ±εabcKc

R/L(x)

2π (x − y)
,

(C25)

where x, y are spatial coordinates and the limit x → y is
implied. In particular, the first line above helps to establish
that the field h produces a constant shift (magnetization) of
Mx

R = Kx
R + tϕ/4π , which should be added to (C22). [The

same shift of the along-the-field component of the spin current
by h/(4πvF ) is easily obtained in the Abelian bosonization,
when one absorbs −h∂xφσ term by “completing the square.”]
Next, using (C36) we again arrive at the final result (C14) and
also obtain the cancellation of the h-field term (C3).

Now we manipulate the interaction term. It is useful to
observe that

gxKx
RKx

L − gcKy
RKy

L = gx + gc

4
(K+

R K+
L + K−

R K−
L )

+ gx − gc

4
(K+

R K−
L + K−

R K+
L ),

(C26)
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and therefore the interaction Hamiltonian (C13) can be written
as

Hint,σ = −
∫ L

0
dx

[
gcKz

RKz
L + gx + gc

4
(K+

R K+
L + K−

R K−
L )

+ gx − gc

4
(K+

R K−
L + K−

R K+
L )

]
. (C27)

Equations (C14) and (C27) represent a nontrivial interacting
problem, analysis of which requires renormalization group
(RG) treatment. The couplings ga obey the famous BKT RG
flow,

dgx

d�
= − gygz

2πvF
,

dgy

d�
= − gxgz

2πvF
,

dgz

d�
= − gxgy

2πvF
,

(C28)

where � = log(α′/α) describes increase of the short-distance
cutoff from α to α′. As discussed in detail in Ref. [43], the
solution to the RG equations (C28) depends on the initial
values of the couplings involved,

gx(0) = gcos χ, gz(0) = −gy(0) = gc = g

2
(1 − cos χ ).

(C29)
Noting that d (g2

y − g2
z )/d� = 0 and the fact that for � = 0 gz +

gy = 0, we conclude that gz(�) = −gy(�) = gc(�) for all �.
Equations (C28) then reduce to the two coupled equations

dgx

d�
= g2

c

2πvF
,

dgc

d�
= gcgx

2πvF
, (C30)

which too is characterized by the integral of motion Y =
g2

x(�) − g2
c(�).

In the case of comparable spin-orbit and Zeeman ener-
gies (cos χ ≈ 1/3), which is the focus of this paper, the
combination gx + gc towards positive infinity. This describes
development of the correlated SDW state. This means that the
combination gx − gc = Y/(gx + gc) flows to zero in the same
limit. As a result, (C27) simplifies to

Hint,σ = −
∫ L

0
dx

[
gcKz

RKz
L + gx + gc

4
(K+

R K+
L + K−

R K−
L )

]
.

(C31)

Equations (C14) and (C31) constitute the basis for the subse-
quent analysis.

3. Bosonization

Boundary conditions (C19) represent only a slight mod-
ification of the OBC considered in Appendix B 2. They are
satisfied by the following representation of the fermion oper-
ators [37,38]

ψRs(x) = ie−isβ/2

√
2πα

ηse
−iθ̃s ei πx

L Ns ei
√

4π�Rs (x), (C32a)

ψLs(x) = −ieisβ/2

√
2πα

ηse
−iθ̃s e−i πx

L Ns ei
√

4π�Rs (−x), (C32b)

�Rs(x) =
∞∑

n=1

e−αqn/2

√
4πn

(eiqnxbns + e−iqnxb†
ns), (C32c)

where qn = πn
L , bns is canonical boson with [bns, bms′ ] =

δn,mδs,s′ , [θ̃s, Ns] = i, ηs is the Majorana Klein factor sat-
isfying {ηs, ηs′ } = 2δs,s′ , and Ns is the (integer) number of
particles relative to the equilibrium N0 value. Note that fol-
lowing the constructive bosonization [40], ηse−iθ̃s = Fs is
the fermion number-changing operator, [Ns, Fs] = −Fs and
F †

s Fs = 1. Also notice that �Rs(x) is 2L periodic.
As usual, we define commuting charge �Rρ and spin �Rσ

bosons

�Rρ = 1√
2

(�R↑ + �R↓), �Rσ = 1√
2

(�R↑ − �R↓).

(C33)
Observe that (C32) implies that in fact

ψLs(x) = −eisβψRs(−x) (C34)

for all x ∈ [0, L] and not only for the wire’s endpoints xo =
0, L in (C19). This is a very general consequence of the
chiral nature of one-dimensional fermions, see for exam-
ple Fabrizio-Gogolin formulation [39] of the OBC. Using
bosonization (C32) we obtain

K+
R (x) = eiβ

2πα
e−i πx

L F†e−i 2πx
L Me−i

√
8π�Rσ (x),

Kz
R(x) = M

2L
+ 1√

2π
∂x�Rσ (x), Kz

L(x) = Kz
R(−x),

K+
L (x) = e−i2βK+

R (−x), (C35)

where M = Nσ = (N↑ − N↓)/2 is the magnetization opera-
tor, �Rσ = (�R↑ − �R↓)/

√
2 is the spin boson, and we used

e−i πx
L Ns F †

s = F †
s e−i πx

L (Ns+1).

4. Unfolding of the spin Hamiltonian

Next, relation (C35) allows us to write [ �KL(x)]2 as
[ �KR(−x)]2, so that

∫ L
0 dx[ �KR(−x)]2 = ∫ 0

−L dx[ �KR(x)]2 and
(C14) can be unfolded onto (−L, L) interval as

H0
σ = 2πvF

3

∫ L

−L
dx [ �KR(x)]2 = 2πvF

∫ L

−L
dx
[
Kz

R(x)
]2

.

(C36)
The interaction part (C31) can be written, with the help of
(C35), as

Hint,σ = −
∫ L

−L

dx

2

{
gcKz

R(x)Kz
R(−x)

+ gx + gc

4
[e−i2βK+

R (x)K+
R (−x) + H.c.]

}
. (C37)

Equations (C36) and (C37) constitute complete spin Hamilto-
nian of the open quantum wire, written in terms of the chiral
(right) current �KR. It is worth adding here that charge currents
(8) and charge Hamiltonian H0

ρ + Hint,ρ are not affected by
the rotations.

5. Observables

Here we express spin operators in terms of boson field �̃

(61). Uniform spin current is easy, using (C35) and setting
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Kσ = 2,

K+
R (x) = eiβ

2πα
e−i πx

L F†e−i 2πx
L M

× e−i
√

4π[�̃(x)−�̃(−x)]−i
√

π [�̃(x)+�̃(−x)]. (C38)

Observe that it does not contain charge fields. The original
spin currents �JR/L and �KR/L are connected by (C4) and (C22).

The 2kF component of the spin density (38) requires more
work. First of all, by (C8) and (C15)

N+(x) = 1
2�

′†
R (x)(σ x + iσ y)� ′

L(x)

= 1
2ψ

†
R(x)A(−x)(σ x + iσ y)A(−x)ψL(x).

(C39)

This gives

N+(x) = Ñ+(x) − i sin(tϕx)Ñ0(x) + [cos(tϕx) − 1]Ñx(x),

(C40)

where Ñ+ = ψ
†
R↑ψL↓ reads

Ñ+(x) = − 1

2πα
e−i πx

L (Nρ+1)e−i
√

2π [�Rρ (x)−�Rρ (−x)]

× ei πx
L Me−i

√
π[�̃(x)+�̃(−x)]e−i πx

L MF†. (C41)

Here we defined Ña = 1
2ψ

†
Rσ aψL (a = 0, x, y, z), and σ 0 de-

notes the identity matrix. The last three factors in the above
equation combine into f †(x) operator, see (67). We see that
Ñx,y depends on symmetric combination of the spin modes
�̃(x) + �̃(−x), similar to (C41), while Ñ0,z depends on the
antisymmetric one �̃(x) − �̃(−x). Also important is that
(C41) and other components of Ña depend also on the crit-
ical charge mode via the antisymmetric charge combination
�Rρ (x) − �Rρ (−x).

Moreover, it is easy to see that the potential part of H̃σ [the
first line of (66b)] can be written as

H̃σ ∝ gx + gc

8
(Ñ+(x)Ñ+(−x) + H.c.). (C42)

Therefore H̃σ is minimized when Ñ+(x)Ñ+(−x) = −1,
which means that the spin part of Ñ+(x) is reduced ±i. That
is,

Ñ+(x) → ±i

2πα
e−i πx

L (Nρ+1)e−i
√

2π[�Rρ (x)−�Rρ (−x)]. (C43)

Comparison with (42c) shows that similar to the ring geom-
etry case, the open wire situation too is characterized by the
finite expectation value of the spin part of Ñy and, correspond-
ingly, zero expectation value for the spin part of Ñx.

6. Charge sector Hamiltonian

With the help of (A15) the charge Hamiltonian is given by

Hρ =
∫ L

0
dx

{
πvF

2

[
J2

R (x) + J2
L (x)

]
+ 2U0 − U2KF

4
[JR(x) + JL(x)]2

}
, (C44)

where JR(x) = 1
2L Nρ +

√
2
π
∂x�Rρ (x) and, in the open wire,

JL(x) = JR(−x). Therefore (C44) can be written as

Hρ =
∫ L

−L
dx

{(
vF + 2U0 − U2KF

2π

)
[∂x�Rρ (x)]2

− 2U0 − U2KF

2π
∂x�Rρ (x)∂x�Rρ (−x)

}
+ π

4L

(
vF + 2U0 − U2KF

π

)
N2

ρ (C45)

and can be diagonalized similarly to the spin Hamiltonian, see
(62). We introduce �ρ (x) via

�Rρ (x) = �ρ (x) cosh ν − �ρ (−x) sinh ν (C46)

and find

Hρ = πvρ

4LKρ

N2
ρ +

∫ L

−L
dx vρ[∂x�ρ (x)]2 (C47)

provided that e2ν = Kρ , as given by (33a), and vρ = vF /Kρ ,
see (33b).

Therefore

�Rρ (x) − �Rρ (−x) = √Kρ[�ρ (x) − �ρ (−x)] (C48)

and we can evaluate Qρ = e−i
√

2π [�Rρ (x)−�Rρ (−x)] from (105)
by normal ordering it,

Qρ =
∞∏

n=1

egn (x)a†
ρ,n e−gn (x)aρ,n e− 1

2 g2
n(x),

gn(x) = −
√

2Kρ

n
e− παn

2L sin

(
πxn

L

)
.

(C49)

We used mode expansion [see (C32)]

�ρ (x) =
∞∑

n=1

e−αqn/2

√
4πn

(eiqnxaρ,n + e−iqnxa†
ρ,n) (C50)

with qn = πn/L. We are projecting (105) onto the state
with no bosons, so that aρ,n|·〉 = 0. The presence of the
fermion-number changing operator F in δH ′ implies that the
perturbation connects states with opposite magnetization par-
ity, 〈0|δH ′|1〉 �= 0. Projecting Qρ (C49) onto the states |0〉 and
|1〉, we find that exponentials of a†

ρ,n and aρ,n operators reduce
to 1, and

Qρ =
∞∏

n=1

e− 1
2 g2

n(x) =
(

ln
(1 − e− πα

L )2

|1 − e− πα
L ei 2πx

L |

) Kρ

4

. (C51)

For x = 0, L it reduces to 1, corresponding to the case (i) of
spin-flip scattering near the open end of the wire. For α < x <

L it gives Qρ = {πα/[2L sin(πx/L)]}Kρ/2, which is quoted in
the main text, case (ii) in Sec. V D.
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