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We propose and investigate a simple one-dimensional model for a single-channel quantum wire hosting
electrons that interact repulsively and are subject to a significant spin-orbit interaction. We show that an external
Zeeman magnetic field, applied at the right angle to the Rashba spin-orbit axis, drives the wire into a correlated
spin-density wave state with gapped spin and gapless charge excitations. By computing the ground-state
degeneracies of the model with either (anti)periodic or open boundary conditions, we conclude that the correlated
spin-density state realizes a gapless symmetry-protected topological phase, as the ground state is unique in the
ring geometry while it is twofold degenerate in the wire with open boundaries. Microscopically the twofold
degeneracy is found to be protected by the conservation of the magnetization parity. Open boundaries induce
localized zero-energy (midgap) states which are described, at the special Luther-Emery point of the model,
by Majorana fermions. We find that spin densities at the open ends of the wire exhibit unusual long-ranged
correlations despite the fact that all correlations in the bulk of the wire decay in a power-law or exponential
fashion. Our study exposes the crucial importance of the long-ranged string operator needed to implement the
correct commutation relations between spin densities at different points in the wire. Along the way we rederive

the low-energy theory of Galilean-invariant electron systems in terms of current operators.
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I. INTRODUCTION

The search for condensed matter realization of Majorana
fermions has been at the center of intense theoretical and
experimental efforts in the last decade. It is strongly motivated
by the promise of topological quantum computing as well as
by its fundamental importance to our current understanding
of numerous topological phases of matter [1,2]. Topological
superconducting wires represent one of the most promising
platforms for realizing Majorana end states [3—6]. By now,
several experimental groups have reported transport and STM
tunneling data consistent with Majorana physics [7-11], and
many more studies are currently under way.

A topological superconducting wire is obtained by bring-
ing a semiconducting quantum wire with significant spin-orbit
interaction into close contact with an s-wave superconductor
and then applying an external (Zeeman) magnetic field in the
direction orthogonal to the Rashba spin-orbit axis of the wire
[5,6,12]. Provided that the chemical potential lies within the
gap induced by the Zeeman field, the wire effectively realizes
a one-dimensional p-wave superconductor which features lo-
calized Majorana states at the open ends of the wire (more

: : smmdaries between topological and trivial
nel topological superconducting wire
b more complex/other geometries such
[13,14], wires with periodic modula-
botential [15], and chains of magnetic
of a superconductor [16,17]. Realistic
modeling of semiconductor-superconductor heterostructures
has been developed [18,19].
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Electron interactions are very important in zero- and
one-dimensional systems [20,21] and their effect on the topo-
logical properties of the suggested quantum wire setup was
investigated early on [22—-24], and some exact/rigorous results
were obtained [25,26]. In parallel, a search for strongly inter-
acting wires with algebraic superconducting correlations [27]
which would remove the need for close proximity of the wire
to the macroscopic superconductor has begun. Kitaev’s toy
p-wave superconductor model is characterized by the twofold
degeneracy of the ground states with different fermion pari-
ties, i.e., between the ground states with an even and an odd
number of fermions in the wire with open ends [1,28]. This
degeneracy makes it clear that in a wire with a fixed total
number of electrons the conservation of the subband parity
acquires crucial importance. One-dimensional models with
superconducting interband interactions conserving subband
parity [27,29-33] are found to possess twofold degeneracy in
their ground state and thus represent one-dimensional topo-
logical states with exponentially localized Majorana modes
at their open ends. Interestingly, their topological nature is
preserved despite the presence of the critical center-of-mass
fluctuations in the bulk.

Subband parity, in the form of a specific magnetization par-
ity, plays the key role in our work as well. Unlike most of the
previous studies, however, we present a physical realization
of the parity-conserving system in a realistic quantum wire
with purely repulsive electron-electron interaction. Our key
finding is that localized Majorana end states can be realized
in a simpler setting which does not require proximity to an
s-wave superconductor. All that is needed is a single-channel
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quantum wire with significant spin-orbit and strong repulsive
interactions between electrons. Applying an external mag-
netic field in the direction orthogonal to the spin-orbit axis
of the wire drives its many-electron state into a correlated
spin-density wave (SDW) phase with a finite spin gap in the
bulk and nontrivial magnetic correlations [34] and transport
properties [35,36]. No superconductivity or fine tuning of
the chemical potential is required. We show below that these
Majorana zero-energy states live in the particle-hole sector of
the many-body problem and can be thought of as spin density
operators localized near the wire’s ends.

Our paper is rather technical and is based on the bosoniza-
tion technique as developed in Refs. [37-40] and designed
to account for the periodic, antiperiodic, and open boundary
conditions. It is organized as follows. In Sec. II we formulate
the Hamiltonian of the problem and show, with the help of
renormalization group (RG) arguments, that the wire flows
to strong coupling describing an interesting correlated SDW
state. Focusing first on the wire in the ring geometry, which
depending on the parity of the magnetization corresponds
to either periodic boundary conditions (PBC) or antiperiodic
boundary conditions (anti-PBC), we show that its ground
state is unique. In Sec. III we consider the wire with open
boundary conditions (OBC) and derive its effective fermion
Hamiltonian at the special Luther-Emery point. The effective
Hamiltonian is solved in Sec. IV, where we find that the
ground state is twofold degenerate. The physical importance
of the magnetization parity and the physical manifestations
of the discovered Majorana modes are analyzed in Sec. V.
Our findings and physical insights derived from them are
summarized in Sec. VI. Numerous technical details of our
calculations are described in three extended appendices.

II. HAMILTONIAN

We consider a single-channel quantum wire, the Hamilto-
nian of which consists of three main contributions, Hyie =
He + Vso +V,. Here He = Heo + Hine describes an ideal
quantum wire,

82
> / dx W] (x)(—ﬁ - u)ws(x), (1a)

1
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(1b)

where H.o is the kinetic energy with chemical potential
i, U(x) is the screened Coulomb electron-electron (e-e) in-
teraction, and s =1, | is the spin index. The electrons are
perturbed by the spin-orbit interaction
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FIG. 1. Schematics of the Cooper scattering process. Spin-orbit
interaction is directed along the § axis; Zeeman magnetic field is
applied along the Z axis. Two electrons in, say, subband 1 (repre-
sented by black points) are scattered into the opposite Fermi points
in subband 2 (shown by green points). In the conjugate process two
electrons initially in band 2 are scattered into band 1.

The spin-orbit interaction (2) is obtained from the standard
Rashba interaction, agZ - p X &, by replacing the transverse
component of the electron momentum p by its zero expecta-
tion value, p, — (p,) = 0. Corrections to this approximations
are known to be very small [35,36].

Obviously Hyie does not conserve spin—this fact is of
crucial importance for our investigation. The key consequence
of this can be understood by considering a limit of strong
magnetic field p > b = gugB > 2arkr, where kr denotes
the Fermi momentum of the unperturbed Hamiltonian H. o,
Eq. (1a). In this limit Hi. describes the standard problem
of a partially magnetized quantum wire with two Zeeman-
split subbands. In the absence of the spin-orbit interaction
no scattering processes between these subbands are possi-
ble, simply because their spin wave functions are described
by the orthogonal spinors, spin up (1) and spin down ({)
states. This is just the consequence of the spin conservation.
However, any finite spin-orbit interaction ag # 0 breaks spin
conservation and immediately allows for a new scattering
process: the Cooper scattering [41]. This momentum- and
energy-conserving process describes scattering of the pair of
electrons at +kr Fermi points of, say, the majority subband
(1) into a similar pair of electrons in the minority (|, ) subband,
and vice versa, see Fig. 1. That is, a pair of electrons with
spin $° = 41 is converted into that with spin $° = —1 and
vice versa. This superconducting, or Josephson-like scattering
(hence the name Cooper), conserves fermion parity of each
of the subbands and plays a crucial role in the following
discussion.

Such a two-subband description can be straightforwardly
extended to the physically most important regime of com-
parable Zeeman and spin-orbit energies, b~ 2agkp, see
for example Ref. [36]. We, however, will follow a less
cumbersome approach, based on the chiral rotation trick, as
detailed below. The end result of these complimentary calcu-
lations is the same [36].
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A. Spin current formulation of the quantum wire with periodic
boundary conditions

1. Chiral fermions

Our approach to the problem consists in treating perturba-
tions Vy, and V, on equal footing. Initially, we turn off the
perturbations Vs, and V,. We express fermion fields ¥ (x) in
terms of low-energy modes Wg, and W, that live near +kp
and —kr Fermi points, correspondingly,

W, (x) = Wpo(x)e™ ™ + Wy (x)e*r~, )

The Fermi-momentum kr = /2mu is determined by the
electron density in the usual way, kr = nNSO /L, where L is
the length of the wire and N = Ng .+ N =2Ng is the
total number of fermions of spin projection s. It is written
in terms of the numbers ng/,_’s of chiral fermions in the
wire. The choice of Nf =N} made here corresponds to
considering the state with no charge current in the ground
state, jO = )" (Np, — N ) = 0. In the absence of the exter-
nal magnetic field the ground state magnetization is zero as
well, M* = (N? - Nf)/z =0.

Consider the wire in the closed loop geometry, with the
chiral fermions (4) obeying the periodic boundary conditions
(PBC) such that Wg/; ,(0) = Wg/r ((L). Note that el =1
due to our choice kr = 271N,g, /L explained below (4).

In terms of the chiral fermion fields Wg, and ¥, the
kinetic energy is simply

Heo = 3 [ dxCivpWf o, + ior ¥ a0, (9
s

where vp = kr/m is the Fermi velocity. It is useful at this
stage to write the kinetic energy as a sum of commuting
charge and spin parts (Sugawara construction), He o = ’Hg +

0
‘H,, where

TTVF
H) = — | (Jz +J7), (©6)
ZijF agya agya
HO = 3 > / dx (JaTg + JET7). (7
a=x,y,z
Here we introduced normal-ordered charge currents
Je=) Wi Wee, Jo=) W W (8)
s N
and spin currents (a = x, ¥, 7)
a __ BNTh Us‘.lv/ . a __ N7 Us‘.lv/ .
Ji = Z Sy, = Z WS )

As described in Appendix A, the interaction part of the
Hamiltonian (1a) separates into charge and spin parts as well,
Him = 7'[int,p + Hint,(x, where

Uo—Uzk»/dx(JRHL)z, (10a)

dxJg - Jp. (10b)

ere U
q
of the e-e interaction U (x), and g = 2Uy, denotes the magni-
tude of the spin backscattering interaction.

denotes the gth component of the Fourier transform

We now turn on the perturbations Vs, and V,. The Zeeman
magnetic field b = gugB couples to the sum of spin currents
(magnetization)

V,=— /dx (Jx +J5). )
while the spin-orbit interaction couples to their difference,
since the Rashba term (2) is odd under spatial inversion (x —
—x) which interchanges right- and left-moving excitations
[35],

Vso = 20leF / dx (J; - Jl\,) (12)

2. Chiral rotations

It is crucial to notice now that HY possesses an extended
SU((2) x SU(2) symmetry of independent rotations of the
right- and left-moving currents. Our solution of the problem
[36,42] exploits this extended symmetry. Namely, we next
rotate Jz and J; about the £ axis in opposite directions so as to
bring “vectorial” perturbation V = V,, 4+ V), into the standard

Zeeman form, with total field h = /b* + (2agkr)?* along the
Z axis

Y= —h/dx (M + M;). (13)
The required chiral rotation is given by
Jr = Ru(Br)Mr,  Jp = Ru(BLIML, (14)
where the rotation matrix R, is
1 0 0
R:(B) = <O cgsﬂ —sin,B). (15)
0 sinB cosp
The rotation angles are given by
Br = —Pr = B = arctan(Lagkyr /D). (16)

These rotations do not affect 7—(2 (7), which retains its form in
the rotated M basis
2mv
0 F
H, = 3

> / dx(MgMg + MiM7),  (17)

a=x,y,z

where vg here is understood as the one including the shift
—Uy,. /3 found in (A16).

In terms of the right- and left-moving fermions, the ro-
tation (14) corresponds to the rotation of spinors Wg/ =
(Wrsrt, Wryy)" and Yry = (Yryers Yrey)'s

Wp = e P Pyp, W =Py (18)

This observation makes clear that the charge currents (8) do
not transform under the rotations (14) and (18)—the Hamil-
tonian of the charge sector ’Hg + Hint,p 1s not affected. The
new fermions parametrize the rotated currents MR/L in the

same way as the old ones parametrize the currents fR/L. For
example, under the right rotation R, (8)

19)
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The interaction in the spin sector Hiy, (10b) is strongly
modified by the rotation and changes to

Hint,o = —g/dXMRR,{(,BR)RX(ﬂL)ML

—g / dx[MyM; + cos x (MyM; + MizM7)

+ sin x (MyM; — MiM7)], (20)

where x = Br — B = 28 is the relative rotation angle.

Observe that the net field %, (13), points along the Z axis.
The magnetic field induces incommensurate fluctuations in
the system which make some of the terms in (20) oscillate fast
with the coordinate. It is easy to see that /& can be absorbed into
the kinetic energy of fermions ¥/, by a simple x-dependent
transformation

I//R - eithaz/zll/R, wL — e*itho':/ZwL’

As a result of this shift the transverse components My, +

ty = h/vp. (21)

iMy, L= M,:et/L of the rotated spin current acquire oscillat-
ing position-dependent factors, M — Mge "* and M} —
M €. The immediate consequence of this is that many
terms in Hin,» (20) acquire x-dependent oscillations,

sin® £
Hint,o = —g/dx cos xMiM; + 2 (MgM; +H.c.)
sz X )
3 2 (MFM; e + H.c.)
sin )
+ iTX[(MgM,; + MEM; e — H.c.]}. (22)

Provided that the running backscattering coupling con-
stant g/vp is small, all oscillating terms, which represent
momentum-nonconserving two-particle scattering processes,
average out to zero. Assuming this, we are allowed to drop all
oscillating terms in (22) and obtain the nonoscillating part of
the spin-interaction Hamiltonian as

Moo = — / dx[ge (MEMF — MUM}) + g MM

- _/dx > gaMiMy, (23)
a=x,y,z
where
1 —cosy 2Qagkr)?
= — , = c = = ) 24
8x & =8 =8 2 + Qagkr)? (24)
b — Qogkr)?
g = goos x = go —uRkr) (25)

82 ¥ Qagkr )

Note that at this point the complete Hamiltonian of the
spin_sector is given by the sum of equations (17) and (23).
ic field is absent from it; it is absorbed
he Fermi momenta kr — kp,. In fact,
8. in (23) have implicit dependence
enormalization-group transformation
 scale (of the order of the band width)
o the effective magnetic field 4.

The meaning of (21) is simple. It represents splitting of
the Fermi momentum k into the spin-dependent ones kp, =
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kr + st,/2. Given that kr is determined by the particle den-
sity, kp = wNp/L, the development of the spin-dependent
Fermi momenta kr; = 7 N;/L describes the appearance of the
finite magnetization with Ny > N, . Therefore, Akr =1,/2 =
7 (Ny = NY)/L, so that 1,L = 27 (Ny — N})) = 2 M is an in-
teger multiple of 27, since Ny and N 9 are integers describing
the number of spin-1 electrons in the system with finite  and
zero h, respectively. The magnetization M = (Ny — N|)/2 is
also an integer.

After making the transformations, the fermions g, and
Y obey the boundary conditions

Yr(0) = 2 yp(L) = (=DM yr(L),
Yr(0) = e 2y (L) = (=DM (L).

The boundary conditions depend on the parity of the mag-
netization M: periodic for even M and antiperiodic for odd
M. 1t is appropriate to note here that even though our sub-
sequent analysis will show that the magnetization M is not a
conserved quantity in the ground state of the interacting wire,
the magnetization parity (—1) is conserved in the ground
state. Therefore the boundary condition (26) is well defined.

The antiperiodic boundary condition for odd M can be
implemented by introducing a magnetic flux threading the
ring under the periodic boundary condition. Thus we replace
dx with 9, — imA/L in the kinetic energy H. o in (5) or equiv-
alently we add

(26a)
(26b)

TAVE

e @7
to the charge part of the kinetic energy 7—[2. Here we demand
the integer parameter A to be

_Jo for(—1)M =1,
)”_{1 for (—1M = —1. (28)

3. RG analysis

Equations (17) and (23) represent a nontrivial interacting
problem, analysis of which requires renormalization group
(RG) treatment. Let us assume for the moment that the wire
length L is large so that finite-size effects are negligible. The
couplings g, obey the famous Berezinskii-Kosterlitz-Thouless
(BKT) RG flow [20,21],

dgx _ &8  dg _

- _ 88 dg: _
de 2rwvp’ de

2nvp’ de

88y

2mvp’
(29)

where ¢ = log(«’ /) describes increase of the short-distance
cutoff from o to o’. As discussed in detail in Ref. [43],
the solution to the RG equations (29) depends on the initial
values [(24) and (25)] of the couplings involved. Noting that
d(g; — g)/dt = 0 and the fact that for £ = 0 g, + g, = 0, we
conclude that g,(£) = —g,(£) = g.(¢) for all £. Equation (29)
then reduces to the two coupled equations

dg. _ & dge _ s
d¢  2mvp’  dt 2mvp’

which too are characterized by the integral of motion ¥ =

£(0) — g(0).

(30)
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It turns out that the solution is towards strong coupling,
meaning that g, .(£) — +o0 for sufficiently large ¢, for all
possible angles x € (0, w) [43]. This diverging solution im-
plies an instability towards a correlated spin state with a
nonvanishing excitation gap in the spin sector. The spin gap
can be estimated as A, ~ (vg /a)e’éf’ where £, is the RG
scale at which the dimensionless coupling constants diverge.
The minimal value of £, corresponding to the strongest insta-
bility, occurs for Y = 0. This corresponds to cos x = 1/3 and
implies b = ZﬁaRkp. Therefore, the correlated spin state is
strongest when Zeeman energy is comparable to the spin-orbit
energy.

AtY = 0 RG equations (30) simplify to a single equation,

ds: _ &

= , 31
de 2m g (31)

whose  solution is given by g, (£) = g.(0)/[1 —
£:.(0)¢/(2mvr)], and g.(£) is described by the same equation.
Thus £y = 2w vg /g.(0) = 6w vr/g. The corresponding gap is
exponentially small, A, ~ (vr/a)exp(—6mvr/g).

An important clarification is in order here. Reference [44]
has showed that quadratic in spin-orbit interaction terms affect
the RG flow significantly, via the change of the initial values
of the coupling constants, in the limit b < agkr. Under these
conditions the ground state is actually an anisotropic Luttinger
liquid [43,44]. This, however, does not affect the conclusion
of the flow towards the strong coupling in the optimal case of
b = agrkp, on which we are focusing here.

4. Bosonized form

The physics of the spin gap phase is conveniently discussed
with the help of Abelian bosonization, a brief description of
which is summarized in Appendix B 1. With this powerful
technique the charge Hamiltonian #, = 'Hg + Hint,p + Hiux
turns into

1
M, = /dx—[”—" L0+ 0K, (0,8, :
21K,

242 v
+ TFaxep}, 32)
where [¢,,(x), 3,0,(y)] = i8(x — y), and
2y — Uy, \ 2
K, = (1 + u) , (33a)
TTVF
2Up — Uni, \/?
v, = vp<1 + u) . (33b)
TTVF

Note that the relation v,K, = v holds, which is a conse-
quence of Galilean invariance and guarantees the 2m-flux
to the Coulomb interaction [41,45,46].
spin Hamiltonian (17) turns into that of

.- pdfelemeht bf bosons, ¢, and 6,,
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x%[(axqbo 2 + (0,:60,)7]. (34)

where the bosonic fields obey the commutation relation
[¢5(x), 0,65 ()] = id(x — y). The bosonized form of the in-

teraction (23) is obtained as

Hinto = / dx{ — & (0,0 — (0,0,)]
8

-5 & 5 cos(«/ﬁa,)}, (35)

where « is a short-distance cutoff. From (34) and (35) we
obtain

UKo 56,72
2 XYoo

_ Yo 2
H, = /dx|:2Ka (0:05)* +

- (25;)2 cos(«/@@a)], (36)

where we introduced dimensionless Luttinger parameter K,
and renormalized spin velocity v,

1+ g./4

K, = | E&/imor (37a)
1 —g,/Amvp

Vo = Vpy/ 1 — (g:/4mvF)?, (37b)

and we set ngr4ngyNL4nLy = 1. The nonlinear cosine term
cos(+/876,) in (36) describes intersubband pair-tunneling
processes, the Cooper scattering in Fig. 1, and is respon-
sible for the opening of the spin gap. We note in passing
that the above analysis can be easily extended to the case
of nonorthogonal spin-orbit and Zeeman field directions
[36,44,47]. In this case MZM; in (22) [or, equivalently,
cos(\/S_né‘g) term in (36)] also acquire oscillating factors
and therefore “average out” of the Hamiltonian. Physically,
this corresponds to momentum-nonconserving pair tunneling
between the two subbands [36] and results in the restoration
of the critical Luttinger liquid ground state.

We see that the growth of g, under RG flow leads to the
growth of K,;. According to the standard Tomonaga-Luttinger
liquid phenomenology [20,21], this indicates the development
of attractive interactions in the spin sector and associated
superconductinglike behavior of various physical observables.
A large positive value of g, implies the development of the
correlated state with cos(\/g&,) = +1. This state is twofold
degenerate, with /276" = 0 and v/276® = 7 (mod 27)
describing two equivalent spin states.

The physical meaning of the obtained spin correlated state
can be inferred from the behavior of spin density, as was done
previously in Refs. [36,44], and corresponds to the Ising-type
algebraic spin density wave (SDW) order. Specifically, we are
interested in the 2k component of the spin density S5, (x) =

N%(x)e~ %% + H.c., where

N(x) = S Wi(0)o“ WL (x), a=x,y,z (38)
With the help of (18) and (21), N“ reduces to the form
N* = cos ,BIVX +isin B cos(t(p)c)ﬁ0 + sin 8 sin(t(px)ﬁz, 39)
NY =N, (40)
N7 = cos(t,x)N* — i sin(t,x)N°, (41)
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where we have defined No=0-x» = %I/I;G“I//L, and 0° de-
notes the identity matrix. Using the standard bosonization
(described in Appendix B 1), we obtain

NO — RtILY —iV2mg,—2miv/L cos(V 2, ), (42a)
2ra

A IR NLy e_im o —2mix/L sin( /27195), (42b)
2ra

Ny = ZUIRMILY —iv/2mg,—2nix/L cos(v2mb,), (42c)
2o

N = —lg_m'?m eIV 2mix/L in (27 ). (42d)
T

It is now easy to observe that in the ground state of the sine-
Gordon Hamiltonian (36) only the spin part of N¥ acquires a
nonvanishing expectation value—the spin density ‘wants’ to
line up along the  axis, which is the spin-orbit axis; see (2).
Therefore we can write, choosing the gauge ngynz, = i [36],

s 2mx 0
(Sy> o Cos [\/E@,(x) + 2kpx + T} <il), (43)
S/ oy 0
up to the “short-ranged” corrections involving field ¢, cor-
relation functions of which decay exponentially on the scale
Vs /As. The £1 part of the above equation corresponds to
the choice of degenerate ground states {2, Gapless charge
fluctuations, however, prevent the true symmetry breaking
from happening. Equations (39), (42), and (43) show that spin
correlations in the obtained SDW state are highly anisotropic
in spin space and their spatial decay is controlled by the
gapless charge sector of the wire.

It is also useful to consider the 2k component of the
charge density, p,, (x) = p(x)e " 4 H.c., where

p = \IJIS\I'L — w;e—ithaz/zeiﬂaxe—ithoz/ZwL. (44)
We find

p=2cospf cos(th)J\NIO —2icos B sin(tg,,)c)ﬁZ + 2isin ﬁﬁx.
(45)

We see that py, (x) is nullified by the SDW ground state.
This means that weak scalar impurity, the potential of which
couples to py,. , renormalizes to zero—electron backscattering
is suppressed [36].

Finally, it is interesting to note that H, (36) at K, = 2 is
just a bosonized Hamiltonian of a one-dimensional p-wave
superconductor, which is known to be a topological supercon-
ductor of class D [1,48] having a zero-energy Majorana mode
at each end. Hence we can anticipate that our quantum wire
model may also host a localized Majorana-like zero mode at
the end of the wire, even though no superconducting order is
ate. This is indeed the case as shown

a pdfelement
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sis explained above, we have found

at the ground state of the spin gap phase has Ising-type
SDW quasi-long-range order. Here, however, we show that
the ground state of the wire is unique under the ring geometry.

To this end, we need to pay close attention to zero modes
in the low-energy Hamiltonian H,, + H, [46,49]. As shown in
Appendix B 1, the zero modes obey the selection rules (B30)
and (B31). We restrict ourselves to the even particle number
parity case when

(D% = (=D =(=D¥ =(=Dr =1 “6)

and reproduce (B31) here for completeness
(=2 = 1)z, (47
Substituting (B1) into (32) and keeping only the zero-mode

terms, we find

7 (v
H® = —(—pN2 + vpN, + vpJ? — 4rvpd ) (48)
P 4AL\K, ? ?
which is minimized when J, = 2A. We note that A is related
to the magnetization; see Eq. (28).
Similarly, the zero-mode part of the spin Hamiltonian H,

o [ 1
Hg:ﬁ _ 34_[(0]3
4L \ K,

is

&Y
2mra)?

L
/ dx cos (V8762 — 2mJ,x/L), (49)
0

where 60 is defined by

1
O = —=(®L1 — Oy — Ly + i) (50)
«/5( Lt Rt L) RL)
and the renormalization factor y from finite-frequency modes
is
2K
= (== . 51
y=() (51)

Assuming that g, is renormalized to strong coupling, we find
that Hf,) is minimized when (J,, eim@g) =(0,1)or (0, —1).
It follows from the commutation relation

2
[09,N,] =i,/ = (52)
T
that
ei«@@ijGe—i«/ﬁeg =N, — 4, {ei«/EGS’ eiﬂNU/Z} -0

(53)
We see that N, is not conserved but the parity (—1)N/? is
conserved.
. . H 0
Let us introduce eigenstates of V2705

V% a) = |a), eV |b) = — |b). (54)

Since the two states |a@) and |b) minimize the potential
—g.cos(+/86?), they are candidates for ground states of
Hé). However, they are not eigenstates of a parity operator

(=12,
Let us define
1 1
= — b)), |-)=— — |b)). 55
[+) ﬂ(|a>+| M, =) ﬁ(|a> b)) (55)

We find from (53) that |[4+) and |—) are, respectively, the even
and odd parity state,

eiTrNg/2|+> — |_’_)’ eiﬂNa/zl_) = —|—> (56)
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The discussion above follows that in Ref. [27] closely. It
follows from (47) with J, = 0 that
N @t _ [F1 for|+),
(=1) - {—1 for|—). (57)

We are now ready to see that the ground state of H B +H?
is unique in the ring geometry. Since we seek the ground state
for a fixed number of electrons, we can set N, = 0.

(i) Suppose (—1)2®Me+/) = 41, With N, =0 we have
that J,/2 = even and can set J, = 0 to minimize the charge
Hamiltonian (48). By (47) we have (—1):® ) = 41 too.
Now, (49) [and also (36)] is minimized by J, = 0 when the
field configuration in the argument of the cosine in (49) and
(36) is uniform, i.e., does not have kinks. This is easiest to
see by thinking of the full field 6, in (36) and following its
definition in Appendix B 1, see (B32). Then we find 6, (0) =
0,(L) and the kink-free configuration of 6, satisfies this.
With J, = 0 we have (—1)"/? = (—=1) = +1 and hence the
ground state is the state |+). Note also that (—1)” = 1 means
A =0, see (28), and therefore the choice of J, = 0 indeed
corresponds to the energy minimum.

Let us now ask what is the lowest energy for the state |—)?
In this state (—1)*/2 = —1 but then our initial assumption
(=1)2@o+2) = 41 and (47) require that (—1)2®+e) = 41.
This is only possible if J, = £2. (More generally, J, = 2 +
4n, but this will lead to a multikink spin sector configu-
ration with yet higher energy.) But then the field 6, must
obey 0, (L) = 6,(0) — /7 /2J, so that it experiences discon-
tinuity (kink) at x = 0 (which is the same as x = L in the
ring geometry). This boundary condition forces 6, to have
another kink somewhere on the ring, at some 0 < x; < L.
The lowest energy of the state with such a two-kink config-
uration (one at x; and another at x = 0 = L) is higher than
that of the kink-free configuration. Calculating this energy
difference is not easy but the relevance of the cosine po-
tential in (36) means that it is of the order of g./&, where
& = A/v, is the correlation length of the correlated SDW
state. The energy difference remains finite in the limit L —
00.

We therefore see that in the case of (—1)zMe+/) = 41
the ground state of the wire is given by |+), i.e., the state
with the positive magnetization parity. The state with negative
magnetization parity |—) has much higher energy.

(ii) Next consider (—1)>®™+/») — —1, which for N, =
0 means J,/2 =odd. Now the identity (47) requires
(—1)2Met)o) = _1. Therefore the kink-free configuration
of the spin sector, one with J, = 0, requires (—DN/2 =
(=)™ = —1. By (28) this means that A = 1 and hence the
charge sector energy is minimized by J, = 2. The odd-parity
state |—) is the lowest-energy state.

magnetization parity state |+) must
t J, = £2 which therefore forces the
-kink configuration and results in the
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“"We note 4 nergy difference between the lowest-

r (=125 = 41 and the lowest-

energy state |—) under (—1)2®+/) = —1 is of order 1/L due

to the charge Hamiltonian (48).

The presented arguments establish that the ground state of
the wire in the correlated SDW state is unique in the ring
geometry. It is worth noting that the gapless charge sector has
played an important role in this conclusion, via the “super-
selection” rules (46) and especially (47). We’ll see below that
this is not the case in the case of the open wire, i.e., the wire
with two open ends.

III. FINITE WIRE WITH OPEN BOUNDARIES

Now we turn to the case of our main interest, i.e., a finite
wire with open boundaries at x = 0 and x = L, where W(x =
0) =0 = ¥ (x = L). Equation (4) shows that OBC for the
original fermions means Wg,(0) = —W;,(0) and Wgs(L) =
—W,(L). The last relation follows from el =1, as ex-
plained below (4).

In order for the rotated fermions to obey simple boundary
conditions which do not mix components with different spin
indices s, it proves very convenient to change the direction of
the external magnetic field to be along the X axis, B= Bx, and
not along the Z axis as written in (3). This choice does not
change the physics of the problem because the magnetic field
and spin-orbit interaction remain orthogonal to each other and,
therefore, the correlated SDW phase is preserved. Detailed
arguments in Appendix C show how this chiral rotation about
the Z axis is done and, following the steps described there,
one finds that the rotated fermions ¥z (x) introduced in
(C15) satisfy the boundary condition (C19). In terms of s
components it is just

wL,s(-xo) = _eiSﬂ lpR,s(xo)v

where up/down spin projection s =1 =+41,s=]=—1 in
the rotated basis and x, = 0, L denotes the two open ends of
the wire.

After the chiral rotation (C4), the total magnetic field & =
Vb? + (Qagkr)? experienced by electrons is pointing along
the % axis. Subsequent manipulations [summarized as steps
(1)—(3) in Appendix C] are needed in order to absorb # into the
redefined Fermi momenta. Therefore up- and down-pointing
spins s =1, | in (58) and elsewhere in this section actually
represent spins pointing along the positive and negative X axis
in the rotated frame.

The resulting Hamiltonian is split into charge Hamiltonian
and spin Hamiltonian and is written in terms of charge cur-
rents Jg/(x) (8), which are not affected by the performed
rotations, and spin currents Kp /L (x), which are related to ¥z
by (C20). Both types of currents are expressed in terms of the
rotated fermions ¥g/r (x).

We are now ready to write down the spin Hamiltonian of
the wire of finite length L with open boundaries at x, = 0, L.
It is formulated in terms of right-moving current Kg(x) and
reads [see (C36) and (C37)]

(58)

L

Hoe = Hy 4+ Hinor  Hy =27vp / dx[Ki]’,  (59)
L

1 L
Hino = —3 / dx (chfe(x)Ké(—x)
—L

+ %[e—izﬂK;(x)K;(—x) + H.c.]). (60)
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Our next task is to bosonize H,. The first line of (60)
represents quadratic correction to (59). Using (C35) we collect
quadratic boson terms of H,,

L
HEY = / dx{vF[axd>Ra(x>]2+f—caxclm(x)ax%(—x)}
—L T

TV M?
LK,

This part can be diagonalized with the help of another chiral
boson field & (see Chap. 27 of [21])

VKs - .
> [Q(X)—Q(—X)]+2m

(61)

[®(x) + (—x)],

(62)
where Luttinger parameter K,; is introduced in (37a). Observe
that under this transformation,

1
VK
The nonlinear operator in the second line of (60) is found,

with the help of Baker-Hausdorff identity e4e? = ¢A+Bel4-81/2,
to be

Drs ()C) =

Ppo (x) + Pro (—x) = [D(x) + d(—x)]. (63)

- (F{F)?
e PKF (0K (—x) = ﬁe—’m[d’m()ﬁﬂ‘bm(—xn

X e—2mx/Le—47r'T(x)

i 2
_ _(FT FL) efi ,’%[é(xné(fx)]
QQma)? ’
(64)
Here

ena/L _ e*i2nx/L
ema/L _ pi2nx/L

1
T(x) = [Pry(x), Pro(—x)] = P ln<

L tan~! [cot (E)], (65)
2w L
which is obtained from (C32). The last line represents the limit

a/L — 0. This leads to e "’f e=#7Y® = —1 in (64).
Putting everything together, we find

~ TV M? L
He = ——— + / dxH,, (662)
LK, i
where
_ &t & [(FTF Pel EP@)+D(-0)] +He]
7T 8Qmapt e <
+ V6 [0, D] (66b)

Equation (66a) is the chiral version of (36), with 6,
rescaled by /K.

It is worth noting here that in the open wire geometry the
currents are necessarily absent [39],
ode part of (66a) consists of a single
means that the “super-selection” rule
(— )N while (47), with J, = J, =
consequence. Altogether, this means
at global zero-mode constraints (46) and (47), which played
a crucial role in the ring geometry in Sec. Il A 5, largely lose
their importance in the open wire geometry.
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We now observe that at a special value K, = 2, which de-
fines the Luther-Emery point [40,50], the cosine term in (66b)
is proportional to the product of e~V4T®() and e~ WAT®(-x),
suggesting, by comparison with (C32), that it can be written as
a bilinear form of fermionlike operators. Therefore, at K, = 2
a refermionization is possible. To that end, we introduce the
new spinless fermion operator via

f(.x) — feiﬂXM/Lel\/H&)(x)’ (67)

T

where F = F jFT is a new Klein factor. Observe that it satis-
fies all requirements of being the M-changing operator,

M, Fl=-F, M F1=F, FFr=FrF =1
(63)
The exponential in (66b) can now be rewritten, at K, = 2, as

(F e WA+l _ (VAT I p=iv/Ar ()

% ]_-T eZﬂT(x)

: & - M
— e*l«/AGCIJ(x)‘/—_-Tefz T

y ei%e—im&’(_")f%hﬂm

=2mafi(x)fi(—x)e'T 2T,
(69)
To obtain the last equality above, we used F'e ™M/t =
e~ M/L T oimx/L - Qbserve that [®(x), P(—x)] = Y(x) and
that for |x| > o (65) gives
eZUT(x)eiT[x/L — is(x), (70)

where s(x) = sgn[sin wx/L] is a 2L-periodic sign function

I, xe(,L),
s(x)=1{—-1, xe(—L,0), (71)
0, x=0,=xL.

Keeping small but finite « in (65) rounds discontinuities of
s(x) in finite intervals of order o around endpoints x = x,,.
Equations (64) and (69) show that at K, = 2

—is(x)

efiZﬂK;(x)KIg»(_x) — fT(x)fT(—)C) (72)

2na

The final ingredient is the kinetic energy which we, following
Ref. [40] and using formalism developed in Appendix B2,
find to be

L
/ dx £ 00 (—ivg 80)f (%)
-L

T Vg L ~ 2
MM +1) +/ dx v, [0, P(x)]".  (73)
2L L

Hence at K, = 2 the spin Hamiltonian (66a) can be written in
terms of new fermion operators (67) as

- L JAN
= de[fwx)(—ivaax)f(x) + S (=)

TVveM
2L

iAo
+ s f (—X)} - ; (74)

where the spin gap is given by A = (g, + g.)/(8mw ). Equa-
tion (74) describes a one-dimensional p-wave superconductor
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with the pairing potential changing sign at x =x, =0, £L
[51], i.e., at the open boundaries of the wire in our origi-
nal problem. The sign function in (74) is required because
fermions anticommute, {f(x), f(—x)} = 0. The kink in A is
of profound importance to the low-energy excitations. We
show below that it induces a zero-energy self-conjugate state,
the Majorana mode, which is exponentially localized near the
boundary.

Note that although the Hamiltonian (74) does not con-
serve M due to the presence of the Klein factors F in
£(x), it does conserve 2™ = ¢ M=ND) which follows from

[e2™  F]=0.
Moreover, (74) also conserves the magnetization parity
einM
ei?‘l’M — ei%(N¢—N¢). (75)

This is because (74) contains squares of Klein factors F
and FT. As a result, we have to look on ¢™ F2. How-
ever, the commutation relation (68) implies that [M, F 21 =
—2F? and therefore ¢ F2 = F2¢™ =27 = F2¢™™ That
is, [¢™ | H,] = 0, the magnetization parity (75) is conserved
by the Hamiltonian (74). The charge sector of the open wire
is described in Appendix C 6.

IV. SOLUTION OF THE REFERMIONIZED HAMILTONIAN

One-dimensional superconductor (74) is solved by the Bo-
golyubov transformation [52]

£ = D W) + 02 (=), (76)
n=0
which diagonalizes (74) into the form
Ho = Egs + > €l Vi (77)

n

Here €, > 0 are the excitation energy, and y,, are Fermi op-
erators satisfying {y,, ¥,)} = 8, and {y,, y} = 0. Functions
u(x), v(x) are found with the help of the equation of motion

i0,f(x) = [f(x), Ho]
”2’; F@) — iy 8, f(x) — iAsgn(x) T (—x)
(78)

by expressing both sides of the last equality in terms of
fermion operators y,, y,:r with the help of (77) and (78). This
leads to the Bogolyubov-de Gennes equation

(—iv(r.ax — 5 . iAs(x?w )(u(x)) _ 6<u(x)>. (79)
—iAs(x) vy 0y + 577 ) \v(x) v(x)

What are boundary conditions for f(x) and, as a result, for

u(x) and v*(—x)? Equation (67) shows that f(x + 2L) =
used 2L periodicity of ®(x) and

ons (68). Correspondingly, the vector

e same boundary conditions as f(x). It
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2 (”(_L)), © = 27M. (80)

v(L) v(—L)

Note that at x = 0 the vector (u(x), v(x))” is continuous.

As noted below (74), even though M is not conserved
by H,, the exponential ™™ remain unchanged and is con-
served, because anomalous ff and f7f" terms in H, change
M by £2. Therefore we can treat ® in (80) as a real (non-
operator) phase, but distinguish the cases of M = integer and
M = half-integer,

®=0forMe?Z,

(1)
@=mxforMeZ+1/2.

Particle-hole symmetry of (79) ensures that vector
(v*(—x), u*(—x))T describes states with energy —e and sat-
isfies (80). Full solution of (79) consists of scattering states f;
with energies € above the gap A and localized in-gap states
fo, fu with nearly zero energy,

o0

de f.(x). (82)

£ = fol) + fu00) + f

A

‘We focus on the localized modes which, for 0 < x < L, are
described by

MO(X) _ﬂ 1 (—kc+igp)x ﬂ l (rc+i g7 )x
<vo(x))_ﬁ(—e’¢)e 2 +\/§ it e L,
(83)

The corresponding energy is € = /A% — v2«?2, and we intro-
duced €® = (v,k + i€)/A. Solution on the negative half of
the wire, —L < x < 0, is given by the similar combination
with amplitudes A, B, and A — —A due to the oddness of
the function s(x). Boundary condition (80) and continuity of
(u(x), v(x))T at x = 0 can be written in the form of 4 x 4
matrix equation, acting on the vector (41, B, Ay, B>)T, with
zero right-hand side. Setting determinant of that matrix to zero
produces the relation between € and «,

tan’(¢) sinh?(k L) = cos>(©/2), (84)

which can be used to express everything in terms of « as

cos2 ®/2
A = Vg K 1+ 2 T
sinh“ (kL)

cos ®/2

ok ———— A 2A cos(©/2)e” A
v KSil’lh(KL) cos(®/2)e

(85)
We used (81) which guaranties that cos ®/2 > 0. It is worth
pointing out the surprising feature of the vanishing splitting
€ between the first excited state, localized at the opposite
ends of the wire, and the ground state of the wire for the
special value of the phase difference ® = 7 (mod 27), when
M € Z + 1/2 is half integer. The energy splitting € is maxi-
mal when M € Z, which corresponds to even 2M = Ny — N, .
Similar oscillatory dependence on the phase difference ® has
been previously studied in Ref. [53] in a different context.
The most important physical message of (85) is that the
first excited state is exponentially close to the ground state.
For L > & = v, /A itis essentially degenerate with it.
Straightforward algebra leads to

A] — eZKL(l _ ie—l{L+i(~)/2)C’

Ay =B', By=Al

B] — i(eKL+i(‘)/2 + Z)C,
(86)
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Here C is the real normalization constant. To the leading order
= /k/2e7*"_ Therefore, for0 < x < L,

(Mo(x)) ~ ﬁ[( 1 )eflchrinx/ZL i iei@/Z<1)ek(x7L)+i7rx/2Li|’
v (x) 2 L\~1 1

87
where we neglected exponentially small corrections oce ™% to
the two end contributions describing exponentially localized
in-gap states near the left, x = 0, and the right, x = L, ends

of the wire. We also used (85) to replace e=® by 1 up to
exponentially small terms. For —L < x < 0 we similarly find

+ ( ll)erJriJTx/ZL].

Equations (76), (87), and (88) finally allow us to express
exponentially localized end modes as

(Mo(x)) ~ \/E[_ie—i®/2(1>e—/((x+L)+irrx/2L
vo(x) 2 1

(88)

K i
folx) ~ “/T_e—”(yo —yl) for0<x<L, (89
and
frlx) = —JTE@*“L’)‘)@"@/Z(VO +y)) forl —x < L.

(90)
Note that (89) and (90) describe self-conjugate Majorana
modes, fy = —f1 and f; = ¢~"®f;. Namely, fy and f; are
proportional to the independent Majorana modes, d; and d»
defined via

1
Yo = E(dl + id») 1)
with
{d,dr} =0, (d)’ =) =3, (92)
such that
fo(0) = i\/gdz, fill) = —e"")/z\@dl. (93)

The appearance of the independent Majorana modes at the
opposite ends of the quantum wire agrees with the original
proposal of Kitaev [1]. The ground state of the wire is doubly
degenerate since states |0) and |1) = yOT |0) have the same
energy [1], up to exponentially small energy difference €
given by (85). Here |0) is the vacuum state of y,, y,|0) =0
forn > 0.

Finally. we comment on the applicability of the present
= 2. It is likely from (37a) that the
ger parameter K, is smaller than 2
ng (g./4mvr < 3/5). However, K, is
to the RG equation (30) and reaches
bcale, at which we can apply the refer-
emionization. In this sense the analysis above is applicable to
a broader range of parameters. Physically, the twofold ground-
state degeneracy is a direct consequence of the SDW order.
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V. PHYSICAL MEANING OF THE MAJORANA MODE

A. Spin correlations in the bulk of the wire

Spin excitations of the open wire consist of massive propa-
gating modes f, with energy € > A, and zero-energy modes
fo.L which are exponentially localized on the scale & = k!
v, /A near x, = 0 and x, = L, correspondingly. We therefore
expect that spin correlations inside the open wire, for § <«
x < L — &, should coincide with those in the ring geometry,
see Sec. I A 4.

To see how this comes about, we start with K,:r (x), (C38),

K (1) o o~ VAT D)= (—0)] =i /T B(0)+D(~2)] (94)

and observe that according to (66a) the SDW ordered state
is characterized by the ordered, or “frozen,” symmetric
combination of spin fields ®(x) + ®(—x). Importantly, the
antisymmetric combination ®(x) — ®(—x) does not commute
with the symmetric one. Indeed, a simple calculation, similar
to the one in (65), shows that for —L < x,y < L

[D(x) + D(—x), D(y) — ()]

_ i 2y 95
—§<Sgn(x—y)—8gn(x+y)+f>- 95)

Therefore the ordering (freezing) of the symmetric combina-
tion ®(x) + ®(—x) makes correlations of operators involving
the antisymmetric one d(x) — (—x) short ranged, e.g., de-
caying exponentially with distance.

Now we turn to the 2kr component of the spin density
N“ (38) and its rotated version (C39), (C40). Analysis in
Appendix C5 shows that N* fields involve the symmetric
spin mode ®(x) + ®(—x) as well as an antisymmetric charge
one ®Pp,(x) — Pg,(—x). In the SDW phase the symmetric
spin mode is frozen, but charge excitations remain critical.
Moreover, Eq. (C43) and discussion around it shows that,
when the frozen value of the symmetric mode is substituted,
the spin part of N* vanishes while that of N” approaches
a constant value. Correspondingly, correlations of N field
inside the wire decay algebraically with the exponent which
is controlled by the Luttinger constant of the charge mode
K,, in agreement with expressions (42c) and (43) for the
closed wire case. At the same time, correlations of compo-
nents N0 decay exponentially with the distance, because they
involve quantum-disordered antisymmetric spin combination
®(x) — ®(—x). The described correspondence also shows
that ®(x) + &(—x) plays the role of 6, while d(x) — P(—x)
is analogous to ¢, in Sec. I A 4.

B. End-to-end correlations

Correlations between the end regions of the wire, 0 < x <
& and L — & <x < L, are very different. Observe that for
x & () the quantum-disordered combination vanishes, d(x) —
®(—x) &~ 0. The same is true for x &~ L due to the 2L peri-
odicity of the field ®(x). At the same time the symmetric
combination simplifies to ®(x) + ®(—x) ~ 2P (0). [Obvi-
ously, for x & L we have D(x) + O (—x) ~ 2d(L).] Using
(C38) and the definition of the fermion f(x) (67), we observe
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that
KF0) =~ f1(0)
R - T )
vame (96)
Ki(L) = —Jez—%e_i”MfT(L).

Equation (93) shows that fermion operators at the ends of the
wire reduce to the Majorana modes d; », and therefore the
same is true for the spin currents K; at the ends of the chain.
Note, however, the appearance of the “string” operator ¢ =™
in K; (L) in (96). This string operator is in fact the magnetiza-
tion parity, introduced in Eq. (75). It represents a key integral
of motion of the problem and plays a very important role in
the subsequent analysis of the open wire.

It is this string operator that makes sure that spin densities
at x ~ 0 and x ~ L actually commute, as they must do (and
not anticommute, as they would if it was absent). At this point
it is important to observe that e*™ and f(x), introduced in
(67), anticommute for all x. This is easy to see with the help
of identity (C9) of Ref. [40] and (68). Hence

(™, fx)} = 0= (™, fT(x0). (97)
Next, Eq. (76) implies that, for all n,
(™ vt =0={™ y[}. (98)

Therefore we can establish an operator identity

oM — 4i0)2 l—[ emy;W — 02 1—[(1 . ZyZyg), (99)
¢ ¢

which enforces Eqs. (97) and (98) and also insures that
2™ — ¢1® — 41 since (1 — 2)/2'3/11 )> = 1 for every £. Here
phase © is the ¢ number introduced in (80). Note that (99)
does not mean that M = ©/Q2m)+ ), '}/Z'}/(.

At very low energies € < A
™ x O (1 — 2y yy) = —2ie'®*d\ds. (100)

Therefore, while f7(L) ~ d;, the magnetization parity acting
on it changes it into the Majorana mode d,, e~ ™™ fT(L) ~

(didy)d, = —d,. More accurately, we obtain
ig . '
K{(L) = _\/62—76_@ 710) = —e K (©0). (101
o

Therefore spin currents at the opposite ends of the wire are
equal, up to a complex prefactor. We see that they commute,
[Ki (L), Kz (0)] =0, as they should. Note that without the
string operator e~™ in (96) the spin currents in question
would anticommute, {K (L), Kz (0)} = 0, just as fermion op-
erators do. The string operator is crucial for obtaining the
correct result. From the quantum computing point of view,
the string operator spoils braiding statistics of the localized

t Ki (—L) = K;f (L), thanks to ™ =
half-integer M. The last line in (C35)
e total spin current in terms of the

K*(L) = K (L) + K (L) = (1+ e 2K (L)

= —¢ 9K*(0). (102)

Therefore

KT (LK (0)

—e KT (0)K™(0)
—4cos*(B) e PKF (0)Kg (0)

= —cos?(B) e*"@L.
2o

This shows unusual long-ranged end-to-end correlations be-
tween spin currents at the opposite ends of the wire.

Equation (103) is to be contrasted with exponentially de-
caying correlations of K in the bulk of the wire, as discussed
in Sec. V A above. The strength of the correlation between the
opposite edges is determined by the spin gap, k = A/v,, see
(85).

Spin currents at the ends of the wire in the original basis
are related to K¢ via (C4), when position-dependent rotation
(C22) reduces to matrix identity. Therefore at x, we obtain

T () = e*"ﬂK;/L(xa) (104)

(103)

and, correspondingly, find the original spin currents at the
ends of the wire are proportional to Majorana mode d, as well,

. 2
JH0) = JZ(0) +J;(0) = 2¢7PK (0) = mﬂ(ox
THL) = —2e K 0) = Z2 fi(0) (105)
= —Ze e = .
k V2Ta
where
1) = —l'\/gdz- (106)

Since ® = 0 or 7, the above equation means that J*(x,) =0
while the  component of J (x,) 1s finite, J7(x,) ~ d5. The end-
to-end correlation of the uniform part of the spin density is
similarly long ranged,

THI(0) = —e @ L

2ra

It differs from the same-position correlation of the spin den-

sity at the end of the wire only by the sign, J*(0)J~(0) =

k/(2ma). The last equality in (107) reflects the fact that

J*(x,) =iJ7(x,), as noted above. This behavior is schemat-
ically sketched in Fig. 2.

Next we look at the correlations of the staggered part N
of the spin density. Equation (C41) shows that near the ends
of the wire staggered spin density is also proportional to
Majorana modes

=—JT(L)JT(0). (107)

NT(x,) e*imlmp(x(;)—okﬂ(fxﬂn e*iﬁ[é(xnprﬁ)(,xo)]

= VIO ~ fi(x,) (108)
because both ®g, and ® are 2L periodic.

As a matter of fact, it is easy to argue that end-to-end
correlations of NT field must be identical to those of J* one,
(107). This is because at the ends of the open wire the total
spin density must vanish, and therefore

S(xo) = Jr(xo) +J1(xo) + [N (xp)e ™ + H.e.] = 0,
(109)
since in addition e*?** = 1. Hence indeed, staggered com-
ponents of the spin density possess the same end-to-end
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0P (x)

0 £ L/2 L& L
FIG. 2. Schematics of the spin correlations in the SDW phase of
the open quantum wire. The § component of spin density exhibits
long-ranged edge-to-edge correlations, Eq. (107), while the edge-
to-bulk correlations decay exponentially on the scale § = v, /A, as

discussed in Sec. V A. Staggered components of the spin density, N7,
behave similarly.

correlations as the uniform ones, (107). Technically, this hap-
pens because near the wire’s ends the charge exponential in
(108) can be expanded as 1 — i\/gadCDRp/dx + ... and be
approximated by the unity. That is, near the wire’s ends charge
fluctuations are frozen out, while the spin part of N reduces
to the negative of the J* one at the same time. Explicit calcula-
tion based on full expressions given in Appendix C 5 confirms
this natural conclusion. Once again, we see that spin density
exhibits an unusual long-range end-to-end correlations despite
the fact that in the bulk of the wire all correlations decay, some
exponentially fast (such as spin currents and N%%) while others
algebraically (N*), as discussed in Sec. V A.

C. Twofold degeneracy and the magnetization parity

Proportionality of J and N to the fermion operators
f (0) and f*(L) merits additional discussion. Consider the
wire with a fixed total number of electrons N, = Ny + N, .
Magnetization is M = (Ny — N,)/2. Therefore parities of
spin-1 and -} band are (—1)¥ = ¢7No/2e™ and (—1)YM =
e™No/2¢=imM Tt is sufficient to discuss just one of them, say
P, = (—1)M. Let us assume, for definiteness, that N, is even,
so that the factor ¢”™V»/2 is real valued. Then 2M is also even
and hence e"’”"i has eigenvalues +1. As discussed below (75),
Hamiltonian H, conserves magnetization parity e, and
therefore the parity P, as well. Hence the ground state of H,,
is characterized by the definite parity P;. But anticommutation
of ¢™ and f7(x), Eq. (97), implies that the expectation value

of fT(x,) in the state |¢) with definite fermion parity is zero.
Indeed,

= 2¢"M(p| £ T (x,)Ih),
(110)

(x)e™|g)
a pdfelement

hand side of (110) is the eigenvalue of
in the state |¢), where we have used

or the magnetization operator M. Therefore we conclude
that the ground state expectation value of spin operators J
and N near the ends of the wire is zero, (@l T (x,)|p) =0 =

The Trial Version

(@INT(x,)|¢). As discussed above, the expectation value of
operators J and N in the bulk of the wire is Zero, too.

We thus see that the ground state of the Hamiltonian (74)
is disordered but twofold degenerate. The degeneracy is topo-
logical; it comes from the degeneracy of many-body ground
states |0) and |1), which have opposite magnetization parities.
These states are defined via yy|0) = O and |1) = yg |0). Let |0)
inM

be an eigenstate of the parity e with eigenvalue ™ = 41,

that is
™10y = M), (111)
Then state |1) has the opposite parity,
™M1y = ™My f10) = —yfe™10) = —eM|1).  (112)

Note that these two states share property (110), that is
(O1f (x0)10) = (1] f (xo)[1) = 0.

Conversely, we can construct states |u/d) = (|0) £
1))/ V2, where the plus (minus) sign corresponds to the state
lu) (|d)), for which the expectation value of J*, N operators
near the ends is finite,

(u/dlyolu/d) = 501 £ (1N(»l0) £ wl1)) = £5 (Olyol1)

—

= +1, (113)
(u/dlyglu/d) = L((0] £ (1))y, 10) = 1.
But for these states magnetization parity is not defined
o itM .
™ |u/d) = (10) — (B)I1) = ™ |d/uy.  (114)

V2

Rather, the parity operator ¢ represents Pauli matrix o* in
the subspace spanned by the states |u) and |d).

The physical states of the open wire are of the type |0), |1)
from the above, simply because they are characterized by the
definite magnetization parity. Fermi operator yy is introduced
in (91) and, according to the discussion above, can be con-
structed with the help of equations (89), (90), (96), and (104)
as

inM

2 ) o
Yo =— %(JJ(O) — O (1)),

(115)
which makes explicit its nonlocal nature.

It is also useful to notice now that the single fermion
operator (C32) does not have simple expression in terms of
f because

V2T PR () VT +D (1)) 2+ T [ ()~ B(~2)] (116)

and therefore reduces to the “square root” of Majorana in
the x — x, limit, e.g., Yg(0) ~ V7P ~ [£(0)]'/2. At the
same time, in the bulk of the wire the presence of the dual
combinations ®(x) + ®(x) and ®(x) — ®(—x) in (116) imply
exponential decay of correlation functions of fermion operator
Yg with distance and time. That is, gapped behavior, just as
expected.

D. Instability of the twofold degeneracy to the
parity-breaking perturbations

There are several physically-reasonable perturbations
which violate the magnetization parity conservation [30].
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(i) Local magnetic field near the end of the wire, such as,
for example, due to the magnetic impurity SH' = hy - 8(a), lo-
cated at a short distance a < £ = v, /A from, for example, the
left end of the wire. Then a/& < 1 ensures that hy couples the
end modes of the wire. Using S(x) = J(x) + [N(x)e i2kex

c.] and the fact that 2N (a)~ —J (a), we find that §H; ~
[1 - cos(ZkFa)]hl - J(a). Now, the discussion around (105)
and (107) shows that J(a) ~ i/k /Q2ma)e ™ (v, — yJ))?, )
that we can write 8H; = il (yy — yOT ) by absorbing all
nonessential constants into /;. In the low-energy subspace of
definite parity states {|0), |1)} this perturbation is off-diagonal
and reduces to 8H' = ho”. Its eigenstates are those of the
Pauli matrix o, with energies j:le,Aand they are not eigen-
states of the magnetization parity ™

Therefore this local perturbation breaks magnetization par-
ity conservation and removes the twofold degeneracy of the
ground state in favor of the unique state (|0) — i|1))/ /2 with
energy —/h;.

An interesting consequence of the end-to-end correlation
(107), which for 2M = even (see the beginning of this section
where N, = even was set) can be written as J7(L)J?(a) ~
—k/(Q2ma), is that SH’ acting near the left end of the wire
causes finite polarization J7 (L) at its opposite, right end. This
kind of “long-distance rigidity” in the absence of rigid spin
correlations in the bulk of the wire is unusual and represents
a bosonic version of the teleportation phenomena previously
suggested for fermion Majorana states [55,56].

(i1) Next, consider applying the local magnetic field some-
where in the middle of the wire, so that the perturbation
still has the form §H’ but now with § < a <« L —&. The
uniform part of the spin density is exponentially suppressed
there and the field couples to the staggered part, N(a). Since
®(x) + ®(—x) is locked to the optimal value, 8H' reduces to

SH' ~ (hiy — ihly)]:Te—i%(Np-H)e—im[¢Rp(X)—¢Rp(—x)] +Hec,

(117)

see (C41). The expectation value of this operator in a finite-
size system is proportional to (a/L)X+/2. This is because
projection of the charge-mode exponential to the ground state
gives, after normal ordering it,
K,/2
) (118)

for « <« x <« L. Note also that fermion changing operator F
in (105) violates the conservation of the magnetization par-
ity. Therefore such a perturbation, which has the meaning of
electron spin-flip backscattering off a magnetic impurity, also
breaks the twofold degeneracy of the ground state. Here the
breakmg of the degeneracy due to the perturbation is smaller

example (i); it vanishes algebraically with
as hi(a/LY%/? and therefore is not
for sufficiently long wires.

oIV @y ()= By (—)] _ o
2L|sin(wx/L)|

1. DISCUSSION

We Tound
correlated SDW phase have all the features of the symmetry-
protected topological (SPT) state [28,57,58]. Indeed, in the

at ground states of the interacting wire in the

closed (ring) geometry the ground state is unique and is an
eigenstate of a definite magnetization parity ¢™/2, In the
open wire geometry, however, the ground states corresponding
to different magnetization parities ¢ are degenerate with
exponential accuracy e /%, The localized Majorana modes
that appear in this geometry are found to describe spin density
near the wire’s ends. Importantly, the expectation value of the
spin density in the state with definite magnetization parity is
zero everywhere in the wire, including its ends, and cannot
be used to distinguish the degenerate ground states. The cor-
related SDW state can therefore be classified as a SPT state
which is protected by the magnetization parity.

In the topological SDW state the spin sector is Ising
ordered along the y direction (the direction of the Rashba
spin-orbit interaction) while the charge sector is a gapless
Tomonaga-Luttinger liquid. The charge fluctuations weaken
the correlation of the $¥ spins and make it quasi-long-ranged
in the bulk. However, at the ends of a wire the charge fluctu-
ations are frozen so that the long-range Ising spin correlation
between the end spins can manifest itself without being ob-
scured by charge fluctuations. In some sense this long-range
spin correlation is just the Ising order of the XYZ spin chain
covered by the critical charge fluctuations in the bulk. Nev-
ertheless, we regard the SDW state as a SPT state, because
its ground state degeneracy is determined by the boundary
conditions—the ground state is unique in the ring geometry
with both PBC and anti-PBC conditions and becomes twofold
degenerate in the open wire geometry. The degeneracy is
protected by the magnetization parity. Indeed, it takes a parity-
breaking perturbation to lift the ground state degeneracy, as
we show in Sec. V C.

It is important to note that without critical charge mode our
model would reduce to the transverse field Ising (TFI) chain
the ground state of which is not an SPT phase. This is seen
from the fact that in the ring geometry the TFI model retains
twofold degeneracy (with exponentially small in the system
size splitting) which is just the usual Ising Z, degeneracy. In
our case it is the gapless charge mode which endows gapped
quantum wire with the SPT properties.

This observation is in agreement with several previous
studies of topological states of interacting quantum wires
[30,31,59,60] which found that the presence of the gapless
charge (more generally, center-of-mass) mode is crucial for
the ground state degeneracy. It must be added here that as
far as possible physical realization of the described physics
goes, the model studied here appears to be the simplest one.
Its realization requires only a quantum wire with significant
spin-orbit coupling and strong repulsive e-e interactions, and
all of these ingredients are readily available in the present-day
experimental setups.

Another important lesson of our study follows from the
fact that it is collective spin degrees of freedom, which are
described by bosonlike operators that become ‘topologically’
correlated. The difference between a one-particle fermion
operator and a two-particle boson operator is fundamental.
Simple one-particle fermion operators at different points must
anticommute, and naturally they do, as (91) and (93) show.
The two-particle operators, which necessarily are bosonlike,
such as the spin density here, on the other hand, must com-
mute when taken at different points. This is achieved with the
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help of the string operator e~ as explained in Sec. V B.
Therefore two-particle operators at the opposite ends of the
wire must be proportional to each other, up to unessential
phase factors. This is the crucial difference between the fun-
damental degrees of freedom of the fermionic Kitaev chain
(one-dimensional p-wave superconductor), which are single
particles of BdG type [1,51], and the transverse field Ising
chain, where they are two-particle excitations of magnetic
kind, and we have rediscovered it here for the correlated SDW
wire.

We therefore arrive at the logical conclusion that many-
body states are not particularly good for realizing Majorana
degrees of freedom as long as they are based on some
kind of two-particle (boselike) operators. For single-particle
based constructions, such as weakly-interacting semiconduct-
ing quantum wires in contact with a superconductor, the
commutation requirement does not exist and therefore there
are no fundamental restrictions to realizing the sought-after
Majorana fermions in such platforms.

We nonetheless believe that our problem is interesting in
its own way. It shows how fractionalized degrees of freedom
emerge in a basic setup of a quantum wire with repul-
sive interactions only. The finding of the twofold degenerate
ground state with unusual long-ranged correlations between
the spin densities at the opposite ends of the open wire, while
the correlations in the bulk of the wire decay, at best, as
a power law, deserves further theoretical and experimental
studies.
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APPENDIX A: SCREENED COULOMB INTERACTION
AND SPIN-CHARGE SEPARATION

In this Appendix we derive the low-energy effective theory
prators Jg/z(x) and fR/L(x). The key
b similar to Refs. [45,61] although on
bceed by employing operator-product
ion operators while these references
sonic language. We assume the limit
x. We use simplified notations

a pdfelement

The Trial Version

Ry(x) = Wre(x),  Ls(x) = Wis(x), (AD)

and write the electron density as

p)= D W)W, (x) = po(x) + pa, (x),  (A2a)
s=1,
where
po(x) = Y [: RI@R,(x) : + : L)L (x) 1]
s=1.4
= Jr(x) + JL(x), (A2b)
ok, (¥) = Y [ LI@R (x) + e R (1)L (x)].
s=1,)
(A2¢)

The density-density interaction is decomposed into two parts

1
Hin = 3 / dX/dy,O(X)U(x —)p(y) ~ Hp + Hg, (A3)
where forward- and backward-scattering interactions are

1
Hp = E/dX/dy Po(X)U (x = y)po(y), (A4)

1
Hp = 3 / dx f dy p2 DU (x = Y)p2ip (). (AS5)

Here we have discarded rapidly oscillating cross terms
(000247 )-

The interaction potential U (x — y) is short ranged. Intro-
ducing new variables X = (x +y)/2 and ¥ = x — y, we can
rewrite the forward-scattering interaction Hr as

1
Hy ~ / XU () / X [po ()T

U
= 3 [ dxteo + . (A6)
The product of py,. in Hp yields
P2ty ()2, ) ~ 5T LT (0OR, ()RS (9L, (¥)
w,o
+e 2N R (0L, (DL ()R, (),
n,o

(A7)
where we have discarded rapidly oscillating terms (oce#*#X),

The backward-scattering interaction Hg can be calculated us-
ing the operator-product expansions

L} (X)R, (X)R ()Lo (y)
_ _isﬂ Al . %_ T .
_[ 2ﬁ+.LM(x)L(,(y).M2ﬁ .Rg(y)RH(x).]
= (S“—’"—'LT(X)L X):RE(XOR, (X)) :

g~ - LhOL, () 1 Ry GOR, (X))

T .
O L XOL, (X)) 4 REGOR, (X) 1]
27X

5 ) .
+ 145; {+ [x Ly COML, (X) = == Ly (X)dx Ly (X)) :
=+ [BRRICOIR, (X) <+ R (xR, (X) 1}

+...,

(A8)

165147-14



MAJORANA END STATES IN AN INTERACTING QUANTUM ...

PHYSICAL REVIEW B 102, 165147 (2020)

and
R}, ()L, ()L )R, ()
z[_f“f LI)L, () : }[8"% R, ()R, () : }
- 2
_ o —LIX)L,(X) :: RT(XOR, (X) :
QxR e

e L OOL, 00+ RLCOR, (0 )
2n %

B i c_ g .
+?{. [OxL,(X)IL, (X):—: L (X)oxL (X):
— 1 [0xRL COIR,(X) : + : RL(X)0xR,(X) : }
T (A9)

The second term in the above expansions can be written in
terms of currents,

Z : L;(x)Lg(x) i
no=1,1

RI ()R, (x) :

1 > >
= SJL)R(x) + 2J1.(x) - Jp(x), (A10)

and the fourth term (a kinetic energy density) can be written
as

—é{ C[8.L) (OIL, (%) — 1 L (x)d,L, (x) :
— :[0RI (IR, (x) : + : RL(x)0:R, (x) : }

=2 P

> P RGO 2

2w - - - -
+ ?[: JL(x) - JL(x) s 4 Jr(x) - Jr(x) ] (AL1)

Combining these contributions, we obtain

Hy = / dx / dxU (% )Cozs(zzkix)

- / dx U (p)Sn2krY) / dx[Jy (x) + Jr(x)]
2rx
1 N N
— Uy, fdx {EJL(x)JR(x) + 2J1.(x) - Jr(x)

1 2 2
+ Z{: ()] + [Jr(0)]” 1)

1 - o o R
+ 5[1 Jp(x) - Jp(x) : 4 Jr(x) - Jr(x) 3]},

(A12)

where

/ dx U (%) cos(2kr ). (A13)

B pdfelement
rht-hand side of (A12) is a constant, and
hormalization of the chemical potential.
contributions proportional to Uy, and

The Trial Version

finally obtain

Hr +Hy =H.+H, + ..., (A14)

with the charge part

1
He = 72Uy = Uni;) / dx [Jr(x) +JL (), (ALS)

and the spin part

H, = —2Uy, /dfo(x)-fR(x)

Usi,

f dx [ To00) - o) < + 1 Jr) - TaCe) <1,
(A16)

The second line in (A16) gives renormalization of the velocity
vr in (7). We note that H, is a functional of J; + J;, which is
a consequence of Galilean invariance.

APPENDIX B: BOSONIZATION

1. Bosonization under periodic boundary condition

Here we summarize bosonization rules for the ring geom-
etry [37,38,62]. We first define chiral bosonic fields

Prs(¥) = g, + @NM + (), (Bla)
brs(x) = 7, + @Nn + @rs(x), (B1b)
where s =1, |, and
[Prs (x), Pry (V)] = —[@rLs(X), PLy (V)] = — 85, v5g0(x — ¥).
(B2)
The zero-mode operators satisfy the commutation relations
.as,s’
[ Nes] = ~[ol o] = = 2, (B3
[¢1%yv NLA"] = [¢2s’ NR‘Y’] = [¢Rm ¢Ls/] = [NRS-NLX’] =0.
(B4)

The fields gg, and ¢y, are periodic functions of x, @g/rs(x +
L) = ¢g/15(x), and can be expanded as

—ﬂan/L

s () = Z =

i e~ man/L
4

n=1

(€ ayps + €7 al p),  (BS)

(e7a, 1y +eal | ), (B6)

an

PLs (x) =
n

where g, = 2 /L, « is a short-distance cutoff, and the boson

annihilation/creation operators obey the commutation rela-
tions

[an,Rs’ a:;’,Rs’] = [an,Ls’ azy] = (Sn,n/(gs’s/. (B7)

The fields with different chiralities commute,

[Prs(x), DLy (¥)] = 0. (B8)
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The chiral fermion fields are written in terms of the chiral
bosonic fields as follows:

Yrs(x) = TRs VAT, 2 N/ L+iN/AT s (2)
2na
_ '72Rs ei\/ﬁzpm(x)Jrinx/L’ (B9)
To
Vs () NLs _ —iv/ane), ,=~2miNyx/L—iv/Angr(x)
2no
_ ’;Ls o~ VAL ) —inx/L (B10)
T
where ng/; obey the anticommutation relations
{NRs» MRy} = {NLss MLy} = 283’,3’” {nrs, nLy} =0. (BI11)

The fermion field operators g, and v, satisfy the standard
anticommutation relations. The fermion density operators are
given by

1

LY ()P () 1 = ﬁaxm(x), (B12)
1

RVANC/NE R ﬁaxms(x), (B13)

and therefore the fermion number operators Ny and Ny,
defined by

L

NRS =

—=0:Pry(X), (B14)

f

L

Nis =

—=0:¢rs(x), (B15)

f

are integer-valued operators. The charge current operators
defined in (8) are thus given by

1

Jr(x) = ﬁ@[d’m(x) + ¢ry (X)], (B16)
1

JL(x) = ﬁax[(pLT(x) + ¢ry ()] (B17)

One can show, using ¢>™V&s = ¢2™is = || that the fermion
fields satisfy the periodic boundary conditions, Y¥gs(x + L) =

Vrs(x) and Y o(x + L) = Y5 (x).
The linearized kinetic energy is given by [40]

L
/ dx : Yh (=i )P, : =

P
0 L (Nis + Nis)

L
+[ dx : (degrs)’ 1, (B18)
0

L
. i
[ v v, = T + M)
0

L
dx : (L)’ :. (Bl
B pdfelement +/0 O B
The Trial Version bosonic fields
Psix) = Grs(x) + Prs(x), (B20)
05 (x) = prs(x) — ¢pry(x), (B21)

and then introduce a pair of charge field operators,

1
—=lpr(x) + ¢y ()],

b0 = (B22)

0,(x) = %m () + 0,00, (B23)
and a pair of spin field operators,

b () = %[m () — 6, (], (B24)

0, (x) = %[GT (x) = 0,0, (B25)

Finally, we introduce charge/spin number and current opera-
tors,

N, = Ngy + Ngy 4+ Ny + Niy, (B26)
J, = Ngy 4+ Ngy — Ny — Ny, (B27)
N, = Ngy — Ngy + Ny — Ny, (B28)
Jo = Ngy — Ngy — Ny + Nij. (B29)

By definition these operators must satisfy the following rela-
tions [46]:

(1% = (=D = (=" = (=1)",

(_1)%(Np+-,p) — (_1)%(Na+fo).

(B30)

(B31)

It is easy to write down the explicit form of the spin boson 6,,
which will be useful for discussions in Sec. IT A 5,

T X 1
O (x) = _\/;ZJU + E(d’(L)T — ¢, — bRy + bR,
+ @ — QLy — Prt + PrY)- (B32)

Observe that in the presence of a finite spin current J, # 0
the spin field acquires a kink at x = 0 = L since then 6,,(0) —

0, (L) = /7 /2J,.

2. Bosonization under open boundary condition

Here we summarize bosonization rules for electrons in a
wire of length L with open boundaries [37,38,62—64]. We first
define chiral boson fields

ffx

s B33
Pus(x) = oL Tﬂ (), (B33)
\/_ JTx 00
s -7 N~ Dpo(x), (B34
Prs() = oL N 7=+ o), (B34
where s =1, |,
(69, Ny ] = ids., (B35)
and @ and Pg; have mode expansions,
Dro(x) = —Pre(—x)
0 p—mna/2L
Z —”T"X/La +elnnx/L T )
(B36)
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which satisfy ®;,(x + 2L) = ®;4(x) and the same for Ogy(x).
In (B36) « is a short-distance cutoff. One can verify that the
chiral boson fields introduced above satisfy the commutation
relations

[Prs (X), PRy (V)] = —[PLs(X), Ly (¥)]

= Sosen(x—y).  (B3])
and
0, x=y=0,
[rs(X), pry (] = § =48y, O <x,y<L (B33)
—%8”/, x=y=0L.
We define a pair of bosonic fields (s = 1, |)
¢s(x) = ¢rs(x) + Pry(x), (B39a)
05(x) = Prs(x) — Prs(x), (B39b)
which satisfy the commutation relation,
[¢s(x), Oy ()] = —id5,yO(x —y) (B40)

for 0 < x, y < L. The field ¢,(x) obeys the Dirichlet boundary
conditions at x = 0, L:

1
¢5(0) = g ¢s(L) = ﬁ(Ns + 5)- (B41)
We then introduce charge fields,
1
Dp(x) = E[W(X) + ¢ (0], (B42a)
1
0,(x) = E[QT (x) + 6, (x)], (B42b)
and spin fields,
s (x) = %[%(x) — ¢ (x)], (B43a)
1
O,(x) = —Z[GT (x) — 60, (x0)]. (B43b)

v

Fermion fields are writtpn in terms of the chiral boson fields
Y(x) = X Yps (x) 4+ e~ 45 (x), where [39]

Ns VAT R (0+imx /2L

Yrs(x) =

V2o
_ ins e—ie?einNAx/Lei\/E%J(x)’ (B44)
2na
Ts efi\/ﬁ 15 () —imx/2L
a pdfelement 80 g TN L g i A 1, 2)
The Trial Version rs(—X) (B45)
Here 7, obeys the anticommutation relations
{ma ns’} = 28s,s’- (B46)

The electron density operator is given by

1

LY (R (x) 1 = S, (B47a)
. 1
: 1pL's(x)l[/Ls(x) L= ﬁax¢Ls(x)~ (B47b)
We define Klein factors [40]
Fy, = e, (B48)
which satisfy
F/F,=1, [F.N]=F,. (B49)

The operator N; is integer valued and measures the number of
electrons with spin s,

L
Ny = /0 dx[: Y ()W, (x) 1 4 ) ()W (x) . (BS0)

It follows that {¥g,(x + 2L) = yrgs(x). The Fermi wave num-
ber is given by kr = JTN? /L, where N? is another integer. We
see from (B45) that the open boundary conditions are satisfied

¥s(0) = ¢s(L) = 0. (B51)
APPENDIX C: DETAILS OF THE ANALYSIS FOR THE
WIRE WITH OBC

1. Rotations

To treat the wire with open boundaries it is convenient to
orient external magnetic field along the % axis, while the spin-
orbit axis continues to point along the ¥ axis. Such a choice
leads to chiral rotations about the Z axis, see below, and results
in convenient boundary conditions for rotated fermions ¥ (x),
as we demonstrate now. Thus, the Zeeman magnetic field b =
g B couples to the magnetization along the X axis,

YV = —b/dx (Jx +77), (C1)
while the spin-orbit interaction couples to the difference of the
¥ components of the currents,

Vo = 2arkr / dx (J;g — JZ) (C2)
Using again extended SU (2) x SU (2) symmetry of the non-
interacting spin Hamiltonian with respect to independent
rotations of the right- and left-moving currents, we rotate spin
currents Jgp and J; about the Z axis in opposite directions
so as to bring “vectorial” perturbation V = V,, 4 Vx into the
standard Zeeman form, with total field h = /b?* + Qogkr)?
along the X axis

V=—-h / dx (M,)g + MZ) (C3)
Compare this with (13) where the field 4 is pointing along the
Z axis.
The required chiral rotation is given by

Ji = Re(BLML.,

Jg = R.(Br)MR, (C4)
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where the rotation matrix is R

cos B sing 0
R.(B) = (— sinf cospf 0). (C5)
0 0 1

The rotation angles are given by
Br = —Br = B = arctan(Lagkr /D). (Co6)

These rotations do not affect 7—[?, (7), which retains its form in
the rotated M basis

2T VE
H) =
e 3

> / dx (MM + M{MY). (C7)
a=x,y,z

In terms of the right- and left-moving fermions, the ro-
tation (C5) corresponds to the rotation of spinors Wg/, =
(Wr/ers Yriy)'s

W = PPWL Wy = TPy (C8)

As before, the charge currents (8) do not transform under
the rotations (C4) and (C8)—the Hamiltonian of the charge
sector ”Hg + Hint, p 1s not affected. The new (primed) fermions

parametrize the rotated currents 1\7IR/L in the same way as
the old (unprimed) ones parametrize the currents fR/L. For
example, under the right rotation R(8)

-

"o
k2
The interaction in the spin sector Hiy, (10b) is strongly
modified by the rotation and changes to

- o N
JR=:lI';E\IJR:—>MR=:\II (AN (C9)

Hinto = —8 f dx MpR" (Br)R(—Br)M,,

—g / dx[MiM; + cos x (MxM; + MxM;)

+ sin x (MyM; — MiM7) ], (C10)

where x = Br — B = 28 is the relative rotation angle.

The net field A, (C3), pointing along the x axis, induces
incommensurate fluctuations in the system which makes some
of the terms in (C10) oscillate fast with the coordinate. To
account for this important effect we proceed as follows:

(1) We do a global rotation of MR/L about the J axis
in order to make external field & (C3) point along the Z
axis. This is achieved by the following transformation to
the new L basis, (M*, M*, M*)" = Ry (z /2)(L*, L”, L*)" =
(L%, L, —L*)T. The corresponding rotation for fermions
reads \III/?/L — e”'”"v/“lll,’e’/,d. Here, similar to (C9), L1ae/L = % :
W oW

Noninteracting Hamiltonian (5) is invariant under

constant-angle rotations (C8) and ‘I';e/Ls_) e"”"'\v/“\lll/é/m,
while the

field-dependent term (C3) is rotated into
. It is then easy to see that & can
ons Wy, by a simple x-dependent
a pdfelement

U — e Wy, = hup,
(C11)

metic energy (5) transforms into that of rotated

W” fermions plus [ dxh(L; + L) term which exactly com-

pensates the rotated V' one.

The Trial Version

under whic

(2) As a result of this shift the transverse components
Ly + iLy L= 1%/1‘ of the rotated spin current afzquire 0s-
cillating position-dependent factors, Ly — Lfe ™" L} —
L/ e"*. The immediate consequence of this is that many terms
in Hin » (C10) acquire x-dependent oscillations,

cos ¥ —

1
Hinto = —g/ dx{ cos y LELF — (L{L; +H.c.)

cos y + 1
4
.sin x
—i
2

(L{L; e + H.c.)

[(LiLf + Lg L] )e™* — H.c.]}. (C12)

Provided that the running backscattering coupling con-
stant g/vp is small, all oscillating terms, which represent
momentum-nonconserving two-particle scattering processes,
average out to zero. Assuming this, we are allowed to drop all
oscillating terms in (12).

The meaning of (C11) is simple. It represents splitting
of the Fermi momentum kr into the spin-dependent ones
kps = kp + st, /2. Given that kr is determined by the particle
density, kr = wN?/L, the development of the spin-dependent
Fermi momenta kr; = 7 N;/L describes the appearance of the
finite magnetization with N4 > N, in the magnetized ground
state of the rotated system. Therefore, Akp =1,/2 = w (N} —
N?)/L, so that t,L = 2 (N4 —N?) = —2n (N, —Nf) is an
integer multiple of 27 since N, and N? are integers describing
number of spin-s electrons in the system with finite 4 % 0 and
with zero h = 0, correspondingly.

(3) Having absorbed the 4 field (C3) in the preced-
ing step, we now apply global rotation back, by —m/2
about the y axis, to the nonoscillating terms (first line)
in (22). So that (L%, L, L) = Ry(—m/2)(K*, K”, KT =
(=K%, K7, K¥)T and we obtain nonoscillating part of the spin-
interaction Hamiltonian to be

L
Moo = — / [ k3K + go(KK; — KIKD)]
0

L
_ / dx g KAK?, (C13)
0

where g, = gcos x, g, = —gy, = g = g(1 — cos x)/2. Here
the fermions rotate as Wy, — €™ /¢ . Note close sim-
ilarity of (C13) with (23) as well as the fact that the roles of
and 7 axes are interchanged in these two expressions.

Under steps (1)—(3) the noninteracting spin Hamiltonian
(C7) transforms into that in terms of spin currents Ky ; ,

HO _ 27TUF

o 3 (C14)

L
> / dx (KgKg + K{K7).
0

a=x,y,z

At this stage the complete Hamiltonian of the spin sector is
given by the sum of equations (C14) and (C13). The magnetic
field is absent from the above Hamiltonian because it is ab-
sorbed into renormalization of the Fermi momenta kr — kp;.

Tracing the above steps (1)—(3) we find relation between
W L and rotated fermions g, in terms of which the spin
Hamiltonian, (C14) and (C13), and the charge Hamiltonian,
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H) in (7) and Hin, in (10a), are now formulated,
‘I’fe(x) — e—ino—"/4eit¢xaz/26ina"/4WR — A(X)wR(X),
\IJL(X) — e—irrq.“/4e—il¢xq7/2eiﬂo’y/4I/IL — A(—x)l/fL(x),

t f
A(x) = ¢ cos (%) + io* sin (%)

We are now in position to understand the boundary condition
for the rotated fermions. For the original fermions the open
boundary requires that W (x = 0) = 0 = W,(x = L), which
means that their right- and left-moving components are related
as

(C15)

Wrs(0) = —Wp(0),  Wgo(L) = —Wps(L). (Cl16)

After the chiral rotation (C8) fermions W, /L obey
W, (0) = —*PWp (0), W (L) = —e*PWp (L), (C17)
where s = +1 for the up spin and s = —1 for the down spin. In
matrix notations, (C17) is just ¥, (x,) = —e'P”" Wi(x,), where

x, = 0, L denotes the wire’s open ends.

Next, Eq. (C15) shows how \IJ,’Q/L(x) transform as a
result of global rotations in steps (1)-(3). Therefore the
boundary condition (C17) actually reads A(—x,)v¥(x,) =
—eP7° A(x,)¥r(x,). Observing that A~!(x,) = A(—x,), we
get

1pL(xo) = _A(xu)eiﬁazA(xo)wR(xo) = _BwR(xo),
B (cos(t¢xv) cos B +isinp i cos B sin(t,x,) )

icos B sin(t,x,) cos(tyx,)cos B —isin
(C18)

The matrix B reduces to ¢#°° when toXo = (Ny —N}) =
2 M, as discussed below (C12). Hence at the end of the day
(C18) leads to

YL(x,) = —e7 Yr(x,),

so that boundary conditions for spinors g/, coincides with
those for \I';e/u see (C17).

Observe that by construction spin current operators Ky ; in
(C13) and (C14) are given by

(C19)

O_H
Kgy =: ‘ﬁ;;/le/fR/L i (C20)

Relation between My, and Ky, currents is established with
the help of equations (C9), (C15), and (C20),

Mg(x) =: Iﬂ;(x)AT(x)%A(x)lﬁR(x) i (C21)

We find that they are connected by an x-dependent rotation
about the X axis,

1 0 0 R
= <0 cos(t,x) sin(m))KR,
0 —sin(t,x) cos(tyx)
(C22)
e'e*o = 1, we find that there the two
¢ R/L(xo) = KE/L(X,,).

In terms of the original spin currents the OBC fR(x(,) =
Jr(x,) becomes Mg(x,) = R,(—28)M(x,), which means that

v,

M3 (x,) = M} (x,), M7 (x,) = €*’M; (x,). Given the relation
My /L (x,) = Kj /L (x,) derived above, we obtain that at the open
boundaries the currents K, obey the same boundary condi-
tion as Mg /L

Ki(x,) = Ki (x,), K (x,) = €*P K} (x,), (C23)
and, moreover, at x, = 0, L the original currents Jg /L and K3 /L

are connected by chiral rotations (C5)

Jr(x,) = R.(Br)Kr(X,),

. . (C24)
JL(x0) = R (BLKL(x,).

2. Hamiltonian and the RG analysis

We are now ready to write down the Hamiltonian of the
wire of finite length L with open boundaries at x, = 0, L. The
simplest way to derive the free part of the Hamiltonian is to go
back to the original fermion formulation, equations (5), (13),
and (C8), and observe that rotation (C8) leaves (5) invari-
ant. The same is not true for the x-dependent rotation (C15)
which, in addition to the kinetic energy of g/ fermions,
produces the opposite of (13) so as to cancel the field A
term (13) completely. This, of course, is exactly the purpose
of steps (1)—(3) and transformation (C15) as explained in
Appendix C 1. In this way we arrive at H2 in (C14).

It is useful to remark here that there is another, slightly
more involved, way to derive this result: start with equation
(C7) and apply rotations (C22) to it. Doing so requires one to
implement a careful point-splitting procedure and treat (Mg )?
as a limit of Mg (x)Mj(y), with subsequent limit x — y at the
end of the calculation. Then, using operator product expansion
(OPE) of SU(2) currents and fermion bilinears [21]

. +
Vigyrs Vs () = >~ + Y COVRLs () <,

i
=)
sab e Kg (x)
872 (x — y)? 2m(x —y)

K OKR () = —

)

(C25)

where x,y are spatial coordinates and the limit x — y is
implied. In particular, the first line above helps to establish
that the field 4 produces a constant shift (magnetization) of
My = K +t,/4m, which should be added to (C22). [The
same shift of the along-the-field component of the spin current
by h/(4mwvr) is easily obtained in the Abelian bosonization,
when one absorbs —h0,¢, term by “completing the square.”]
Next, using (C36) we again arrive at the final result (C14) and
also obtain the cancellation of the A-field term (C3).

Now we manipulate the interaction term. It is useful to
observe that

8x 1+ 8¢
4
8x — 8¢

G KK — g K3K; = (KiK;" + Kz K;)

+

(Kg K + Kg KD,

(C26)
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and therefore the interaction Hamiltonian (C13) can be written
as

8x +gc

L
Him,cf = _/ dx[chéKi + (I(JFI(Jr +K K )
0

+ %(K;KL— + KR—K;)]. (€27)
Equations (C14) and (C27) represent a nontrivial interacting
problem, analysis of which requires renormalization group
(RG) treatment. The couplings g, obey the famous BKT RG
flow,

dgx _ &8  dg _ 88 dg&: _ &8y
de 2nvp de 2rvr’ de 2mup’
(C28)

where ¢ = log(a’ /) describes increase of the short-distance
cutoff from « to «’. As discussed in detail in Ref. [43], the
solution to the RG equations (C28) depends on the initial
values of the couplings involved,
8:(0) = geos . g:(0) = —g,(0) = ge = 3(1 = cos ).
(C29)
Noting that d(g2V - g%)/dﬂ = 0 and the fact thatfor £ =0 g, +
gy =0, we conclude that g.(£) = —g,(£) = g.(£) for all £.
Equations (C28) then reduce to the two coupled equations

dg, _ g% dg. _ 8c8x
dt  2mvg’  d¢  2mup

which too is characterized by the integral of motion Y =
£(0) — g2(0).

In the case of comparable spin-orbit and Zeeman ener-
gies (cos x &~ 1/3), which is the focus of this paper, the
combination g, 4 g. towards positive infinity. This describes
development of the correlated SDW state. This means that the
combination g, — g, = Y/(gx + &) flows to zero in the same
limit. As a result, (C27) simplifies to

(C30)

gx+gc

L
Hinto = — / dx[ch,éKz + (KiK;" + K K, )}
0

(C31)

Equations (C14) and (C31) constitute the basis for the subse-
quent analysis.

3. Bosonization

Boundary conditions (C19) represent only a slight mod-
ification of the OBC considered in Appendix B 2. They are
satisfied by the following representation of the fermion oper-
ators [37,38]

nse” i i % ZJG@RS(X) (C32a)
B pdfelement
2 - STX .
The Trial Version nse_iele_lTNSelQO(_x)y (C32b)
o0 e_aqn/z ) .
Dpy(x) = ) (€ bys + 7Bl ), (C320)

mn

where ¢, = %, b,s is canonical boson with [b,, b,s] =
8n.m0s.5'» [6,, Nl =i, n, is the Majorana Klein factor sat-
isfying {ns, ny} = 28;.¢, and N; is the (integer) number of
particles relative to the equilibrium N, value. Note that fol-
lowing the constructive bosonization [40], ne ™ = F, is
the fermion number-changing operator, [N;, F;] = —F; and
F:Fv = 1. Also notice that ®g,(x) is 2L periodic.

As usual, we define commuting charge ®r, and spin ®g,
bosons

1 1
Dp, = ﬁ(@m + Pry), Pro = E(q)m — ®py).
(C33)
Observe that (C32) implies that in fact
Vs (x) = —€" gy (—x) (C34)

for all x € [0, L] and not only for the wire’s endpoints x, =
0,L in (C19). This is a very general consequence of the
chiral nature of one-dimensional fermions, see for exam-
ple Fabrizio-Gogolin formulation [39] of the OBC. Using
bosonization (C32) we obtain

ip
Ki(x) = ¢ o Flem M gmivBrn (),
2o
4 M 1 Z Z
KR()C) 2L + maxcho'(x)v KL(x) = KR(_X)9
K (x) = e PKF (—x), (C35)

where M = N, = (N4 — N, )/2 is the magnetization opera-
tor, CDRG = (Ppy — @Ri)/\/i is the spin boson, and we used

e it sF' Fle it WNet1)
. .
4. Unfolding of the spin Hamiltonian
Next, relation (C35) allows us to write [I?L(x)]

[Kr(—0)1%, so that [ dx[Ke(—x)]> = [°, dx[Kr(x)]* and
(C14) can be unfolded onto (—L, L) 1nterva1 as

0o 2mup L L 2 L . 2
H,) = 3 / dx [Kr()])* = 2 vp / dx [Ki(0)]".
—L —L

(C36)
The interaction part (C31) can be written, with the help of
(C35), as

Lodx . .
Hint,a = - 7 chR(x)KR(_x)
L

G &t gc[ PP KE (0K (—x) + Hee. 1} (C37)

Equations (C36) and (C37) constitute complete spin Hamilto-
nian of the open quantum wire, written in terms of the chiral
(right) current K. It is worth adding here that charge currents
(8) and charge Hamiltonian ’Hg + Hint,p are not affected by
the rotations.

5. Observables

Here we express spin operators in terms of boson field ®
(61). Uniform spin current is easy, using (C35) and setting
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etP
2o
x e71’«/5[@():)7@(7X)]7iﬁ[<i>(X)+<i>(7X)].

K;(x) = eii%]:TefithM

(C38)

Observe that it does not contain charge fields. The original
spin currents fR/L and I?R/L are connected by (C4) and (C22).

The 2kr component of the spin density (38) requires more
work. First of all, by (C8) and (C15)

Nt (x) = JWF (x)(0* + io”)W; (x)
= YR A(=x)(0™ + io") A=) (x).
(C39)
This gives
Nt (x) = N*(x) — i sin(t,x)N°(x) + [cos(t,x) — 1IN* (x),
(C40)
where N* = w,";T ¥, reads

Nt x)=— 7T (N»“‘l)e—im[q’lep ()= Dg, (—x)]

2ra

x T Mo WTBW O] o —ITM Tt (C41)
Here we defined N = %1//)26“1/& (a=0,x,y,z), and 0 de-
notes the identity matrix. The last three factors in the above
equation combine into f T(x) operator, see (67). We see that
N*Y depends on symmetric combination of the spin modes
d(x) + $(—x), similar to (C41), while N°? depends on the
antisymmetric one ®(x) — CTD(—{). Also important is that
(C41) and other components of N* depend also on the crit-
ical charge mode via the antisymmetric charge combination
Dpp(x) — Pry(—2x). -

Moreover, it is easy to see that the potential part of H, [the
first line of (66b)] can be written as

i, « %(ﬁ“‘(x)ﬁ*‘(—x) +He). (C42)
Therefore 7, is minimized when N*ON* (=x) = —1,
which means that the spin part of N*(x) is reduced =i. That

is,

Nt ) — L TN i 2y ()~ By ()]

C43
2no ( )

Comparison with (42c) shows that similar to the ring geom-
etry case, the open wire situation too is characterized by the
finite expectation value of the spin part of N7 and, correspond-
ingly, zero expectation value for the spin part of N*.

6. Charge sector Hamiltonian

&15) the charge Hamiltonian is given by

B pdfelement {%[J,%(xHJZ(x)]

The Trial Version —Ux
F

[Jr(x) +JL<x)]2}, (C44)

where Jg(x) = %Np + \/gadeRp(x) and, in the open wire,
Ji(x) = Jg(—x). Therefore (C44) can be written as

L —
H= [ dx{(vp + M)[ax%(xnz

—L 2
2Uy — Uk,
2

T 2U0 — UZKF )
— — =T \N
+ 4L <UF + T °

axq)Rp (x)axchp(_x)}
(C45)

and can be diagonalized similarly to the spin Hamiltonian, see
(62). We introduce ®,(x) via

Dg,(x) = ®,(x)coshv — ®,(—x)sinh v (C46)
and find
TVp 12 g 2
H,= 4LKpr + . dx v, [0, P, (x)] (C47)
provided that ¥ = K,, as given by (33a), and v, = vr/K,,
see (33b).
Therefore

Dpp(x) = Dry(—x) = VK, [Dp(x) = Dp(—x)]  (C48)

and we can evaluate Q, = e~V 2T [ PRy () =Py (0] from (105)
by normal ordering it,

o0

0, = H 8104} =8 () g—%g%m,
n=I (C49)

2K, _zan . (nxn)
—/——e % sin| — ).
n L

We used mode expansion [see (C32)]

gn(x)

e~ %n/2

) =
ox) 2 Jamn

(€ app+ e a) ) (C50)

with g, = wn/L. We are projecting (105) onto the state
with no bosons, so that a,,|-) =0. The presence of the
fermion-number changing operator F in §H' implies that the
perturbation connects states with opposite magnetization par-
ity, (0]6H’|1) # 0. Projecting O, (C49) onto the states |0) and
|1), we find that exponentials of a;fm and a,, , operators reduce
to 1, and

Kp

[o.¢] Ta 2P
1l—e T 2 4
Qp = l—[ei%g%:(x) = (11’1 %) . (CSl)

[1—e"Te'T|

For x = 0, L it reduces to 1, corresponding to the case (i) of
spin-flip scattering near the open end of the wire. For ¢ < x <
Litgives Q, = {ma/[2L sin(7rx/L)]}%»/2, which is quoted in
the main text, case (ii) in Sec. V D.
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