IGaaS: An IoT Gateway-as-a-Service for
On-demand Provisioning of IoT Gateways

Mohammad Aminul Hoque
Dept. of Computer Science

Mahmud Hossain
Dept. of Computer Science

Ragib Hasan
Dept. of Computer Science

University of Alabama at Birmingham University of Alabama at Birmingham University of Alabama at Birmingham

Birmingham, AL 35294, USA
mahoque @uab.edu

Abstract—The widespread adoption of the Internet of Things
(IoT) devices has increased its popularity and usage in diverse
dimensions, including smart city, home, healthcare, and vehicles.
The pervasiveness of the number of IoT devices that operate
in low power and lossy network leads to performance issues.
An excessive amount of IoT devices that operate with a fixed
number of gateways reduce the quality of service (QoS) due to
the increased latency of routing messages between the source and
destination sensors. In this paper, we propose an IoT Gateway
as a Service (IGaaS) that enables on-demand provisioning of
IoT Gateways to maintain and improve QoS in an IoT system
with a significant number of sensors. The IGaaS allows both the
stationary and mobile gateways to be provisioned on-demand.
The mobile devices, such as smartphones and drones, provide
gateway services in exchange for incentives. The IGaaS supports
both the upscale and downscale of IoT gateways depending on
various metrics and requirements. The experimental results show
that the IGaaS improves the QoS in terms of latency and power
consumption.

Index Terms—internet of things, gateways, provisioning, down-
scaling, 6LoWPAN

I. INTRODUCTION

The Internet of Things (IoT) is a technology paradigm that is
envisioned as a global network of machines and devices capable
of interacting with each other. It is anticipated that there will
be more than 50 billion IoT devices by 2020 [1]. In the concept
of IoT, billions of physical devices are connected through the
internet, and they are capable of collecting and sharing data. IoT
devices have gained huge popularity in numerous systems, such
as smart homes, smart healthcare [2] [3], and connected vehicles
[4] where these devices can communicate and interact among
themselves as a cyber-physical system. In the IoT network, the
IoT devices form a Directed Acyclic Graph (DAG) to route
the packets. A gateway acts as the root of the DAG which is
responsible for sending the sensor data from IoT devices to the
cloud and vice verca. The number of IoT devices can vary from
time to time in the IoT environment as the mobile IoT devices
can join or leave the network anytime. With the increase of IoT
nodes, the size of the DAG will increase. A larger graph may
increase communication overhead and security vulnerabilities
in the IoT network. Breaking down a larger graph into several
smaller ones by dynamically provisioning gateways will help to
operate the IoT network with optimized performance. Hence,
we need a framework that provisions gateway devices on-
demand by considering various properties of the IoT network.

978-1-7281-5503-6/20/$31.00 ©2020 IEEE

Birmingham, AL 35294, USA
mahmud @uab.edu

Birmingham, AL 35294, USA
ragib@uab.edu

There are several challenges with provisioning IoT gateways
on-demand. First, we need to identify when such a kind of
IoT gateway provisioning is required. Moreover, we also need
to determine when the service is no longer required after
identifying an over-provisioned scenario. Second, for static
network architecture, we need to decide which gateways should
be turned off to downgrade the network and merge multiple
smaller DAGs into a single one. Third, the IoT gateways are
required to be provided on demand. Fourth, there will have
to be an incentive model for service providers (owners of
the smartphones and drones) who will rent out their devices
to serve as [oT gateways. All these unique issues make this
problem interesting and hard to solve.

In this paper, we propose an IoT Gateway as a Service
(IGaaS) that provides on-demand gateway service using smart
mobile devices, such as smartphones or drones. The mobile
gateways (M-Gateway) have a dual network interface: WLAN
(IEEE 802.11) and IoT (IEEE 802.15.4). An M-Gateway
communicates with IoT nodes and clouds using its IoT and
WLAN interfaces, respectively. The owners of smartphones
and drones can rent out their devices as an M-Gateway in
exchange for incentives. We propose a rating based incentive
mechanism to encourage smartphone and drone owners to
rent out their devices through the IGaaS. We demonstrate
the feasibility of our proposed framework through a proof-of-
concept implementation of the IGaaS on Contiki powered IoT
devices. We provide an experimental evaluation of 1GaaS that
shows IGaaS can reduce communication latency and power
consumption in IoT devices when an IoT network inundates
with numerous IoT nodes.

Contribution: The contribution of this paper is summarized
as follows:

1) We have presented IoT Gateway as a Service (IGaaS) to
provide on-demand gateway provisioning for different
crowd-sourced environment.

2) We have proposed an incentive model for the devices
that serve as the gateways.

Organization: The rest of the paper is organized as follows:
Section II and III provide details on the motivation and
proposed framework. The operational model and experimental
results are presented in Section IV and V. Finally, we conclude
in section VI

1
Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND MOTIVATION

The operation of IoT devices are conducted in a constrained
low powered and lossy network. The devices can use multiple
protocols for communications such as Zigbee [5], 6LoWPAN
[6], ZWave [7], and BLE [8]. An IPv6 routing protocol named
RPL [9] is used to route the packets over the network. The
6LoWPAN nodes communicate over a wireless network defined
by IEEE 802.15.4 standard [10]. 6LoWPAN network has three
type of nodes: root node, intermediate node, and leaf node. The
root node is responsible for maintaining the communication
with other networks. The intermediate nodes forward packets
to the root node and leaf nodes. Construction of the network
topology is based on the DAG concept where every node selects
a neighbour as its parent based on an objective function. RPL
organises the 6LoWPAN nodes as Destination Oriented DAGs
(DODAG) [11] for point-to-point communication. Here, a root
node is responsible for starting the construction of the network
and every node chooses its parent through the RPL. A set of

control messages are defined by RPL for DODAG formation.

A RPL node broadcasts a DODAG Information Solicitation
(DIS) message to request DODAG Information Object (DIO)
messages from nearby RPL nodes. Upon receiving reply from
RPL nodes, the new node uses the DIOs for selecting its
parent(s). Finally, the node sends a Destination Advertisement
Object (DAO) to the root so that the intermediate nodes can
update their routing table.
—— P2P communication

—» MP2P communication
P2MP communication f

‘ DODAG root (Gateway)
, Intermediate nodes (loT device)

() Leaf node (loT device)

g

Fig. 1: 6LoWPAN traffic

In DODAG, a gateway works as the root node of the DAG
and the IoT nodes work as the intermediate and leaf nodes.
There are three type of routing in 6LoWPAN: 1) point to point
(P2P), 2) point to multipoint (P2MP), and 3) multipoint to
point (MP2P). In P2MP communications, traffic flows from
a DODAG root to a subset of 6LoOWPAN devices. Traffic
flows from 6LoWPAN devices to a DODAG root in MP2P
communications. In P2P communications, traffic flows between
two 6LoWPAN devices. Figure 1 shows different types of
6LoWPAN traffic. The routing scheme in 6LoWPAN can be

divided into two categories: mesh-under and route-over [12].

In mesh-under routing, the node does not contain any routing
table to forward packets, rather packets are forwarded to a
neighbor node to deliver the packet to the destination over
multiple radio hops. On the other hand, in route-over routing,
the node holds a routing table and acts as an IP router. In this
paper, we are mainly focusing on mesh-under routing.

Problem statement: IoT devices form DAG and use RPL
routing to forward packets. An IoT gateway is the root of the
DAG and it works as the communication bridge between IoT
network and internet. The size (height and width) of the DAG
increases as more number of nodes join the IoT network. As
a result, the communication latency for exchanging messages
and the CPU and memory utilization for routing packets are
increased. Hence, the quality of service in an IoT network
decreases with the increase of smart nodes in the network.

@ DODAG root (Gateway) gy '”te'dme‘z:a;eda”‘? 'e)af
“7Z° nodes (lo evice

W .0
""Node 2

Cloud Service

" Node 2
(a) P2P communication

Cloud Service

" Node 1 “Node 1

(b) P2MP communication
Fig. 2: Example scenarios for P2P and P2MP communication
where on-demand gateway provisioning can improve QoS

However, in the existing IoT systems, loT Gateways are not
provided on-demand. The total number of IoT Gateways are
fixed for an IoT system regardless of the number of nodes
present in the IoT network at a given time. Few gateways with
a huge number of IoT devices in the network may degrade
the quality of service. Moreover, the over-provisioning of IoT
Gateways increases power consumption, which contributes to
the increase in the electricity cost or reduces the gateway
devices’ battery life. Previous research works implemented
virtualization technology for IoT gateways. They set up an edge
server nearby the IoT devices and implemented container-based
virtualization of gateway functionality [13] [14] [15]. These
research works require an edge server and proper hardware and
software installation for gateway virtualization. To eliminate
these requirements, we propose to provision IoT Gateways on-
demand through drones for improving the quality of service of
an IoT system. We also provide the solution to downscale the
number of gateways to reduce unnecessary energy consumption
when multiple gateways are not required to maintain the QoS.

Figure 2 shows two scenarios where additional gateways can
provide better service. Figure 2(a) shows a P2P communication
scenario where node 1 wants to send a packet to node 2. In

2
Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

this case, the packet will route through the gateway and finally
delivered to node 2. Incorporation of additional gateway can
reduce the height of the DAG to ensure faster delivery of
the message. Figure 2(b) shows a P2MP scenario where the
cloud service wants to send a message to node 1. Delivering
the message may cause significant delay if the graph depth
is large. Incorporating additional gateway can improve the
service in this scenario. We can show similar scenario for
MP2P communication where multiple IoT nodes may want
to send data to the cloud. For all type of communication, our
target is to send the traffic from source to destination as quickly
as possible. Hence, we need to identify when to break down
the DAG by incorporating new gateway(s). For this purpose,
we need to consider several aspects, such as:

Number of nodes: Total number of nodes are an important
metric to figure out the current condition of the IoT network.
Huge number of nodes are likely to cause more latency and
power consumption.

Depth of the DAG: With the increase of tree depth, a packet
will have to travel more nodes to reach the destination. We
need to optimize the tree depth and number of new gateways to
incorporate for achieving the best advantage from on-demand
gateway provisioning.

Breadth of the DAG: If the breadth of the DAG becomes too
large, then the gateway will consume more power, CPU cycle,
and memory. Moreover, it will have to route more packets due
to presence of more IoT nodes which may incur latency issues.
CPU utilization: CPU utilization refers to different utilization
metrics of IoT devices such as RAM, storage, bandwidth, CPU
cycles etc.

Power consumption: Power consumption by the IoT nodes in
a certain period of time is also a important metric to consider
for deciding about gateway provisioning.

III. PROPOSED SYSTEM FRAMEWORK

Our proposed system framework has several modules. Each
module has some components to perform specific tasks. Figure
3 shows the overview of the proposed system framework. The
modules of our proposed framework are as follows:

A. Management portal

The internal components of the proposed framework commu-
nicate with users or service providers through the management
portal. The users can use the management portal through a web
interface for various purposes, such as creating and maintaining
service provider profile, registering devices, bidding to a new
service advertisement, receive instructions about service, etc.
B. Controller module

The controller module is responsible for the core function-
alities of IGaaS. The module sends the advertisement to the
registered gateway providers about the requirements of dynamic
gateways in a certain IoT network. Moreover, it receives the
requirements of new gateways from the gateway of the network.
Additionally, the controller also informs the service providers
whether the service is no longer required or not. The controller
module has the following components:

I Web Interface

Device Registration

Hardware Spec.
Analysis

2
Resource Manager

Requirement|| Service Requirements
Analysis Advertiser

{W Bidding Monitor
Monitor

Software Spec.
Analysis

Incentive Management W

spB 4
SID l

Service

z

Score and Payment Controller =

Rating Calculator Module g

Management g

g

r = B

Decision Engine =4

&

Gateway New Service Request / End Service Request @
Manager Provision / Down Scale

T
Resource Monitoring Engine

Power Consumption

Tracker Tracker Tracker Tracker

CPU Utilization J

[DAG Depth

Latency DAG Breadth
Tracker

T -
§—Report

Resource Reporting Engine

CPU Power
Latency Utilization Consumption DAG Depth DAG Breadth
Reporter Reporter Reporter Reporter Reporter
IoT Node

Fig. 3: System framework of 1GaaS

Device registration component: The device registration com-
ponent handles new device registration requests from the users.
New devices are registered after exploring the software and
hardware specifications to ensure its capabilities to serve as an
IoT network gateway. Then details of the resources are stored
in the Resource DataBase (RDB) with a unique device id. The
device is related to the service provider’s profile.

Resource manager: The resource manager receives a new
requirement of gateways through requirement status monitor.
Upon receiving a new gateway request, the controller broadcasts
the advertisement of new gateway requirements. After a bidding
procedure, the winner is instructed to provide the service to the
intended IoT network. When the service is no longer required,
the requirement status monitor informs the service providing
party about the end of the service. Service related metrics are
updated in the service database (SDB) and the service id (SID)
is provided to the incentive management component.
Incentive management component: The incentive manage-
ment component is responsible for calculating the performance
point after the completion of service and thereby calculates
the new rating point of the device. The payment calculator
module receives the Service ID (SID) from service monitor and
retrieves all the details of the service from SDB to calculate
new rating. Later, the incentive is calculated using the service
details by the payment calculator component.

C. Gateway manager

The gateway manager is responsible for keeping track of
the current status of the network and inform the requirements
about new mobile gateways to the controller. There are two
engines in the gateway component:

Resource monitoring engine: Resource monitoring engine
keeps track of the current status of the resources and scenario

3
Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

of the network such as latency, CPU utilization, power
consumption, graph depth, and breadth. These trackers report
their data to the decision engine. After analyzing the reports
provided by the trackers, the decision engine decides provision
or downscale the gateways in the network. The latency monitor
gets the latency by probing a packet to the IoT nodes and
calculating the round trip time. Additionally, The IoT nodes
may also inform the gateway about the required time to receive
the response after sending a request. CPU utilization tracker
receives reports from each IoT device about the usage of
RAM, storage, network bandwidth, and CPU speed. The power
consumption tracker tracks the power consumption by each
node in the network. The depth of the graph can be tracked by
finding the maximum rank reported by the nodes. Finally, the
breadth can be tracked by tracking the count of similar ranks
reported by the IoT nodes.

Decision engine: The decision engine is responsible for
deciding whether new mobile gateways are required or not. It
also decides the amount of provisioning or downscaling of IoT
gateways for optimized performance in the IoT network.

D. IoT node module

The IoT nodes have a resource reporting engine. The resource
reporting engine includes a latency reporter, CPU utilization
reporter, power consumption reporter, DAG depth reporter,
and DAG breadth reporter. The nodes can report the gateway
manager about the delay of receiving a response after sending
a request. For all other metrics, the IoT devices can send a
periodic update about their CPU utilization, power consumption,
rank, etc. to the resource tracking engine.

IV. OPERATION MODEL

A. Profile creation and device registration

B
‘

Ray

&

Users Mal;)agnin;ent Controller
:_ onta Mohule
L. Create Profile 2. Profile Details -
3. Verify

4. Success/ Failure

5. Success/ Failure

6. Device registration
>

7. Device Specification

8. Verify
9. Store in RDB

10. Success/ Failure

11. Success/ Failure

T
|
Fig. 4: Profile creation and device registration

Before providing a service, the service provider needs to
create a profile and register the devices. A user registers her
devices through the management portal by providing hardware
and software specifications. We are assuming that the service
will be provided by drones or smartphones. All the devices
have both the network interface of WLAN (IEEE 802.11) and

IoT (IEEE 802.15.4). Figure 4 shows the steps of the profile
creation and device registration phase.

Step 1: The service provider creates a profile through the
management portal. Step 2: The management portal sends
the details of the profile to the controller module. Step 3-
5: The controller module verifies the profile and sends back
success/failure message. Step 6-7: If the profile is successfully
created, the service provider can add the device specifications
and the controller module receives the software and hardware
specifications of the devices through the management portal.
Step 8-11: The controller module verifies the devices and
decides whether to add them into the RDB using a unique
device id and user id. Finally, the controller module sends the
success/failure response to the service provider.

B. Dynamic and stationary gateway provisioning

We have considered dynamic gateway provisioning and
downscaling for both stationary and mobile IoT network
architecture. Figure 5 shows the operation model of the
procedure.

Step 1: The IoT nodes send the report about themselves
collected by resource reporting engine to gateway manager.
Step 2: The resource monitoring engine collects reports from
all the IoT nodes and sends it to the decision engine. Step
3: The decision engine examines the reports and decides
whether a new gateway provisioning service is required or the
current services are no longer required. Step 4: The controller
module receives the resource request update from the gateway
manager and initializes a new resource allocation procedure
or service termination procedure. For stationary gateways,
the controller module informs about up-scaling or down-
scaling the gateways. Step 5: For new resource request, the
controller module retrieves the available service providers. Step
6: The controller node advertises the resource requirements
to the available service providers. Step 7: Interested service
providers responses by bidding a price considering the cost and
service requirements. Step 8: The controller node selects the
service providers. Algorithm 1 presents the provider selection
procedure. Step 9: The controller module informs the selected
service providers and provides details about the requested
service. Step 10: The service provider provides service by
provisioning gateways through drones or smartphones. Step
11-13: When the service is no longer required, the gateway
manager informs the controller module, and it is propagated to
the service provider. For a stationary network, proper scaling
instructions are sent to static gateways. Step 14: The service
details are provided to the controller module and stored in
the service database (SDB). Step 15: Rating and incentive are
calculated from the quality of the provided service. Step 16:
Finally, the incentive is paid to the service provider.

C. Score and rating calculation

We denote each device as D;, 1 < j < |D|. The framework
maintains a corresponding score s; and rating point 7; for each
device D;. The maximum and minimum rating point can be
100 and O which are denoted by 7,4, and r,,;, respectively.
Initially, each device is assigned score s; = 0 and rating

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

Service
Provider

Controller Module ‘ ’ Gateway Manager ’ TIoT Node ‘

| |
1.Resource reporting|

|
|
|
|
.
2.Resource
Monitoring

4.Resource
requirement update

5. Get available
providers/ scale
6. Advertise stationary

< gateways

7.Bidding
8. Select provider
list

3.Decision

F—

9. Inform providers

A

10. Provide service L
1

11. End of service

12. Scale stationary

ateways
13. Stop service gateway

14. Service details

15. Calculate rating

and incentive
T T |
| | |

16. Provide incentive

Fig. 5: Resource requirement analysis and gateway provisioning

r; = 0. After completing each service, each participating
device receives a performance point p; after completing a
service. Depending on the performance point, the framework
updates the score of each participating device and calculates
the corresponding rating points. The score and rating point
calculation depend on the number of services x each device
has provided. The score is also dependent on rating coefficient

Tmaxz —

p which is calculated as: yu = n where the rating
coefficient p is actually a weight functlon which makes it
harder to increase the score and rating if those are already
high. The purpose behind this weight function is to put more
responsibility to a well functioning device which has already
gained trust of the users. The framework computes the new
score of a device as follows:

sé- if the device does not provide service
if the device provides ser-
s§+1 = SJ (14 p) x x % pﬂ)vme and it < Tmaz
if the device provides service and
TEX X

where s?” and 33’ denote the scores for two consecutive exper-
iments, x is the number of services the device has participated,
and p is the rating coefficient of that device. Initially the score
and rating are calculated assuming rt+1 < Tmaz- If that is not
the case, then the rating point of a device gets updated if the
corresponding score of that device is updated. The framework

computes the new rating point as rt“ —— where r§+1 and

7’] denote the value of the rating pomt of a participating device
for two consecutive services.

The rating of a service provider depends on the average
of rating points of their devices. If a service provider has n
devices and rating point of each device is denoted as r;, then

the rating point of that service provider will be 7y, = Z’Tlr

Algorithm 1: Dynamic Gateway Provider Selection

Input: gateway requirement Gy.q, rating requirement P,,g,
cost requirement costc
Output: List < selectedprovider >
1: resources = getResources()
2: var compatible Resource Providers = new
List < ResourceProvider > ()
3: interestedResourceProviders = advertise(resources)
4: for T in interestedResourceProviders do

5: if T.proposedCost <= costc and T.rating >= Pyuq
then

6: compatible Resource Providers.push(1)

7 end if

8: end for

9: var targetedResource Provider List = new

List < ResourceProvider > ()
10: var totalGateways = 0
11: while compatible Resource Providers not EMPTY do
12: /*One or multiple available provider should be returned*/
13: find [,,, from the compatible Resource Providers list such
that l;.cost =
min(compatible Resource Providers.get Element.cost)
14: if totalGateways + l,,.resources >= Greq then

15: targeted Resource Provider List. Push(lm)
16: return targetedResourceProviderList

17: else

18: targeted ResourceProvider List. Push(ly)
19: totalGateways += Ly, .resources

20: compatible Resource Providers. Remove(lm)
21: end if

22: end while
23: /*No provider is available to provide the service*/
24: return noCompatibleProviderFoundError

D. Payment calculation:

Let us consider that a provider provides d number of devices
for providing a service. If each device uses r; amount of
resources per unite time and total service time is ¢, then the
total resource used by all the devices from that service provider
is M = Z?zl r;*t, such that r; = CPU speed, RAM, storage,
bandwidth. If the service provider bids c as the cost for per
unit resource usage, then the total payment P for the service
is: P=M xc.

V. EXPERIMENT AND EVALUATION
A. Experimental setup

We implemented a prototype of IGaaS for the Contiki
operating system [16]. The graph shown in Figure 2 was
used for simulation on Cooja simulator [17]. We considered
that the IoT network performs mesh-under routing, and hence
the intermediate nodes hold no routing information. For P2P
communication, we calculated the time and energy consumption
for different size of packets to reach from node 1 to node 2.
Similarly, for P2MP communication, we considered that the
packet in sent from cloud to node 1.

B. Evaluation

We conducted our experiments for different message sizes
varying from 64 bytes to 1024 bytes. For both P2P and P2MP

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

W P2P Communication W P2P Communication IGaaS

40000

30000

20000

10000

Message Delivery Latency (ms)

64 128 256 512 1024

Packet Size (Bytes)
Fig. 6: Comparison of delay in P2P communication

W P2MP Communication ® P2MP Communication IGaaS

20000

n
E
§ 15000
g
3
> 10000
2
3
O so00
i
2 o eme. lew l.
= 64 128 256 512 1024
Packet Size (Bytes)
Fig. 7: Comparison of delay in P2MP communication

communication, we calculated end to end communication delay
and energy consumption. Figure 6 and figure 7 shows the com-
munication time comparison for P2P and P2MP communication
respectively. We observe that the IGaaS framework reduces the
communication delay. The communication delay was reduced
by 43.2% for 32 bytes in P2P communication. For packet size
1024 bytes, we have found the reduction was 48%. For P2MP
communication, we have seen a similar amount of improvement
regarding communication latency with an average improvement
of 41.82%. We have also performed a comparison of energy
consumption. Figure 8 and figure 9 present the comparison
of energy consumption for P2P and P2MP communications.
We observed an average of 50.45% and 48.78% less energy
consumption in P2P and P2MP communication, respectively.
It is also possible to show similar kinds of improvements in
MP2P communication. We can conclude, IGaaS framework
can reduce the communication time and energy consumption.
VI. CONCLUSION

ToT devices are becoming popular in many different critical
applications. The presence of numerous IoT devices in the
RPL network with a fixed number of gateways may reduce the
quality of service. Moreover, a relatively low number of IoT
devices with an excessive number of gateways may lead to
unnecessary power consumption. In this paper, we presented
IGaaS - a service that achieves optimization in quality of
service by on-demand gateway provisioning through drones
or smartphones as well as reducing the number of gateways
for both stationary and mobile scenarios. Our proof of concept
implementation on the Contiki platform and simulation on
Cooja shows the feasibility of the framework.

ACKNOWLEDGEMENT

This research was supported by the National Science
Foundation through awards DGE-1723768, ACI-1642078, and
CNS-1351038, and by the National Institute of Health grant
1R21HD095270-01.

W P2P energy M P2P energy IGaaS

g

Energy consumption (mj)
g 8 8

°

64 128 256 512 1024

Packet Size (Bytes)
Fig. 8: Energy consumption comparison in P2P communication

W P2MP energy W P2MP energy IGaaS

1000
) I l
o o [em
64

128 256 512 1024

Energy consumption (mj)

Packet Size (Bytes)

Fig. 9: Energy consumption comparison in P2MP communication
REFERENCES

[1] H. R. Schindler, J. Cave, N. Robinson, V. Horvath, P. Hackett, S. Gu-
nashekar, M. Botterman, S. Forge, and H. Graux, “Examining europe’s
policy options to foster development of the’internet of things’,” 2012.

[2] M. S. Hossain, M. A. Rahman, and G. Muhammad, “Towards energy-
aware cloud-oriented cyber-physical therapy system,” Future Generation
Computer Systems, 2017.

[3] M. Alhussein, “Monitoring parkinson’s disease in smart cities,” /[EEE
Access, vol. 5, pp. 19835-19841, 2017.

[4] S. Bitam and A. Mellouk, Bio-inspired Routing Protocols for Vehicular
Ad-hoc Networks. Wiley Online Library, 2014.

[5] Zigbee, “An ieee 802.15.4-based high-level communication protocols
for personal area networks,” 2016, last accessed: 25-February-2020.
[Online]. Available: https://zigbee.org/

[6] N. Kushalnagar, G. Montenegro, C. Schumacher et al., “Ipv6 over low-
power wireless personal area networks (6lowpans): overview, assumptions,
problem statement, and goals,” 2007.

[71 M. B. Yassein, W. Mardini, and A. Khalil, “Smart homes automation
using z-wave protocol,” in 2016 International Conference on Engineering
& MIS (ICEMIS). IEEE, 2016, pp. 1-6.

[8] Z.-M. Lin, C.-H. Chang, N.-K. Chou, and Y.-H. Lin, “Bluetooth low
energy (ble) based blood pressure monitoring system,” in 2014 Int. Conf.
on Intelligent Green Building and Smart Grid. 1EEE, 2014, pp. 1-4.

[9]1 O. Gaddour and A. Koubaa, “Rpl in a nutshell: A survey,” Computer

Networks, vol. 56, no. 14, pp. 3163-3178, 2012.

J. T. Adams, “An introduction to ieee std 802.15. 4,” in 2006 IEEE

Aerospace Conference. 1EEE, 2006, pp. 8-pp.

T. Winter, “Rpl: Ipv6 routing protocol for low-power and lossy networks,”

2012.

A. H. Chowdhury, M. Ikram, and H.-S. Cha, “Route-over vs mesh-under

routing in 6lowpan,” in Proc. of the 2009 international conf. on wireless

communications and mobile computing. ACM, 2009, pp. 1208-1212.

P. Karhula, J. Mikeld, H. Rivas, and M. Valta, “Internet of things

connectivity with gateway functionality virtualization,” in 2017 Global

Internet of Things Summit (GloTS). 1EEE, 2017, pp. 1-6.

J. S. de Puga, C. E. P. Salvador, and A. B. Pellicer, “Architecture and

use case for an iot deployment with sdn at the edge and dual physical

and virtual gateway,” in /ICCCN. IEEE, 2019, pp. 1-6.

R. Morabito, R. Petrolo, V. Loscri, and N. Mitton, “Legiot: A lightweight

edge gateway for the internet of things,” Future Generation Computer

Systems, vol. 81, pp. 1-15, 2018.

Contiki, “An open source operating system for the internet of

things,” 2019, last accessed: 25-February-2020. [Online]. Available:

http://www.contiki-o0s.org/

Cooja, “An introduction to cooja,” 2019, last accessed: 25-February-

2020. [Online]. Available: https://github.com/contiki-os/contiki/wiki/

An-Introduction-to-Cooja

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

6
Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

