

The Serverless Application Analytics Framework:
Enabling Design Trade-off Evaluation for Serverless Software

Robert Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David Foster, David Perez, Rashad Hatchett, Wes Lloyd

 School of Engineering and Technology

 University of Washington

 Tacoma WA USA

 rcording, hanfeiyu, varikmp, zsadeghi, davidf94, daperez, rhatch26, wlloyd@uw.edu

ABSTRACT

To help better understand factors that impact performance

on Function-as-a-Service (FaaS) platforms we have

developed the Serverless Application Analytics Framework

(SAAF). SAAF provides a reusable framework supporting

multiple programming languages that developers can

integrate into a function’s package for deployment to

multiple commercial and open source FaaS platforms.

SAAF improves the observability of FaaS function

deployments by collecting forty-eight distinct metrics to

enable developers to profile CPU and memory utilization,

monitor infrastructure state, and observe platform

scalability. In this paper, we describe SAAF in detail and

introduce supporting tools highlighting important features

and how to use them. Our client application, FaaS Runner,

provides a tool to orchestrate workloads and automate the

process of conducting experiments across FaaS platforms.

We provide a case study demonstrating the integration of

SAAF into an existing open source image processing

pipeline built for AWS Lambda. Using FaaS Runner, we

automate experiments and acquire metrics from SAAF to

profile each function of the pipeline to evaluate

performance implications. Finally, we summarize

contributions using our tools to evaluate implications of

different programming languages for serverless data

processing, and to build performance models to predict

runtime for serverless workloads.

CCS CONCEPTS

• Computer systems organization → Cloud computing;

KEYWORDS

Serverless Computing, Frameworks, Function-as-a-Service,

Performance Evaluation, Programming Languages

ACM Reference format:

Robert Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David

Foster, David Perez, Rashad Hatchett, Wes Lloyd. 2020. The Serverless

Application Analytics Framework: Enabling Design Trade-off Evaluation

of Serverless Software Designs In Proceedings of 6th International

Workshop on Serverless Computing (WoSC6) 2020. ACM, TU Delft, The

Netherlands, 6 pages.

1 Introduction

In recent years Function-as-a-service (FaaS) platforms

have arisen offering many desirable features for

applications deployed to the cloud. FaaS platforms offer

high availability, fault tolerance, automatic scaling, while

billing developers only for the runtime of functions. As

runtime is the primary factor driving hosting costs, it is

important to profile and optimize serverless application

performance.

Commercial FaaS platforms exhibit additional

challenges when profiling applications. For example,

limited deployment package size, no access root to the

operating system, and the absence of a package manager

makes installing and using existing profiling tools more

difficult. Observability of infrastructure is another

challenge given the serverless nature of FaaS platforms.

Hardware details and performance metrics are abstracted or

entirely hidden from the user. Finally, every FaaS platform

is different. Each platform supports different languages,

supported by different backend implementations, and some

even use proprietary operating systems.

To aid in understanding performance implications of

FaaS platforms, we developed the Serverless Application

Analytics Framework (SAAF) [1]. SAAF is deployed in the

package of a function and is invoked in the function by

adding a few lines of code. SAAF supports functions

written in Java, Python, Go, Node.js, and Bash on AWS

Lambda, Google Cloud Functions, IBM Cloud Functions,

Azure Functions, and OpenFaaS [2][3][4][5][6].

SAAF collects metrics from the Linux operating system

and FaaS environment from function instances. These

metrics can be used to determine FaaS specific information

such as infrastructure state (cold vs warm), the number of

function instances sharing the same host [4][7], and

resource utilization. This enables accurate performance and

cost characterizations of FaaS application deployments.

 Alongside SAAF, we developed FaaS Runner. FaaS

Runner is a client-side application that automates complex

experiments on FaaS platforms. FaaS Runner supports

profiling functions that incorporate SAAF, to provide

further insight into a FaaS application. The SAAF project

WoSC6, December, 2020, TU Delft, The Netherlands R. Cordingly et al.

includes many tools to aid in application development and

deployment. Each language includes scripts that

automatically deploy functions to all supported platforms.

Section 3 details how to use our tools, how they are

implemented, and the metrics they collect. Section 4

explores research and case studies where we have used

SAAF and FaaS Runner.

2 Related Work

In this section we will review and discuss related work

centered around FaaS performance analysis and other FaaS

frameworks compared with SAAF.

2.1 FaaS Performance Analysis

J. Kuhlenkamp and S. Werner expressed the need for

accurate FaaS performance profiling and benchmarking

tools [8]. While using existing benchmarks can be useful to

profile performance, FaaS platforms provide unique

challenges and problems that must be addressed. Many

Function-as-a-Service platforms demonstrate unique

challenges such as the existence of heterogenous CPUs [9],

the freeze-thaw lifecycle [10][11], latency variation

between runtime languages [12], and performance scaling

[7][11]. These features lead to one of the most fundamental

issues with FaaS platforms: applications have unpredictable

hosting costs. Several efforts have provided methods of

modeling FaaS performance with the intent to better

understand the cost of an application [13][14][15].

2.2 FaaS Frameworks and Tools

Kuhlenkamp and Klems offer a cost-tracing framework

known as Costradamus to improve observability and

traceability of function hosting costs by automatically

aggregating log files [16]. Their framework, however, was

not focused on performance analysis. Roland et al.

leveraged proxy functions between the client and target

FaaS function to support performance profiling [17]. Proxy

functions are deployed to the same FaaS platform as the

target function. The client calls the proxy function which

then calls the target to collect metrics. This man-in-the-

middle approach, referred to as Proxy Cloud Functions

(PCFs) has benefits and drawbacks compared to SAAF. For

example, PCFs do not need to modify the deployment

package of functions being benchmarked. A significant

drawback of PCFs is that they result in double billing as the

proxy functions must wait for a response during

synchronous function invocations. The scope of metrics

that can be collected is also limited. PCFs can only observe

metrics such as total execution time, latency, and

throughput metrics. FaaS Runner calculates these metrics.

Another FaaS tool proposed by Shahrad et al. known as

FaaSProfiler provides an alternate approach to FaaS

profiling [18]. Instead of leveraging proxy functions or

implementing profiling inside the function, FaaSProfiler

provides an external tool that directly communicates with

the FaaS platform itself by leveraging platform specific

support. FaaSProfiler integrates with the open source

OpenWhisk FaaS platform [19]. Kuntsevich et al. also

designed a similar distributed analysis and benchmarking

framework that integrates with Apache OpenWhisk [20].

These approaches provide observability to monitor

server-side aspects of FaaS platforms from the perspective

of a cloud provider to offer visibility that neither PCFs nor

SAAF provide. Direct access methods provide deep insight

into function and platform behavior which are obfuscated

as a result of platforms being ‘serverless’. A notable

drawback is tight coupling to the OpenWhisk FaaS

platform. Commercial FaaS platforms such as AWS

Lambda, do not provide API’s to directly monitor the

hardware running functions and are not supported. This

drawback limits the FaaSProfiler from being used on

publicly hosted FaaS platforms.

3 Framework Design

The Serverless Application Analytics Framework

(SAAF) is designed to be included inside the deployment

package of FaaS functions [1]. Unlike frameworks that

leverage proxy functions or that are deployed directly on

the host hardware of a FaaS platform, SAAF is included in

source code of the function to instrument data collection

from the perspective of the function. This design allows

SAAF to profile performance of software deployments to

any commercial FaaS platform while enabling introspection

of the infrastructure used by each platform.

Figure 1: SAAF profiling overhead (ms) at different

memory settings on AWS Lambda

Supporting SAAF, we have developed the FaaS Runner,

a client-side application used in conjunction with SAAF to

automate profiling experiments. FaaS Runner compiles

experimental results into reports to aggregate data for quick

analysis. FaaS Runner combines performance, resource

utilization, and configuration metrics from many

The Serverless Application Analytics Framework WoSC6, December, 2020, TU Delft, The Netherlands

concurrent sessions enabling observations not possible

when profiling individual FaaS functions calls.

SAAF is built specifically to profile software

deployments to FaaS platforms and to help evaluate

implications of serverless software designs to ultimately

improve function performance and cost. A key design

consideration of SAAF is to minimize profiling overhead as

a component of the application hosting cost. To quantify

SAAF profiling overhead, we collected all metrics on AWS

Lambda from an empty “hello world” function containing

only the SAAF library. For 90% of function executions at

256 MBs, SAAF’s runtime overhead was less than 108

milliseconds where 100 milliseconds is the smallest billable

time interval on AWS Lambda. Figure 1 depicts profiling

overhead for each memory setting.

3.1 Supported Platforms Languages

SAAF provides support to profile functions created with

Python, Node.js, Java, Go, and AWS Lambda custom

runtimes using Bash. Each version is written natively in

their respective language to offer the best performance,

minimize dependencies, and to make using SAAF as easy

as possible. Programmers include the SAAF library and a

few lines of code to enable profiling. Complete

documentation and example functions in each language are

available on the SAAF Repository [1]. Table 1 describes

which languages are supported on each platform by SAAF.

Platform Python Node.js Java Go Bash

AWS Lambda

Google Cloud Functions ❌ ❌ ❌

IBM Cloud Functions ❌ ❌

Azure Functions ❌ ❌ ❌

OpenFaaS ❌ ❌ ❌ ❌

Table 1: Currently Supported Platforms and Languages

SAAF includes scripts to help streamline the process of

deploying functions to each platform. The included

example Python project can be built and deployed

automatically to all supported platforms without requiring

any code changes. This structure provides the ability to

create multi-platform functions within a single code base.

3.2 Collecting Analytics with SAAF

SAAF collects metrics from the Linux /proc filesystem

and appends them onto the JSON payload returned by the

function instance. Attributes collected include Linux Time

Accounting metrics such as CPU idle, user, kernel, and I/O

wait time, wall-clock runtime, and memory usage [21]. As

SAAF is dependent on Linux, SAAF does not support

profiling functions deployed to Azure Functions using

Windows. To identify infrastructure state, SAAF stamps

function instances with a unique ID and uses the existence

of the ID to identify if the environment is new (cold) or

recycled (warm) [22].

To control profiling verbosity, and to optimize

performance, programmers can specify which attributes

SAAF collects. After including the SAAF package and

initializing the Inspector object, the attributes collected are

defined by which functions the programmer calls. CPU,

memory, function instance, Linux and platform profiling

functions offer granular and customizable profiling.

Profiling functions and important metrics are defined in

Table 2.

Leveraging SAAF to profile a function requires adding a

couple lines of code. Advanced profiling activities may

require additional coding. Profiling is enabled within FaaS

functions through modifications in five sections:

1. Initialization: Initialize the SAAF Inspector object at

the start of the FaaS function.

2. Inspection: Call initial SAAF inspect functions such

as inspectAll(), inspectCPU(), etc. to collect base

values for metrics.

3. Workload: Implement function, this is where the

implementation of the function should be.

4. Inspect Deltas: After function code is complete, call

SAAF inspect delta functions, e.g. inspectAllDeltas(),

inspectCPUDeltas(), to calculate resource utilization.

5. Finalize: Obtain SAAF output by calling the finish()

function. Return this object or append to an existing

return object. If the function is asynchronous save this

object to external data storage for future retrieval.

3.3 Running Experiments with FaaS Runner

FaaS Runner provides a client-side application that is

used to define and execute experiments on FaaS Platforms

that works in conjunction with SAAF. Depending on the

number of concurrent client requests desired for the

experiment, FaaS Runner can either execute using a local

computer, or leverage a cloud-based virtual machine with

many virtual CPU cores.

FaaS experiments are not only for experimental

research, but they also help to provide analytics to compare

and contrast alternate serverless software designs.

Understanding FaaS performance allows developers to

make educated design decisions (e.g. optimal function

composition, memory setting, language selection). Without

proper insight, developers are left to make ad hoc design

decisions that will directly impact the performance and cost

of a serverless application.

FaaS Runner has the ability to run multiple types of

experiments. From basic single function executions, to

complex multi-function pipelines, many options are

WoSC6, December, 2020, TU Delft, The Netherlands R. Cordingly et al.

provided to customize the execution and orchestration of

experiments. FaaS Runner can execute functions

sequentially, in parallel, synchronously, or asynchronously

across all of SAAF’s supported platforms and through

HTTP requests. Experiments are defined either using

command line arguments, or through JSON configuration

files. Additional details on FaaS Runner configuration

options are described in section 3.5. The results of each

function invocation are persisted and when all functions are

complete the ReportGenerator is automatically invoked to

compile and analyze results.

 FaaS Runner's ReportGenerator organizes results to

provide user friendly reports in CSV format. The

ReportGenerator calculates metrics to aggregate data

spanning multiple output files. For example, latency can be

calculated by measuring the round-trip time of function

calls from the client’s perspective, and by then subtracting

runtime reported by SAAF. The average latency is then

calculated by aggregating results over a batch of function

calls. Function tenancy, which is the number of functions

hosted by the same cloud-based virtual infrastructure, can

be determined by comparing the number of function calls

sharing the same vmID attribute where chronological time

of execution overlaps. The ReportGenerator can be used to

regenerate reports over archived data, or to compile reports

over data generated by other experiment clients besides the

FaaS Runner. Table 2 provides a list of key metrics

provided by the FaaS Runner and ReportGenerator. In total

48 distinct metrics are collected by SAAF and FaaS Runner.

Attribute Function Description

newcontainer inspectContainer Whether container is new or if it has been reused

vmuptime inspectContainer Time of host boot in seconds since Jan 1, 1970

cpuType inspectCPU Model name of the CPU

cpuUsr∆ inspectCPU Time spent executing in user mode

cpuKrn∆ inspectCPU Time spent executing processes in kernel mode

cpuIdle∆ inspectCPU Time spent idle

cpuIowait∆ inspectCPU Time spent waiting for I/O to complete

cpuIrq∆ inspectCPU Time spent servicing interrupts

cpuSoftIrq∆ inspectCPU Time spent servicing software interrupts

vmcpusteal∆ inspectCPU Cycles waiting for hypervisor serving other vCPU

totalMemory inspectMemory Total kBs memory allocated to the instance

pageFaults∆ inspectMemory Total page faults of the instance since boot

containerID inspectPlatform Platform specific function instance identifier

vmID inspectPlatform Platform specific virtual machine identifier

functionMemory inspectPlatform Configured memory setting on the FaaS platform

runtime finish Runtime of the function from start to finish

saafRuntime∆ inspectAll Time to calculate all initial metrics of SAAF

userRuntime inspectAll∆ Time in ms between initial inspection and deltas

X_avg/sum/list FaaS Runner Average/sum/list any attribute

roundTripTime FaaS Runner Time between request and response.

latency FaaS Runner Total runtime subtracted from the roundTripTime

runtimeOverlap FaaS Runner Number of concurrent function instances

tenants FaaS Runner Number of tenants a function host may have

Table 2: Key attributes collected by SAAF or FaaS Runner.

∆ indicates initial and delta versions are provided.

3.5 FaaS Runner: Configuration and Usage

FaaS Runner provides multiple options to configure

function execution and report generation for FaaS

experiments. Configuration options can be specified in files

or through command line arguments. FaaS Runner

leverages two types of configuration files: function files

and experiment files. Function files provide required

information to access FaaS function endpoints, and

experiment files define the operations and inputs to an

experiment.

After an experiment is defined, FaaS Runner automates

key tasks such as dynamically adjusting platform memory

settings and supplying functions with different payloads.

Experiments execute autonomously to completion with no

required user interaction. FaaS Runner experiment

definitions are portable as different client computers can be

used to perform the experiments by reusing experiment

configuration files. Experiments are launched by running

the FaaS Runner application through the command line.

4 SAAF Case Studies

In this section we detail three serverless case studies

enabled by SAAF: (1) an image processing pipeline, (2) a

data processing pipeline with implementations in four

different programming languages to contrast performance

implications [23], and (3) random compute-bound

workloads used to develop and refine serverless

performance models using Linux time accounting

principles [13].

4.1 Image Processing Pipeline

To demonstrate the efficacy of SAAF and FaaS Runner,

we deployed an existing image processing pipeline

available from the AWS Serverless Application Repository

which uses Node.js [24]. The pipeline consists of five

serverless functions to perform resize, rotate, blur, sepia

filtering, and image compression. These functions were

deployed on AWS Lambda using the maximum memory

size of 3GBs. We added SAAF to each function and

created an experiment to execute the entire pipeline with

FaaS Runner. Integrating SAAF into these functions

required no code changes or knowledge regarding the

image processing algorithms as each function’s source code

was simply augmented by adding SAAF method

invocations at the start and end of each function. Once

configured, we used FaaS Runner to orchestrate an

experiment to process 100 identical images concurrently.

We leveraged SAAF to obtain CPU metrics to observe the

CPU profile of each function as shown in Figure 2. For this

image processing pipeline, functions had similar CPU

The Serverless Application Analytics Framework WoSC6, December, 2020, TU Delft, The Netherlands

profiles, where ~46-52% of the total time the CPU was

idle, ~42-48% of the time the CPU executed code in user

mode, and ~5-7% of the time the CPU executed kernel

mode instructions. The runtime varied between functions:

blur was the slowest at 53 seconds, and resize was the

fastest at 15 seconds as shown in Figure 2.

Without a deep understanding of each function it is

difficult to infer why a function may perform poorly on a

FaaS Platform. Using metrics from SAAF, we can gain

insight into a function’s performance. For example, the

Resize, Rotate, Sepia, and Compress functions all had

26,000 to 28,000 page faults per second compared to Blur

which had greater than 40,000 page faults per second.

Figure 2: Workload profiling with FaaS Runner and SAAF on

a five-function image processing pipeline.

Alongside memory performance, FaaS platforms have

the potential of exhibiting resource contention as multiple

functions execute concurrently. Using FaaS Runner’s

runtimeOverlap metric, we observed that the average

number of concurrent function instances varied for each

function. Resize, Sepia, and Compress had on average 80.4,

80.1, and 69.3 concurrent instances over their runtime

duration. Since we processed 100 images, the maximum

possible function instances would have been 100. Rotate

and Blur exhibited more concurrency where an average of

91.2 (Rotate) and 89.8 (Blur) functions executed

concurrently. This observation shows that these functions

ran closer together due to either FaaS platform scheduling

or chain-of-execution timing when compared to the Resize,

Sepia, and Compress functions. This example highlights

obersevations made by combining SAAF and FaaS Runner.

4.2 Programming Language Comparison

In our paper: “Implications of Programming Language

Selection for Serverless Data Processing Pipelines” [23],

we developed four identical Transform-Load-Query

pipelines in Java, Python, Go, and Node.js and compared

the performance of each language on AWS Lambda. Using

SAAF we profiled each language using Linux Time

Accounting metrics.

By leveraging SAAF, combined with FaaS Runner, we

are able to create experiments to investigate the serverless

freeze thaw lifecycle [11]. SAAF is able to characterize

infrastructure state allowing us to observe the performance

impact of running on cold versus warm infrastructure.

Further, we used FaaS Runner to conduct experiments to

investigate increasing the number of concurrent function

invocations, and also to investigate function performance

across a variety of memory reservation sizes. These three

experiments allowed us to evaluate the performance

implications of data processing pipeline implementations in

each language over a variety of configuration scenarios.

FaaS Runner allowed us to easily perform new

experiments as new versions of our data processing

pipeline in different languages were introduced by simply

changing function configuration files. As some experiments

were resource intensive, we deployed and executed FaaS

Runner using both Amazon EC2 virtual machines and local

client computers. For experiments that test latency, it is

crucial to use a virtual machine in the same subnet as a

FaaS function to minimize network overhead.

We found that no single language performed the best in

all of our experiments and that a hybrid pipeline combining

functions written in both Go and Java offered the best

performance. Node.js had the slowest performance,

resulting in an application costing 94% more than the

hybrid version. Go exhibited the least cold-start latency of

any language. For scalability Go, Python, and Java

performed similarly (8-19% increase in runtime between 1

and 50 requests), while Node.js was impacted more heavily

(35% increase). Finally, all languages scaled performance

similarly as we increased the reserved memory up to 1536

MBs. Due to the single-threaded nature of our pipeline,

memory allocations greater than 1536 MB offered no

performance improvements while incurring increased costs.

4.3 Serverless Performance Modeling

In our paper: “Predicting Performance and Cost of

Serverless Computing Functions with SAAF” [13], we

evaluated regression modeling combined with Linux time

accounting principles to predict runtime of compute-bound

FaaS functions. In particular, this paper focused on

identifying factors that contribute to FaaS performance

variance to enable building accurate performance models.

In Fall 2019 our experiments identified that AWS

Lambda and IBM Cloud Functions used multiple different

CPU types to implement FaaS function instances, a

phenomenon known as CPU heterogeneity. Using SAAF,

we categorized CPU types and determined function

tenancy. We found that each CPU type offered varying

WoSC6, December, 2020, TU Delft, The Netherlands R. Cordingly et al.

performance, and function tenancy had a large impact on

performance on IBM Cloud Functions.

We evaluated our Linux time accounting approach to

performance modeling for runtime prediction of FaaS

function deployments. In our approach we build regression

models for key CPU timing metrics (e.g. CPU user mode

time, CPU idle time) and then apply Linux time accounting

to derive runtime predictions. We evaluated our approach

for FaaS function deployments to alternate CPU types, with

different memory sizes, and to different public FaaS

platforms. We performed experiments using increasingly

complex function workloads where each subsequent

workload introduced additional random behavior and

performance variance. To collect sufficient data for each

function configuration, we performed over 65,000 function

invocations on AWS Lambda and IBM Cloud Functions.

We found that model error correlated roughly with

performance variance when modeling functions with

increasingly variable performance outcomes. By closely

observing function tenancy, we found a significant

difference between how AWS and IBM execute functions

with respect to memory management.

While pricing models between AWS Lambda and IBM

Cloud Functions appear similar on the surface, we found

that differences in platform implementation produced

significant price differences based on the number of

concurrent function calls. By varying memory settings, we

saw performance scale on AWS Lambda while runtime

remained constant on IBM for sequential function

invocations. IBM appears to not restrict the CPU share of

individual function instances resulting in competition for

available resources of the host. The available memory of

servers on IBM appears to limit the maximum number of

co-located function tenants. In contrast, AWS restricts the

CPU share for each function instance so that performance

remains fairly constant regardless of the number of co-

resident function executions occurring on the host. This

observation was made possible by SAAF, and provides a

significant example of FaaS price obfuscation. The same

workload on IBM can cost anywhere from $8.89 to

$113.97 depending on the tenancy of function executions

across host VMs for concurrent client requests.

5 Conclusions

SAAF is a serverless computing framework that

provides insight into the performance and infrastructure of

microservices deployed to a variety of FaaS platforms in

multiple languages. SAAF is easily integrated into new and

existing functions deployed to many commercial FaaS

platforms. When used with FaaS Runner, SAAF provides

an invaluable tool for scientists and practitioners to

automate execution of experiments and aggregate results to

help evaluate performance tradeoffs of microservice

composition and alternate serverless software architectures.

ACKNOWLEDGMENTS

Supported by the NSF Advanced Cyberinfrastructure Research
Program (OAC-1849970), NIH grant R01GM126019, and AWS
Cloud Credits for Research.

REFERENCES
[1] “SAAF: Serverless Application Analytics Framework,” 2020.

https://github.com/wlloyduw/SAAF.
[2] “AWS Lambda,” 2014. https://aws.amazon.com.
[3] “Google Cloud Functions.” https://cloud.google.com/functions/.
[4] “IBM Cloud Functions.” https://cloud.ibm.com/functions/.
[5] “Azure Functions - Develop Faster with Serverless Compute.”

https://azure.microsoft.com/en-us/services/functions/.
[6] “OpenFaaS - Serverless Functions, Made Simple.,” 2016.

https://www.openfaas.com.
[7] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking

Behind the Curtains of Serverless Platforms,” 2018 USENIX Annu.
Tech. Conf. (USENIX ATC 18), 2018.

[8] J. Kuhlenkamp and S. Werner, “Benchmarking FaaS platforms: Call
for community participation,” 2019, doi: 10.1109/UCC-
Companion.2018.00055.

[9] E. Jonas et al., “Cloud programming simplified: a berkeley view on
serverless computing,” arXiv Prepr. arXiv1902.03383, 2019.

[10] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “Serverless
computing for container-based architectures,” Futur. Gener. Comput.
Syst., 2018, doi: 10.1016/j.future.2018.01.022.

[11] W. Lloyd, M. Vu, B. Zhang, O. David, and G. Leavesley, “Improving
application migration to serverless computing platforms: Latency
mitigation with keep-Alive workloads,” 2019, doi: 10.1109/UCC-
Companion.2018.00056.

[12] D. Jackson and G. Clynch, “An investigation of the impact of
language runtime on the performance and cost of serverless
functions,” 2019, doi: 10.1109/UCC-Companion.2018.00050.

[13] R. Cordingly, W. Shu, and W. J. Lloyd, “Predicting Performance and
Cost of Serverless Computing Functions with SAAF,” 2020.

[14] P. Leitner, J. Cito, and E. Stöckli, “Modelling and managing
deployment costs of microservice-based cloud applications,” 2016,
doi: 10.1145/2996890.2996901.

[15] T. Elgamal, A. Sandur, K. Nahrstedt, and G. Agha, “Optimizing cost
of serverless computing through function fusion and placement,”
2018, doi: 10.1109/SEC.2018.00029.

[16] J. Kuhlenkamp and M. Klems, “Costradamus: A cost-tracing system
for cloud-based software services,” in International Conference on
Service-Oriented Computing, 2017, pp. 657–672.

[17] R. Pellegrini, I. Ivkic, and M. Tauber, “Function-as-a-Service
Benchmarking Framework,” May 2019, doi:
10.5220/0007757304790487.

[18] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 1063–1075.

[19] “Openwhisk.” https://console.bluemix.net/docs/openwhisk/.
[20] A. Kuntsevich, P. Nasirifard, and H.-A. Jacobsen, “A Distributed

Analysis and Benchmarking Framework for Apache OpenWhisk
Serverless Platform,” in Proceedings of the 19th International
Middleware Conference (Posters), 2018, pp. 3–4.

[21] W. J. Lloyd et al., “Demystifying the Clouds: Harnessing Resource
Utilization Models for Cost Effective Infrastructure Alternatives,”
IEEE Trans. Cloud Comput., 2015, doi: 10.1109/tcc.2015.2430339.

[22] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing
microservice performance,” 2018, doi: 10.1109/IC2E.2018.00039.

[23] R. Cordingly et al., “Implications of Programming Language
Selection for Serverless Data Processing Pipelines,” 2020.

[24] E. Chiu, “Serverless Galleria,” 2017.
https://github.com/evanchiu/serverless-galleria.

