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ABSTRACT 

To help better understand factors that impact performance 

on Function-as-a-Service (FaaS) platforms we have 

developed the Serverless Application Analytics Framework 

(SAAF). SAAF provides a reusable framework supporting 

multiple programming languages that developers can 

integrate into a function’s package for deployment to 

multiple commercial and open source FaaS platforms. 

SAAF improves the observability of FaaS function 

deployments by collecting forty-eight distinct metrics to 

enable developers to profile CPU and memory utilization, 

monitor infrastructure state, and observe platform 

scalability. In this paper, we describe SAAF in detail and 

introduce supporting tools highlighting important features 

and how to use them. Our client application, FaaS Runner, 

provides a tool to orchestrate workloads and automate the 

process of conducting experiments across FaaS platforms. 

We provide a case study demonstrating the integration of 

SAAF into an existing open source image processing 

pipeline built for AWS Lambda. Using FaaS Runner, we 

automate experiments and acquire metrics from SAAF to 

profile each function of the pipeline to evaluate 

performance implications. Finally, we summarize 

contributions using our tools to evaluate implications of 

different programming languages for serverless data 

processing, and to build performance models to predict 

runtime for serverless workloads. 
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1 Introduction 

In recent years Function-as-a-service (FaaS) platforms 

have arisen offering many desirable features for 

applications deployed to the cloud. FaaS platforms offer 

high availability, fault tolerance, automatic scaling, while 

billing developers only for the runtime of functions. As 

runtime is the primary factor driving hosting costs, it is 

important to profile and optimize serverless application 

performance.  

Commercial FaaS platforms exhibit additional 

challenges when profiling applications. For example, 

limited deployment package size, no access root to the 

operating system, and the absence of a package manager 

makes installing and using existing profiling tools more 

difficult. Observability of infrastructure is another 

challenge given the serverless nature of FaaS platforms. 

Hardware details and performance metrics are abstracted or 

entirely hidden from the user. Finally, every FaaS platform 

is different. Each platform supports different languages, 

supported by different backend implementations, and some 

even use proprietary operating systems.   

To aid in understanding performance implications of 

FaaS platforms, we developed the Serverless Application 

Analytics Framework (SAAF) [1]. SAAF is deployed in the 

package of a function and is invoked in the function by 

adding a few lines of code. SAAF supports functions 

written in Java, Python, Go, Node.js, and Bash on AWS 

Lambda, Google Cloud Functions, IBM Cloud Functions, 

Azure Functions, and OpenFaaS [2][3][4][5][6].  

SAAF collects metrics from the Linux operating system 

and FaaS environment from function instances. These 

metrics can be used to determine FaaS specific information 

such as infrastructure state (cold vs warm), the number of 

function instances sharing the same host [4][7], and 

resource utilization. This enables accurate performance and 

cost characterizations of FaaS application deployments. 

 Alongside SAAF, we developed FaaS Runner. FaaS 

Runner is a client-side application that automates complex 

experiments on FaaS platforms. FaaS Runner supports 

profiling functions that incorporate SAAF, to provide 

further insight into a FaaS application. The SAAF project 
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includes many tools to aid in application development and 

deployment. Each language includes scripts that 

automatically deploy functions to all supported platforms. 

Section 3 details how to use our tools, how they are 

implemented, and the metrics they collect. Section 4 

explores research and case studies where we have used 

SAAF and FaaS Runner. 

2 Related Work 

In this section we will review and discuss related work 

centered around FaaS performance analysis and other FaaS 

frameworks compared with SAAF. 

2.1 FaaS Performance Analysis 

J. Kuhlenkamp and S. Werner expressed the need for 

accurate FaaS performance profiling and benchmarking 

tools [8]. While using existing benchmarks can be useful to 

profile performance, FaaS platforms provide unique 

challenges and problems that must be addressed. Many 

Function-as-a-Service platforms demonstrate unique 

challenges such as the existence of heterogenous CPUs [9], 

the freeze-thaw lifecycle [10][11], latency variation 

between runtime languages [12], and performance scaling 

[7][11]. These features lead to one of the most fundamental 

issues with FaaS platforms: applications have unpredictable 

hosting costs. Several efforts have provided methods of 

modeling FaaS performance with the intent to better 

understand the cost of an application [13][14][15].  

2.2 FaaS Frameworks and Tools 

Kuhlenkamp and Klems offer a cost-tracing framework 

known as Costradamus to improve observability and 

traceability of function hosting costs by automatically 

aggregating log files [16]. Their framework, however, was 

not focused on performance analysis. Roland et al. 

leveraged proxy functions between the client and target 

FaaS function to support performance profiling [17]. Proxy 

functions are deployed to the same FaaS platform as the 

target function. The client calls the proxy function which 

then calls the target to collect metrics. This man-in-the-

middle approach, referred to as Proxy Cloud Functions 

(PCFs) has benefits and drawbacks compared to SAAF. For 

example, PCFs do not need to modify the deployment 

package of functions being benchmarked. A significant 

drawback of PCFs is that they result in double billing as the 

proxy functions must wait for a response during 

synchronous function invocations. The scope of metrics 

that can be collected is also limited. PCFs can only observe 

metrics such as total execution time, latency, and 

throughput metrics. FaaS Runner calculates these metrics.  

Another FaaS tool proposed by Shahrad et al. known as 

FaaSProfiler provides an alternate approach to FaaS 

profiling [18]. Instead of leveraging proxy functions or 

implementing profiling inside the function, FaaSProfiler 

provides an external tool that directly communicates with 

the FaaS platform itself by leveraging platform specific 

support. FaaSProfiler integrates with the open source 

OpenWhisk FaaS platform [19]. Kuntsevich et al. also 

designed a similar distributed analysis and benchmarking 

framework that integrates with Apache OpenWhisk [20]. 

These approaches provide observability to monitor 

server-side aspects of FaaS platforms from the perspective 

of a cloud provider to offer visibility that neither PCFs nor 

SAAF provide. Direct access methods provide deep insight 

into function and platform behavior which are obfuscated 

as a result of platforms being ‘serverless’. A notable 

drawback is tight coupling to the OpenWhisk FaaS 

platform. Commercial FaaS platforms such as AWS 

Lambda, do not provide API’s to directly monitor the 

hardware running functions and are not supported. This 

drawback limits the FaaSProfiler from being used on 

publicly hosted FaaS platforms.  

3 Framework Design 

The Serverless Application Analytics Framework 

(SAAF) is designed to be included inside the deployment 

package of FaaS functions [1]. Unlike frameworks that 

leverage proxy functions or that are deployed directly on 

the host hardware of a FaaS platform, SAAF is included in 

source code of the function to instrument data collection 

from the perspective of the function. This design allows 

SAAF to profile performance of software deployments to 

any commercial FaaS platform while enabling introspection 

of the infrastructure used by each platform. 

 

Figure 1: SAAF profiling overhead (ms) at different  

memory settings on AWS Lambda 

Supporting SAAF, we have developed the FaaS Runner, 

a client-side application used in conjunction with SAAF to 

automate profiling experiments. FaaS Runner compiles 

experimental results into reports to aggregate data for quick 

analysis. FaaS Runner combines performance, resource 

utilization, and configuration metrics from many 
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concurrent sessions enabling observations not possible 

when profiling individual FaaS functions calls.  

SAAF is built specifically to profile software 

deployments to FaaS platforms and to help evaluate 

implications of serverless software designs to ultimately 

improve function performance and cost. A key design 

consideration of SAAF is to minimize profiling overhead as 

a component of the application hosting cost. To quantify 

SAAF profiling overhead, we collected all metrics on AWS 

Lambda from an empty “hello world” function containing 

only the SAAF library. For 90% of function executions at 

256 MBs, SAAF’s runtime overhead was less than 108 

milliseconds where 100 milliseconds is the smallest billable 

time interval on AWS Lambda. Figure 1 depicts profiling 

overhead for each memory setting. 

3.1 Supported Platforms Languages 

SAAF provides support to profile functions created with 

Python, Node.js, Java, Go, and AWS Lambda custom 

runtimes using Bash. Each version is written natively in 

their respective language to offer the best performance, 

minimize dependencies, and to make using SAAF as easy 

as possible. Programmers include the SAAF library and a 

few lines of code to enable profiling. Complete 

documentation and example functions in each language are 

available on the SAAF Repository [1]. Table 1 describes 

which languages are supported on each platform by SAAF. 
 

Platform Python Node.js Java Go Bash 

AWS Lambda                     

Google Cloud Functions         ❌ ❌ ❌ 

IBM Cloud Functions             ❌ ❌ 

Azure Functions          ❌ ❌ ❌ 

OpenFaaS      ❌ ❌ ❌ ❌ 

Table 1: Currently Supported Platforms and Languages 

SAAF includes scripts to help streamline the process of 

deploying functions to each platform. The included 

example Python project can be built and deployed 

automatically to all supported platforms without requiring 

any code changes. This structure provides the ability to 

create multi-platform functions within a single code base. 

3.2 Collecting Analytics with SAAF 

SAAF collects metrics from the Linux /proc filesystem 

and appends them onto the JSON payload returned by the 

function instance. Attributes collected include Linux Time 

Accounting metrics such as CPU idle, user, kernel, and I/O 

wait time, wall-clock runtime, and memory usage [21]. As 

SAAF is dependent on Linux, SAAF does not support 

profiling functions deployed to Azure Functions using 

Windows. To identify infrastructure state, SAAF stamps 

function instances with a unique ID and uses the existence 

of the ID to identify if the environment is new (cold) or 

recycled (warm) [22].  

To control profiling verbosity, and to optimize 

performance, programmers can specify which attributes 

SAAF collects. After including the SAAF package and 

initializing the Inspector object, the attributes collected are 

defined by which functions the programmer calls. CPU, 

memory, function instance, Linux and platform profiling 

functions offer granular and customizable profiling. 

Profiling functions and important metrics are defined in 

Table 2.   

Leveraging SAAF to profile a function requires adding a 

couple lines of code. Advanced profiling activities may 

require additional coding. Profiling is enabled within FaaS 

functions through modifications in five sections: 

 

1. Initialization: Initialize the SAAF Inspector object at 

the start of the FaaS function. 

2. Inspection: Call initial SAAF inspect functions such 

as inspectAll(), inspectCPU(), etc. to collect base 

values for metrics. 

3. Workload: Implement function, this is where the 

implementation of the function should be. 

4. Inspect Deltas: After function code is complete, call 

SAAF inspect delta functions, e.g. inspectAllDeltas(), 

inspectCPUDeltas(), to calculate resource utilization. 

5. Finalize: Obtain SAAF output by calling the finish() 

function. Return this object or append to an existing 

return object. If the function is asynchronous save this 

object to external data storage for future retrieval. 

3.3 Running Experiments with FaaS Runner 

FaaS Runner provides a client-side application that is 

used to define and execute experiments on FaaS Platforms 

that works in conjunction with SAAF. Depending on the 

number of concurrent client requests desired for the 

experiment, FaaS Runner can either execute using a local 

computer, or leverage a cloud-based virtual machine with 

many virtual CPU cores. 

FaaS experiments are not only for experimental 

research, but they also help to provide analytics to compare 

and contrast alternate serverless software designs. 

Understanding FaaS performance allows developers to 

make educated design decisions (e.g. optimal function 

composition, memory setting, language selection). Without 

proper insight, developers are left to make ad hoc design 

decisions that will directly impact the performance and cost 

of a serverless application.  

FaaS Runner has the ability to run multiple types of 

experiments. From basic single function executions, to 

complex multi-function pipelines, many options are 
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provided to customize the execution and orchestration of 

experiments. FaaS Runner can execute functions 

sequentially, in parallel, synchronously, or asynchronously 

across all of SAAF’s supported platforms and through 

HTTP requests. Experiments are defined either using 

command line arguments, or through JSON configuration 

files. Additional details on FaaS Runner configuration 

options are described in section 3.5. The results of each 

function invocation are persisted and when all functions are 

complete the ReportGenerator is automatically invoked to 

compile and analyze results. 

 FaaS Runner's ReportGenerator organizes results to 

provide user friendly reports in CSV format. The 

ReportGenerator calculates metrics to aggregate data 

spanning multiple output files. For example, latency can be 

calculated by measuring the round-trip time of function 

calls from the client’s perspective, and by then subtracting 

runtime reported by SAAF. The average latency is then 

calculated by aggregating results over a batch of function 

calls. Function tenancy, which is the number of functions 

hosted by the same cloud-based virtual infrastructure, can 

be determined by comparing the number of function calls 

sharing the same vmID attribute where chronological time 

of execution overlaps. The ReportGenerator can be used to 

regenerate reports over archived data, or to compile reports 

over data generated by other experiment clients besides the 

FaaS Runner. Table 2 provides a list of key metrics 

provided by the FaaS Runner and ReportGenerator. In total 

48 distinct metrics are collected by SAAF and FaaS Runner. 

 

Attribute Function Description 

newcontainer inspectContainer Whether container is new or if it has been reused 

vmuptime inspectContainer Time of host boot in seconds since Jan 1, 1970 

cpuType inspectCPU Model name of the CPU 

cpuUsr∆ inspectCPU Time spent executing in user mode 

cpuKrn∆ inspectCPU Time spent executing processes in kernel mode 

cpuIdle∆ inspectCPU Time spent idle 

cpuIowait∆ inspectCPU Time spent waiting for I/O to complete 

cpuIrq∆ inspectCPU Time spent servicing interrupts 

cpuSoftIrq∆ inspectCPU Time spent servicing software interrupts 

vmcpusteal∆ inspectCPU Cycles waiting for hypervisor serving other vCPU 

totalMemory inspectMemory Total kBs memory allocated to the instance  

pageFaults∆ inspectMemory Total page faults of the instance since boot 

containerID inspectPlatform Platform specific function instance identifier 

vmID inspectPlatform Platform specific virtual machine identifier 

functionMemory inspectPlatform Configured memory setting on the FaaS platform 

runtime finish Runtime of the function from start to finish 

saafRuntime∆ inspectAll Time to calculate all initial metrics of SAAF 

userRuntime inspectAll∆ Time in ms between initial inspection and deltas 

X_avg/sum/list FaaS Runner Average/sum/list any attribute 

roundTripTime FaaS Runner Time between request and response. 

latency  FaaS Runner Total runtime subtracted from the roundTripTime 

runtimeOverlap FaaS Runner Number of concurrent function instances 

tenants FaaS Runner Number of tenants a function host may have 

Table 2: Key attributes collected by SAAF or FaaS Runner.  

∆ indicates initial and delta versions are provided. 

 

3.5 FaaS Runner: Configuration and Usage 

FaaS Runner provides multiple options to configure 

function execution and report generation for FaaS 

experiments. Configuration options can be specified in files 

or through command line arguments. FaaS Runner 

leverages two types of configuration files: function files 

and experiment files. Function files provide required 

information to access FaaS function endpoints, and 

experiment files define the operations and inputs to an 

experiment. 

After an experiment is defined, FaaS Runner automates 

key tasks such as dynamically adjusting platform memory 

settings and supplying functions with different payloads. 

Experiments execute autonomously to completion with no 

required user interaction. FaaS Runner experiment 

definitions are portable as different client computers can be 

used to perform the experiments by reusing experiment 

configuration files. Experiments are launched by running 

the FaaS Runner application through the command line. 

4 SAAF Case Studies 

In this section we detail three serverless case studies 

enabled by SAAF: (1) an image processing pipeline, (2) a 

data processing pipeline with implementations in four 

different programming languages to contrast performance 

implications [23], and (3) random compute-bound 

workloads used to develop and refine serverless 

performance models using Linux time accounting 

principles [13]. 

4.1 Image Processing Pipeline 

To demonstrate the efficacy of SAAF and FaaS Runner, 

we deployed an existing image processing pipeline 

available from the AWS Serverless Application Repository 

which uses Node.js [24]. The pipeline consists of five 

serverless functions to perform resize, rotate, blur, sepia 

filtering, and image compression. These functions were 

deployed on AWS Lambda using the maximum memory 

size of 3GBs. We added SAAF to each function and 

created an experiment to execute the entire pipeline with 

FaaS Runner. Integrating SAAF into these functions 

required no code changes or knowledge regarding the 

image processing algorithms as each function’s source code 

was simply augmented by adding SAAF method 

invocations at the start and end of each function. Once 

configured, we used FaaS Runner to orchestrate an 

experiment to process 100 identical images concurrently. 

We leveraged SAAF to obtain CPU metrics to observe the 

CPU profile of each function as shown in Figure 2. For this 

image processing pipeline, functions had similar CPU 
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profiles, where ~46-52% of the total time the CPU was 

idle, ~42-48% of the time the CPU executed code in user 

mode, and ~5-7% of the time the CPU executed kernel 

mode instructions. The runtime varied between functions: 

blur was the slowest at 53 seconds, and resize was the 

fastest at 15 seconds as shown in Figure 2. 

Without a deep understanding of each function it is 

difficult to infer why a function may perform poorly on a 

FaaS Platform. Using metrics from SAAF, we can gain 

insight into a function’s performance. For example, the 

Resize, Rotate, Sepia, and Compress functions all had 

26,000 to 28,000 page faults per second compared to Blur 

which had greater than 40,000 page faults per second.  

Figure 2: Workload profiling with FaaS Runner and SAAF on 

a five-function image processing pipeline. 

Alongside memory performance, FaaS platforms have 

the potential of exhibiting resource contention as multiple 

functions execute concurrently. Using FaaS Runner’s 

runtimeOverlap metric, we observed that the average 

number of concurrent function instances varied for each 

function. Resize, Sepia, and Compress had on average 80.4, 

80.1, and 69.3 concurrent instances over their runtime 

duration. Since we processed 100 images, the maximum 

possible function instances would have been 100. Rotate 

and Blur exhibited more concurrency where an average of 

91.2 (Rotate) and 89.8 (Blur) functions executed 

concurrently. This observation shows that these functions 

ran closer together due to either FaaS platform scheduling 

or chain-of-execution timing when compared to the Resize, 

Sepia, and Compress functions. This example highlights 

obersevations made by combining SAAF and FaaS Runner. 

4.2 Programming Language Comparison 

In our paper: “Implications of Programming Language 

Selection for Serverless Data Processing Pipelines” [23], 

we developed four identical Transform-Load-Query 

pipelines in Java, Python, Go, and Node.js and compared 

the performance of each language on AWS Lambda. Using 

SAAF we profiled each language using Linux Time 

Accounting metrics.  

By leveraging SAAF, combined with FaaS Runner, we 

are able to create experiments to investigate the serverless 

freeze thaw lifecycle [11]. SAAF is able to characterize 

infrastructure state allowing us to observe the performance 

impact of running on cold versus warm infrastructure. 

Further, we used FaaS Runner to conduct experiments to 

investigate increasing the number of concurrent function 

invocations, and also to investigate function performance 

across a variety of memory reservation sizes. These three 

experiments allowed us to evaluate the performance 

implications of data processing pipeline implementations in 

each language over a variety of configuration scenarios.  

FaaS Runner allowed us to easily perform new 

experiments as new versions of our data processing 

pipeline in different languages were introduced by simply 

changing function configuration files. As some experiments 

were resource intensive, we deployed and executed FaaS 

Runner using both Amazon EC2 virtual machines and local 

client computers. For experiments that test latency, it is 

crucial to use a virtual machine in the same subnet as a 

FaaS function to minimize network overhead. 

We found that no single language performed the best in 

all of our experiments and that a hybrid pipeline combining 

functions written in both Go and Java offered the best 

performance. Node.js had the slowest performance, 

resulting in an application costing 94% more than the 

hybrid version. Go exhibited the least cold-start latency of 

any language. For scalability Go, Python, and Java 

performed similarly (8-19% increase in runtime between 1 

and 50 requests), while Node.js was impacted more heavily 

(35% increase). Finally, all languages scaled performance 

similarly as we increased the reserved memory up to 1536 

MBs. Due to the single-threaded nature of our pipeline, 

memory allocations greater than 1536 MB offered no 

performance improvements while incurring increased costs. 

4.3 Serverless Performance Modeling 

In our paper: “Predicting Performance and Cost of 

Serverless Computing Functions with SAAF” [13], we 

evaluated regression modeling combined with Linux time 

accounting principles to predict runtime of compute-bound 

FaaS functions. In particular, this paper focused on 

identifying factors that contribute to FaaS performance 

variance to enable building accurate performance models.  

In Fall 2019 our experiments identified that AWS 

Lambda and IBM Cloud Functions used multiple different 

CPU types to implement FaaS function instances, a 

phenomenon known as CPU heterogeneity. Using SAAF, 

we categorized CPU types and determined function 

tenancy. We found that each CPU type offered varying 
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performance, and function tenancy had a large impact on 

performance on IBM Cloud Functions. 

We evaluated our Linux time accounting approach to 

performance modeling for runtime prediction of FaaS 

function deployments. In our approach we build regression 

models for key CPU timing metrics (e.g. CPU user mode 

time, CPU idle time) and then apply Linux time accounting 

to derive runtime predictions. We evaluated our approach 

for FaaS function deployments to alternate CPU types, with 

different memory sizes, and to different public FaaS 

platforms. We performed experiments using increasingly 

complex function workloads where each subsequent 

workload introduced additional random behavior and 

performance variance. To collect sufficient data for each 

function configuration, we performed over 65,000 function 

invocations on AWS Lambda and IBM Cloud Functions. 

We found that model error correlated roughly with 

performance variance when modeling functions with 

increasingly variable performance outcomes. By closely 

observing function tenancy, we found a significant 

difference between how AWS and IBM execute functions 

with respect to memory management. 

While pricing models between AWS Lambda and IBM 

Cloud Functions appear similar on the surface, we found 

that differences in platform implementation produced 

significant price differences based on the number of 

concurrent function calls. By varying memory settings, we 

saw performance scale on AWS Lambda while runtime 

remained constant on IBM for sequential function 

invocations. IBM appears to not restrict the CPU share of 

individual function instances resulting in competition for 

available resources of the host. The available memory of 

servers on IBM appears to limit the maximum number of 

co-located function tenants. In contrast, AWS restricts the 

CPU share for each function instance so that performance 

remains fairly constant regardless of the number of co-

resident function executions occurring on the host. This 

observation was made possible by SAAF, and provides a 

significant example of FaaS price obfuscation. The same 

workload on IBM can cost anywhere from $8.89 to 

$113.97 depending on the tenancy of function executions 

across host VMs for concurrent client requests. 

5 Conclusions 

SAAF is a serverless computing framework that 

provides insight into the performance and infrastructure of 

microservices deployed to a variety of FaaS platforms in 

multiple languages. SAAF is easily integrated into new and 

existing functions deployed to many commercial FaaS 

platforms. When used with FaaS Runner, SAAF provides 

an invaluable tool for scientists and practitioners to 

automate execution of experiments and aggregate results to 

help evaluate performance tradeoffs of microservice 

composition and alternate serverless software architectures.  
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