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Abstract. We trained two Random Forest (RF) machine
learning models for cloud mask and cloud thermodynamic-
phase detection using spectral observations from Visible In-
frared Imaging Radiometer Suite (VIIRS) on board Suomi
National Polar-orbiting Partnership (SNPP). Observations
from Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) were carefully selected to provide reference la-
bels. The two RF models were trained for all-day and
daytime-only conditions using a 4-year collocated VIIRS and
CALIOP dataset from 2013 to 2016. Due to the orbit dif-
ference, the collocated CALIOP and SNPP VIIRS training
samples cover a broad-viewing zenith angle range, which
is a great benefit to overall model performance. The all-
day model uses three VIIRS infrared (IR) bands (8.6, 11,
and 12 ym), and the daytime model uses five Near-IR (NIR)
and Shortwave-IR (SWIR) bands (0.86, 1.24, 1.38, 1.64, and
2.25 ym) together with the three IR bands to detect clear, lig-
uid water, and ice cloud pixels. Up to seven surface types,
i.e., ocean water, forest, cropland, grassland, snow and ice,
barren desert, and shrubland, were considered separately to
enhance performance for both models. Detection of cloudy
pixels and thermodynamic phase with the two RF models
was compared against collocated CALIOP products from
2017. It is shown that, when using a conservative screen-
ing process that excludes the most challenging cloudy pix-
els for passive remote sensing, the two RF models have high
accuracy rates in comparison to the CALIOP reference for
both cloud detection and thermodynamic phase. Other exist-
ing SNPP VIIRS and Aqua MODIS cloud mask and phase
products are also evaluated, with results showing that the
two RF models and the MODIS MYDO06 optical property

phase product are the top three algorithms with respect to
lidar observations during the daytime. During the nighttime,
the RF all-day model works best for both cloud detection
and phase, particularly for pixels over snow and ice surfaces.
The present RF models can be extended to other similar pas-
sive instruments if training samples can be collected from
CALIOP or other lidars. However, the quality of reference
labels and potential sampling issues that may impact model
performance would need further attention.

1 Introduction

Detection and classification (DC) of atmospheric con-
stituents using satellite observations is often a critical ini-
tial step in many remote sensing algorithms. For example,
a prerequisite for cloud optical and microphysical property
retrievals is identifying the presence of clouds, i.e., a clear
or cloudy classification (Frey et al., 2008; Heidinger et al.,
2012). Additionally, characteristics such as cloud thermody-
namic phase are needed, as they can strongly impact the scat-
tering and absorption properties of cloud droplets and par-
ticles (Pavolonis et al., 2005; Platnick et al., 2017a). Simi-
larly, current operational aerosol algorithms can only retrieve
aerosol optical depth (AOD) for “non-cloudy” pixels since
even slight cloud contamination can result in erroneously
high retrieved AOD (Remer et al., 2005). Therefore, errors in
detecting and classifying atmospheric components can sig-
nificantly impact downstream retrieval products and scien-
tific analyses.
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There are many examples of hand-tuned DC algorithms
designed for satellite instruments. For example, the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) has
algorithms developed for cloud masking (Frey et al., 2008;
Ackerman et al., 2008), cloud thermodynamic phase (Baum
et al., 2012; Marchant et al., 2016), aerosol type (Levy et
al., 2013; Sayer et al., 2014), and snow coverage over land
surfaces (Hall and Riggs, 2016). Decision trees or voting
schemes involving multiple thresholds are typically used in
these hand-tuned algorithms. The decision tree branches,
tests, and thresholds are often determined empirically after
a tedious hand-tuning and testing process based on the de-
veloper’s experience and access to validation datasets. Fur-
ther, the branches and thresholds are often very sensitive
to the specific instrument (e.g., spectral band pass, calibra-
tion, noise characteristics, and view and solar geometry sam-
pling). Therefore, an obvious weakness of these hand-tuned
methods is that it is challenging and time-consuming to de-
velop algorithms across multiple instruments and to maintain
performance for individual instruments that may have no-
ticeable calibration drifts. Meanwhile, a well-designed hand-
tuned method may have remarkable performance in a specific
region and season yet have significant biases when applied
globally and/or annually (Cho et al., 2009; Liu et al., 2010).
Additional complexities arise when DC problems become
more nonlinear across large spatial and temporal scales, and
more variables need to be considered. It is difficult to develop
and apply a single or a few decision trees to complicated
nonlinear problems that are controlled by a dozen or more
variables. As expected, a single decision tree can grow very
deep and tends to have a highly irregular structure in order
to consider a large number of features (variables) simultane-
ously, leading to a significant overfitting effect (i.e., an over-
constrained training that makes predictions too close to the
training dataset but fails to predict future observations reli-
ably). For example, MODIS provides an all-day cloud-phase
product based only on infrared (IR) observations (hereafter
referred to as IR phase, Baum et al., 2012). Although it can
be expected that the tests and thresholds should vary with
satellite-viewing geometry (Maddux et al., 2010), full con-
sideration of viewing geometries, together with the variations
of many other factors such as surface emission, geolocation,
and cloud properties, is very challenging based on manual
tuning. As a consequence, it is found that the liquid water and
ice cloud fractions from the IR-phase product exhibit notice-
able view zenith angle (VZA) dependency (see Fig. 12). This
is an undesirable but unavoidable artifact since cloud-phase
statistics should be independent of solar and satellite-viewing
geometry. Such VZA dependencies may strongly affect sim-
ilar products from geostationary imagers because of the fixed
VZA geolocation mapping. Similar artifacts may also impact
aerosol type and retrieval products (Wu et al., 2016).

In contrast to hand-tuned methods, machine-learning
(ML)-based DC algorithms are designed to autonomously
find information (e.g., patterns of spectral, spatial, and/or
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time series) in one or more given datasets and learn hidden
signatures of different objects. An obvious advantage of MLL
models is that the training process is efficient and highly flex-
ible. Manually defined thresholds or matching conditions to
expected spectral patterns are no longer needed. Recently,
ML models have been utilized in a wide variety of cloud- and
aerosol-related applications, such as cloud detection (Thampi
et al., 2017), cirrus detection and optical property retrievals
(Kox et al.,, 2014; Strandgren et al., 2017), surface-level
PM; 5 concentration estimation (Hu et al., 2017), and auto-
matic ship-track detections (Yuan et al., 2019). In this pa-
per, we developed two ML-based DC algorithms for de-
tecting cloud and cloud thermodynamic phase for different
local times (i.e., daytime and nighttime) with observations
from the Visible Infrared Imaging Radiometer Suite (VIIRS)
on board Suomi NPP (SNPP). The ML models are trained
with collocated observations from SNPP VIIRS and Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP), with
CALIOP data used as the reference. In Sect. 2, we give a
brief discussion of the ML models. Data generated for model
training and validation will be introduced in Sect. 3. Details
of the model training and evaluation are shown in Sect. 4.
Section 5 discusses the advantages and potential limitations
of the present ML models. Conclusions are given in Sect. 6.

2 Hand-tuned DC methods and machine learning
models

2.1 Hand-tuned DC methods

All DC algorithms with remote sensing observations are
based on the underlying physics of the spectral, spatial,
and/or temporal structures of specified objects. In hand-tuned
DC algorithms, all the physical rules and structures have to
be explicitly defined as various tests and thresholds. For ex-
ample, the MODIS MOD35/MYD35 cloud mask algorithm
uses more than 20 tests with visible or near-infrared (VNIR),
shortwave-infrared (SWIR), and infrared (IR) observations
(Frey et al., 2008) that are carefully designed to consider
numerous scenarios, including different surface types (e.g.,
ocean, land, desert, snow, etc.) and local times (day or night).
Similar algorithms are designed for aerosol type and cloud
thermodynamic-phase classifications. As an example, Fig. 1
illustrates spectral patterns of five typical daytime oceanic
scenes (pixel types) observed by SNPP VIIRS. The spectral
pattern of each of the five scenes, i.e., clear sky, liquid wa-
ter cloud, ice cloud, dust, and smoke, is averaged by using
more than 1000 pixels with the same type. It is clear that
the five scenes are different in either reflectance ratios be-
tween a given VNIR-SWIR band and the 0.86 um band or
brightness temperature differences (BTD) between two IR
window bands (Fig. 1). Consequently, such spectral features
are frequently used to differentiate pixel types in DC algo-
rithms. In addition to spectral patterns, simple methods are
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developed to take spatial information into account . For ex-
ample, it is found that cloud reflectance usually has larger
spatial variability than aerosols (Martins et al., 2002) and
clear sky pixels (Platnick et al., 2017a). Therefore, spatial
variabilities of VNIR and SWIR reflectance bands are used
to differentiate clouds from non-cloudy pixels in the current
MODIS clear sky restoral (CSR) algorithm (Platnick et al.,
2017a) and Dark Target aerosol retrieval algorithm (Levy et
al., 2013).

2.2 Machine learning models

Different from the hand-tuned DC methods, ML algorithms
are developed to autonomously learn the hidden spectral,
spatial, and temporal patterns of different objects. Conse-
quently, manually defined thresholds or matching conditions
to expected patterns are no longer needed. In image recogni-
tion applications, numerous ML algorithms (e.g., Joachims,
1998; Breiman, 1999; Dietterich, 2000) were developed in
late 1990s for independent pixels using a single or small
number of decision trees. Ho (1998) and many other stud-
ies have demonstrated that, although these single or small
number of decision trees can always provide maximum pre-
diction accuracies in training processes, significant overfit-
ting effects cannot be avoided. Tremendous efforts have been
made to overcome the dilemma between maintenance of pre-
diction accuracy and avoiding overfitting. Among these, the
Random Forest (RF) and Gradient Boosting (GB) algorithms
(Breiman, 1999; Dietterich, 2000; Friedman, 2001) provide
a framework of using a large number of decision trees (en-
semble) but a subset of features in each tree to achieve
optimization in the performance. It has been demonstrated
that the ensemble-based algorithms can largely correct mis-
takes made by individual trees (Ji and Ma, 1997; Tumer
and Ghosh, 1996; Latinne et al., 2001) and avoid overfitting
(Freund et al., 2001). Currently, the RF and GB algorithms
are frequently used in nonlinear classification and regression
problems. For example, RF models have been used in several
cloud and aerosol remote sensing applications, such as dif-
ferentiating cloudy from clear footprints for the Clouds and
the Earth’s Radiation Energy System (CERES) instrument
(Thampi et al., 2017), estimating surface-level PM» 5 con-
centrations (Hu et al., 2017), and detecting low clouds with
the Advanced Baseline Imager (ABI) on the Geostationary
Operational Environmental Satellites (GOES) (Haynes et al.,
2019). In our study, we also choose the RF model based on
its proven record in Earth science applications.

In the RF model, a final prediction is made based on major-
ity vote computed from probability (P;) of each class (ith):

wj N,‘
P; = py— (D
21 wiNj
where m is the total number of classes, N; and N; are the

number of trees that predict the ith and jth classeé, and w;
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and w; are weightings for the ith and jth classes, respec-
tively. If all trees are equally weighted, w for each individ-
ual class is equal to 1. The two most important parameters
for tuning the RF algorithm are the number of decision trees
(NTree) and the maximum tree depth (Npepm). However, an
optimal definition of these two parameters is still an open
question (Latinne et al., 2001). Larger Nree and Npepth pro-
vides more accurate predictions at the cost of significantly
increased computational resources. For many cases, larger
Npepth may cause overfitting effects (Oshiro et al., 2012;
Scornet, 2018). Generally, the two parameters have to be
large enough to let the decision trees have a relatively wide
diversity and capture the hidden patterns. However, for prac-
tical purposes, the two parameters have to be small enough to
prevent the models from overfitting and to reduce computing
burden (Latinne et al., 2001; Scornet, 2018).

In this study, we adopt a widely applied RF algorithm in
the Scikit-learn machine learning package (Pedregosa et al.,
2011). We train two RF models for object DC using SNPP
VIIRS spectral observations at two observational times: an
all-day RF model using three VIIRS thermal IR observations
(hereafter referred to as the RF all-day model) and a daytime-
only RF model that uses both VNIR-SWIR and thermal IR
observations (hereafter the RF daytime model). The models
are trained to detect clear sky, liquid water cloud, and ice
cloud pixels with single-pixel-level information. Parameters
of the two RF models will be tuned and tested carefully to
achieve the best accuracy and to avoid the overfitting effect.
Details will be discussed in Sect. 4.

3 Data
3.1 Reference label of pixels

Spaceborne active sensors, such as CALIOP on board
CALIPSO (Winker et al., 2013), the Cloud-Aerosol Trans-
port System (CATS) (McGill et al., 2015) on board the In-
ternational Space Station (ISS), and Cloud Profiling Radar
(CPR) on board CloudSat (Stephens et al., 2002), are fre-
quently used to evaluate the performance of hand-tuned
cloud and aerosol DC and property retrieval algorithms de-
signed for passive sensors (Stubenrauch et al., 2013; Wang et
al., 2019). CALIPSO, a key member of the Afternoon Con-
stellation of satellites (A-Train) until its exit on 13 Septem-
ber 2018 to join CloudSat in a lower orbit, began providing
profiling observations of the atmosphere in 2006 (Winker et
al., 2013). The CALIPSO lidar CALIOP operates at wave-
lengths of 532 and 1064 nm, measuring backscattering pro-
files at a 30m vertical and 333 m along-track resolution.
CALIOP also measures the perpendicular and parallel sig-
nals at 532 nm, along with the depolarization ratio at 532 nm
that is frequently used in cloud-phase discrimination algo-
rithms because of its strong particle shape dependence. The
version 4 level 2 CALIOP 1km and 5km layer product is
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Figure 1. Spectral patterns of the five different pixel types (averaged over 1000 pixels for each type). For each plot, an apex indicates
reflectance ratio between a given VNIR-SWIR band and the 0.86 um band, and the spread is filled by false RGB composite (red: 0.74 um
reflectance; green: 8.5—11 um BTD; blue: 11-12 um BTD). The spectral patterns are used in the machine learning algorithms.

used to provide reference cloud-phase labels in both model
training and validation stages.

While the CATS lidar and the CloudSat radar CPR also
provide profiling information, both have limitations that pre-
clude their use here. CATS had a relatively short lifetime
(from January 2015 to October 2017), and its low inclina-
tion angle (51°) orbit aboard the ISS excludes sampling of
high-latitude regions (Noel et al., 2018). CloudSat CPR ob-
serves reflectivity profiles at 94 GHz, which are more sensi-
tive to optically thicker clouds consisting of large particles
but are blind to aerosols and optically thin clouds. CloudSat
also has difficulty in detecting clouds near the surface due
to the surface clutter effect (Tanelli et al., 2008). Therefore,
only CALIOP data are used to provide reference cloud-phase
labels in this study.

3.2 RF model input

It should be pointed out that ML models use similar input
datasets to hand-tuned methods. The input variables (fea-
tures) and reference labels of the present RF models are care-
fully selected based on prior physical knowledge of the spec-
tral characteristics of each object.

VIIRS on board SNPP and the NOAA-20+ series provide
spectral observations from 0.4 to 12 um at sub-kilometer spa-
tial resolutions (Lee et al., 2006). Specifically, VIIRS has 16
moderate-resolution bands (M band) and 5 higher-resolution
imagery bands (I band) at 750 and 375 m nadir resolutions,
respectively. The spectral capabilities of VIIRS allow for ex-
tracting abundant information on the surface and atmospheric
components, such as clouds (Ackerman et al., 2019) and
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aerosols (Sayer et al., 2017). It is also worth noting that VI-
IRS utilizes an on board detector aggregation scheme that
minimizes pixel size growth in the across-track direction to-
wards the swath edge (Cao et al., 2013). As an example, al-
though the VIIRS M bands and MODIS 1km bands have
similar nadir spatial resolutions, the VIIRS across-track pixel
size increases to roughly 1.625km at scan edge, which is
much smaller than a MODIS pixel size of roughly 4.9 km
at scan edge (Justice et al., 2011). Another obvious advan-
tage of using SNPP VIIRS rather than Aqua MODIS data is
that, due to the CALIPSO and SNPP orbit differences, the
training samples cover a broader-viewing zenith angle range,
which is a great benefit to overall model performance. Conse-
quently, Level-1B M-band observations from the SNPP VI-
IRS are used here.

Ancillary data, including the surface skin temperature,
spectral surface emissivity, surface types, and snow and ice
coverage, are important in cloud DC-related remote sensing
applications (Frey et al., 2008; Wolters et al., 2008; Baum
et al., 2012) and cloud and aerosol retrievals (Levy et al.,
2013; Wang et al., 2014, 2016a, b; Meyer et al., 2016; Plat-
nick et al., 2017a). The instl_2d_asm_Nx product (version
5.12.4) from the Modern-Era Retrospective Analysis for Re-
search and Applications, Version 2 (MERRA-2) (Gelaro et
al., 2017) is utilized to provide the hourly instantaneous sur-
face skin temperature and 10 m surface wind speed. The UW-
Madison baseline fit land surface emissivity database (See-
mann et al., 2008) and the Terra and Aqua MODIS combined
land surface product (MCD12Cl1, Sulla-Menashe and Friedl,
2018) are used to provide monthly mean land surface emis-
sivities for the mid-wave to thermal IR bands (3.6—-14.3 pm)
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and surface white sky albedo for the VNIR bands (0.4—
2.3 um), respectively, at a 0.05 x 0.05° spatial resolution.
Surface types and snow and sea ice coverage data are from
the International Geosphere-Biosphere Programme (IGBP)
and daily Near-real-time Ice and Snow Extent (NISE) data
(Brodzik and Stewart, 2016), respectively.

3.3 Clear and cloud-phase classifications from existing
VIIRS and MODIS products

Since the present RF models are trained with SNPP VIIRS
observations, the first priority of this study is evaluating and
comparing the trained RF models with CALIOP and the ex-
isting VIIRS cloud products. However, existing cloud mask
and phase products from Aqua MODIS are still used as a
reference in this work.

The Aqua MODIS and SNPP VIIRS CLDMSK (cloud
mask) and CLDPROP (cloud top and optical properties)
(Ackerman et al., 2019) products represent NASA’s effort to
establish a long-term consistent cloud climate data record,
including cloud detection and thermodynamic phase, across
the MODIS and VIIRS observational records. While the
CLDMSK (version 1.0) and CLDPROP (version 1.1) algo-
rithms share heritage with the standard MODIS Collection
6.1 cloud mask (MYD35) and cloud top and optical proper-
ties (MYDO06) algorithms, the algorithms use only a subset
of bands common to both sensors to minimize differences in
instrument spectral information content.

The CLDMSK and MYD?35 algorithms use a variety of
band combinations and thresholds depending on cloud and
surface types (Frey et al., 2008; Ackerman et al., 2008).
Meanwhile, the algorithms use different approaches for day-
time (i.e., solar zenith angle less than 85°) and nighttime
pixels. In the CLDMSK and MYD35 algorithms, pixels are
categorized into four categories, namely confidently clear,
probably clear, probably cloudy, and cloudy. The CLDPROP
and MYDO6 algorithms separate cloudy and probably cloudy
pixels into liquid water, ice, and unknown phase categories.
Specifically, the MYDO06 product includes two cloud-phase
algorithms: an IR-phase algorithm (Baum et al., 2012) that
uses observations in four MODIS IR bands for daytime and
nighttime phase classification (hereafter referred to as the
MYDO06 IR phase) and a daytime-only algorithm designed
for the cloud optical properties retrievals (Marchant et al.,
2016; Platnick et al., 2017a) that uses VNIR-SWIR and IR
observations (hereafter referred to as the MYDO06 OP phase).
A notable change for the VIIRS and MODIS CLDPROP al-
gorithm with respect to the standard MODIS MYDO6 algo-
rithm is the replacement of the MYDOG6 IR phase by a NOAA
operational algorithm originally developed for Clouds from
AVHRR-Extended (CLAVR-x) (Heidinger et al., 2012) and
now applied to VIIRS. This algorithm is used to provide
cloud top properties, including thermodynamic phase (here-
after CLDPROP CT phase), in the absence of the MODIS
CO; IR gas absorption bands. IR bands are primarily used
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Table 1. Existing VIIRS and MODIS cloud mask and phase prod-
ucts used for comparison. Note that MYD35 and MYDO06 are the
standard MODIS Aqua products, and CLDMSK and CLDPROP are
the MODIS Aqua and VIIRS common algorithm continuity prod-
ucts.

Instrument  Cloud mask Cloud phase
MODIS MYD35 V6.1 MYDO06 IR phase V6.1
MYDO06 OP phase V6.1
CLDMSK V1.0 CLDPROP CT phase V1.0
CLDPROP OP phase V1.1
VIIRS CLDMSK V1.0 CLDPROP CT phase V1.0

CLDPROP OP phase V1.1

in the CLDPROP CT-phase algorithm, while complemen-
tary SWIR bands are used when available. The MYDO06
OP-phase algorithm, applied to daytime pixels only, is in-
cluded with only minor alteration (related to cloud top prop-
erties changes) in the VIIRS and MODIS CLDPROP product
(hereafter referred to as the CLDPROP OP phase).

Although the MYD06 and CLDPROP OP-phase prod-
ucts are developed for “cloudy” and “probably cloudy” pix-
els from the MYD35 and CLDMSK products, a Clear Sky
Restoral (CSR) algorithm (Platnick et al., 2017a) is imple-
mented to remove “false cloudy” pixels from the clear-sky
conservative MYD35 and CLDMSK products. Specifically,
the CSR uses a set of spectral and spatial reflectance vari-
ability tests to remove dust, smoke, and strong sunglint pix-
els that are erroneously identified as cloudy or probably
cloudy by the MYD35 and CLDMSK products (Platnick et
al., 2017a). One should keep in mind that the CSR algorithm
is only applied for the optical property retrievals. Thus, the
MYD35 and CLDMSK, and consequently the MYDO06 IR
phase and CLDPROP CT phase, may have false cloudy pix-
els in comparison with CALIOP, while the impact on the
MYDO06 and CLDPROP OP phase is reduced due to the CSR
algorithm. The cloud mask and thermodynamic-phase prod-
ucts used in this study are summarized in Table 1.

4 Model training and validation

Here we discuss the training of the all-day and daytime RF
models for different surface types. Both shortwave (SW) and
IR observations will be used in the daytime models while
only IR observations will be used in the all-day models.
ML model performance is strongly dependent on the qual-
ity of training samples. In this study, the two RF models are
trained and tested with simple yet highly confident samples
(Sect. 4.2). With this training strategy, the RF models are ex-
pected to capture the key spectral features from the pure sam-
ples efficiently. As discussed in Sect. 4.4, we conducted a
model validation that evaluates performance of the two mod-
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els for simple cases. Furthermore, an analysis of probabil-
ity distributions from the RF all-day model is conducted to
demonstrate that the RF models have the capacity to recog-
nize spectral features from more than one category when at-
mospheric columns are more complicated.

4.1 Surface types

RF models are trained for different surface types, defined
here by the Collection 6 (C6) MODIS annual IGBP sur-
face type product (MCDI12C1), to improve model perfor-
mance over a single general model for all surface types.
Although the MCD12C1 product includes up to 18 surface
types, for this work we attempt to reduce the total num-
ber of surface types by combining surface types with sim-
ilar spectral white sky albedos and emissivities, as sug-
gested by Thampi et al. (2017). An annual global IGBP sur-
face type map and surface albedo data from the MODIS
MCDI12C1 (Sulla-Menashe and Friedl, 2018) and a UW-
Madison monthly global land surface emissivity database
(Seemann et al., 2008) are used to generate the climatology
of land surface white-sky albedo and IR emissivity spectra.
The UW-Madison database is derived using input from the
MODIS operational land surface emissivity product MOD11
(Wan et al., 2004) at six wavelengths located at 3.8, 3.9,
4.0, 8.6, 11, and 12 um. A baseline fit method is applied to
fill the spectral gaps and provides a more comprehensive IR
emissivity dataset at 10 wavelengths from 3.6 to 14.3 um for
global land surface with a 0.05° spatial resolution (Seemann
et al., 2008). The MODIS MCD12C1 product also provides a
white-sky albedo dataset at 0.47, 0.56, 0.66, 0.86, 1.24, 1.64,
and 2.13 um with a 0.05° spatial resolution (Sulla-Menashe
and Friedl, 2018). The means and standard deviations of sur-
face emissivity and white-sky albedo spectra are shown in
Figs. 2a and 3a, respectively, for 16 different land surface
types generated from the UW-Madison and MCD12C1 data
in 2015. Land surface types with similar IR emissivity and
SW white-sky albedo spectra are grouped to reduce to the
total number of land surface types to six (forest, cropland,
grassland, snow and ice, barren desert, and shrubland), as
shown in Figs. 2b—f and 3b—f. Figure 4 shows an example
map of the reduced global surface type data generated from
the MCD12C1 product for 2015.

4.2 Generating training and validation datasets

The training and validation data are obtained from a 5-year
(2013-2017) SNPP VIIRS and CALIOP collocated dataset.
The collected dataset is generated with a collocation algo-
rithm that fully considers the spatial differences between the
two instruments and parallax effects, as described in Holz et
al. (2008). The SNPP VIIRS data include L1B-calibrated re-
flectance and brightness temperatures, and the CALIOP data
include the 1km and 5km cloud and aerosol layer level 2
products. Although more than 332 million VIIRS 750 m pix-
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els are collocated with CALIOP observations, 130.6 million
of these pixels (39.3 %) that include only aerosol-free, ho-
mogeneous, and clear pixels (39.1 million) or single-phase
cloud pixels (49.7 million liquid and 41.8 million ice) are
used in our training and validation process. Unless otherwise
specified, “aerosol-free” is defined as those pixels having col-
located CALIOP 5 km column 532 nm aerosol optical depth
less than 0.05, “homogeneous” is defined as those pixels for
which the collocated CALIOP 1km and 5 km products have
the same pixel labels, and “single-phase cloud” is defined
as those pixels for which the collocated CALIOP 1km and
5 km products indicate the same thermodynamic phase for all
identified cloud layers. More details are given in Table 2.

A strict three-step quality control process is applied to col-
lect samples for the training and validation process. First,
VIIRS 750m pixels that are potentially contaminated by
aerosol are excluded using a threshold of 0.05 column AOD
at 532 nm from the level 2 CALIOP 5 km aerosol layer prod-
uct. Second, each aerosol-free pixel is labeled by one of four
categories, namely, “clear sky” and “liquid-water cloud”,
“ice cloud”, and “ambiguous” with the L2 CALIOP 1km
and 5km layer product. The ambiguous pixels, including
uncertain and unknown cloud phases from CALIOP and/or
overlapping objects belonging to different types (e.g., cir-
rus over liquid), are discarded. Third, horizontally inhomo-
geneous pixels, determined when the CALIOP 1km label
changes within five consecutive VIIRS pixels, or pixels with
inconsistent CALIOP 1km and 5km labels, are discarded.
Figure 5 shows the global distributions of the 5-year col-
located clear (Fig. Sa—c) and cloudy pixels (Fig. 5d-f) be-
fore and after applying the three-step quality control. Glob-
ally, 50 % of all clear pixels are excluded due to contami-
nation of broken cloud and/or aerosol. In particular, a large
fraction of clear pixels in central Africa, India, and southern
China (Fig. 5c) are excluded due to relatively large aerosol
optical thicknesses in those regions. About 40 % of global
cloudy pixels (Fig. 5f) are excluded due to cloud heterogene-
ity and aerosol contamination. The minimum selection rate
(~ 20 %) can be found in some particular regions, such as the
Intertropical Convergence Zone (ITCZ), where clouds have
complicated horizontal and vertical structures due to strong
convections (i.e., clouds are highly heterogeneous in both the
horizontal and vertical dimensions). The remaining data are
separated into a training and testing population that consists
of 32.4, 41.2, and 34.9 million pixels for clear sky, liquid
water cloud, and ice cloud from the years 2013-2016, re-
spectively, and a validation dataset that consists of 6.9, 8.5
,and 7.0 million pixels of clear-sky, liquid water cloud, and
ice cloud, respectively, from 2017.

4.3 RF model training and configuration
RF model performance is determined by both its inputs

(spectral or other information) and its configuration (Ntyee
and Npeptn). Therefore, extensive testing must be conducted
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IGBP surface types. Error bars indicate the albedo standard deviations at given wavelengths.

to find the optimal inputs and configuration. The 4-year col-
located VIIRS-CALIOP dataset from 2013 to 2016 after
quality control (see Sect. 4.2) is used for both training (75 %)
and testing (25 %) purposes. The testing set, also known as
cross-validation set, is used to tune and optimize the RF
model parameters. Here we define an accuracy score to eval-
uate the overall model performance. The accuracy score is
the ratio of pixels (samples) where both the CALIOP and RF
model have the same categories to total pixels. In this study,
we tested six groups of input variables for each RF model.
The set of model input variables with a relatively high ac-
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curacy score and low memory and computing requirements
will be selected.

Table 3 provides accuracy scores of the IR-based all-
day model trained and tested with different inputs. It shows
that with a fixed RF model configuration (Nt = 150 and
Npepth = 15), the RF all-day model with input no. 4 and no. 6
have the best overall accuracy scores for all surface types.
Generally, by including surface skin temperature (75) and ge-
olocation (i.e., latitude and longitude), the accuracy scores
for all surface types increase by 2 %-3 %. The surface emis-
sivity vector € is less important, likely because this informa-

Atmos. Meas. Tech., 13, 2257-2277, 2020
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Table 2. Data collection strategies and the number of pixels for all surface types.

No. of VIIRS 750 m Condition Ocean Forest Cropland Grass Barren Shrub Snow  Total
pixels (million) ice
All collocations None 219.7 18.7 8.7 17.5 17.1 13.6 37.4 3327
Aerosol free CALIOP aerosol 5km  142.6 13.0 3.7 10.0 10.5 9.3 343 2232
column AOD <0.05
Clear Aerosol-free cloud 17.7 2.5 1.5 1.8 2.9 3.1 13.1 42.5
1km layer=0
Clear Aerosol-free cloud 15.2 2.3 1.5 1.7 2.7 3.0 12.7 39.1
(homogeneous) 1km and 5km layer =
0
Cloudy Aerosol-free cloud 124.9 10.5 2.1 8.1 7.7 6.2 212 180.7
1 km layer >0
Cloudy Aerosol-free cloud 115.5 9.5 1.8 7.4 6.6 53 15.8 162.0
(homogeneous) 1km and 5 km layer >0
Single-phase cloud Aerosol-free cloud 65.1 4.4 1.0 4.0 34 24 13.5 93.7
1 km liquid or
ice phase
Single-phase cloud Aerosol-free 64.2 4.3 0.9 39 33 23 12.7 91.5
(homogeneous) cloud 1 km and 5 km
liquid or ice phase
Liquid-phase cloud Aerosol-free 40.5 1.8 0.3 1.7 1.3 1.0 32 49.7
(homogeneous) cloud 1 km and 5 km
liquid phase
Ice-phase cloud Aerosol-free 23.7 2.5 0.6 22 2.0 1.3 9.5 41.8
(homogeneous) cloud 1 km and 5 km
ice phase
B of trees and the maximum depth of individual trees are im-
arren/desert i
- portant determinants for RF model performance, the over-
45°N Howiee all accuracy scores for all surface types are less sensitive to
Cropland these two model parameters when more than 100 trees and
0 Grassland 10 maximum tree depths are used (not shown here). There-
Shiibland fore, we trained the RF all-day models with input no. 4 and
#es Purest the model configuration used in Table 3, i.e., N1ree = 150 and
=3 - g 9 NDepth = 15
180°W  1200W  60°W 0 60°E 120°F TS0° 5 [ Ocea/ water

Figure 4. A global map of the seven reduced surface types chosen
for the RF model training.

tion is highly correlated to surface type and geolocation. In
this study, input no. 4 is selected mainly because while it has
a similar performance, it requires less memory and comput-
ing resources, and it is quite possible that more uncertainty
is introduced with the use of a surface emissivity vector &g
from another retrieval product.

A set of model configurations (Ntree and Npeptn) are also
tested based on the selected input no. 4. While the number

Atmos. Meas. Tech., 13, 2257-2277, 2020

Similar input variable tests for the RF daytime model (IR
plus NIR and SWIR observations) showed that the optimal
input includes reflectances in the 0.86, 1.24, 1.38, 1.64, and
2.25 um bands; BTs in the same three IR bands used in the
all-day model; geolocation; and solar and satellite-viewing
zenith angles (see Table 4). The same model configuration
used in the all-day model, e.g., 150 trees with the maxi-
mum depth 15, is used in the daytime model. The accuracy
scores of the RF daytime model are higher than the RF all-
day model by 2 %-3 % over almost all surface types except
for high-latitude regions covered by snow and ice, where the
daytime model accuracy score is higher by up to 6 % than
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Figure 5. Global distributions of the of clear and cloudy pixels from collocated VIIRS and CALIOP data from 2013 to 2017. Panels (a) and
(d) show the total clear and cloudy pixel counts, respectively. Panels (b) and (e) show the pixel counts after applying the quality control. The

corresponding selection ratios are shown in (c) and (f).

Table 3. Accuracy scores of RF all-day models based on testing pixels with different inputs and a fixed model configuration (NTee = 150

and Npepth = 15).

No. Model input Ocean Forest Shrubland Crop Grassland Barren Snow All

input ice  surfaces™

1 BTg 6, BTy1, BTz, 90.3 89.9 88.7 884 88.2 88.0 87.4 89.4
and VZA

2 BTg ¢, BTq1, BT, 92.1 90.1 89.8  90.7 89.5 90.1 88.0 90.9
VZA, and lat/long

3 BTg 6, BT11, BTy2, 93.1 90.9 899 914 90.2 90.3 88.5 91.7
VZA, and T

4 BTg ¢, BTy, BT, 93.2 91.7 90.0 91.8 91.2 90.8 88.9 92.0
VZA, lat/long, and T;

5 BTg 6, BTq1, BT, 932 91.4 89.8 914 90.4 90.4 88.8 91.9
VZA, T, and &g

6 BTg 6, BTy1, BTy2, 93.2 91.8 90.1 91.8 91.3 90.6 88.9 92.0
VZA, lat/long, T,
and &g

* The all-surface accuracy scores are weighted by pixel numbers of individual surface types.

the all-day model due to the inclusion of the 1.38, 1.64 and
2.25 um SWIR bands.

4.4 Evaluating the RF models

The trained RF all-day and daytime models are validated
using collocated CALIOP data in 2017. Existing VIIRS
cloud products CLDMSK and CLDPROP (see Table 1)
are included for direct comparison with the RF models
and CALIOP reference. Several other products, such as the
MODIS CLDMSK and CLDPROP and standard MYD35
and MYDO6, are also included for comparison, although they
could be different from the RF models due to other non-
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algorithm-based reasons, such as the VZA and pixel size dif-
ferences mentioned before.

4.4.1 Cloud mask

Cloud mask from the two RF models and VIIRS and MODIS
products are first compared with CALIOP lidar observations.
For the two models, a cloudy pixel indicates a predicted label
“liquid” or “ice”. Here we define cloudy and clear pixels as
“positive” and “negative” events, respectively. A true positive
rate (TPR) and false positive rate (FPR) can then be used to
evaluate model performance. The TPR and FPR are defined
as follows:

Atmos. Meas. Tech., 13, 2257-2277, 2020
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Table 4. Accuracy scores of RF daytime models based on testing pixels with different inputs and a fixed model configuration (NTee = 150

and Npepths = 15).

No. Model input Ocean Forest Shrubland Crop Grassland Barren Snow All
input ice  surface®
1 BTg¢, BTy, BTy, 9547 9371 9325 93.86 9282  94.04 94.94 94.97
Ro.g6» R138. Riel,
R2_25, VZA, and SZA
2 BTge, BTyy, BTy, 9547 9372 9322 93.84 92.81 94.02 94.94 94.97
Roges. R138. Riel,
R> 25, VZA, SZA, and
RAA
3 BTge, BTy, BTi2, 9547  93.74 93.36  93.95 92.95 94.16 94.95 94.99
Ro.g6- R138. Riel
R> 15, lat/long, VZA,
and SZA
4 BTg¢, BTy, BTy, 9551 93.73 9347 93.93 9298 9421 95.05 95.04
Ro.g6» R138. Riel,
Ry 25, R1 24, lat/long,
VZA and SZA
5 BTg¢, BTy, BTz, 9545  93.77 9336  93.93 9292 9421 94.95 94.98
Ro.gs- R138. Riel,
Ry25, Ts, lat/long,
VZA, SZA, and RAA
6 BTg¢, BTp;, BTz, 9551 93.90 9354 94.11 93.07 9438 95.17 95.09

Roses Ri3s, Riels

Ry25. Roas, Ro.67
Ry 24, VZA, and SZA

* The all-surface accuracy scores are weighted by pixel numbers of individual surface types.

TP
TPR= —, (2
TP+FN
FP
FPR= ——, 3)
FP +TN

where TP (true positive) and TN (true negative) are the num-
ber of lidar-labeled “cloudy” and “clear” pixels, respectively,
that are correctly detected by the models; whereas FN (false
negative) and FP (false positive) are the number of lidar-
labeled cloudy and clear pixels incorrectly identified by the
models. Therefore, TPR, also called model sensitivity, in-
dicates the fraction of all positive events (i.e., lidar cloudy
pixels) that are correctly detected by the models. Similarly,
FPR, also called false alarm rate, indicates the fraction of all
negative events (i.e., lidar clear pixels) that are incorrectly
detected as positive (cloudy). TPR and FPR are two critical
parameters in model evaluation. A perfect model is associ-
ated with a high TPR (close to 1) and a low FPR (close to
0).

Figure 6 shows daytime cloud mask TPR-FPR plots from
the two RF models and the other products listed in Ta-
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ble 1. Globally, all products agree well with lidar observa-
tions (Fig. 6a). The overall TPRs are higher than 0.94, and
FPRs are lower than 0.08. The RF daytime model (red circle),
with a TPR of 0.97 and an FPR of 0.05, is slightly better than
the RF all-day model (yellow circle) and other products. Fig-
ure 6b—h show comparisons over different surface types. It is
clear that the RF daytime model has a robust performance for
all surface types. The MODIS MYD35 cloud mask algorithm
(black circle) performs best over ocean but has a relatively
high FPR (0.22) over forest and low TPR over snow and ice
and barren (0.85) regions. As mentioned in Sect. 3, the false
cloudy pixels from MYD35 and CLDMSK may increase the
FPRs correspondingly.

The RF all-day model works fairly well and is comparable
to other products for all surface types regardless of the fact
that it only uses three IR window channels from VIIRS while
all other products in the daytime models use VNIR observa-
tions. Nighttime (SZA >85°) cloud mask comparisons are
shown in Fig. 7. The overall performances of all operational
products decrease in particular for snow and ice regions. For
example, the VIIRS and MODIS CLDMSK products over
snow and ice surface have large fractions of missing cloudy

www.atmos-meas-tech.net/13/2257/2020/
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Figure 6. False Positive Rate (FPR) versus True Positive Rate (TPR) plots of daytime cloud mask from the two RF models and operational
algorithms. Collocated CALIOP level 2 products in 2017 are used as reference. Global comparisons are shown in (a), while panels (b)
through (h) show comparisons for difference surface types. The total pixel number is shown in each panel.

pixels (e.g., TPRs <0.7) and false alarm rates (FPRs >0.2)
over snow and ice surface. The decrease is more likely ex-
plained by the lack of SWIR bands and the small cloud—snow
(or ice) surface temperature contrast during the nighttime
of summer polar regions. However, the RF all-day model
has the best performance for nighttime pixels, indicating the
strong capability of ML-based algorithm in capturing hidden
spectral features and optimizing dynamic thresholds of clear
and cloudy pixels.

4.4.2 Cloud thermodynamic phase

The RF cloud thermodynamic-phase products are also com-
pared with CALIOP lidar and existing VIIRS and MODIS
products. For consistent nomenclature, we arbitrarily define
ice clouds and liquid water clouds as positive and negative

www.atmos-meas-tech.net/13/2257/2020/

events, respectively. A low TPR indicates an underestima-
tion of ice cloud fraction, while a high FPR indicates that
a large fraction of liquid water cloud samples are identified
as ice cloud. To focus on cloud thermodynamic-phase clas-
sification, pixels detected as clear by either the lidar refer-
ence labels or by the RF models and existing products are
excluded. The OP phase from both MYD06 and CLDPROP
and the IR phase from MYDO06 have an “unknown phase”
category, which is not included in the TPR-FPR analysis.
Figure 8 shows daytime cloud-phase TPR-FPR plots from
the two RF models and the MODIS and VIIRS products. The
two RF models and the MODIS MYDO06 OP phase are the
top three phase algorithms for all surface types. The MODIS
MYDO6 IR phase, MODIS and VIIRS CLDPROP OP phase,
and CT phase have either relatively low TPRs or high FPRs

Atmos. Meas. Tech., 13, 2257-2277, 2020
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Figure 7. Similar to Fig. 6 but for nighttime cloud mask comparisons. The total pixel number is shown in each panel.

over particular surface types, such as shrubland, snow and
ice, and barren regions. Comparisons between nighttime-
phase algorithms are shown in Fig. 9. For nighttime clouds,
the RF all-day model works better than both CT-phase and
IR-phase algorithms for all surface types. Overall, the per-
formance of the hand-tuned algorithms decreases signifi-
cantly over snow and ice or barren surfaces. For example,
the TPR-FPR plot shows that over daytime snow and ice sur-
face (Fig. 8g), the MODIS CLDPROP OP phase and MODIS
MYDOG6 IR phase frequently predict liquid water cloud as ice
cloud. Similar to the daytime plot, the MYDO06 IR phase also
shows a high FPR rate over snow and ice surfaces, indicating
an overestimated (underestimated) ice (liquid water) cloud
fraction. Possible reasons include strong surface reflection,
low surface cloud contrast, relatively few training samples
and high solar zenith angles. However, the two RF models

Atmos. Meas. Tech., 13, 2257-2277, 2020

work fairly well and show consistent accuracy rates across
all surface types.

It is also important to note that the number of pixels used
for cloud-phase TPR-FPR comparisons in Figs. 8 and 9 are
different for products that have unknown phase categories,
namely, MYDO06 IR phase, MYDO06 OP phase, and CLD-
PROP OP phase. As shown in Table 5, the MYDO6 IR phase
has a relatively large unknown phase fraction (15 % for all
surface types and 34 % for snow and ice) in comparison to
the OP-phase products from both MYD06 and CLDPROP,
which have approximately 2—3 % unknown phase fraction.

As discussed in Sect. 2.2, the RF-model-predicted pixel
type is derived by setting thresholds on the probabilities for
each classification type; e.g., an ice-phase decision is reached
if the probability of ice is greater than the probabilities of
liquid and clear. Figure 10 shows the probability distribution
functions of the RF all-day model for four scene types as
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Figure 8. Similar to Fig. 6 but for daytime cloud thermodynamic-phase comparisons. The total pixel number is shown in each panel. Note
that for specific products, the total pixel numbers are lower because of the exclusion of the unknown phase category (see text for more

details).

Table 5. Fractions of the 2017 validation samples that have determined phases (i.e., liquid water or ice) in different surface types.

determined by collocated CALIOP, namely clear (Fig. 10a),
liquid (Fig. 10b), ice (Fig. 10c), and multilayer (Fig. 10d)
clouds with different thermodynamic phases (e.g., ice over
liquid). As expected, for the first three types, which are in-
cluded in the training and validation processes, the prob-
ability distributions have strong peaks close to either 0 or
1. For the multiple-phase cases (Fig. 10d), the liquid and

Determined phase (%) Ocean Forest Shrubland Crop Grassland Barren Snow andice All
MODIS MYDO06 IR phase 89 75 74 80 79 75 66 85
MODIS MYDO06 OP phase 97 99 97 98 99 95 92 97
MODIS CLDPROP OP phase 98 99 98 99 99 97 99 98
VIIRS CLDPROP OP phase 98 99 97 99 98 96 99 98

www.atmos-meas-tech.net/13/2257/2020/

ice probabilities are more broadly distributed, indicating that
the model may recognize signals from both liquid and ice
and therefore provide ambiguous phase results. More nu-
anced thresholds can therefore be applied to the probabilities,
for instance to create an unknown phase category following
MYDO06 and CLDPROP convention (Marchant et al., 2016)
that can indicate complicated cloud scenes. Furthermore, the
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Figure 9. Similar to Fig. 6 but for nighttime cloud thermodynamic-phase comparisons. The total pixel number is shown in each panel. Note
that for specific products, the total pixel numbers are lower because of the exclusion of the unknown phase category (see text for more

details).

probabilities themselves can provide a useful quality assur-
ance metric for downstream cloud property retrievals that of-
ten must make an assumption on cloud phase. Nevertheless,
assigning an appropriate phase for downstream imager-based
cloud property retrievals is difficult for complex, multilayer
cloud scenes, as such an assignment often depends on the op-
tical and microphysical properties and vertical distribution of
the cloud layers in the scene (Marchant et al., 2020). Further
investigation is necessary to understand how to use the RF-
phase probabilities more quantitatively in complicated cases.

Figure 11 shows monthly mean daytime cloud and phase
fractions from the VIIRS CLDMSK and CLDPROP OP-
phase products (top row), and those from the RF daytime
model (second row), in January 2017. For the cloud mask
comparison, cloud fractions (CFs) from the two products

Atmos. Meas. Tech., 13, 2257-2277, 2020

have similar spatial patterns, while it is also clear that the
VIIRS CLDMSK CFs are higher over tropical oceans by ap-
proximately 10 % and lower over land by 5 % (Fig. 11c¢). This
is consistent with the cloud mask TPR—FPR analysis shown
in Fig. 6. Over the tropical ocean, the VIIRS CLDMSK is
more cloudy, probably due to a fraction of sunglint pixels
that are detected as liquid clouds, leading to a large FPR rate.
Another reason for the relatively large cloud fraction (or lig-
uid water cloud fraction) difference is that in regions cov-
ered by “broken” cumulus clouds and/or clouds with more
complicated structures, the inherent viewing geometry dif-
ferences in the training datasets may adversely affect the
performance of the RF models. For example, CALIOP, with
a nadir-viewing geometry, may observe clear gaps between
two small cloud pieces, while VIIRS, with an oblique view-

www.atmos-meas-tech.net/13/2257/2020/
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Figure 10. Normalized density functions of the clear (blue), liquid water cloud (red), and ice cloud (green) probabilities from the RF all-day
model in four CALIOP detected aerosol-free scenes: (a) clear, (b) homogenous liquid, (¢) homogenous ice, and (d) multilayer cloud with

different thermodynamic phases.

ing angle, detects broken liquid clouds nearby or high clouds
along its long line of sight. Comparison between the VIIRS
product and the RF daytime model shows more ice clouds
from the RF daytime models over land, which is consistent
with the cloud-phase TPR-FPR plots as shown in Fig. 8. The
RF daytime model may have better performance due to the
consideration of surface type. However, it is also important
to notice that due to the lack of “aerosol” types in current
training, in central Africa, the RF models may misidentify
elevated smoke as ice cloudy pixels. For most land surface
types, except snow and ice, the CLDPROP OP phase has
lower TPR rates than the RF daytime models by 0.1, in com-
parison with the CALIOP.

In addition to the higher CFs over low-latitude ocean from
the VIIRS CLDMSK product, more pronounced CF (liquid)
differences can be found in northeastern and northwestern
China. Cloud differences in the two regions are spatially cor-
related with locations that have heavy aerosol loadings or
snow coverage. For example, heavy aerosol loadings due to
pollution in northeastern China, and a wide land snow cov-
erage in northwestern China are frequently observed in the
winter. The VIIRS CLDMSK may identify pixels with white
surface and heavy aerosol loadings as cloudy. Some of these
pixels are expected to be restored to the clear-sky category
in the CLDPROP OP-phase product (Fig. 11f and i). As evi-
dence, Fig. 12 shows comparisons between the VIIRS prod-
ucts and the RF daytime model in July 2017. The large cloud
(liquid) fraction differences over northern China vanish in the
summer. This indicates that the RF models might be able to
handle complicated (or unexpected) surface types and strong

www.atmos-meas-tech.net/13/2257/2020/

aerosol events better than the hand-tuned VIIRS algorithm.
However, further investigation is required to understand the
performances of both the VIIRS products and the RF models.

5 Discussion

In this section, we will review the strengths and potential lim-
itations and weaknesses of the RF models.

5.1 Advantages

The above results show that, for the screened clear and
cloudy samples, the two RF models have better and more
consistent performance over different regions and surface
types in comparison with the MODIS and VIIRS products,
suggesting the potential to improve the overall performance
in more global operational applications. In addition to bet-
ter performance, it is convenient and efficient to apply the
present RF models or other similar ML-based models to
other instruments similar to VIIRS, such as the geostationary
imagers Advanced Himawari Imager (AHI) on Himawari-
8/9, the ABI on GOES-16/17, and the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) on Meteosat Second
Generation, as long as reliable reference pixel labels are
available. With hand-tuned methods, adjustment is always
required in the case of calibration changes, algorithm port-
ing to another similar instrument, or changes in solar and
satellite-viewing geometries and surface conditions. Manual
adjustments can be time-consuming (e.g., months or years),
whereas the two RF models used in this study were trained

Atmos. Meas. Tech., 13, 2257-2277, 2020
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and tested for seven surface types and using different input
variables for 3h (on an HPC Platform using 32 Intel Xeon
Gold 6126 Processors at 2.60 GHz). More important, manual
algorithm adjustment may not provide the best continuity be-
tween two instruments. For example, although the MODIS
CLDPROP OP phase and VIIRS CLDPROP OP phase are
designed for climate record continuity purpose, cloud ther-
modynamic phases from the two products are different by
up to 4 % for all surface pixels and by up to 10 % over sur-
faces covered by snow and ice (see Fig. 8 light blue and light
green dots). Further investigation is necessary to understand
if a better climate record continuity can be achieved with a
uniform training dataset by using ML approaches. Besides
providing a discrete category for each pixel, the RF models
provide an ensemble of predictions and probabilities of in-
dividual categories, which are useful diagnostic variables in
evaluating models in complicated scenarios.

5.2 Limitations and possible caveats

Although the evaluation demonstrates that the current RF
models are highly consistent with CALIOP, the models may
suffer some artifacts due to the quality of the training data
and due to sampling issues.

5.2.1 Quality of the training and validation data

The RF models learn spectral structures of cloudy and clear
pixels according to the reference labels. As a consequence,
the present model performance relies heavily on the quality
of CALIOP level 2 data. It is already known that the lidar
signal has limitations in detecting the bottom of an optically
thick cloud or lower-level clouds underneath an opaque cloud
(Sassen and Cho, 1992). Some complicated multiple-phase
scenes may be misidentified as simple single-phase scenes
due to the penetration limit of CALIOP (e.g., the upper-
most ice cloud optical thickness greater than 3). Using com-
bined CALIOP and CloudSat data as reference in the future
could be a better way to improve the training and validation
datasets (Marchant et al., 2020). However, as noted in that
study, CloudSat observations cannot be used without careful
filtering since a multilayer scene that is radiatively indistinct
from the upper-level cloud layer is not necessarily consistent
with multilayer detection detected from a cloud radar.
Additional uncertainties may come from the inconsistency
in view angles between the collocated CALIOP labels and
VIIRS spectral observations. For instance, CALIOP always
has a quasi-nadir-viewing angle (e.g., 3°), whereas the col-
located VIIRS observations have a wide VZA range (e.g.,
0° to 50°). A wide VIIRS VZA range in the training dataset
improves model performance, especially for predicting VI-
IRS pixels with large VZAs. However, the difference be-
tween the CALIOP and VIIRS viewing geometry could cre-
ate undesirable artifacts in the training process. As shown
in Fig. 11, in the descending areas of the Hadley cell over
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low-latitude ocean, where marine boundary layer clouds are
dominant, there are relatively large CF differences between
the CLDMSK and the RF models. A reason for the large
liquid cloud fraction differences is that the quality of train-
ing datasets decreases in regions covered by broken cumulus
clouds and/or clouds with more complicated structures. Fur-
ther investigation is required to check if the training dataset
collection process introduces sampling bias into the training
dataset.

5.2.2 Sampling issue

Uneven sampling may also influence the training of RF mod-
els. Figure 13 shows the cloud fraction as a function of view-
ing geometry. Quasi-constant fractions of both liquid and ice
clouds are found for all operational products and the RF mod-
els when VZAs are smaller than 45°, except the MODIS
MYDO06 IR phase, which has a strong VZA dependency.
However, liquid (ice) cloud fractions from the two RF models
increase (decrease) rapidly at high VZAs (greater than 50°),
which is likely caused by the sampling issue. A significant
fraction of the training data (greater than 98 %) is located in
the region with VZA less than 50° (see the dashed gray distri-
butions in Fig. 13). It is difficult to mitigate this issue using
collocated VIIRS-CALIOP data or observations from other
similar instruments in the training process. One possible way
is using model-generated synthetic training data and labels
with reliable radiative transfer models. Results from the RF
daytime model are not shown in Fig. 13 since they are highly
consistent with the RF all-day model.

5.2.3 Labeling strategy

For RF or other ML models, each pixel’s classification is
determined by prediction probabilities (P) of all potential
types. Here we selected a regular strategy that labels a pixel
using the class with the highest probability (see Eq. 1). This
strategy is logical for problems with two categories (e.g.,
cloud mask only). For problems including three or more
classes, however, the present strategy is not the only way to
label pixels. For example, a pixel is labeled as clear if Pejear
is larger than both Pjguid and Pice according to the current
labeling strategy. It is also possible that, for the same pixel
(less than 0.5 % for the two RF models), Pcjear is lower than
the sum of Pjiguig and Pjce, making a cloudy label more ap-
propriate. For the cloud mask and phase problem discussed
in this paper, in addition to pixel labels, users must be aware
of probabilities of the three types. Another possible way to
avoid the ambiguous labeling is using two RF models, one
for cloud masking and one for phase, such that a clear or
cloudy label is given first by the cloud mask model, while a
corresponding liquid or ice label is assigned to cloudy pixels
in the cloud-phase model. However, two RF models double
the training process and require more computing resources in
operational applications.
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(2013-2016).

6 Conclusions

Two machine learning Random Forest (RF) models were
trained to provide pixel types (i.e., clear, liquid water cloud,
and ice cloud) using VIIRS 750 m spectral observations. A
daytime model that uses NIR, SWIR, and IR bands and an
all-day model that only uses IR bands were trained sepa-
rately. In the training processes, reference pixel labels are
from collocated CALIOP level 2 1 km cloud layer and 5 km
aerosol layer products from 2013 to 2016. Careful tests were
conducted to optimize model input and configuration. The
two RF models were trained for seven different surface types
(i.e., ocean water, forest, cropland, grassland, snow or ice,
barren desert, and shrubland) to improve model performance.
In addition to geolocation and solar and satellite geometry
information, we found that using five NIR and SWIR bands
(0.86, 1.24, 1.38, 1.64 and 2.25 ym) and three IR bands (8.6,
11, and 12 um) in the daytime RF model and using the three
IR bands and surface temperatures in the all-day RF model
achieved great performances for all surface types.

The cloud mask and thermodynamic-phase classifications
from the two RF models were validated using the selected
aerosol-free, homogeneous samples in 2017. For daytime
cloud mask comparisons over all surface types, the RF day-
time model, with a high TPR (0.93 and higher) and low
FPR (0.07 and lower), performs best among all models eval-
uated, including MODIS MYD35 and MODIS and VIIRS
CLDMSK products. The RF all-day model works fairly well
and is comparable to other products for all surface types,
even in daytime when all other products use shortwave ob-
servations and it does not. For the nighttime cloud mask, the
RF all-day model has the best performance over all products,
demonstrating the strong capability of ML-based algorithms
for capturing hidden spectral features of clear and cloudy
pixels. All nighttime products perform slightly more weakly
at snow and ice regions. The decline is likely explained by the
lack of SWIR bands and the small thermal contrast between
the clouds and the surface during the summer nighttime in
polar regions. In this case, the ML-based algorithms are not
able to compensate for the missing physical signatures.

Atmos. Meas. Tech., 13, 2257-2277, 2020

For the daytime cloud thermodynamic-phase comparison,
we showed that the two RF models are comparable with the
MODIS MYDO06 OP-phase product and are among the top
three phase algorithms for all surface types. The MODIS
MYDO6 IR phase, VIIRS and MODIS CLDPROP OP phase,
and CT phase have either relatively low TPRs or high FPRs
over certain surface types, such as shrubland, snow and
ice, and barren regions. For nighttime clouds, the RF all-
day model works better than both CLDPROP CT phase and
MYDO06 IR phase for all surface types.

In this study, we have demonstrated the advantages of us-
ing ML-based (specifically, RF) models in cloud masking
and thermodynamic-phase detection. In contrast with hand-
tuned methods, the RF models can be efficiently trained and
tested for different surface types and using different input
variables. Meanwhile, for aerosol-free, homogeneous sam-
ples, the two RF models show better and more consistent
performance over different regions and surface types in com-
parison with existing VIIRS and MODIS datasets. For more
complicated scenes, RF probabilities are more informative
than binary mask and phase designations. However, further
investigation is required to understand how to use probabili-
ties more quantitatively.

In the future, more spectral bands and/or spatial patterns
can be used to improve pixel classification skills, such as
including more pixel types (e.g., dust and smoke). It is
convenient to apply RF models or other similar ML-based
models to other instruments similar to VIIRS with the help
of active instruments. Most importantly, cloud mask and
thermodynamic-phase products from well-trained RF mod-
els could be used to train other instruments in the absence
of active sensors. For example, the current RF-model-based
VIIRS cloud mask and phase data could be used as refer-
ence to train ML-based models for other instruments, such
as MODIS, ABI, AHI, SEVIRI, and airborne instruments.
It remains a goal for future work to determine how such an
approach might lead to improved consistency in cloud prop-
erties derived from different satellite imagers.

It is also important to emphasize that the model perfor-
mance is highly reliant on the quality of the training samples
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and reference labels. For example, in this study, more than
98 % of the training data have a VZA of less than 50°, lead-
ing to more uncertain cloud-phase fractions at large VZAs.
Using synthetic training data generated with reliable radia-
tive transfer models could be a possible way to mitigate this
artifact.

Data availability. The Collection 6.1 Aqua/MODIS cloud
mask (https://doi.org/10.5067/MODIS/MYD35_L2.061,
Ackerman et al., 2017) and cloud thermodynamic phase
(https://doi.org/10.5067/MODIS/MYDO06_1.2.061, Platnick et
al., 2015) and the version 1.1 MODIS and VIIRS Continu-
ity cloud mask (https://doi.org/10.5067/MODIS/CLDMSK _
L2_MODIS_Aqua.001, Ackerman and Frey, 2019a, and
https://doi.org/10.5067/VIIRS/CLDMSK_L2_VIIRS_SNPP.001,

Ackerman and Frey, 2019b) and cloud thermody-
namic phase (https://doi.org/10.5067/MODIS/CLDPROP_
L2_MODIS_Aqua.011, Platnick et al., 2017¢ and
https://doi.org/10.5067/VIIRS/CLDPROP_L2_VIIRS_SNPP.011,

Platnick et al., 2017b) are publicly available from NASA and
the Atmosphere Archive and Distribution System (LAADS)
(https://ladsweb.modaps.eosdis.nasa.gov/search/). The CALIPSO
level 2 cloud- and aerosol-layer products (version 4) are pub-
licly available from the Atmospheric Science Data Center
(https://opendap.larc.nasa.gov/opendap/CALIPSO/contents.html).
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