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Abstract. We trained two Random Forest (RF) machine

learning models for cloud mask and cloud thermodynamic-

phase detection using spectral observations from Visible In-

frared Imaging Radiometer Suite (VIIRS) on board Suomi

National Polar-orbiting Partnership (SNPP). Observations

from Cloud-Aerosol Lidar with Orthogonal Polarization

(CALIOP) were carefully selected to provide reference la-

bels. The two RF models were trained for all-day and

daytime-only conditions using a 4-year collocated VIIRS and

CALIOP dataset from 2013 to 2016. Due to the orbit dif-

ference, the collocated CALIOP and SNPP VIIRS training

samples cover a broad-viewing zenith angle range, which

is a great benefit to overall model performance. The all-

day model uses three VIIRS infrared (IR) bands (8.6, 11,

and 12 µm), and the daytime model uses five Near-IR (NIR)

and Shortwave-IR (SWIR) bands (0.86, 1.24, 1.38, 1.64, and

2.25 µm) together with the three IR bands to detect clear, liq-

uid water, and ice cloud pixels. Up to seven surface types,

i.e., ocean water, forest, cropland, grassland, snow and ice,

barren desert, and shrubland, were considered separately to

enhance performance for both models. Detection of cloudy

pixels and thermodynamic phase with the two RF models

was compared against collocated CALIOP products from

2017. It is shown that, when using a conservative screen-

ing process that excludes the most challenging cloudy pix-

els for passive remote sensing, the two RF models have high

accuracy rates in comparison to the CALIOP reference for

both cloud detection and thermodynamic phase. Other exist-

ing SNPP VIIRS and Aqua MODIS cloud mask and phase

products are also evaluated, with results showing that the

two RF models and the MODIS MYD06 optical property

phase product are the top three algorithms with respect to

lidar observations during the daytime. During the nighttime,

the RF all-day model works best for both cloud detection

and phase, particularly for pixels over snow and ice surfaces.

The present RF models can be extended to other similar pas-

sive instruments if training samples can be collected from

CALIOP or other lidars. However, the quality of reference

labels and potential sampling issues that may impact model

performance would need further attention.

1 Introduction

Detection and classification (DC) of atmospheric con-

stituents using satellite observations is often a critical ini-

tial step in many remote sensing algorithms. For example,

a prerequisite for cloud optical and microphysical property

retrievals is identifying the presence of clouds, i.e., a clear

or cloudy classification (Frey et al., 2008; Heidinger et al.,

2012). Additionally, characteristics such as cloud thermody-

namic phase are needed, as they can strongly impact the scat-

tering and absorption properties of cloud droplets and par-

ticles (Pavolonis et al., 2005; Platnick et al., 2017a). Simi-

larly, current operational aerosol algorithms can only retrieve

aerosol optical depth (AOD) for “non-cloudy” pixels since

even slight cloud contamination can result in erroneously

high retrieved AOD (Remer et al., 2005). Therefore, errors in

detecting and classifying atmospheric components can sig-

nificantly impact downstream retrieval products and scien-

tific analyses.
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There are many examples of hand-tuned DC algorithms

designed for satellite instruments. For example, the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) has

algorithms developed for cloud masking (Frey et al., 2008;

Ackerman et al., 2008), cloud thermodynamic phase (Baum

et al., 2012; Marchant et al., 2016), aerosol type (Levy et

al., 2013; Sayer et al., 2014), and snow coverage over land

surfaces (Hall and Riggs, 2016). Decision trees or voting

schemes involving multiple thresholds are typically used in

these hand-tuned algorithms. The decision tree branches,

tests, and thresholds are often determined empirically after

a tedious hand-tuning and testing process based on the de-

veloper’s experience and access to validation datasets. Fur-

ther, the branches and thresholds are often very sensitive

to the specific instrument (e.g., spectral band pass, calibra-

tion, noise characteristics, and view and solar geometry sam-

pling). Therefore, an obvious weakness of these hand-tuned

methods is that it is challenging and time-consuming to de-

velop algorithms across multiple instruments and to maintain

performance for individual instruments that may have no-

ticeable calibration drifts. Meanwhile, a well-designed hand-

tuned method may have remarkable performance in a specific

region and season yet have significant biases when applied

globally and/or annually (Cho et al., 2009; Liu et al., 2010).

Additional complexities arise when DC problems become

more nonlinear across large spatial and temporal scales, and

more variables need to be considered. It is difficult to develop

and apply a single or a few decision trees to complicated

nonlinear problems that are controlled by a dozen or more

variables. As expected, a single decision tree can grow very

deep and tends to have a highly irregular structure in order

to consider a large number of features (variables) simultane-

ously, leading to a significant overfitting effect (i.e., an over-

constrained training that makes predictions too close to the

training dataset but fails to predict future observations reli-

ably). For example, MODIS provides an all-day cloud-phase

product based only on infrared (IR) observations (hereafter

referred to as IR phase, Baum et al., 2012). Although it can

be expected that the tests and thresholds should vary with

satellite-viewing geometry (Maddux et al., 2010), full con-

sideration of viewing geometries, together with the variations

of many other factors such as surface emission, geolocation,

and cloud properties, is very challenging based on manual

tuning. As a consequence, it is found that the liquid water and

ice cloud fractions from the IR-phase product exhibit notice-

able view zenith angle (VZA) dependency (see Fig. 12). This

is an undesirable but unavoidable artifact since cloud-phase

statistics should be independent of solar and satellite-viewing

geometry. Such VZA dependencies may strongly affect sim-

ilar products from geostationary imagers because of the fixed

VZA geolocation mapping. Similar artifacts may also impact

aerosol type and retrieval products (Wu et al., 2016).

In contrast to hand-tuned methods, machine-learning

(ML)-based DC algorithms are designed to autonomously

find information (e.g., patterns of spectral, spatial, and/or

time series) in one or more given datasets and learn hidden

signatures of different objects. An obvious advantage of ML

models is that the training process is efficient and highly flex-

ible. Manually defined thresholds or matching conditions to

expected spectral patterns are no longer needed. Recently,

ML models have been utilized in a wide variety of cloud- and

aerosol-related applications, such as cloud detection (Thampi

et al., 2017), cirrus detection and optical property retrievals

(Kox et al., 2014; Strandgren et al., 2017), surface-level

PM2.5 concentration estimation (Hu et al., 2017), and auto-

matic ship-track detections (Yuan et al., 2019). In this pa-

per, we developed two ML-based DC algorithms for de-

tecting cloud and cloud thermodynamic phase for different

local times (i.e., daytime and nighttime) with observations

from the Visible Infrared Imaging Radiometer Suite (VIIRS)

on board Suomi NPP (SNPP). The ML models are trained

with collocated observations from SNPP VIIRS and Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP), with

CALIOP data used as the reference. In Sect. 2, we give a

brief discussion of the ML models. Data generated for model

training and validation will be introduced in Sect. 3. Details

of the model training and evaluation are shown in Sect. 4.

Section 5 discusses the advantages and potential limitations

of the present ML models. Conclusions are given in Sect. 6.

2 Hand-tuned DC methods and machine learning

models

2.1 Hand-tuned DC methods

All DC algorithms with remote sensing observations are

based on the underlying physics of the spectral, spatial,

and/or temporal structures of specified objects. In hand-tuned

DC algorithms, all the physical rules and structures have to

be explicitly defined as various tests and thresholds. For ex-

ample, the MODIS MOD35/MYD35 cloud mask algorithm

uses more than 20 tests with visible or near-infrared (VNIR),

shortwave-infrared (SWIR), and infrared (IR) observations

(Frey et al., 2008) that are carefully designed to consider

numerous scenarios, including different surface types (e.g.,

ocean, land, desert, snow, etc.) and local times (day or night).

Similar algorithms are designed for aerosol type and cloud

thermodynamic-phase classifications. As an example, Fig. 1

illustrates spectral patterns of five typical daytime oceanic

scenes (pixel types) observed by SNPP VIIRS. The spectral

pattern of each of the five scenes, i.e., clear sky, liquid wa-

ter cloud, ice cloud, dust, and smoke, is averaged by using

more than 1000 pixels with the same type. It is clear that

the five scenes are different in either reflectance ratios be-

tween a given VNIR–SWIR band and the 0.86 µm band or

brightness temperature differences (BTD) between two IR

window bands (Fig. 1). Consequently, such spectral features

are frequently used to differentiate pixel types in DC algo-

rithms. In addition to spectral patterns, simple methods are
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developed to take spatial information into account . For ex-

ample, it is found that cloud reflectance usually has larger

spatial variability than aerosols (Martins et al., 2002) and

clear sky pixels (Platnick et al., 2017a). Therefore, spatial

variabilities of VNIR and SWIR reflectance bands are used

to differentiate clouds from non-cloudy pixels in the current

MODIS clear sky restoral (CSR) algorithm (Platnick et al.,

2017a) and Dark Target aerosol retrieval algorithm (Levy et

al., 2013).

2.2 Machine learning models

Different from the hand-tuned DC methods, ML algorithms

are developed to autonomously learn the hidden spectral,

spatial, and temporal patterns of different objects. Conse-

quently, manually defined thresholds or matching conditions

to expected patterns are no longer needed. In image recogni-

tion applications, numerous ML algorithms (e.g., Joachims,

1998; Breiman, 1999; Dietterich, 2000) were developed in

late 1990s for independent pixels using a single or small

number of decision trees. Ho (1998) and many other stud-

ies have demonstrated that, although these single or small

number of decision trees can always provide maximum pre-

diction accuracies in training processes, significant overfit-

ting effects cannot be avoided. Tremendous efforts have been

made to overcome the dilemma between maintenance of pre-

diction accuracy and avoiding overfitting. Among these, the

Random Forest (RF) and Gradient Boosting (GB) algorithms

(Breiman, 1999; Dietterich, 2000; Friedman, 2001) provide

a framework of using a large number of decision trees (en-

semble) but a subset of features in each tree to achieve

optimization in the performance. It has been demonstrated

that the ensemble-based algorithms can largely correct mis-

takes made by individual trees (Ji and Ma, 1997; Tumer

and Ghosh, 1996; Latinne et al., 2001) and avoid overfitting

(Freund et al., 2001). Currently, the RF and GB algorithms

are frequently used in nonlinear classification and regression

problems. For example, RF models have been used in several

cloud and aerosol remote sensing applications, such as dif-

ferentiating cloudy from clear footprints for the Clouds and

the Earth’s Radiation Energy System (CERES) instrument

(Thampi et al., 2017), estimating surface-level PM2.5 con-

centrations (Hu et al., 2017), and detecting low clouds with

the Advanced Baseline Imager (ABI) on the Geostationary

Operational Environmental Satellites (GOES) (Haynes et al.,

2019). In our study, we also choose the RF model based on

its proven record in Earth science applications.

In the RF model, a final prediction is made based on major-

ity vote computed from probability (Pi) of each class (ith):

Pi =
wiNi

∑j=m

j=1 wjNj

, (1)

where m is the total number of classes, Ni and Nj are the

number of trees that predict the ith and j th classes, and wi

and wj are weightings for the ith and j th classes, respec-

tively. If all trees are equally weighted, w for each individ-

ual class is equal to 1. The two most important parameters

for tuning the RF algorithm are the number of decision trees

(NTree) and the maximum tree depth (NDepth). However, an

optimal definition of these two parameters is still an open

question (Latinne et al., 2001). Larger NTree and NDepth pro-

vides more accurate predictions at the cost of significantly

increased computational resources. For many cases, larger

NDepth may cause overfitting effects (Oshiro et al., 2012;

Scornet, 2018). Generally, the two parameters have to be

large enough to let the decision trees have a relatively wide

diversity and capture the hidden patterns. However, for prac-

tical purposes, the two parameters have to be small enough to

prevent the models from overfitting and to reduce computing

burden (Latinne et al., 2001; Scornet, 2018).

In this study, we adopt a widely applied RF algorithm in

the Scikit-learn machine learning package (Pedregosa et al.,

2011). We train two RF models for object DC using SNPP

VIIRS spectral observations at two observational times: an

all-day RF model using three VIIRS thermal IR observations

(hereafter referred to as the RF all-day model) and a daytime-

only RF model that uses both VNIR–SWIR and thermal IR

observations (hereafter the RF daytime model). The models

are trained to detect clear sky, liquid water cloud, and ice

cloud pixels with single-pixel-level information. Parameters

of the two RF models will be tuned and tested carefully to

achieve the best accuracy and to avoid the overfitting effect.

Details will be discussed in Sect. 4.

3 Data

3.1 Reference label of pixels

Spaceborne active sensors, such as CALIOP on board

CALIPSO (Winker et al., 2013), the Cloud-Aerosol Trans-

port System (CATS) (McGill et al., 2015) on board the In-

ternational Space Station (ISS), and Cloud Profiling Radar

(CPR) on board CloudSat (Stephens et al., 2002), are fre-

quently used to evaluate the performance of hand-tuned

cloud and aerosol DC and property retrieval algorithms de-

signed for passive sensors (Stubenrauch et al., 2013; Wang et

al., 2019). CALIPSO, a key member of the Afternoon Con-

stellation of satellites (A-Train) until its exit on 13 Septem-

ber 2018 to join CloudSat in a lower orbit, began providing

profiling observations of the atmosphere in 2006 (Winker et

al., 2013). The CALIPSO lidar CALIOP operates at wave-

lengths of 532 and 1064 nm, measuring backscattering pro-

files at a 30 m vertical and 333 m along-track resolution.

CALIOP also measures the perpendicular and parallel sig-

nals at 532 nm, along with the depolarization ratio at 532 nm

that is frequently used in cloud-phase discrimination algo-

rithms because of its strong particle shape dependence. The

version 4 level 2 CALIOP 1 km and 5 km layer product is

www.atmos-meas-tech.net/13/2257/2020/ Atmos. Meas. Tech., 13, 2257–2277, 2020
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Figure 1. Spectral patterns of the five different pixel types (averaged over 1000 pixels for each type). For each plot, an apex indicates

reflectance ratio between a given VNIR–SWIR band and the 0.86 µm band, and the spread is filled by false RGB composite (red: 0.74 µm

reflectance; green: 8.5–11 µm BTD; blue: 11–12 µm BTD). The spectral patterns are used in the machine learning algorithms.

used to provide reference cloud-phase labels in both model

training and validation stages.

While the CATS lidar and the CloudSat radar CPR also

provide profiling information, both have limitations that pre-

clude their use here. CATS had a relatively short lifetime

(from January 2015 to October 2017), and its low inclina-

tion angle (51◦) orbit aboard the ISS excludes sampling of

high-latitude regions (Noel et al., 2018). CloudSat CPR ob-

serves reflectivity profiles at 94 GHz, which are more sensi-

tive to optically thicker clouds consisting of large particles

but are blind to aerosols and optically thin clouds. CloudSat

also has difficulty in detecting clouds near the surface due

to the surface clutter effect (Tanelli et al., 2008). Therefore,

only CALIOP data are used to provide reference cloud-phase

labels in this study.

3.2 RF model input

It should be pointed out that ML models use similar input

datasets to hand-tuned methods. The input variables (fea-

tures) and reference labels of the present RF models are care-

fully selected based on prior physical knowledge of the spec-

tral characteristics of each object.

VIIRS on board SNPP and the NOAA-20+ series provide

spectral observations from 0.4 to 12 µm at sub-kilometer spa-

tial resolutions (Lee et al., 2006). Specifically, VIIRS has 16

moderate-resolution bands (M band) and 5 higher-resolution

imagery bands (I band) at 750 and 375 m nadir resolutions,

respectively. The spectral capabilities of VIIRS allow for ex-

tracting abundant information on the surface and atmospheric

components, such as clouds (Ackerman et al., 2019) and

aerosols (Sayer et al., 2017). It is also worth noting that VI-

IRS utilizes an on board detector aggregation scheme that

minimizes pixel size growth in the across-track direction to-

wards the swath edge (Cao et al., 2013). As an example, al-

though the VIIRS M bands and MODIS 1 km bands have

similar nadir spatial resolutions, the VIIRS across-track pixel

size increases to roughly 1.625 km at scan edge, which is

much smaller than a MODIS pixel size of roughly 4.9 km

at scan edge (Justice et al., 2011). Another obvious advan-

tage of using SNPP VIIRS rather than Aqua MODIS data is

that, due to the CALIPSO and SNPP orbit differences, the

training samples cover a broader-viewing zenith angle range,

which is a great benefit to overall model performance. Conse-

quently, Level-1B M-band observations from the SNPP VI-

IRS are used here.

Ancillary data, including the surface skin temperature,

spectral surface emissivity, surface types, and snow and ice

coverage, are important in cloud DC-related remote sensing

applications (Frey et al., 2008; Wolters et al., 2008; Baum

et al., 2012) and cloud and aerosol retrievals (Levy et al.,

2013; Wang et al., 2014, 2016a, b; Meyer et al., 2016; Plat-

nick et al., 2017a). The inst1_2d_asm_Nx product (version

5.12.4) from the Modern-Era Retrospective Analysis for Re-

search and Applications, Version 2 (MERRA-2) (Gelaro et

al., 2017) is utilized to provide the hourly instantaneous sur-

face skin temperature and 10 m surface wind speed. The UW-

Madison baseline fit land surface emissivity database (See-

mann et al., 2008) and the Terra and Aqua MODIS combined

land surface product (MCD12C1, Sulla-Menashe and Friedl,

2018) are used to provide monthly mean land surface emis-

sivities for the mid-wave to thermal IR bands (3.6–14.3 µm)

Atmos. Meas. Tech., 13, 2257–2277, 2020 www.atmos-meas-tech.net/13/2257/2020/
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and surface white sky albedo for the VNIR bands (0.4–

2.3 µm), respectively, at a 0.05 × 0.05◦ spatial resolution.

Surface types and snow and sea ice coverage data are from

the International Geosphere-Biosphere Programme (IGBP)

and daily Near-real-time Ice and Snow Extent (NISE) data

(Brodzik and Stewart, 2016), respectively.

3.3 Clear and cloud-phase classifications from existing

VIIRS and MODIS products

Since the present RF models are trained with SNPP VIIRS

observations, the first priority of this study is evaluating and

comparing the trained RF models with CALIOP and the ex-

isting VIIRS cloud products. However, existing cloud mask

and phase products from Aqua MODIS are still used as a

reference in this work.

The Aqua MODIS and SNPP VIIRS CLDMSK (cloud

mask) and CLDPROP (cloud top and optical properties)

(Ackerman et al., 2019) products represent NASA’s effort to

establish a long-term consistent cloud climate data record,

including cloud detection and thermodynamic phase, across

the MODIS and VIIRS observational records. While the

CLDMSK (version 1.0) and CLDPROP (version 1.1) algo-

rithms share heritage with the standard MODIS Collection

6.1 cloud mask (MYD35) and cloud top and optical proper-

ties (MYD06) algorithms, the algorithms use only a subset

of bands common to both sensors to minimize differences in

instrument spectral information content.

The CLDMSK and MYD35 algorithms use a variety of

band combinations and thresholds depending on cloud and

surface types (Frey et al., 2008; Ackerman et al., 2008).

Meanwhile, the algorithms use different approaches for day-

time (i.e., solar zenith angle less than 85◦) and nighttime

pixels. In the CLDMSK and MYD35 algorithms, pixels are

categorized into four categories, namely confidently clear,

probably clear, probably cloudy, and cloudy. The CLDPROP

and MYD06 algorithms separate cloudy and probably cloudy

pixels into liquid water, ice, and unknown phase categories.

Specifically, the MYD06 product includes two cloud-phase

algorithms: an IR-phase algorithm (Baum et al., 2012) that

uses observations in four MODIS IR bands for daytime and

nighttime phase classification (hereafter referred to as the

MYD06 IR phase) and a daytime-only algorithm designed

for the cloud optical properties retrievals (Marchant et al.,

2016; Platnick et al., 2017a) that uses VNIR–SWIR and IR

observations (hereafter referred to as the MYD06 OP phase).

A notable change for the VIIRS and MODIS CLDPROP al-

gorithm with respect to the standard MODIS MYD06 algo-

rithm is the replacement of the MYD06 IR phase by a NOAA

operational algorithm originally developed for Clouds from

AVHRR-Extended (CLAVR-x) (Heidinger et al., 2012) and

now applied to VIIRS. This algorithm is used to provide

cloud top properties, including thermodynamic phase (here-

after CLDPROP CT phase), in the absence of the MODIS

CO2 IR gas absorption bands. IR bands are primarily used

Table 1. Existing VIIRS and MODIS cloud mask and phase prod-

ucts used for comparison. Note that MYD35 and MYD06 are the

standard MODIS Aqua products, and CLDMSK and CLDPROP are

the MODIS Aqua and VIIRS common algorithm continuity prod-

ucts.

Instrument Cloud mask Cloud phase

MODIS MYD35 V6.1 MYD06 IR phase V6.1

MYD06 OP phase V6.1

CLDMSK V1.0 CLDPROP CT phase V1.0

CLDPROP OP phase V1.1

VIIRS CLDMSK V1.0 CLDPROP CT phase V1.0

CLDPROP OP phase V1.1

in the CLDPROP CT-phase algorithm, while complemen-

tary SWIR bands are used when available. The MYD06

OP-phase algorithm, applied to daytime pixels only, is in-

cluded with only minor alteration (related to cloud top prop-

erties changes) in the VIIRS and MODIS CLDPROP product

(hereafter referred to as the CLDPROP OP phase).

Although the MYD06 and CLDPROP OP-phase prod-

ucts are developed for “cloudy” and “probably cloudy” pix-

els from the MYD35 and CLDMSK products, a Clear Sky

Restoral (CSR) algorithm (Platnick et al., 2017a) is imple-

mented to remove “false cloudy” pixels from the clear-sky

conservative MYD35 and CLDMSK products. Specifically,

the CSR uses a set of spectral and spatial reflectance vari-

ability tests to remove dust, smoke, and strong sunglint pix-

els that are erroneously identified as cloudy or probably

cloudy by the MYD35 and CLDMSK products (Platnick et

al., 2017a). One should keep in mind that the CSR algorithm

is only applied for the optical property retrievals. Thus, the

MYD35 and CLDMSK, and consequently the MYD06 IR

phase and CLDPROP CT phase, may have false cloudy pix-

els in comparison with CALIOP, while the impact on the

MYD06 and CLDPROP OP phase is reduced due to the CSR

algorithm. The cloud mask and thermodynamic-phase prod-

ucts used in this study are summarized in Table 1.

4 Model training and validation

Here we discuss the training of the all-day and daytime RF

models for different surface types. Both shortwave (SW) and

IR observations will be used in the daytime models while

only IR observations will be used in the all-day models.

ML model performance is strongly dependent on the qual-

ity of training samples. In this study, the two RF models are

trained and tested with simple yet highly confident samples

(Sect. 4.2). With this training strategy, the RF models are ex-

pected to capture the key spectral features from the pure sam-

ples efficiently. As discussed in Sect. 4.4, we conducted a

model validation that evaluates performance of the two mod-

www.atmos-meas-tech.net/13/2257/2020/ Atmos. Meas. Tech., 13, 2257–2277, 2020
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els for simple cases. Furthermore, an analysis of probabil-

ity distributions from the RF all-day model is conducted to

demonstrate that the RF models have the capacity to recog-

nize spectral features from more than one category when at-

mospheric columns are more complicated.

4.1 Surface types

RF models are trained for different surface types, defined

here by the Collection 6 (C6) MODIS annual IGBP sur-

face type product (MCD12C1), to improve model perfor-

mance over a single general model for all surface types.

Although the MCD12C1 product includes up to 18 surface

types, for this work we attempt to reduce the total num-

ber of surface types by combining surface types with sim-

ilar spectral white sky albedos and emissivities, as sug-

gested by Thampi et al. (2017). An annual global IGBP sur-

face type map and surface albedo data from the MODIS

MCD12C1 (Sulla-Menashe and Friedl, 2018) and a UW-

Madison monthly global land surface emissivity database

(Seemann et al., 2008) are used to generate the climatology

of land surface white-sky albedo and IR emissivity spectra.

The UW-Madison database is derived using input from the

MODIS operational land surface emissivity product MOD11

(Wan et al., 2004) at six wavelengths located at 3.8, 3.9,

4.0, 8.6, 11, and 12 µm. A baseline fit method is applied to

fill the spectral gaps and provides a more comprehensive IR

emissivity dataset at 10 wavelengths from 3.6 to 14.3 µm for

global land surface with a 0.05◦ spatial resolution (Seemann

et al., 2008). The MODIS MCD12C1 product also provides a

white-sky albedo dataset at 0.47, 0.56, 0.66, 0.86, 1.24, 1.64,

and 2.13 µm with a 0.05◦ spatial resolution (Sulla-Menashe

and Friedl, 2018). The means and standard deviations of sur-

face emissivity and white-sky albedo spectra are shown in

Figs. 2a and 3a, respectively, for 16 different land surface

types generated from the UW-Madison and MCD12C1 data

in 2015. Land surface types with similar IR emissivity and

SW white-sky albedo spectra are grouped to reduce to the

total number of land surface types to six (forest, cropland,

grassland, snow and ice, barren desert, and shrubland), as

shown in Figs. 2b–f and 3b–f. Figure 4 shows an example

map of the reduced global surface type data generated from

the MCD12C1 product for 2015.

4.2 Generating training and validation datasets

The training and validation data are obtained from a 5-year

(2013–2017) SNPP VIIRS and CALIOP collocated dataset.

The collected dataset is generated with a collocation algo-

rithm that fully considers the spatial differences between the

two instruments and parallax effects, as described in Holz et

al. (2008). The SNPP VIIRS data include L1B-calibrated re-

flectance and brightness temperatures, and the CALIOP data

include the 1 km and 5 km cloud and aerosol layer level 2

products. Although more than 332 million VIIRS 750 m pix-

els are collocated with CALIOP observations, 130.6 million

of these pixels (39.3 %) that include only aerosol-free, ho-

mogeneous, and clear pixels (39.1 million) or single-phase

cloud pixels (49.7 million liquid and 41.8 million ice) are

used in our training and validation process. Unless otherwise

specified, “aerosol-free” is defined as those pixels having col-

located CALIOP 5 km column 532 nm aerosol optical depth

less than 0.05, “homogeneous” is defined as those pixels for

which the collocated CALIOP 1 km and 5 km products have

the same pixel labels, and “single-phase cloud” is defined

as those pixels for which the collocated CALIOP 1 km and

5 km products indicate the same thermodynamic phase for all

identified cloud layers. More details are given in Table 2.

A strict three-step quality control process is applied to col-

lect samples for the training and validation process. First,

VIIRS 750 m pixels that are potentially contaminated by

aerosol are excluded using a threshold of 0.05 column AOD

at 532 nm from the level 2 CALIOP 5 km aerosol layer prod-

uct. Second, each aerosol-free pixel is labeled by one of four

categories, namely, “clear sky” and “liquid-water cloud”,

“ice cloud”, and “ambiguous” with the L2 CALIOP 1 km

and 5 km layer product. The ambiguous pixels, including

uncertain and unknown cloud phases from CALIOP and/or

overlapping objects belonging to different types (e.g., cir-

rus over liquid), are discarded. Third, horizontally inhomo-

geneous pixels, determined when the CALIOP 1 km label

changes within five consecutive VIIRS pixels, or pixels with

inconsistent CALIOP 1 km and 5 km labels, are discarded.

Figure 5 shows the global distributions of the 5-year col-

located clear (Fig. 5a–c) and cloudy pixels (Fig. 5d–f) be-

fore and after applying the three-step quality control. Glob-

ally, 50 % of all clear pixels are excluded due to contami-

nation of broken cloud and/or aerosol. In particular, a large

fraction of clear pixels in central Africa, India, and southern

China (Fig. 5c) are excluded due to relatively large aerosol

optical thicknesses in those regions. About 40 % of global

cloudy pixels (Fig. 5f) are excluded due to cloud heterogene-

ity and aerosol contamination. The minimum selection rate

(∼ 20 %) can be found in some particular regions, such as the

Intertropical Convergence Zone (ITCZ), where clouds have

complicated horizontal and vertical structures due to strong

convections (i.e., clouds are highly heterogeneous in both the

horizontal and vertical dimensions). The remaining data are

separated into a training and testing population that consists

of 32.4, 41.2, and 34.9 million pixels for clear sky, liquid

water cloud, and ice cloud from the years 2013–2016, re-

spectively, and a validation dataset that consists of 6.9, 8.5

,and 7.0 million pixels of clear-sky, liquid water cloud, and

ice cloud, respectively, from 2017.

4.3 RF model training and configuration

RF model performance is determined by both its inputs

(spectral or other information) and its configuration (NTree

and NDepth). Therefore, extensive testing must be conducted
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Figure 2. Climatology of the spectral surface emissivity data from the UW-Madison baseline fit land surface emissivity database (Seemann

et al., 2008) for different IGBP surface types. Error bars indicate the emissivity standard deviations at given wavelengths.

Figure 3. Climatology of the spectral surface white sky surface albedo data from MCD12C1 (Sulla-Menashe and Friedl, 2018) for different

IGBP surface types. Error bars indicate the albedo standard deviations at given wavelengths.

to find the optimal inputs and configuration. The 4-year col-

located VIIRS-CALIOP dataset from 2013 to 2016 after

quality control (see Sect. 4.2) is used for both training (75 %)

and testing (25 %) purposes. The testing set, also known as

cross-validation set, is used to tune and optimize the RF

model parameters. Here we define an accuracy score to eval-

uate the overall model performance. The accuracy score is

the ratio of pixels (samples) where both the CALIOP and RF

model have the same categories to total pixels. In this study,

we tested six groups of input variables for each RF model.

The set of model input variables with a relatively high ac-

curacy score and low memory and computing requirements

will be selected.

Table 3 provides accuracy scores of the IR-based all-

day model trained and tested with different inputs. It shows

that with a fixed RF model configuration (NTree = 150 and

NDepth = 15), the RF all-day model with input no. 4 and no. 6

have the best overall accuracy scores for all surface types.

Generally, by including surface skin temperature (Ts) and ge-

olocation (i.e., latitude and longitude), the accuracy scores

for all surface types increase by 2 %–3 %. The surface emis-

sivity vector εs is less important, likely because this informa-
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Table 2. Data collection strategies and the number of pixels for all surface types.

No. of VIIRS 750 m Condition Ocean Forest Cropland Grass Barren Shrub Snow Total

pixels (million) ice

All collocations None 219.7 18.7 8.7 17.5 17.1 13.6 37.4 332.7

Aerosol free CALIOP aerosol 5 km

column AOD <0.05

142.6 13.0 3.7 10.0 10.5 9.3 34.3 223.2

Clear Aerosol-free cloud

1 km layer = 0

17.7 2.5 1.5 1.8 2.9 3.1 13.1 42.5

Clear

(homogeneous)

Aerosol-free cloud

1 km and 5 km layer =

0

15.2 2.3 1.5 1.7 2.7 3.0 12.7 39.1

Cloudy Aerosol-free cloud

1 km layer >0

124.9 10.5 2.1 8.1 7.7 6.2 21.2 180.7

Cloudy

(homogeneous)

Aerosol-free cloud

1 km and 5 km layer >0

115.5 9.5 1.8 7.4 6.6 5.3 15.8 162.0

Single-phase cloud Aerosol-free cloud

1 km liquid or

ice phase

65.1 4.4 1.0 4.0 3.4 2.4 13.5 93.7

Single-phase cloud

(homogeneous)

Aerosol-free

cloud 1 km and 5 km

liquid or ice phase

64.2 4.3 0.9 3.9 3.3 2.3 12.7 91.5

Liquid-phase cloud

(homogeneous)

Aerosol-free

cloud 1 km and 5 km

liquid phase

40.5 1.8 0.3 1.7 1.3 1.0 3.2 49.7

Ice-phase cloud

(homogeneous)

Aerosol-free

cloud 1 km and 5 km

ice phase

23.7 2.5 0.6 2.2 2.0 1.3 9.5 41.8

Figure 4. A global map of the seven reduced surface types chosen

for the RF model training.

tion is highly correlated to surface type and geolocation. In

this study, input no. 4 is selected mainly because while it has

a similar performance, it requires less memory and comput-

ing resources, and it is quite possible that more uncertainty

is introduced with the use of a surface emissivity vector εs

from another retrieval product.

A set of model configurations (NTree and NDepth) are also

tested based on the selected input no. 4. While the number

of trees and the maximum depth of individual trees are im-

portant determinants for RF model performance, the over-

all accuracy scores for all surface types are less sensitive to

these two model parameters when more than 100 trees and

10 maximum tree depths are used (not shown here). There-

fore, we trained the RF all-day models with input no. 4 and

the model configuration used in Table 3, i.e., NTree = 150 and

NDepth = 15.

Similar input variable tests for the RF daytime model (IR

plus NIR and SWIR observations) showed that the optimal

input includes reflectances in the 0.86, 1.24, 1.38, 1.64, and

2.25 µm bands; BTs in the same three IR bands used in the

all-day model; geolocation; and solar and satellite-viewing

zenith angles (see Table 4). The same model configuration

used in the all-day model, e.g., 150 trees with the maxi-

mum depth 15, is used in the daytime model. The accuracy

scores of the RF daytime model are higher than the RF all-

day model by 2 %–3 % over almost all surface types except

for high-latitude regions covered by snow and ice, where the

daytime model accuracy score is higher by up to 6 % than
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Figure 5. Global distributions of the of clear and cloudy pixels from collocated VIIRS and CALIOP data from 2013 to 2017. Panels (a) and

(d) show the total clear and cloudy pixel counts, respectively. Panels (b) and (e) show the pixel counts after applying the quality control. The

corresponding selection ratios are shown in (c) and (f).

Table 3. Accuracy scores of RF all-day models based on testing pixels with different inputs and a fixed model configuration (NTree = 150

and NDepth = 15).

No. Model input Ocean Forest Shrubland Crop Grassland Barren Snow All

input ice surfaces∗

1 BT8.6, BT11, BT12,

and VZA

90.3 89.9 88.7 88.4 88.2 88.0 87.4 89.4

2 BT8.6, BT11, BT12,

VZA, and lat/long

92.1 90.1 89.8 90.7 89.5 90.1 88.0 90.9

3 BT8.6, BT11, BT12,

VZA, and Ts

93.1 90.9 89.9 91.4 90.2 90.3 88.5 91.7

4 BT8.6, BT11, BT12,

VZA, lat/long, and Ts

93.2 91.7 90.0 91.8 91.2 90.8 88.9 92.0

5 BT8.6, BT11, BT12,

VZA, Ts, and εs

93.2 91.4 89.8 91.4 90.4 90.4 88.8 91.9

6 BT8.6, BT11, BT12,

VZA, lat/long, Ts,

and εs

93.2 91.8 90.1 91.8 91.3 90.6 88.9 92.0

∗ The all-surface accuracy scores are weighted by pixel numbers of individual surface types.

the all-day model due to the inclusion of the 1.38, 1.64 and

2.25 µm SWIR bands.

4.4 Evaluating the RF models

The trained RF all-day and daytime models are validated

using collocated CALIOP data in 2017. Existing VIIRS

cloud products CLDMSK and CLDPROP (see Table 1)

are included for direct comparison with the RF models

and CALIOP reference. Several other products, such as the

MODIS CLDMSK and CLDPROP and standard MYD35

and MYD06, are also included for comparison, although they

could be different from the RF models due to other non-

algorithm-based reasons, such as the VZA and pixel size dif-

ferences mentioned before.

4.4.1 Cloud mask

Cloud mask from the two RF models and VIIRS and MODIS

products are first compared with CALIOP lidar observations.

For the two models, a cloudy pixel indicates a predicted label

“liquid” or “ice”. Here we define cloudy and clear pixels as

“positive” and “negative” events, respectively. A true positive

rate (TPR) and false positive rate (FPR) can then be used to

evaluate model performance. The TPR and FPR are defined

as follows:
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Table 4. Accuracy scores of RF daytime models based on testing pixels with different inputs and a fixed model configuration (NTree = 150

and NDepths = 15).

No. Model input Ocean Forest Shrubland Crop Grassland Barren Snow All

input ice surface∗

1 BT8.6, BT11, BT12,

R0.86, R1.38, R1.61,

R2.25, VZA, and SZA

95.47 93.71 93.25 93.86 92.82 94.04 94.94 94.97

2 BT8.6, BT11, BT12,

R0.86, R1.38, R1.61,

R2.25, VZA, SZA, and

RAA

95.47 93.72 93.22 93.84 92.81 94.02 94.94 94.97

3 BT8.6, BT11, BT12,

R0.86, R1.38, R1.61,

R2.25, lat/long, VZA,

and SZA

95.47 93.74 93.36 93.95 92.95 94.16 94.95 94.99

4 BT8.6, BT11, BT12,

R0.86, R1.38, R1.61,

R2.25, R1.24, lat/long,

VZA and SZA

95.51 93.73 93.47 93.93 92.98 94.21 95.05 95.04

5 BT8.6, BT11, BT12,

R0.86, R1.38, R1.61,

R2.25, Ts, lat/long,

VZA, SZA, and RAA

95.45 93.77 93.36 93.93 92.92 94.21 94.95 94.98

6 BT8.6, BT11, BT12,

R0.86, R1.38, R1.61,

R2.25, R0.48, R0.67,

R1.24, VZA, and SZA

95.51 93.90 93.54 94.11 93.07 94.38 95.17 95.09

∗ The all-surface accuracy scores are weighted by pixel numbers of individual surface types.

TPR =
TP

TP + FN
, (2)

FPR =
FP

FP + TN
, (3)

where TP (true positive) and TN (true negative) are the num-

ber of lidar-labeled “cloudy” and “clear” pixels, respectively,

that are correctly detected by the models; whereas FN (false

negative) and FP (false positive) are the number of lidar-

labeled cloudy and clear pixels incorrectly identified by the

models. Therefore, TPR, also called model sensitivity, in-

dicates the fraction of all positive events (i.e., lidar cloudy

pixels) that are correctly detected by the models. Similarly,

FPR, also called false alarm rate, indicates the fraction of all

negative events (i.e., lidar clear pixels) that are incorrectly

detected as positive (cloudy). TPR and FPR are two critical

parameters in model evaluation. A perfect model is associ-

ated with a high TPR (close to 1) and a low FPR (close to

0).

Figure 6 shows daytime cloud mask TPR–FPR plots from

the two RF models and the other products listed in Ta-

ble 1. Globally, all products agree well with lidar observa-

tions (Fig. 6a). The overall TPRs are higher than 0.94, and

FPRs are lower than 0.08. The RF daytime model (red circle),

with a TPR of 0.97 and an FPR of 0.05, is slightly better than

the RF all-day model (yellow circle) and other products. Fig-

ure 6b–h show comparisons over different surface types. It is

clear that the RF daytime model has a robust performance for

all surface types. The MODIS MYD35 cloud mask algorithm

(black circle) performs best over ocean but has a relatively

high FPR (0.22) over forest and low TPR over snow and ice

and barren (0.85) regions. As mentioned in Sect. 3, the false

cloudy pixels from MYD35 and CLDMSK may increase the

FPRs correspondingly.

The RF all-day model works fairly well and is comparable

to other products for all surface types regardless of the fact

that it only uses three IR window channels from VIIRS while

all other products in the daytime models use VNIR observa-

tions. Nighttime (SZA >85◦) cloud mask comparisons are

shown in Fig. 7. The overall performances of all operational

products decrease in particular for snow and ice regions. For

example, the VIIRS and MODIS CLDMSK products over

snow and ice surface have large fractions of missing cloudy
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Figure 6. False Positive Rate (FPR) versus True Positive Rate (TPR) plots of daytime cloud mask from the two RF models and operational

algorithms. Collocated CALIOP level 2 products in 2017 are used as reference. Global comparisons are shown in (a), while panels (b)

through (h) show comparisons for difference surface types. The total pixel number is shown in each panel.

pixels (e.g., TPRs <0.7) and false alarm rates (FPRs >0.2)

over snow and ice surface. The decrease is more likely ex-

plained by the lack of SWIR bands and the small cloud–snow

(or ice) surface temperature contrast during the nighttime

of summer polar regions. However, the RF all-day model

has the best performance for nighttime pixels, indicating the

strong capability of ML-based algorithm in capturing hidden

spectral features and optimizing dynamic thresholds of clear

and cloudy pixels.

4.4.2 Cloud thermodynamic phase

The RF cloud thermodynamic-phase products are also com-

pared with CALIOP lidar and existing VIIRS and MODIS

products. For consistent nomenclature, we arbitrarily define

ice clouds and liquid water clouds as positive and negative

events, respectively. A low TPR indicates an underestima-

tion of ice cloud fraction, while a high FPR indicates that

a large fraction of liquid water cloud samples are identified

as ice cloud. To focus on cloud thermodynamic-phase clas-

sification, pixels detected as clear by either the lidar refer-

ence labels or by the RF models and existing products are

excluded. The OP phase from both MYD06 and CLDPROP

and the IR phase from MYD06 have an “unknown phase”

category, which is not included in the TPR–FPR analysis.

Figure 8 shows daytime cloud-phase TPR–FPR plots from

the two RF models and the MODIS and VIIRS products. The

two RF models and the MODIS MYD06 OP phase are the

top three phase algorithms for all surface types. The MODIS

MYD06 IR phase, MODIS and VIIRS CLDPROP OP phase,

and CT phase have either relatively low TPRs or high FPRs
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Figure 7. Similar to Fig. 6 but for nighttime cloud mask comparisons. The total pixel number is shown in each panel.

over particular surface types, such as shrubland, snow and

ice, and barren regions. Comparisons between nighttime-

phase algorithms are shown in Fig. 9. For nighttime clouds,

the RF all-day model works better than both CT-phase and

IR-phase algorithms for all surface types. Overall, the per-

formance of the hand-tuned algorithms decreases signifi-

cantly over snow and ice or barren surfaces. For example,

the TPR–FPR plot shows that over daytime snow and ice sur-

face (Fig. 8g), the MODIS CLDPROP OP phase and MODIS

MYD06 IR phase frequently predict liquid water cloud as ice

cloud. Similar to the daytime plot, the MYD06 IR phase also

shows a high FPR rate over snow and ice surfaces, indicating

an overestimated (underestimated) ice (liquid water) cloud

fraction. Possible reasons include strong surface reflection,

low surface cloud contrast, relatively few training samples

and high solar zenith angles. However, the two RF models

work fairly well and show consistent accuracy rates across

all surface types.

It is also important to note that the number of pixels used

for cloud-phase TPR–FPR comparisons in Figs. 8 and 9 are

different for products that have unknown phase categories,

namely, MYD06 IR phase, MYD06 OP phase, and CLD-

PROP OP phase. As shown in Table 5, the MYD06 IR phase

has a relatively large unknown phase fraction (15 % for all

surface types and 34 % for snow and ice) in comparison to

the OP-phase products from both MYD06 and CLDPROP,

which have approximately 2–3% unknown phase fraction.

As discussed in Sect. 2.2, the RF-model-predicted pixel

type is derived by setting thresholds on the probabilities for

each classification type; e.g., an ice-phase decision is reached

if the probability of ice is greater than the probabilities of

liquid and clear. Figure 10 shows the probability distribution

functions of the RF all-day model for four scene types as
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Figure 8. Similar to Fig. 6 but for daytime cloud thermodynamic-phase comparisons. The total pixel number is shown in each panel. Note

that for specific products, the total pixel numbers are lower because of the exclusion of the unknown phase category (see text for more

details).

Table 5. Fractions of the 2017 validation samples that have determined phases (i.e., liquid water or ice) in different surface types.

Determined phase (%) Ocean Forest Shrubland Crop Grassland Barren Snow and ice All

MODIS MYD06 IR phase 89 75 74 80 79 75 66 85

MODIS MYD06 OP phase 97 99 97 98 99 95 92 97

MODIS CLDPROP OP phase 98 99 98 99 99 97 99 98

VIIRS CLDPROP OP phase 98 99 97 99 98 96 99 98

determined by collocated CALIOP, namely clear (Fig. 10a),

liquid (Fig. 10b), ice (Fig. 10c), and multilayer (Fig. 10d)

clouds with different thermodynamic phases (e.g., ice over

liquid). As expected, for the first three types, which are in-

cluded in the training and validation processes, the prob-

ability distributions have strong peaks close to either 0 or

1. For the multiple-phase cases (Fig. 10d), the liquid and

ice probabilities are more broadly distributed, indicating that

the model may recognize signals from both liquid and ice

and therefore provide ambiguous phase results. More nu-

anced thresholds can therefore be applied to the probabilities,

for instance to create an unknown phase category following

MYD06 and CLDPROP convention (Marchant et al., 2016)

that can indicate complicated cloud scenes. Furthermore, the
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Figure 9. Similar to Fig. 6 but for nighttime cloud thermodynamic-phase comparisons. The total pixel number is shown in each panel. Note

that for specific products, the total pixel numbers are lower because of the exclusion of the unknown phase category (see text for more

details).

probabilities themselves can provide a useful quality assur-

ance metric for downstream cloud property retrievals that of-

ten must make an assumption on cloud phase. Nevertheless,

assigning an appropriate phase for downstream imager-based

cloud property retrievals is difficult for complex, multilayer

cloud scenes, as such an assignment often depends on the op-

tical and microphysical properties and vertical distribution of

the cloud layers in the scene (Marchant et al., 2020). Further

investigation is necessary to understand how to use the RF-

phase probabilities more quantitatively in complicated cases.

Figure 11 shows monthly mean daytime cloud and phase

fractions from the VIIRS CLDMSK and CLDPROP OP-

phase products (top row), and those from the RF daytime

model (second row), in January 2017. For the cloud mask

comparison, cloud fractions (CFs) from the two products

have similar spatial patterns, while it is also clear that the

VIIRS CLDMSK CFs are higher over tropical oceans by ap-

proximately 10 % and lower over land by 5 % (Fig. 11c). This

is consistent with the cloud mask TPR–FPR analysis shown

in Fig. 6. Over the tropical ocean, the VIIRS CLDMSK is

more cloudy, probably due to a fraction of sunglint pixels

that are detected as liquid clouds, leading to a large FPR rate.

Another reason for the relatively large cloud fraction (or liq-

uid water cloud fraction) difference is that in regions cov-

ered by “broken” cumulus clouds and/or clouds with more

complicated structures, the inherent viewing geometry dif-

ferences in the training datasets may adversely affect the

performance of the RF models. For example, CALIOP, with

a nadir-viewing geometry, may observe clear gaps between

two small cloud pieces, while VIIRS, with an oblique view-
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Figure 10. Normalized density functions of the clear (blue), liquid water cloud (red), and ice cloud (green) probabilities from the RF all-day

model in four CALIOP detected aerosol-free scenes: (a) clear, (b) homogenous liquid, (c) homogenous ice, and (d) multilayer cloud with

different thermodynamic phases.

ing angle, detects broken liquid clouds nearby or high clouds

along its long line of sight. Comparison between the VIIRS

product and the RF daytime model shows more ice clouds

from the RF daytime models over land, which is consistent

with the cloud-phase TPR–FPR plots as shown in Fig. 8. The

RF daytime model may have better performance due to the

consideration of surface type. However, it is also important

to notice that due to the lack of “aerosol” types in current

training, in central Africa, the RF models may misidentify

elevated smoke as ice cloudy pixels. For most land surface

types, except snow and ice, the CLDPROP OP phase has

lower TPR rates than the RF daytime models by 0.1, in com-

parison with the CALIOP.

In addition to the higher CFs over low-latitude ocean from

the VIIRS CLDMSK product, more pronounced CF (liquid)

differences can be found in northeastern and northwestern

China. Cloud differences in the two regions are spatially cor-

related with locations that have heavy aerosol loadings or

snow coverage. For example, heavy aerosol loadings due to

pollution in northeastern China, and a wide land snow cov-

erage in northwestern China are frequently observed in the

winter. The VIIRS CLDMSK may identify pixels with white

surface and heavy aerosol loadings as cloudy. Some of these

pixels are expected to be restored to the clear-sky category

in the CLDPROP OP-phase product (Fig. 11f and i). As evi-

dence, Fig. 12 shows comparisons between the VIIRS prod-

ucts and the RF daytime model in July 2017. The large cloud

(liquid) fraction differences over northern China vanish in the

summer. This indicates that the RF models might be able to

handle complicated (or unexpected) surface types and strong

aerosol events better than the hand-tuned VIIRS algorithm.

However, further investigation is required to understand the

performances of both the VIIRS products and the RF models.

5 Discussion

In this section, we will review the strengths and potential lim-

itations and weaknesses of the RF models.

5.1 Advantages

The above results show that, for the screened clear and

cloudy samples, the two RF models have better and more

consistent performance over different regions and surface

types in comparison with the MODIS and VIIRS products,

suggesting the potential to improve the overall performance

in more global operational applications. In addition to bet-

ter performance, it is convenient and efficient to apply the

present RF models or other similar ML-based models to

other instruments similar to VIIRS, such as the geostationary

imagers Advanced Himawari Imager (AHI) on Himawari-

8/9, the ABI on GOES-16/17, and the Spinning Enhanced

Visible and Infrared Imager (SEVIRI) on Meteosat Second

Generation, as long as reliable reference pixel labels are

available. With hand-tuned methods, adjustment is always

required in the case of calibration changes, algorithm port-

ing to another similar instrument, or changes in solar and

satellite-viewing geometries and surface conditions. Manual

adjustments can be time-consuming (e.g., months or years),

whereas the two RF models used in this study were trained

www.atmos-meas-tech.net/13/2257/2020/ Atmos. Meas. Tech., 13, 2257–2277, 2020



2272 C. Wang et al.: A machine-learning-based cloud detection and thermodynamic phase

Figure 11. Comparisons between 1-month daytime cloud mask and thermodynamic phase products from the VIIRS CLDMSK and CLD-

PROP OP phase (a, d, g) and the RF daytime model (b, e, h) and their differences (VIIRS–RF daytime, c, f, i) in January 2017.

Figure 12. Similar to Fig. 11 but for comparisons in July 2017.
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and tested for seven surface types and using different input

variables for 3 h (on an HPC Platform using 32 Intel Xeon

Gold 6126 Processors at 2.60 GHz). More important, manual

algorithm adjustment may not provide the best continuity be-

tween two instruments. For example, although the MODIS

CLDPROP OP phase and VIIRS CLDPROP OP phase are

designed for climate record continuity purpose, cloud ther-

modynamic phases from the two products are different by

up to 4 % for all surface pixels and by up to 10 % over sur-

faces covered by snow and ice (see Fig. 8 light blue and light

green dots). Further investigation is necessary to understand

if a better climate record continuity can be achieved with a

uniform training dataset by using ML approaches. Besides

providing a discrete category for each pixel, the RF models

provide an ensemble of predictions and probabilities of in-

dividual categories, which are useful diagnostic variables in

evaluating models in complicated scenarios.

5.2 Limitations and possible caveats

Although the evaluation demonstrates that the current RF

models are highly consistent with CALIOP, the models may

suffer some artifacts due to the quality of the training data

and due to sampling issues.

5.2.1 Quality of the training and validation data

The RF models learn spectral structures of cloudy and clear

pixels according to the reference labels. As a consequence,

the present model performance relies heavily on the quality

of CALIOP level 2 data. It is already known that the lidar

signal has limitations in detecting the bottom of an optically

thick cloud or lower-level clouds underneath an opaque cloud

(Sassen and Cho, 1992). Some complicated multiple-phase

scenes may be misidentified as simple single-phase scenes

due to the penetration limit of CALIOP (e.g., the upper-

most ice cloud optical thickness greater than 3). Using com-

bined CALIOP and CloudSat data as reference in the future

could be a better way to improve the training and validation

datasets (Marchant et al., 2020). However, as noted in that

study, CloudSat observations cannot be used without careful

filtering since a multilayer scene that is radiatively indistinct

from the upper-level cloud layer is not necessarily consistent

with multilayer detection detected from a cloud radar.

Additional uncertainties may come from the inconsistency

in view angles between the collocated CALIOP labels and

VIIRS spectral observations. For instance, CALIOP always

has a quasi-nadir-viewing angle (e.g., 3◦), whereas the col-

located VIIRS observations have a wide VZA range (e.g.,

0◦ to 50◦). A wide VIIRS VZA range in the training dataset

improves model performance, especially for predicting VI-

IRS pixels with large VZAs. However, the difference be-

tween the CALIOP and VIIRS viewing geometry could cre-

ate undesirable artifacts in the training process. As shown

in Fig. 11, in the descending areas of the Hadley cell over

low-latitude ocean, where marine boundary layer clouds are

dominant, there are relatively large CF differences between

the CLDMSK and the RF models. A reason for the large

liquid cloud fraction differences is that the quality of train-

ing datasets decreases in regions covered by broken cumulus

clouds and/or clouds with more complicated structures. Fur-

ther investigation is required to check if the training dataset

collection process introduces sampling bias into the training

dataset.

5.2.2 Sampling issue

Uneven sampling may also influence the training of RF mod-

els. Figure 13 shows the cloud fraction as a function of view-

ing geometry. Quasi-constant fractions of both liquid and ice

clouds are found for all operational products and the RF mod-

els when VZAs are smaller than 45◦, except the MODIS

MYD06 IR phase, which has a strong VZA dependency.

However, liquid (ice) cloud fractions from the two RF models

increase (decrease) rapidly at high VZAs (greater than 50◦),

which is likely caused by the sampling issue. A significant

fraction of the training data (greater than 98 %) is located in

the region with VZA less than 50◦ (see the dashed gray distri-

butions in Fig. 13). It is difficult to mitigate this issue using

collocated VIIRS-CALIOP data or observations from other

similar instruments in the training process. One possible way

is using model-generated synthetic training data and labels

with reliable radiative transfer models. Results from the RF

daytime model are not shown in Fig. 13 since they are highly

consistent with the RF all-day model.

5.2.3 Labeling strategy

For RF or other ML models, each pixel’s classification is

determined by prediction probabilities (P ) of all potential

types. Here we selected a regular strategy that labels a pixel

using the class with the highest probability (see Eq. 1). This

strategy is logical for problems with two categories (e.g.,

cloud mask only). For problems including three or more

classes, however, the present strategy is not the only way to

label pixels. For example, a pixel is labeled as clear if Pclear

is larger than both Pliquid and Pice according to the current

labeling strategy. It is also possible that, for the same pixel

(less than 0.5 % for the two RF models), Pclear is lower than

the sum of Pliquid and Pice, making a cloudy label more ap-

propriate. For the cloud mask and phase problem discussed

in this paper, in addition to pixel labels, users must be aware

of probabilities of the three types. Another possible way to

avoid the ambiguous labeling is using two RF models, one

for cloud masking and one for phase, such that a clear or

cloudy label is given first by the cloud mask model, while a

corresponding liquid or ice label is assigned to cloudy pixels

in the cloud-phase model. However, two RF models double

the training process and require more computing resources in

operational applications.
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Figure 13. Liquid water (a) and ice (b) cloud fractions as a function of viewing zenith angle from the 1-month daytime cloud mask and

phase products in January 2017. The dashed gray curve is the probability density function of the 4-year VIIRS and CALIOP training samples

(2013–2016).

6 Conclusions

Two machine learning Random Forest (RF) models were

trained to provide pixel types (i.e., clear, liquid water cloud,

and ice cloud) using VIIRS 750 m spectral observations. A

daytime model that uses NIR, SWIR, and IR bands and an

all-day model that only uses IR bands were trained sepa-

rately. In the training processes, reference pixel labels are

from collocated CALIOP level 2 1 km cloud layer and 5 km

aerosol layer products from 2013 to 2016. Careful tests were

conducted to optimize model input and configuration. The

two RF models were trained for seven different surface types

(i.e., ocean water, forest, cropland, grassland, snow or ice,

barren desert, and shrubland) to improve model performance.

In addition to geolocation and solar and satellite geometry

information, we found that using five NIR and SWIR bands

(0.86, 1.24, 1.38, 1.64 and 2.25 µm) and three IR bands (8.6,

11, and 12 µm) in the daytime RF model and using the three

IR bands and surface temperatures in the all-day RF model

achieved great performances for all surface types.

The cloud mask and thermodynamic-phase classifications

from the two RF models were validated using the selected

aerosol-free, homogeneous samples in 2017. For daytime

cloud mask comparisons over all surface types, the RF day-

time model, with a high TPR (0.93 and higher) and low

FPR (0.07 and lower), performs best among all models eval-

uated, including MODIS MYD35 and MODIS and VIIRS

CLDMSK products. The RF all-day model works fairly well

and is comparable to other products for all surface types,

even in daytime when all other products use shortwave ob-

servations and it does not. For the nighttime cloud mask, the

RF all-day model has the best performance over all products,

demonstrating the strong capability of ML-based algorithms

for capturing hidden spectral features of clear and cloudy

pixels. All nighttime products perform slightly more weakly

at snow and ice regions. The decline is likely explained by the

lack of SWIR bands and the small thermal contrast between

the clouds and the surface during the summer nighttime in

polar regions. In this case, the ML-based algorithms are not

able to compensate for the missing physical signatures.

For the daytime cloud thermodynamic-phase comparison,

we showed that the two RF models are comparable with the

MODIS MYD06 OP-phase product and are among the top

three phase algorithms for all surface types. The MODIS

MYD06 IR phase, VIIRS and MODIS CLDPROP OP phase,

and CT phase have either relatively low TPRs or high FPRs

over certain surface types, such as shrubland, snow and

ice, and barren regions. For nighttime clouds, the RF all-

day model works better than both CLDPROP CT phase and

MYD06 IR phase for all surface types.

In this study, we have demonstrated the advantages of us-

ing ML-based (specifically, RF) models in cloud masking

and thermodynamic-phase detection. In contrast with hand-

tuned methods, the RF models can be efficiently trained and

tested for different surface types and using different input

variables. Meanwhile, for aerosol-free, homogeneous sam-

ples, the two RF models show better and more consistent

performance over different regions and surface types in com-

parison with existing VIIRS and MODIS datasets. For more

complicated scenes, RF probabilities are more informative

than binary mask and phase designations. However, further

investigation is required to understand how to use probabili-

ties more quantitatively.

In the future, more spectral bands and/or spatial patterns

can be used to improve pixel classification skills, such as

including more pixel types (e.g., dust and smoke). It is

convenient to apply RF models or other similar ML-based

models to other instruments similar to VIIRS with the help

of active instruments. Most importantly, cloud mask and

thermodynamic-phase products from well-trained RF mod-

els could be used to train other instruments in the absence

of active sensors. For example, the current RF-model-based

VIIRS cloud mask and phase data could be used as refer-

ence to train ML-based models for other instruments, such

as MODIS, ABI, AHI, SEVIRI, and airborne instruments.

It remains a goal for future work to determine how such an

approach might lead to improved consistency in cloud prop-

erties derived from different satellite imagers.

It is also important to emphasize that the model perfor-

mance is highly reliant on the quality of the training samples

Atmos. Meas. Tech., 13, 2257–2277, 2020 www.atmos-meas-tech.net/13/2257/2020/



C. Wang et al.: A machine-learning-based cloud detection and thermodynamic phase 2275

and reference labels. For example, in this study, more than

98 % of the training data have a VZA of less than 50◦, lead-

ing to more uncertain cloud-phase fractions at large VZAs.

Using synthetic training data generated with reliable radia-

tive transfer models could be a possible way to mitigate this

artifact.

Data availability. The Collection 6.1 Aqua/MODIS cloud

mask (https://doi.org/10.5067/MODIS/MYD35_L2.061,

Ackerman et al., 2017) and cloud thermodynamic phase

(https://doi.org/10.5067/MODIS/MYD06_L2.061, Platnick et

al., 2015) and the version 1.1 MODIS and VIIRS Continu-

ity cloud mask (https://doi.org/10.5067/MODIS/CLDMSK_

L2_MODIS_Aqua.001, Ackerman and Frey, 2019a, and

https://doi.org/10.5067/VIIRS/CLDMSK_L2_VIIRS_SNPP.001,

Ackerman and Frey, 2019b) and cloud thermody-

namic phase (https://doi.org/10.5067/MODIS/CLDPROP_

L2_MODIS_Aqua.011, Platnick et al., 2017c and

https://doi.org/10.5067/VIIRS/CLDPROP_L2_VIIRS_SNPP.011,

Platnick et al., 2017b) are publicly available from NASA and

the Atmosphere Archive and Distribution System (LAADS)

(https://ladsweb.modaps.eosdis.nasa.gov/search/). The CALIPSO

level 2 cloud- and aerosol-layer products (version 4) are pub-

licly available from the Atmospheric Science Data Center

(https://opendap.larc.nasa.gov/opendap/CALIPSO/contents.html).
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