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Abstract
Because different patients may respond quite differently to the same drug or treatment, there is 
increasing interest in discovering individualized treatment rules. In particular, there is an emerging 
need to find optimal individualized treatment rules which would lead to the “best” clinical 
outcome. In this paper, we propose a new class of loss functions and estimators based on robust 
regression to estimate the optimal individualized treatment rules. Compared to existing estimation 
methods in the literature, the new estimators are novel and advantageous in the following aspects: 
first, they are robust against skewed, heterogeneous, heavy-tailed errors or outliers in data; second, 
they are robust against a misspecification of the baseline function; third, under some general 
situations, the new estimator coupled with the pinball loss approximately maximizes the 
outcome’s conditional quantile instead of the conditional mean, which leads to a more robust 
optimal individualized treatment rule than traditional mean-based estimators. Consistency and 
asymptotic normality of the proposed estimators are established. Their empirical performance is 
demonstrated via extensive simulation studies and an analysis of an AIDS data set.
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1 | INTRODUCTION
Given the same drug or treatment, different patients may respond quite differently. Factors 
causing individual variability in drug response are multi-fold and complex. This has raised 
increasing interests of personalized medicine, where customized medicine or treatment is 
recommended to each individual according to his/her characteristics, including genetic, 
physiological, demographic, environmental, and other clinical information. The rule that is 
applied in personalized medicine to match each patient with a target treatment is called the 
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individualized treatment rule. Our goal is to find the “optimal” rule, which if followed by the 
whole patient population would lead to the “best” clinical outcome of interest.

Q-learning1,2 and A-learning3,4 are two main approaches to finding optimal individualized 
treatment rules based on clinical trials or observational data. Q-learning is based on posing a 
regression model to estimate the conditional expectation of the outcome at each treatment-
decision time point, and then applying a backward recursive procedure to fit the model. A-
learning, on the other hand, only requires modeling the contrast function of the treatments at 
each treatment-decision time point, and it is therefore more flexible and robust to model 
misspecification of the baseline function. See Schulte et al5 for a complete review and 
comparison of these two methods under various scenarios. Q- and A-learning have good 
performance when the model is correctly specified but they are sensitive to model 
misspecification. To overcome this shortcoming, several “direct” methods6,7 have been 
proposed, which maximize value functions directly instead of modeling the conditional 
mean.

Most of the existing estimation methods for optimal individualized treatment rules, 
including Q-learning and A-learning, belong to mean regression methods as they estimate 
the optimal estimator by maximizing expected outcomes. In the case of a single decision 
point, Q-learning is equivalent to the least-squares regression. Least-squares estimates are 
optimal if the errors are independent and identically distributed normal random variables. 
However, skewed, heavy-tailed, heteroscedastic errors or outliers of the response are 
frequently encountered in practice. In such situations, efficiency of the least square estimates 
is impaired. One extreme example is that when the response takes Cauchy errors, neither Q-
learning nor A-learning can consistently estimate the optimal individualized treatment rule. 
For example, in AIDS Clinical Trials Group Protocol 175 (ACTG175) data,8 HIV-infected 
subjects were randomized to four regimes with equal probabilities, and our objective is to 
find the optimal individualized treatment rule for each patient based on his/her age, weight, 
race, gender, and some other baseline measurements. The response, CD4 count post 
treatment assignment, has skewed heteroscedastic errors, which reduces efficiency of 
classical Q- and A-learning. Therefore, a method to estimate an optimal individualized 
treatment rule which is robust against skewed, heavy-tailed, heteroscedastic errors or outliers 
is highly valuable. To achieve this goal, we propose and investigate a new framework of 
constructing the optimal individualized treatment rule based on the conditional median or 
quantiles of responses given covariates rather than based on average effects.

In the following, we first use a simple example to illustrate that a quantile-based treatment 
rule can be more preferable than mean-based rules. We use higher value of response Y to 
indicate more favorable outcomes. Figure 1 plots the conditional density values of Y under 
two treatments, A and B, given a binary covariate X, such as gender: male and female. 
Under the comparison based on conditional means, A and B are exactly equivalent. 
However, conditional quantiles provide us more insight. For the male group, the conditional 
distribution of the response given treatment B is a log-normal and skewed to the right. 
Therefore, treatment B is less favorable when either 50% or 25% conditional quantiles are 
considered. For the female group, the conditional distribution of the response given 
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treatment A is a standard normal while a Cauchy distribution given treatment B. Therefore, 
if we make a comparison based on 25% conditional quantile, treatment A is more favorable.

Optimal individualized treatment rules based on quantiles have been previously studied in 
Zhang et al,9 Linn et al,10 and Wang et al.11 These papers focus on estimating optimal 
individualized treatment rules that maximize the marginal quantile of the potential outcome. 
However, our method is fundamentally different from these works by modeling the 
conditional quantiles of the response and maximizing the conditional quantile of the 
potential outcome. Our method is more closely related with standard quantile regression,12 

and it is more favorable in terms of estimation efficiency compared with the direct search 
methods that maximize the marginal quantile of the potential outcome.

In this paper, we propose a general framework for estimating the optimal individualized 
treatment rule based on robust regression. Our work focuses on homoscedastic treatment 
effect cases, i.e. the error term in the considered quantile regression is assumed to be 
conditionally independent of treatment given covariates. Under such settings, our model can 
still accommodate heteroscedastic responses; however, the corresponding optimal 
individualized treatment rules are the same across all quantile levels. Three types of loss-
based learning methods will be considered and studied under the new estimation 
framework : quantile regression, regression based on Huber’s loss, and e-insensitive loss. 
The proposed methodologies have the following desired features. First, the new treatment 
rule obtained by maximizing the conditional quantile is suitable for data with skewed, 
heavytailed errors or outliers. Second, the proposed estimator requires modeling the contrast 
function only, and is therefore robust against misspecification of the baseline function as in 
A-learning. Third, empirical results from our comprehensive numerical studies suggest 
favorable performance of the proposed robust regression estimator over traditional mean-
based methods.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed robust 
estimation procedure for the optimal individualized treatment rule and discuss its 
connections with and differences from existing methods. In Section 3, we establish 
asymptotic properties of the proposed estimators, including consistency and asymptotic 
normality. Simulation studies are conducted to assess the finite sample performance of the 
proposed estimators in Section 4, followed by its application to the AIDS ACTG175 data in 
Section 5. Concluding remarks are given in Section 6. All the technical proofs are provided 
in the Supplementary Appendix A.

2 | NEW OPTIMAL TREATMENT ESTIMATION FRAMEWORK: ROBUST 
REGRESSION
2.1 | Notation and Assumptions

Consider a single stage study with two treatments. For each patient i, i = 1,…,n, the 
observed data are denoted by (Xi, Ai, Yi), where Xi ∈ 𝒳 ⊂ ℝp denotes the baseline 

covariates, Ai ∈ 𝒜 = 0, 1  denotes the treatment assigned to the patient, and Yi is the real-

valued response, which is coded so that higher values indicate more favorable clinical 

Xiao et al. Page 3

Stat Med. Author manuscript; available in PMC 2019 May 20.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



outcomes. Let Y i*(a) denote the potential outcome that might be observed for individual i had 

s/he received treatment a. Define the propensity score π(x) = pr Ai = 1|Xi = x . Following 

Rubin,13 we make the following assumptions: (i) stable unit treatment value assumption: 
Y i = Y i*(1)Ai + Y i*(0) 1 − Ai ; (ii) strong ignorability assumption: Ai ⊥ Y i*(a)

a ∈ 𝒜 Xi; and (iii) 

positivity assumption: 0 < π(x) < 1, ∀x ∈ 𝒳 . We further assume that the the propensity score 
π(x) is either known (usually true in randomized clinical trials) or can be correctly specified 
and consistently estimated from the data.

2.2 | New Proposal: Robust Regression

One commonly used mean-based method for estimating optimal individualized treatment 
rules is Q-learning, which aims to model the Q-function Q(x, a) ≜ E Y i*(a) |Xi = x . Under 

assumptions (i)-(ii), one can show that E Y i*(a) |Xi = x = E Y i |Xi = x, Ai = a  and the 

associated optimal individualized treatment rule is defined as 
gμ

opt(x) = argmax a ∈ 𝒜Q(x, a) = argmax a ∈ 𝒜E(Y |X = x, A = a) . In addition, the value 

function of a mean-based treatment rule g is defined as 
Vμ(g) = EX[Q X, g(X) ] and gμ

opt = argmax gVμ(g) .

In practice, the response variable Y may have a skewed, heavy-tailed, or heteroscedastic 
distribution. It is well known that the mean-based estimation may fail to provide an efficient 
and reliable estimator in such situations. This motivates us to develop robust regression 
techniques for estimating optimal individualized treatment rules. Define the τth conditional 

quantile of Y i*(a) given Xi = x as Qτ(x, a) ≜ inf y:F
Yi*(a) Xi

(y | x) ≥ τ , where F
Yi*(a) Xi

(y | x) =

pr Y i*(a) ≤ y |Xi = x .

Under assumptions (i)-(ii), we have 
F
Yi*(a) Xi

(y | x) = F
Yi Xi, Ai

(y | x, a) = pr Y i ≤ y |Xi = x, Ai = a . Then the conditional quantile-

based optimal individualized treatment rule is defined as

gτ
opt(x) = argmaxa ∈ 𝒜Qτ(x, a), τ ∈ (0, 1) .

For a conditional quantile-based treatment rule g, the value function is defined as 
Vτ(g) = EX Qτ X, g(X)  and gτ

opt = argmaxgVτ(g) . It is noted that our defined value function 

is different from those recently studied in the literature.9,10,11 Specifically, they considered 
the marginal cumulative distribution function of the potential outcome, 
FYi*(a)(y) = pr Y i*(a) ≤y} . The marginal quantile-based value function is defined as 

Vτ(g) = inf y:FYi*(g)(y) ≥ τ , where FYi*(g)(y) = EX pr Y i* g Xi ≤ y |Xi , and the optimal 

individualized treatment rule which maximizes the τth marginal quantile gτ
Opt−mar is defined 
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as gτ
opt−mar = argmax gVτ(g) . In contrast to the mean-based methods for optimal treatment 

decision, where the optimal individualized treatment rules are usually the same based on the 
conditional mean or marginal mean, the maximizers of Vτ(g) and Vτ(g) are generally different 

in the context of quantile regression. We provide two toy examples in the Supplementary 
Appendix E to demonstrate the differences and show that the individualized treatment rule 
that maximizes the marginal quantile may not be the optimal choice for an individual 
patient. For an individual, the ITR maximizing the conditional quantile may be more 
desirable comparing with the ITR maximizing the marginal quantile, because an individual 
only cares how well the ITR does given his/her own X, but doesn’t care how well the ITR 
does for the whole population. However, the ITR that maximizes the marginal quantile has 
its own merits. First, the ITR maximizing the marginal quantile can be estimated in a model-
free way, for example, as studied in Wang et al11, but the ITR maximizing the conditional 
quantile usually can not, because it requires a model for the conditional quantile function 
Qτ(x, a) . In this sense, the ITR maximizing the marginal quantile is more robust to model 

misspecification. Second, because the estimated value function based on the marginal 
quantile is a measure for the whole population and nonparametric in nature, it can be used to 
compare the effectiveness of different ITRs, including the ITR maximizing the conditional 
quantile.

To connect the conditional quantile-based optimal individualized treatment rule with the 
mean-based optimal individualized treatment rule, we consider the following model,

Y i = h0 Xi + AiC Xi; β0 + ϵi, (1)

where h0( ⋅ ) is an unspecified baseline function, C ⋅ ; β0  is the contrast function with a 

correctly specified parametric form, and ϵi is the error term which satisfies the conditional 

independence error assumption ϵi ⊥ Ai Xi . Note that the error term defined in (1) can be very 

general. For example, we can take ϵi = ∑ j = 1
K σ j Xi ei j for some K ≥ 1, where σ j( ⋅ )′s are 

arbitrary positive functions and ei j ⊥ Ai, Xi  for all j = 1,…, K. This class of error 

representation can be used to model skewness, heavy tailedness, and heteroscedasticity. 
Under the assumed model and conditional independence error assumptions, we have

Q Xi, Ai = h0 Xi + AiC Xi; β0 + μϵ Xi ;

Qτ Xi, Ai = h0 Xi + AiC Xi; β0 + Fϵ
−1 Xi; τ ,

where μϵ Xi and Fe
−1 Xi; τ  denote the conditional mean and the conditional τth quantile of ϵi

given Xi, respectively. Therefore, the mean-based and conditional quantile-based optimal 

individualized treatment rules are both given by gμ
opt(x) = gτ

opt(x) = g0
opt(x) = I C x; β0 > 0
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for any τ ∈ (0, 1) . Note that model (1) is not a standard quantile regression model since we 
assume a special error structure. The reason we consider such a model is to make a fair 
comparison between the mean-based and quantile-based optimal individualized treatment 
rules because they are the same under the assumed model. In the next Section, we extend 
some theoretical properties of the proposed estimators to a general quantile regression 
model.

We propose to estimate (β, γ) by minimizing

Ln(β, γ) = 1
n ∑
i = 1

n
M Y i − φ Xi; γ − Ai − π Xi C Xi; β , (2)

where M( ⋅ ) is a nonnegative convex function with the minimum achieved at 0, and φ(X; γ) is 
a posited parametric function for h0(X) + π(X)C X; β0 , but is not required to be correctly 

specified, such as a linear function. Denote the minimizer of (2) by βM
R , γM

R . The estimated 

optimal individualized treatment rule is then gM
R (x) ≜ I C x; βM

R > 0 . In the following, we 

refer the robust regression with loss function M( ⋅ ) as RR(M)-learning. In this article, we 
consider the following three types of loss functions, i.e., the pinball loss

M(x) = ρτ(x) ≜ (τ − 1)x, if x < 0
τx, if x ≥ 0

where 0 < τ < 1, the Huber loss

M(x) = Hα(x) ≜
0.5x2, if x < α

α x − 0.5α2, if x ≥ α

for some α > 0, and the ϵ-insensitive loss

M(x) = Jϵ(x) ≜ max(0, x − ϵ)

for some ϵ > 0.

The pinball loss is frequently applied to quantile regression, 12 and the Huber and ϵ-
insensitive losses are robust against heavy tailed errors or outliers. We will prove in the 
following section that under model (1) and the conditional independence error assumption, 
RR(M)-learning methods with these three loss functions all consistently estimate g0

opt which 

maximizes both the mean-based value and the conditional quantile-based value. When the 
conditional independence error assumption is not satisfied, it is hard to characterize the 
optimal individualized treatment rules obtained by RR(M)-learning with the Huber and ϵ-
insensitive losses. However, for the RR(M)-learning with the pinball loss, we can prove that 
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the solution approximately maximizes the τth conditional quantile of the potential outcome. 
A dramatic different feature of pinball loss, Huber loss and ϵ-insensitive loss, when 
compared with the square loss, is that they penalize large deviances linearly instead of 
quadratically. This property makes them more robust when dealing with responses with non-
normal type of errors. In next two sections, we will study theoretical and numerical 
properties of each of the three estimators.

3 | ASYMPTOTIC PROPERTIES
For simplicity of presentation, throughout this section we assume that the propensity score 
π(x) is known, which is usually true in randomized clinical trials. However, the established 
asymptotic results can be easily extended to the case when the posited model for the 
propensity score π(x) is correctly specified and consistently estimated from data.

3.1 | Consistency of Robust Regression: Pinball Loss

We first establish consistency of the robust regression estimator obtained from the pinball 
loss in the following Theorem.

Theorem 1. Under regularity conditions (C1)-(C8) in the Supplementary Appendix A, βρ(τ)
R

converges in probability to β0 for any τ ∈ (0, 1), where βρ(τ)
R  is the solution to (2) with 

M(x) = ρτ(x) .

Remark 1. The proof of Theorem 1 is given in the Supplementary Appendix A. Theorem 1 
does not require the finiteness of E(Y), and therefore it can be applied to the case when ϵi
follows a Cauchy distribution. In addition, the conditional independence error assumption 
(C2), i.e. ϵi ⊥ Ai Xi, can be tested by various conditional independence tests developed in the 

literature, for example, see the Reference List.14,15,16,17,18 In Section 5, we will demonstrate 
usefulness of the test by applying the kernel-based conditional independence test (KCI-test).
18 Since the KCI-test does not assume functional forms among variables, it suits our need.

When the conditional independence error assumption does not hold, βρ(τ)
R  may no longer be 

a consistent estimator of β0 . One intuitive explanation for this is that the error term ϵ may 

contain extra information with respect to the interaction between A and X. In fact, a general 

result which can be derived for this case is that, βρ(τ)
R , γ ρ(τ)

R  minimizes a weighed mean-

square error loss function with the specification error.19,20

To do this, we consider a general quantile regression model. Specifically, we assume the 
conditional τth quantile of Y given A and X is given by 
Qτ(X, A) = h0, τ(X) + AC X; β0(τ) , where h0, τ(x) is an unspecified baseline function and 

C X; β0(τ)  is the contrast function with respect to the τth quantile. Note that we use β0(τ)

instead of β0 to emphasize that the true β may vary with respect to τ . Define 

Q(β, γ) = φ(X; γ) + A − π(X) C(X; β) . Let
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β(τ), γ(τ) = argmin
β, γ

E ρτ Y − Q(β, γ) − ρτ Y − Q β′, γ′ , (3)

where β′, γ′  is any fixed point in the parameter space ℬ × Γ . Define the specification error 
as Δτ(X, A; β, γ) ≜ Q(β, γ) − Qτ(X, A) . Moreover, define the quantile-specific residual as 

ϵτ ≜ Y − Qτ(X, A) with the conditional density function f ϵτ
( ⋅ |X, A) . Then we have the 

following approximation theorem.

Theorem 2. Suppose that (i) the conditional density f Y(y |X, A) exists a.s.; (ii) 

E Qτ(X, A) and E Δτ
2(X, A; β, γ)  are finite; and (iii) β(τ), γ(τ)  uniquely solves (3). Then

β(τ), γ(τ) = argmin
β, γ

E wτ(X, A; β, γ)Δτ
2(X, A; β, γ) ,

where

wτ(X, A; β, γ) = ∫0
1

(1 − u) f ϵr
uΔτ(X, A; β, γ) X, A du .

Remark 2. The proof of Theorem 2 follows that of Theorem 1 in Angrist et al19 and is thus 
omitted for brevity. Theorem 2 shows that Q β(τ), γ(τ)  is a weighted least square 

approximation to Qτ(X, A) . In other words, φ X; γ(τ) + A − π(X) C X; β(τ)  is close to 

h0, τ(X) + AC X; β0(τ) . Therefore, even though β(τ) and β0(τ) are not exactly the same, the 

difference between them is small in general. This coupled with the fact that βρ(τ)
R  converges 

in probability to β(τ) (proved in Theorem 4), leads to the finding that the estimated optimal 

individualized treatment rule gρ(τ)
R (x) ≜ I C x; βρ(τ)

R > 0  maximizes the τth conditional 

quantile approximately. This observation is justified numerically later in Supplementary 
Appendix B. When there exists γ0 ∈ Γ such that 

φ x; γ0 = h0, τ(x) + π(x)C x; β0(τ) , we have β(τ) = β0(τ) .

3.2 | Consistency of Robust Regression: Other Losses

Under model (1) and the assumption ϵ ⊥ A |X, similar consistency results can be established 
for Huber loss and the ϵ-insensitive loss, as stated in Theorem 3.

Theorem 3. Under regularity conditions (C1)-(C8) given in the Supplementary Appendix A, 
we have

(a) βH(α)
R  converges in probability to β0 for all α > 0, where βH(α)

R  is the solution of 

(2) with M(x) = Hα(x);
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(b) βJ(ϵ)
R  converges in probability to β0 for all ϵ > 0, where βJ(ϵ)

R  is the solution of (2) 

with M(x) = Jϵ(x) .

3.3 | Asymptotic Normality: Pinball Loss

Without loss of generality, in this section we assume both functions φ(X; γ) and C(X; β) take a 
linear form: 

φ(X; γ) = XTγ and C(X; β) = XTβ, where X = 1, XT T . Let β(τ) = βρ(τ)
R and γ (τ) = γ ρ(τ)

R . Define 

W = [A − π(x)X~T, X~T]T, θ(τ) = β(τ)T, γ(τ)T T, θ̂ (τ) = β̂(τ)T, γ̂ (τ)T
T

and J(τ) ≜ E

[ f Y WTθ(τ) ∣ X, A WWT]

 Under the 

following regularity conditions, similar to those assumed in Angrist et al19 and Lee,20 we 
establish the asymptotic normality of θ (τ) in Theorem 4.

(B1) Y i, Xi, Ai, ϵi , i = 1, …, n  are independent and identically distributed random 

variables;

(B2) The conditional density function f y( y | X = x , A = a) exists, and it is bounded 

and uniformly continuous in y and x;

(B3) J(τ) is positive definite for all τ ∈ (0, 1), where θ(τ) is uniquely defined in (3);

(B4) E X 2 + ϵ < ∞ for some ϵ > 0.

Theorem 4. Suppose regularity conditions (B1)-(B4) hold. Then, we have

1. (Uniform Consistency) supτ θ (τ) − θ(τ) = op(1);

2. (Asymptotic Normality) J( ⋅ ) n θ ( ⋅ ) − θ( ⋅ )  converges in distribution to a zero 

mean Gaussian process with covariance function Σ τ, τ′  defined as

Σ τ, τ′ = E τ − I Y < WTθ(τ) τ′ − I Y < WTθ τ′ WWT .

The proof of Theorem 4 is similar to Angrist et al19 and so omitted here. The asymptotic 
covariance matrix of θ (τ) can be estimated by either a bootstrap procedure21 or a 
nonparametric kernel method.19 Here, we adopt the bootstrap approach to estimate the 
asymptotic covariance matrix in Section 5. Under model (1), the results of Theorem 4 can be 
further simplified, as given in Theorem 5.

Theorem 5. Assume conditions of Theorem 4 hold. Under model (1) with the conditional 
independence error assumption, we have

1. supτ β(τ) − β0 = op(1);

2. n β(τ) − β0  converges in distribution to N 0, J11
−1(τ)Σ11(τ, τ)J11

−1(τ) , where

Xiao et al. Page 9

Stat Med. Author manuscript; available in PMC 2019 May 20.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



J11(τ) = E f ϵ XTγ(τ) − φ0(X) X π(X) 1 − π(X) XXT ,

Σ11(τ, τ) = E τ − I ϵ < XTγ(τ) − φ0(X) 2
π(X) 1 − π(X) XXT .

Furthermore, we have Σ11(τ, τ) ≤ min τ2, (1 − τ)2 + 0.25 E π(X) 1 − π(X) XXT .

The proof of Theorem 5 is given in the Supplementary Appendix A. When compared with 
the mean-based estimator, the established asymptotic distribution of β(τ) yields interesting 

insights. Specifically, the mean-based estimators βLS
A and γLS

A  are the minimizer of

1
n ∑
i = 1

n
Yi − φ Xi; γ − Ai − π Xi C Xi; β

2,

and the estimated optimal individualized treatment rule is then gLS
A (x) ≜ I C x; βLS

A > 0 . We 

refer to this method as the least square A-learning (lsA-learning). Under model (1) with the 
conditional independence error assumption ϵ ⊥ A |X and the assumption that E(ϵ |X, A) exists, 

or more general the condition E(Y |X, A) = h0(X) + AC X, β0 , it can be shown that βLS
A , γLS

A

converges in probability to β0, γ* = argmin(β, γ)E[Y − φ(X; γ) − A − π(X) C(X, β)]2, and gLS
A

is a consistent estimator of gμ
opt . The asymptotic normality of βLS

A  is summarized in Theorem 

6. Its proof is omitted, and readers are referred to Lu et al.22

Theorem 6. Under regularity conditions (A1)-(A4) of Lu et al22, we have n βLS
A − β0

converges in distribution to N 0,U11
−1 Ω11 U11

−1 , where U11 = E π(X) 1 − π(X) XXT  and

Ω11 = E h0(X) + π(X)C X; β0 − φ X; γ* + ϵ 2π(X) 1 − π(X) XXT .

Remark 3. When the family of functions φ(x; γ), γ ∈ Γ  cannot well approximate the 

function h0(x) + π(x)C x; β0 , the term Ω11 in the asymptotic variance of βLS
A  may explode, 

which makes βLS
A  less efficient than β(τ) .

In summary, the robust regression with the pinball loss has nice theoretical properties and 
interpretation even when the conditional independence error assumption does not hold. 
However, we do not have such good properties for robust regression with Huber and the e-
insensitive loss. Therefore we recommend the use of the pinball loss in practice.
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4 | NUMERICAL RESULTS: SIMULATION STUDIES
We consider the following two models with p = 3.

• Model I:

Yi = 1 + Xi1 − Xi2 Xi1 + Xi3 + Ai − π Xi β0
TXi + σ Xi ϵi,

where Xi = Xi1, Xi2, Xi3
T are multivariate normal with mean zero, variance one, and 

Corr Xi j, Xik = 0.5| j − k|, Xi = 1, Xi
T T and β0 = (0, 1, − 1, 1)T .

• Model II:

Yi = γ0
TXi + Ai − π Xi β0

TXi + σ Xi ϵi,

where γ0
T = (0.5, 4, 1, − 3), and Xi, Xi and β0 are the same as Model I.

The propensity score model π( ⋅ ) is assumed known. Here, we consider both the constant 
case π Xi = 0.5 and the non-constant case π Xi = logit Xi1 − Xi2 . For the non-constant 

case, it is estimated from the data based on the standard logistic regression. In addition, we 
consider two different σ Xi  functions, i.e., the homogeneous case with σ Xi = 1, and the 

heterogeneous case with σ Xi = 0.5 + Xi1 − Xi2
2 . In our implementation, we consider linear 

functions for both the baseline mean and the contrast function, i.e., 
φ(X; γ) = γTX and C(X; β) = βTX . We report the results of Model I and II with the constant 
propensity score in Tables 1 and 2 , respectively. The corresponding results for the non-
constant propensity score are reported in Tables 3 and 4 , respectively.

We make comparisons among four methods: lsA-learning, robust regression with 
ρ0.5 RR ρ0.5 , robust regression with ρ0.25 RR ρ0.25 , and robust regression with Huber loss 

(RR(H)). The error terms ϵi are standard independent and identically distribute normal, log-

normal or Cauchy distribution, and they are independent with both A and X. It is easy to 
check that the conditional independence error assumption ϵ ⊥ A |X is satisfied, and 

gμ
opt = gτ

opt = I β0
TXi > 0 . We consider four different sample sizes 100, 200,400 and 800. To 

evaluate the performance of each method, we compare three groups of criteria: (1) the mean 

squared error β − β0 2
2(MSE), whichh measures the distance between estimated parameters 

and the true parameter β0; (2) the percentage of making correct decisions (PCD), which are 

calculated based on a validation set with 10,000 observations. Specifically, we take the 

formula 100 * 1 − ∑i = 1
NT I βTXi > 0 − I β0

TXi > 0 /NT  with NT = 10000; (3) the 

differences of Vμ(g) and V0.5(g) between the optimal individualized treatment rule and the 
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estimated individualized treatment rule, where 
δμ = Vμ gμ

opt − Vμ(g) and δτ = Vτ gτ
opt − Vτ(g), ∀τ ∈ (0, 1) .Vμ(g) and Vτ(g) (defined in Section 

2.2) are estimated from the validation set as well, and they evaluate the overall performance 
of a treatment regime g, where the former one focuses on the response’s mean and the latter 
one focuses on the response’s conditional τth quantile. Under our setting, δμ = δ0.5 = δ0.25
when they all exists. Thus, only δ0.5 is reported. For each scenario, we run 1,000 replications 

and report the sample average in the tables. We further report the standard errors of MSE to 
evaluate the variability of the corresponding statistics.

The simulation results with the constant and non-constant propensity scores are similar, so 
we focus on the result based on constant propensity score. When comparing the performance 
of the methods under homogeneous and heterogeneous errors, we observe that lsA-learning 
works much worse under the heterogeneous errors, while all the other methods are generally 
less affected by the heterogeneity of the errors. When the baseline function is misspecified 
as in Model I, under the homogeneous normal errors, RR(H) works slightly better than lsA-
learning, while RR ρ0.25  works the worst. However, the difference in general is small. For 

the homogeneous log-normal errors, again RR(H) works the best, while RR ρ0.5  and 

RR ρ0.25  have similar performance, and lsA-learning works the worst. Under the 

homogeneous Cauchy errors, RR ρ0.5  works the best and RR(H) has a similar performance. 

The lsA-learning is no longer consistent, and its MSE explodes. The actual numbers are too 
large and thus we leave as blank in Tables 1 and 2 . Furthermore, with the Cauchy errors, the 
PCD of lsA-learning is less than 60% under all scenarios, while other methods’ PCD can be 
as high as 90%. When the baseline function is correctly specified as in Model II, under 
homogeneous normal errors, lsA-learning performs the best. However, in this case RR(H) 
also has a very close performance, and thus makes no difference from a practical point of 
view to choose between these two methods. The results of Model II under other cases lead to 
similar conclusions as Model I.

We have also examined the performance of the proposed estimator RR ρτ  with extreme τ

values (τ = 0.1 or 0.9) for Model I with the constant propensity score. The results are 
provided in the Supplementary Appendix C. We find that the RR ρτ  with the extreme τ value 

works much worse than that with the τ value close to 0.5. Thus, we do not recommend using 
the pinball loss with the extreme τ value in practice. A reasonable range of τ may be from 
0.2 to 0.8.

The overall conclusion is that, under the conditional independence error assumption, the 
proposed robust regression method RR(M) is more efficient than mean-based method lsA-
learning in the circumstances when observations have skewed, heterogeneous, or heavy-
tailed errors. On the other hand, when the error terms indeed follows independent and 
identically distributed normal distribution, the loss of efficiency of RR(M) is not significant. 
This is especially true when Huber loss is applied.
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In addition, we have done some simulations under the situation that the error term does 
interacts with the treatment given covariates, and thus the conditional independence error 
assumption does not hold. The simulation settings and the associated results are provided in 

Supplementary Appendix B. We find that gρ(τ)
R ≜ I C x; βρ(τ)

R > 0  in general approximates 

the unknown optimal individualized treatment rule gτ
opt even when the conditional 

independence error assumption ϵ ⊥ A |X does not hold.

Last, we have compared our proposed method with the method of Wang et al,11 which 
maximizes the marginal quantile by directly optimizing an estimate of the marginal quantile-

based value function Vτ(g) = inf y:FYi*(g)(y) ≥ τ , and does not require to specify an outcome 

regression model. We find that, when the conditional independence error assumption is 
satisfied, both methods target on the same optimal individualized treatment rule, while our 
robust regression method generally gives better individualized treatment rules than Wang et 
al’s method in terms of PCD and value, especially when the sample size is relatively large 
(n ≥ 200) . This is expected since our robust regression method make more use of the model 
information. When the conditional independence error assumption is not satisfied, the 
optimal individualized treatment rules that maximize the conditional quantile and that 
maximize the marginal quantile are different, and each method maximizes their own target 
value function. The simulation results and related discussions are provided in the 
Supplementary Appendix D.

5 | APPLICATION TO AN AIDS STUDY
We illustrate the proposed robust regression methods to a data set from AIDS Clinical Trials 
Group Protocol 175 (ACTG175), which has been previously studied by various authors.
23,24,25,22 In the study, 2139 HIV-infected subjects were randomized to four different 
treatment groups with equal proportions, and the treatment groups are zidovudine (ZDV) 
monotherapy, ZDV + didanosine (ddI), ZDV + zalcitabine, and ddI monotherapy. Following 
Lu et al,22 we choose CD4 count (cells/mm3) at 20 ± 5 weeks post-baseline as the primary 
continuous outcome Y, and include five continuous covariates and seven binary covariates as 
our covariates. They are: 1. age (years), 2. weight (kg), 3. karnof=Karnofsky score (scale of 
0–100), 4. cd40=CD4 count (cells/mm3) at baseline, 5. cd80=CD8 count (cells/mm3) at 
baseline, 6. hemophilia=hemophilia (0=no, 1=yes), 7. homo-sexuality=homosexual activity 
(0=no, 1=yes), 8. drugs=history of intravenous drug use (0=no, 1=yes), 9. race (0=white, 
1=non-white), 10. gender (0=female, 1=male), 11. Str2= antiretroviral history (0=naive, 
1=experienced), and 12. sympton=symptomatic status (0=asymptomatic, 1=symptomatic). 
For brevity, we only compare the treatment ZDV + didanosine (ddI) (A = 1) and ZDV + 
zalcitabine (A = 0), and restrict our samples to the subjects receiving these two treatments. 
Thus, the propensity scores π Xi ≡ 0.5 in our restricted samples as the patients are assigned 

into one of two treatments with equal probability.

In our analysis, we assume linear models for both the baseline and the contrast functions. 
For interpretability, we keep the response Y (the CD4 count) at its original scale, which is 
also consistent with the way clinicians think about the outcome in practice. 24 We draw the 
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scatter plot of response Y against age, which suggests some skewness and heterogeneity. 
With some preliminary analysis (fitting a full model with lsA-learning and the proposed 
robust regression methods, we find that only covariates age, homosexuality, and race may 
possibly interact with the treatment. So in our final model, only these three covariates are 
included in the contrast function, while we keep all of the twelve covariates in the baseline 
function. The estimated coefficients associated with their corresponding standard errors and 
p-values are given in Table 5 , where the standard errors are estimated with 1,000 bootstrap 
samples (parametric bootstrap) and p-values are calculated with the normal approximation. 
Only coefficients included in the contrast function are shown.

From Table 5 , we make the following observations. First, lsA-learning and robust regression 
with the pinball loss and the Huber loss have estimates with the same signs for all the 
covariates. Second, the estimated coefficients are distinguishable across different methods. 
Third, the covairiate homosexuality is significant under lsA-learning, but not significant in 
robust regression using either the pinball loss or Huber loss, when the significant level α is 
set to 0.05.

We further estimate the values Vμ(g)  for each method by either the inverse probability 

weighted estimator (IPWE)26 or the augmented inverse probability weighted estimator 
(AIPWE), 27 where

Vμ
IPWE(g) =

∑i = 1
n I Ai = g Xi Yi/p Ai Xi

∑i = 1
n I Ai = g Xi /p Ai Xi

,

Vμ
AlPWE(g) = 1

n ∑
i = 1

n
E Yi Xi, g Xi + 1

n ∑
i = 1

n I Ai = g Xi
p Ai Xi

Yi − E Yi Xi, Ai ,

E Y i |Xi, Ai = φ Xi; γ + Ai − p Ai |Xi C Xi; β , and 

p Ai |Xi ≡ 0.5. Both Vμ
IPWE(g) and Vμ

AIPWE(g) are consistent estimator of value Vμ(g), and their 

asymptotic covariance matrix can also be consistently estimated from the data set.28,29 The 
estimates of Vμ(g) and their corresponding 95% confidence interval of four methods based 

on both ipwe and aipwe are given in Table 6 .

From Table 6 , robust regression with ρ0.5 and Huber loss perform slightly better than lsA-

learning, while robust regression with p025 performs worse than lsA-learning when the 
values Vμ(g)  is estimated based on aipwe. We conduct KCI-test to check the conditional 

independence error assumption ϵ ⊥ A X . For RR ρ0.5 , RR ρ0.25 and RR (H), their p-values 

for the KCI-test are 0.060,0.002 and 0.083, respectively. The conditional independence error 
assumption holds at the significance level of 0.05 for RR ρ0.5 and RR (H), so the estimated 

treatment regime can be thought to maximize Vμ(g) . On the other hand, this assumption 
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doesn’t hold for RR ρ0.25 , since its estimated treatment regime doesn’t maximize Vμ(g),

instead it approximately maximizes V0.25(g) . This partly explains the relatively bad 

performance of RR ρ0.25  in Table 6 . Again, as RR ρ0.5 and RR (H) are more robust against 

heterogeneous, right skewed errors comparing with the least square method, they slightly 
outperform lsA-learning in term of Vμ(g) .

6 | DISCUSSION
In this article, we propose a new general loss-based robust regression framework for 
estimating the optimal individualized treatment rules. These new methods have the desired 
property to be robust against skewed, heterogeneous, heavy-tailed errors and outliers. And 
similar as A-learning, they can produce consistent estimates of the optimal individualized 
treatment rule even when the baseline function is misspecified. However, the consistency of 
the proposed methods does require the key conditional independence error assumption 
ϵ ⊥ A |X, which is somewhat stronger than the conditions needed for consistency of mean-
based estimators. So there are situations when the classical Q- and A-learning are more 
appropriate to apply. Furthermore, we point out in the article that when the pinball loss ρτ is 

chosen and the assumption ϵ ⊥ A |X doesn’t hold, the estimated treatment regime 
approximately maximizes the τth conditional quantile and thus maximizes Vτ(g) . Generally, 

the individualized treatment rules that maximize the conditional mean and the conditional 
quantile can be quite different, especially when the error term has a heavy-tailed distribution 
and the conditional independence error assumption is not satisfied. In these situations, 
maximizing the conditional quantile is usually more robust than maximizing the mean, 
especially when τ is selected to be close to 0.5.

As for the marginal quantile based optimal treatment rule, e.g. Wang et al11, it is possible 
that the conditional-quantile based optimal treatment rule is different at different quantile 
levels, in particular, when the assumption ϵ ⊥ A |X doesn’t hold. If this is the case, it may be 
interesting to develop a method to integrate the optimal treatment rules at different quantile 
levels. For example, we can define an optimal treatment rule to maximize an integrated 
conditional quantiles, i.e.,

gτ
opt(x) = argmaxa ∈ 𝒜∫0

1
Qτ(x, a)w(τ)dτ,

where w(τ) is a prespecified deterministic weight function. The empirical and theoretical 
properties of such an integrated estimator need to be further investigated.

In practice, there are cases when multiple treatment groups need to be compared 
simultaneously. For brevity, we have limited our discussion to two treatment groups in this 
article. However, the proposed methods can be readily extended to multiple cases by just 
replacing equation (2) with the following more complex form,
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Ln(β, γ) = 1
n ∑
i = 1

n
M Yi − φ Xi; γ − ∑

k = 1

K − 1
I Ai = k − πk Xi Ck Xi; βk ,

where A = {1,…, K}, K-th treatment is the baseline treatment, 
πk Xi = pr Ai = k |Xi , and Ck Xi; βk  denotes the contrast function comparing k-th treatment 

and the baseline treatment. All of the theorems in this paper can be easily extended to this 
multiple-treatment setting as well.

When the dimension of prognostic variables is high, regularized regression is needed in 
order to produce parsimonious yet interpretable individualized treatment rules. Essentially 
this is a variable selection problem in the context of M-estimator, which has been previously 
studied in Wu and Liu30 and Li et al,31 etc. This is an interesting topic that needs further 
investigation. Another interesting direction is to extend the current method to the multi-stage 
setting, where sequential decisions are made along the time line.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The distribution functions of the response Y, in a randomized clinical trial with two 
treatments, A and B, for male (two panels on the left) and female (two panels on the right). 
The solid lines with triangle symbol, dashed line, and dotted lines are the conditional mean, 
50% quantile, and 25% quantile functions of Y given the gender and the treatment, 
respectively.

Xiao et al. Page 18

Stat Med. Author manuscript; available in PMC 2019 May 20.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Xiao et al. Page 19

TABLE 1

Simulation results for Model I with the constant propensity score.

Homogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

100 LS 1.32 (0.040) 80.7 1.06 2.36 (0.081) 75.7 1.57 58.4 3.75

p(0.5) 1.44 (0.042) 80.1 1.13 1.73 (0.051) 78.0 1.31 2.69 (0.077) 75.2 1.63

p(0.25) 1.90 (0.057) 78.3 1.34 1.63 (0.051) 79.0 1.29 5.29 (0.168) 70.4 2.25

Huber 1.15 (0.034) 81.9 0.93 1.45 (0.044) 79.9 1.13 2.61 (0.072) 74.9 1.66

200 LS 0.68 (0.021) 85.6 0.59 1.10(0.033) 82.0 0.91 58.7 3.70

p(0.5) 0.73 (0.021) 85.3 0.62 0.78 (0.021) 84.1 0.70 1.23 (0.037) 81.3 0.99

p(0.25) 0.92 (0.028) 84.0 0.75 0.70 (0.023) 86.0 0.59 2.48 (0.079) 75.7 1.64

Huber 0.58 (0.017) 86.8 0.50 0.66 (0.018) 85.5 0.58 1.24 (0.035) 80.8 1.03

400 LS 0.33 (0.009) 90.3 0.26 0.56 (0.016) 87.1 0.46 59.2 3.61

p(0.5) 0.35 (0.010) 90.0 0.29 0.37 (0.010) 89.0 0.34 0.56 (0.016) 87.1 0.48

p(0.25) 0.43 (0.013) 89.1 0.34 0.33 (0.010) 90.7 0.25 1.16(0.037) 82.9 0.86

Huber 0.28 (0.008) 91.1 0.22 0.31 (0.009) 90.2 0.27 0.58 (0.017) 86.7 0.49

800 LS 0.17 (0.005) 93.2 0.13 0.26 (0.008) 90.9 0.23 59.4 3.59

p(0.5) 0.17 (0.005) 93.1 0.13 0.19 (0.005) 92.1 0.17 0.29 (0.009) 90.7 0.24

p(0.25) 0.22 (0.007) 92.4 0.16 0.18 (0.006) 93.6 0.12 0.59 (0.019) 87.3 0.48

Huber 0.14 (0.004) 93.8 0.11 0.16 (0.005) 93.1 0.14 0.29 (0.008) 90.5 0.25

Heterogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

100 LS 3.24 (0.110) 74.7 1.70 8.98 (0.561) 68.6 2.44 56.2 4.05

p(0.5) 1.70 (0.060) 80.5 1.08 1.80 (0.064) 80.1 1.08 3.45 (0.124) 75.1 1.69

p(0.25) 2.50 (0.085) 77.4 1.42 2.51 (0.079) 76.8 1.46 9.13(0.341) 67.2 2.66

Huber 1.70 (0.057) 80.4 1.10 1.87 (0.063) 79.2 1.16 4.27 (0.155) 72.8 1.93

200 LS 1.54 (0.050) 80.6 1.06 4.71 (0.244) 73.4 1.85 55.2 4.17

p(0.5) 0.78 (0.028) 86.7 0.53 0.90 (0.032) 85.3 0.63 1.49 (0.052) 81.9 0.95

p(0.25) 1.16(0.039) 83.5 0.81 1.23 (0.039) 82.0 0.91 3.95 (0.150) 73.2 1.90

Huber 0.77 (0.025) 86.4 0.55 0.94 (0.032) 84.5 0.69 1.94 (0.071) 79.3 1.19

400 LS 0.80 (0.026) 86.0 0.58 2.69 (0.136) 77.8 1.34 54.7 4.26

p(0.5) 0.39 (0.013) 90.5 0.27 0.44 (0.017) 89.6 0.32 0.71 (0.024) 86.9 0.50

p(0.25) 0.56 (0.019) 88.8 0.37 0.66 (0.020) 86.9 0.50 1.70 (0.055) 79.6 1.17

Huber 0.38 (0.012) 90.4 0.27 0.48 (0.017) 88.8 0.36 0.91 (0.029) 84.9 0.65

800 LS 0.41 (0.013) 89.9 0.29 1.35 (0.150) 83.1 0.82 56.5 4.00

p(0.5) 0.18 (0.006) 93.6 0.12 0.20 (0.007) 92.6 0.16 0.36 (0.013) 91.0 0.25

p(0.25) 0.28 (0.009) 92.2 0.18 0.31 (0.010) 90.8 0.24 0.89 (0.031) 85.8 0.60
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Homogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

Huber 0.19 (0.006) 93.3 0.13 0.22 (0.007) 92.1 0.18 0.47 (0.017) 89.2 0.34

LS stands for lsA-learning. P(0.5) stands for robust regression with pinball loss and parameter τ = 0.5. P(0.25) stands for robust regression with 
pinball loss and parameter τ = 0.25. Huber stands for robust regression with Huber loss, where parameter α is tuned automatically with R function 
rlm. Column δ0 5 is multiplied by 10.
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TABLE 2

Simulation results for Model II with the constant propensity score.

Homogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

100 LS 0.24 (0.006) 91.1 0.21 1.23 (0.061) 82.4 0.87 58.6 3.73

P(0.5) 0.36 (0.010) 89.0 0.32 0.39 (0.012) 88.8 0.34 0.80 (0.024) 84.2 0.69

P(0.25) 0.45 (0.012) 87.8 0.40 0.13 (0.004) 93.4 0.12 2.37 (0.083) 76.0 1.49

Huber 0.25 (0.007) 90.8 0.22 0.31 (0.010) 90.3 0.26 0.99 (0.029) 82.4 0.84

200 LS 0.11 (0.003) 93.7 0.10 0.52 (0.018) 87.3 0.45 58.7 3.69

P(0.5) 0.17 (0.005) 92.4 0.16 0.17 (0.005) 92.4 0.15 0.32 (0.009) 89.5 0.30

P(0.25) 0.20 (0.005) 91.8 0.18 0.06 (0.002) 95.6 0.05 1.03 (0.033) 82.1 0.88

Huber 0.12 (0.003) 93.6 0.11 0.13 (0.003) 93.5 0.12 0.43 (0.013) 87.9 0.40

400 LS 0.05 (0.001) 95.7 0.05 0.26 (0.008) 90.7 0.23 59.4 3.60

P(0.5) 0.09 (0.002) 94.5 0.08 0.09 (0.002) 94.5 0.08 0.15 (0.004) 92.8 0.14

P(0.25) 0.10 (0.002) 94.2 0.09 0.03 (0.001) 96.9 0.02 0.44 (0.012) 87.9 0.39

Huber 0.06 (0.001) 95.5 0.05 0.06 (0.002) 95.4 0.06 0.21 (0.006) 91.6 0.19

800 LS 0.03 (0.001) 96.9 0.03 0.13 (0.004) 93.5 0.11 59.4 3.58

P(0.5) 0.04 (0.001) 96.1 0.04 0.04 (0.001) 96.2 0.04 0.07 (0.002) 95.1 0.06

P(0.25) 0.05 (0.001) 95.8 0.05 0.01 (0.000) 97.9 0.01 0.20 (0.005) 91.5 0.19

Huber 0.03 (0.001) 96.8 0.03 0.03 (0.001) 96.8 0.03 0.10 (0.002) 94.2 0.09

Heterogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

100 LS 1.97 (0.072) 79.8 1.13 7.75 (0.514) 70.4 2.22 56.4 4.02

P(0.5) 0.84 (0.029) 86.1 0.55 1.21 (0.045) 84.3 0.74 1.82 (0.071) 80.5 1.07

P(0.25) 1.37 (0.049) 82.1 0.90 1.56 (0.051) 80.5 1.04 6.20 (0.261) 69.8 2.25

Huber 0.84 (0.031) 85.9 0.57 1.33 (0.046) 82.8 0.85 2.69 (0.106) 77.0 1.42

200 LS 0.99 (0.035) 84.7 0.66 4.16 (0.237) 75.2 1.62 55.1 4.19

P(0.5) 0.41 (0.014) 90.2 0.28 0.58 (0.024) 89.4 0.37 0.79 (0.030) 86.7 0.52

P(0.25) 0.64 (0.021) 87.4 0.45 0.74 (0.024) 86.1 0.54 2.48 (0.096) 76.9 1.40

Huber 0.39 (0.013) 90.3 0.27 0.69 (0.027) 87.7 0.45 1.17(0.044) 83.4 0.78

400 LS 0.51 (0.018) 89.0 0.35 2.48 (0.133) 79.3 1.20 54.7 4.25

P(0.5) 0.20 (0.007) 93.2 0.14 0.29 (0.011) 92.6 0.17 0.32 (0.011) 91.2 0.22

P(0.25) 0.30 (0.009) 91.3 0.22 0.39 (0.012) 89.9 0.28 0.99 (0.030) 83.0 0.78

Huber 0.20 (0.007) 93.2 0.14 0.34 (0.012) 91.4 0.22 0.53 (0.016) 88.4 0.37

800 LS 0.25 (0.008) 92.2 0.17 1.25 (0.159) 84.2 0.73 56.4 4.00

P(0.5) 0.10 (0.004) 95.3 0.07 0.14 (0.006) 94.7 0.09 0.16 (0.006) 93.9 0.11

P(0.25) 0.14 (0.005) 94.0 0.10 0.18 (0.006) 92.9 0.14 0.49 (0.015) 88.0 0.39
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Homogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

Huber 0.09 (0.004) 95.3 0.06 0.17 (0.006) 93.9 0.11 0.26 (0.009) 91.8 0.19

LS stands for lsA-learning. P(0.5) stands for robust regression with pinball loss and parameter τ = 0.5. P(0.25) stands for robust regression with 
pinball loss and parameter τ = 0.25. Huber stands for robust regression with Huber loss, where parameter α is tuned automatically with R function 
rlm. Column δ0 5 is multiplied by 10.

Stat Med. Author manuscript; available in PMC 2019 May 20.



Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Xiao et al. Page 23

TABLE 3

Simulation results for Model I with the non-constant propensity scores.

Homogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

100 LS 1.70 (0.061) 81.9 0.91 2.90 (0.114) 77.6 1.34 59.3 3.61

P(0.5) 1.90 (0.069) 80.1 1.09 2.13 (0.073) 78.3 1.25 3.54 (0.128) 75.7 1.57

P(0.25) 2.35 (0.080) 78.2 1.33 1.95 (0.076) 80.4 1.08 8.45 (0.431) 69.8 2.28

Huber 1.51 (0.053) 82.1 0.89 1.77 (0.065) 80.6 1.02 3.67 (0.127) 75.4 1.60

200 LS 0.77 (0.026) 86.8 0.50 1.35(0.045) 82.2 0.91 59.2 3.63

P(0.5) 0.88 (0.028) 85.5 0.60 1.00 (0.029) 83.0 0.79 1.54 (0.050) 81.1 1.00

P(0.25) 1.06 (0.035) 84.5 0.68 0.83 (0.027) 85.9 0.59 3.61 (0.143) 74.7 1.70

Huber 0.68 (0.022) 87.3 0.46 0.81 (0.025) 85.2 0.62 1.58 (0.052) 80.7 1.03

400 LS 0.39 (0.012) 90.2 0.28 0.65 (0.020) 86.9 0.48 58.0 3.79

P(0.5) 0.43 (0.013) 89.3 0.32 0.47 (0.014) 88.4 0.38 0.73 (0.022) 86.5 0.51

P(0.25) 0.53 (0.016) 88.5 0.38 0.41 (0.013) 90.5 0.27 1.50 (0.049) 81.7 0.96

Huber 0.34 (0.010) 90.6 0.25 0.39(0.012) 89.6 0.30 0.72 (0.022) 86.3 0.53

800 LS 0.18 (0.006) 93.3 0.13 0.32 (0.010) 90.2 0.27 58.3 3.75

P(0.5) 0.21 (0.007) 92.7 0.15 0.24 (0.007) 91.5 0.20 0.36(0.011) 90.3 0.27

P(0.25) 0.28 (0.009) 92.4 0.17 0.21 (0.007) 93.4 0.13 0.78 (0.026) 86.9 0.50

Huber 0.16 (0.005) 93.7 0.11 0.19(0.006) 92.6 0.15 0.37 (0.010) 89.9 0.28

Heterogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

100 LS 2.84 (0.111) 78.2 1.33 9.96 (0.773) 72.0 2.06 55.2 4.18

P(0.5) 2.01 (0.082) 80.6 1.09 2.18 (0.080) 79.2 1.21 4.18(0.189) 74.1 1.81

P(0.25) 2.91 (0.110) 76.7 1.52 3.22 (0.105) 74.2 1.76 10.62 (0.475) 65.3 2.87

Huber 1.90 (0.074) 80.9 1.06 2.38 (0.090) 78.1 1.32 5.06 (0.230) 71.9 2.04

200 LS 1.46 (0.053) 83.1 0.83 4.47 (0.371) 76.8 1.51 56.3 4.04

P(0.5) 0.92 (0.033) 86.4 0.55 0.98 (0.035) 85.3 0.64 1.69 (0.065) 81.5 0.98

P(0.25) 1.35 (0.049) 83.3 0.81 1.47 (0.049) 81.6 0.97 4.73 (0.241) 71.9 2.05

Huber 0.86 (0.030) 86.6 0.52 1.02 (0.036) 84.7 0.68 2.11 (0.079) 79.3 1.18

400 LS 0.74 (0.029) 87.4 0.47 2.65 (0.402) 81.4 1.04 56.2 4.06

P(0.5) 0.45 (0.016) 90.2 0.29 0.44 (0.017) 89.5 0.34 0.79 (0.029) 87.2 0.49

P(0.25) 0.66 (0.025) 88.3 0.41 0.70 (0.023) 86.9 0.50 2.12(0.091) 79.5 1.19

Huber 0.43 (0.016) 90.2 0.28 0.48 (0.018) 89.0 0.36 1.01 (0.036) 85.0 0.65

800 LS 0.36 (0.013) 90.8 0.25 1.09 (0.066) 85.0 0.69 56.3 4.02

P(0.5) 0.21 (0.008) 93.2 0.14 0.24 (0.009) 92.3 0.19 0.39 (0.014) 90.5 0.27

P(0.25) 0.33 (0.013) 91.7 0.21 0.36(0.012) 90.8 0.25 1.01 (0.034) 84.9 0.65
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Homogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

Huber 0.20 (0.008) 93.2 0.14 0.25 (0.009) 92.1 0.19 0.49 (0.016) 89.1 0.34

LS stands for lsA-learning. P(0.5) stands for robust regression with pinball loss and parameter τ = 0.5. P(0.25) stands for robust regression with 
pinball loss and parameter τ = 0.25. Huber stands for robust regression with Huber loss, where parameter α is tuned automatically with R function 
rlm. Column δ0.5 is multiplied by 10.
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TABLE 4

Simulation results for Model II with non-constant propensity scores.

Homogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

100 LS 0.36(0.011) 89.8 0.29 1.65 (0.085) 80.8 1.06 58.7 3.69

P(0.5) 0.57 (0.017) 86.9 0.46 0.61 (0.026) 86.4 0.55 1.31 (0.045) 81.7 0.93

P(0.25) 0.65 (0.020) 86.2 0.52 0.22 (0.008) 91.7 0.20 4.67 (0.312) 74.7 1.64

Huber 0.38 (0.012) 89.5 0.30 0.45 (0.018) 88.3 0.40 1.70 (0.060) 79.5 1.14

200 LS 0.16 (0.004) 92.9 0.14 0.74 (0.030) 85.6 0.61 59.1 3.64

P(0.5) 0.25 (0.007) 91.2 0.21 0.26 (0.008) 90.7 0.24 0.52 (0.017) 87.8 0.41

P(0.25) 0.30 (0.008) 90.3 0.26 0.09 (0.003) 94.8 0.08 1.69 (0.074) 81.3 0.92

Huber 0.17 (0.005) 92.8 0.14 0.19 (0.006) 92.2 0.17 0.70 (0.022) 86.2 0.53

400 LS 0.08 (0.002) 95.1 0.06 0.36 (0.013) 89.7 0.30 58.0 3.79

P(0.5) 0.12 (0.003) 93.8 0.10 0.12 (0.003) 93.8 0.10 0.22 (0.006) 91.6 0.19

P(0.25) 0.14 (0.004) 93.3 0.12 0.04 (0.001) 96.5 0.03 0.63 (0.021) 86.5 0.49

Huber 0.08 (0.002) 95.0 0.07 0.09 (0.002) 94.8 0.07 0.30 (0.009) 90.3 0.26

800 LS 0.04 (0.001) 96.5 0.03 0.18 (0.006) 92.3 0.16 58.2 3.76

P(0.5) 0.06 (0.002) 95.6 0.05 0.06 (0.002) 95.6 0.05 0.10 (0.003) 94.4 0.09

P(0.25) 0.07 (0.002) 95.3 0.06 0.02 (0.001) 97.5 0.02 0.29 (0.009) 90.6 0.23

Huber 0.04 (0.001) 96.4 0.03 0.04 (0.001) 96.3 0.04 0.14 (0.004) 93.2 0.12

Heterogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

100 LS 1.45 (0.059) 82.9 0.85 8.53 (0.784) 72.4 2.01 54.9 4.22

P(0.5) 0.94 (0.034) 85.6 0.61 1.29 (0.058) 83.3 0.86 2.27 (0.132) 78.9 1.24

P(0.25) 1.46 (0.051) 81.5 0.96 1.78 (0.071) 78.2 1.30 7.88 (0.422) 68.1 2.46

Huber 0.89 (0.034) 86.1 0.57 1.46 (0.067) 81.7 0.99 3.28 (0.157) 75.1 1.65

200 LS 0.84 (0.035) 86.6 0.53 3.85 (0.358) 77.6 1.43 55.9 4.09

P(0.5) 0.44 (0.016) 90.0 0.29 0.60 (0.024) 89.0 0.39 0.87 (0.034) 86.3 0.56

P(0.25) 0.69 (0.025) 87.0 0.49 0.75 (0.024) 85.5 0.59 3.08 (0.179) 75.3 1.58

Huber 0.43 (0.016) 90.3 0.28 0.66 (0.025) 87.7 0.47 1.32 (0.050) 82.4 0.87

400 LS 0.44 (0.020) 90.3 0.28 2.34 (0.393) 82.4 0.95 55.9 4.09

P(0.5) 0.23 (0.009) 92.9 0.16 0.28 (0.011) 92.5 0.19 0.39 (0.015) 90.8 0.26

P(0.25) 0.33 (0.011) 91.0 0.23 0.36 (0.012) 90.1 0.27 1.25 (0.048) 82.8 0.82

Huber 0.22 (0.008) 93.1 0.15 0.31 (0.012) 91.7 0.21 0.60 (0.022) 88.0 0.43

800 LS 0.23 (0.009) 93.0 0.15 0.90 (0.057) 86.2 0.60 56.3 4.03

P(0.5) 0.11 (0.004) 95.0 0.07 0.14 (0.005) 94.8 0.09 0.18 (0.006) 93.6 0.12

P(0.25) 0.17 (0.006) 93.7 0.12 0.18 (0.006) 93.0 0.14 0.59 (0.017) 87.3 0.44
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Homogeneous Error

Normal Log-Normal Cauchy

n method MSE PCD δ0.5 MSE PCD δ0.5 MSE PCD δ0.5

Huber 0.10 (0.004) 95.1 0.07 0.15 (0.006) 94.2 0.11 0.29 (0.010) 91.4 0.21

LS stands for lsA-learning. P(0.5) stands for robust regression with pinball loss and parameter τ = 0.5. P(0.25) stands for robust regression with 
pinball loss and parameter τ = 0.25. Huber stands for robust regression with Huber loss, where parameter α is tuned automatically with R function 
rlm. Column δ0.5 is multiplied by 10.
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Table 5

Analysis results for the AIDS dataset.

Variable

Least Square Pinball(0.5) Pinball(0.25) Huber

Est. SE PV Est. SE PV Est. SE PV Est. SE PV

intercept −42.61 32.93 0.196 −33.45 37.32 0.370 −35.77 39.17 0.361 −42.76 31.40 0.173

age 3.13 0.85 0.000 2.62 0.97 0.007 2.46 1.06 0.020 2.80 0.79 0.000

homosexuality −40.66 16.73 0.015 −33.18 17.68 0.061 −35.38 18.28 0.053 −27.33 15.19 0.072

race −25.70 17.69 0.146 −33.56 18.12 0.064 −34.21 18.32 0.062 −25.29 16.08 0.116

Est. stands for the estimate; SE stands for the standard error; PV stands for the p-value. All p-values which are significant at level 0.1 are 
highlighted.
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TABLE 6

Results of estimated values and their corresponding 95% confidence interval for the four methods based on 
IPWE and AIPWE.

Estimator method Value SE Cl

IPWE Least Square 405.05 6.72 (391.88,418.22)

Pinball(0.5) 406.77 6.71 (393.63,419.92)

Pinball(0.25) 406.07 6.73 (392.87,419.26)

Huber 407.03 6.71 (393.87,420.18)

AIPWE Least Square 404.39 6.12 (392.40,416.38)

Pinball(0.5) 405.93 6.13 (393.92,417.94)

Pinball(0.25) 403.60 6.62 (390.62,416.58)

Huber 406.00 6.15 (393.95,418.04)

SE stands for standard error. CI stands for 95% confidence interval.
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