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Abstract—Talking to the electronic device and getting the
required information at a minimal time has become today’s norm.
Although Al-powered conversational agents have percolated the
commercial market, their use in a communal setting is still evolv-
ing. We postulate that the deployments of chatbots in disaster-
prone areas can be beneficial to watch, monitor, and warn people
during the crisis. Furthermore, the successful implementation of
such technology can be life-saving.

In this work, we discuss our deployment of a real-time flood
monitoring chatbot called FloodBot. We collect, annotate and
visually parse images from potentially hazardous areas. We detect
the flood conditions and identify objects in harm’s way by
stacking deep learning models such as a convolutional neural
network (CNN), single-shot multi-box object detection (SSD).
We then feed the image contents to a knowledge base of our
artificially intelligent FloodBot and explore its AI-Conversing
power using end to end memory network. We also showcase
the power of cross-domain transfer learning and model fusion
techniques.

Index Terms—Chatbot, Deep Learning, Computer Vision, Deep
Natural Language Processing, Mobile Computing

I. INTRODUCTION

Every time there is a disaster, people scroll through various
news sources, social media, and television to get an update
on the current/on-going event. The information thus gained
may be scattered, often irrelevant, or diluted. Media curates
information far away from the epicenter of the event and such
content can either be irrelevant or less contextual to the actual
stakeholders, and disaster struck local inhabitants. A quick sta-
tus update from the local representative is more valuable than
trying to assimilate information from heterogeneous sources.

We argue that an artificially intelligent chatbot could be
one such local agent. While Alexa, Google Assistant, Siri,
Cortana, and Bixby have weaved their presence into our lives,
they can only answer queries about general things. There is
still a scarcity of the Al-powered chatbots, mainly designed
to disseminate information about the disaster at the grass-
root level. We postulate that people will want to know about
the potential danger in the area by asking questions. They
would rather get summarized and relevant information instead
of reading unnecessary contents or waiting for social media
posts.

Interest in machine conversation can be traced back to the
1950s when researchers were exploring machine’s abilities to
think with ”"The Turing Test”. Though some exciting works
have happened in the past, it is now that the area of intelligent
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chatbots and dialog systems is highly energized. The recent
rise in interest around chatbots can be attributed to the growing
sophistication and accuracy of artificial intelligence and ma-
chine learning capabilities. More specifically, deep learning in
the natural language process, computer vision, and machine’s
ability to understand the natural language and high availability
of computing power have revived current research paradigm.
Developing intelligent chatbots and dialogue systems have
been a topic of interest for both the commercial and academic
areas. For the industry, it is the cost-cutting measure, while
for academia, this is a profound research problem.

For industries, chatbots can automate customer services, re-
duce human labor costs and streamline their work order. Most
of the call centers have either eliminated consumer support
persons or significantly streamlined their workforce. Such a
reduction in the workforce can be attributed to the successful
implementation of chatbots. Chatbots can easily handle most
of the mundane tasks. Even for complex situations, the chatbot
can pre-gather the required information before transferring the
call to a real person and thereby increasing the effectiveness
of the problem resolution.

On the other hand, the academic interest in chatbot devel-
opment is fueled by the complexity of the problem domain
and its intricacy with various state of the art machine learning
algorithms. The chatbot may appear as a simple question
and answering agent, nonetheless several complex algorithms
and logical thinking make bot a reality. Building chatbot
requires many state of the art machine learning models from
natural language understanding to processing complex human
generated data. Chatbot development also requires the machine
to understand the underlying semantics of user input utterance
and generating coherent and meaningful responses.

Another prominent use of chatbots is in the news media.
Today, people consume information via social media such as
Twitter, Facebook, and WhatsApp. We are getting accustomed
to talking to our smart speakers and asking relevant questions.
As we get more comfortable in conversing with such agents,
the demand for chatbots is poised to rise. Likewise, people
will seek information about the potential local hazard in the
area by asking questions. They would rather get short real-time
and relevant information instead of reading news or waiting for
social media posts. Chatbots will need contextual intelligence
and domain-specific knowledge to answer the queries about
a potential hazard in the local context. Therefore, in this
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paper, we devise one such domain-specific chatbot. We call
it a FloodBot and outline steps involved in crafting it. We
then describe our first-hand experience from the real-world
deployment of FloodBot. -

Key Contributions
The main contributions of this paper are:

o Cross-Domain Transfer Learning : We propose a cross-
domain transfer learning in a rather uncharted domain
of flood detection. We use pre-trained deep learning
vision models and fine-tune them to infer ongoing flood
potential and severity.

e Deep Learning Model Stacking: We propose three dif-
ferent kinds of deep learning models, and stack them to
enable Al Conversing power of the FloodBot.

o Rule Based Bulk Image Annotation: Data annotation is a
resource-intensive task, especially on a larger data set like
ours (16K image frames). Thus, in this paper, we propose
a noble software-based image annotation technique to
annotate images in bulk.

e Domain Specific Q & A Corpus Enrichment: Starting
with an open-source Q & A corpus as a seed bank, we
infuse flood-related Q & A datasets to enable cohesive
conversation between FloodBot and human.

In Section II, we present some state-of-the-art work that
inspired us. In Section III we discuss our overall Architecture.
Section IV highlights our use of cross domain transfer learning
techniques. In section V we talk about the end to end memory
learning model. We then discuss our data collection in Section
VI. Section VII outlines our experiment and evaluations.
Section VIII provides the results of the implementation. We
share our insights Section IX and conclude in Section X .
II. RELATED WORK

The conversational Al research community defines chatbots
as an intelligent agent that can make engaging conversations
with a human counterpart. FloodBot’s functioning relies on
recognizing the scene context and conversing about it.

A. Types of Chatbot

Chatbot or conversational agents take natural language
uttered by a user as input and respond. There are two main
ways to generate responses. The traditional approach uses
hard-coded templates and rules. The more novel approach
is to use neural network-based deep learning frameworks.
This kind of generative model is trained on large dialogue
corpus. Chatbots then learn to generate relevant and gram-
matically correct responses to the user input. There are two
main types of chatbots. The classic type of Chatbot is Goal
Oriented Dialogue System. This kind of Chatbot posses lim-
ited conversational capabilities. However, it is very robust
at executing task-specific commands. Task-oriented Chatbots
are built to accomplish specific tasks like making restaurant
reservations[4, 6]. The other groundbreaking work in the
goal-oriented dialogue system was proposed by [15]. The
second and more challenging type of Chatbot is Open-Domain
Dialogue System.These are dialogue agents that are developed
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for general purposes and are expected to converse or imitate
human dialogue capability. They are usually trained with large
human conversation databases. The training data volume must
be enormous for these types of dialogue systems. Therefore,
many successful benchmark works are based on publicly avail-
able datasets like movie scripts, twitter data or web scraped
question/answer pairs [16, 14, 13]. For these models, there
is no well-defined goal. However, they are required to have a
certain amount of world knowledge and commonsense to have
a logical conversation. The success of a fully functional Open
Domain dialogue system has been an active research area and
is still far from perfection. In the meantime, a hybrid approach
[19] is also being explored. Hybrid chatbots are developed
with some level of non-contextual conversing capability. The
proposed FloodBot belongs to the hybrid category where we
have used large corpus from the different domain and infused
flood data.

B. Computer Vision and Natural Language Processing

FloodBot is designed to converse and inform about the
situation remotely. Thus the overarching research area comes
under Visual Question and Answering [1]. There are many
exciting works in the area of deep learning, specifically in
the area of Visual Question and Answering (VQA). VQA has
the potential to build an end to end deep learning models for
real-life cases. Multi-modal image captioning tries to develop
a joint (image + text) model [7] to interpret the content
in an image. Deep learning and vision model can provide
a description which not only identifies the objects but also
infers activities they are involved in. [17] For a successful
chatbot implementation, the output needs to be coherent in
answering the multiple incoming questions. A solution for
this has been proposed by [8] as the Dynamic Memory
Network (DMN). DMN is a neural network-based framework
for general question-answer tasks that are trained using raw
input-question-answer triplets. [19] is another state of the art
architecture in solving sequence tagging tasks, classification
problems, sequence-to-sequence tasks, and question answering
tasks that require transitive reasoning.

The significant challenges in all the areas discussed above
have been the ability to create one unified model. There are
some generalized solutions, but they are mostly task-oriented.
Due to the complexity of the problem, researchers are only
focusing on individual area. This hinders the use of deep
learning in delivering end to end problem solution. Therefore,
in this work, we try to implement these technologies together
and propose a joint multi-modal learning technique to solve
real world problem.

III. OVERALL ARCHITECTURE

The objective of this work is to observe the cur-
rent situation of potential flood areas, infer other contex-
tual information, and converse about potential risk. In or-
der to achieve this goal, we propose three deep learn-
ing models: two vision-based and one language-based. Vi-
sion models understand the scene, and the language model
empowers the FloodBot to meet linguistic requirements.
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Fig. 1: Overall Architecture

Fig. 2: Al-Converse
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Bot! How may | a

a Flood detection model called V- et
M1 (Vision Modell). The second PR /5ndering what's
model is a Single-shot Multi-box el
object detection model called V- R— %
M2 (Vision Model2). The joint Flood Level seems to
learning from these two models LR
are propagated to the third and i
final model called L-M1 (Lan-
guage Modell). Inferences from 't=u
these three models provide the Heltorme =
required knowledge-base for Al-
Conversing FloodBot. The endpoint of our implementation
is an Al conversing-chatbot called FloodBot. FloodBot is a
user interface for computers and humans to communicate.
The deployment of our system follows a native client-server
architecture. The clients are cameras, and other sensing nodes
deployed on the ground while servers side include GPU
powered deep learning server. We show a simulated Al-
conversation in Figure 2 between FloodBot and human. The
FloodBot is expected to understand the intent and utterance of
the human counterpart and provide information as requested
via one of the user inputs (typing in a computer interface).
Once the model is trained to converse via a keystroke, it can be
easily converted into an automatic speech recognition system.
In this work, we use two state of the art deep learning
frameworks: Cross Domain Transfer Learning and End to
End Memory Network. They are the binding principle for our
Floodbot. In the following sections we briefly review them and
present our implementation and their relevance to our work.

IV. CROSS DOMAIN TRANSFER LEARNING

Traditional supervised machine learning methods typically
require sufficient labelled training instances to construct ac-
curate models. In practice, however, only limited labelled
training instances are available. Transfer learning is the im-
provement of learning in a new task through the transfer of
knowledge from a related task that has already been learned
[20].

In transfer learning we deal with the data D coming from
Source or Target Domains and the probability distribution P
there to. The source domain is expected to be knowledge-
able and containing ample annotated data. The main goal of
Transfer learning is to find an optimized learning function f(-)
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which maps ) and ); (class labels from source and target
domain respectively). We can formally define transfer learning
as: Given a labelled source domain:

D, = {xi,yi}imyandDy = {x;}757 1 P(xs) # Plxi)
The purpose of transfer learning is to use the knowledge of
D, and transfer the learned knowledge (weights and feature
characteristics) to the target domain D;. Transfer learning
from natural image datasets, particularly ImageNet [11], using
standard large models and corresponding pre-trained weights,
has become a de-facto method for cross-domain deep learning
applications. Similarly, we use the pre-trained model[12] and
transfer the knowledge from their original dataset and weights
into our image dataset.

MobileNetV2 is a light weight pre-trained convolution neu-
ral network and has been claimed to surpass its predecessors
[12]. MobileNetV2 expects images to be of size {128%128%3}.
We use MobileNetV2 as our base model and transfer the
learning. The model was trained on millions of images from
the Imagenet[11] dataset. MobileNetV2 serves as a feature
extractor for our classification model.

The base model consists of more than 100 layers and over
2.5 million parameters and trained over millions of images.
We freeze the base model and add a new custom head for
our classification. If we do not freeze the base model then the
new run would recompute initial weight and parameters hence
defeating the purpose of using such a powerful pre-trained
model. The last layer of MobileNetV2 outputs {4 * 4 x 1280}
tensor. The output size is not useful for our classification
problem. We treat the output from MobileNetV2 as our
source domain. MobileNetV2 provides a very efficient mobile-
oriented model that can be used as a base for many visual
recognition tasks [12].

TABLE I: Cross Domain TL Model - VM-1

Layer (type) Output Shape Layer
MobileNetV2 Layers . .
out_relu (ReLLU) (4 x 4 * 1280)  Existing
Global Average Pooling 1280 New
Fully Connected Layer 3 New

We flatten the output to fit our classification problem. In
order to flatten the output without loosing the weights, we
use global average layer. This layer functions similar to max
pooling layer where the highest pixel values are transferred to
the next layer. Instead, the Global average Layer averages the
layer there by maintaining the semantics of learned feature
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weights. Global Average Layer reduces the output from the
base model to a vector size of 1280. We then add a drop
out, and a fully connected layer to the base model, and create
our prediction model for three classes. We use Softmax as
an activation function. Table I summarizes addition of custom
layers and their types. Algorithm 1 outlines our approach in
using Cross Domain Transfer Learning.

Algorithm 1 Cross Domain Transfer Learning

Input: Real Time Images from Flood Potential Site
Output: Flood Label: Flood, No Flood, Minor Flood
1: Get Rainfall Intensity at ¢;
2: Label training image }; into one of the class-Labels based
on rainfall intensity
3: Start with the PreTrained Model(s) of choice
4: Freeze the base Model and transfer learned parameters to
custom head model
5: Align output of the Base Model to required vector length
6: Add a drop out and a fully connected (dense) layer +
Softmax Classifier
7: Validate Model Performance
8: Save Model Weights for Real Time Image Classification

V. END TO END MEMORY NETWORK

A simple RNN carries over memory from many previous
steps, and hence their implementation becomes cumbersome
and resource-intensive [3]. Specially for a chatbot, recalling
information from the distant past is not very critical. Chatbot is
essentially a question and answering system so it only needs to
remember the last statement and the flow. Hence we opted for a
variation of encoder decoder model called End to End Memory
Network.[15]. Memory network helps chatbot by capturing the
most important fact from the provided information.

In memory network, the input sentences are broken down
into word vectors and treated as a bag of words (Input memory
representation). Thus, each sentence(fact) becomes a group of
individual vectors {z;}. Formally, given an input sentence X
containing words {x1,a,...,2;}, memory networks vector-
ize the words and store them in memory vectors {m;} of
dimension d computed by embedding each {x;} of dimension
d. This results an embedding matrix A of size (d * V). The
exact same procedure is repeated for the question sentence ¢
set yielding another embedding matrix B of same size as A.
The internal state of the queries is vectorized into u. Now
the only remaining part is to find the most relevant answer-
sentence to the encoded question. This is measured using the
cosine distance or dot product between memory vector {m;}
and question’s internal state vector u.

(p); = Softmazx(u’'m;) where
exp(zi)

> exp(z;))

and (p); is the probability vector. Similarly the output of
the sentences are represented into ¢; and into a matrix C.

softmax(z); =
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The resulting response vectors from the output memory o is
summed over the transformed inputs c;

i
0= E Pi * ¢
i=1

Finally, to get the prediction for a single question/answer case
the sum of the output vector o and the input embedding u is

passed through a final weight matrix W (of size V xd) and a
softmax to produce the predicted label:

o = softmaz(W)(o + u)

A very related yet more complex method is proposed by [2]
called attention model. The working of the encoder decoder
model/attention model is depicted in Figure 3. At a high level
the attention mechanism helps the next step in recurrent neural
networks to find the most relevant words mostly based on the
dot product (distance metric) and softmax over it. The concept
of context vector is analogous to the memory vector in end to
end memory network[15].

Context Vector
a is

2 a; S] a;
7 | s !

T e

What is  happening there it calm

nice

Decoder
Encoder

Fig. 3: Attention Mechanism
Attention mechanism ensures that the words we want to focus
on are kept as is, and the unnecessary words are discarded.
We highlight these two topics as they are the core concepts
in FloodBot’s successful implementation. Simply put, we use
transfer learning to make sense of scene and use end to end
memory model to teach Floodbot to response to user queries.

Algorithm 2 End to End Memory Network

Input: User Queries about the event and scene context

Output: Chatbot Response(s): Answer

: Collect and enrich Question and Answering Corpus

: Encode Question and Answer into Word Embedding

: Compute Memory Vector from the word Embedding

: Multiply memory vector with word embedding

: Perform dot product memory and softmax them to find
the most relevant fact

. Repeat {2,3,4,5} for each question ¢;

7: Compute the context vector c;

8: Perform stacked softmax on output and questions internal

memory vector
9: Return the most relevant answer

[ O I

=)

VI. DATA COLLECTION

We drive our process based on three data sources, the
images captured by field camera, the real-time weather data
API, and the dialogue corpus. Data is assimilated into their
own databases and made available for deep learning models.
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TABLE II: Image to Weather Data

Video_time Frame_Id Summary Icon PrecipIntensity PrecipType Temperature Humidity
1/25/2020 11:00  frame3971.jpg  Possible Light Rain  rain 0.0735 rain 34.41 0.94
1/25/2020 11:00  frame3972.jpg  Possible Light Rain  rain 0.0735 rain 34.41 0.94
1/27/2020 10:00  frame5739.jpg  Mostly Cloudy partly-cloudy-day ~ 0.0014 Snow 31.07 0.88
1/27/2020 10:00  frame5740.jpg  Mostly Cloudy partly-cloudy-day 0.0014 SNOW 31.07 0.88

A. Flood Image Database

The FloodBot implementation starts with real-time images
acquisition. These images are transferred into the cloud for
pre-processing.The Flood Image database contains images
captured in various weather conditions for more than a month.
Figure 4 shows the sample images captured during various
ambient conditions from the testbed.

Fig. 4: Flood-Watch Camera
B. Weather Database

During same deployment time frame, we also collected the
weather data from an public weather application interface. We
find the weather in the area at the time we captured those
images. The weather data API allows us to extract weather at
that particular location based on latitude and longitude of our
camera. We collect and store these records by minutes in our
database.
C. Image to Weather Database

We establish a temporal join (image captured time and
weather timestamp) and tie the weather condition of the site to
our image database. With Image to Weather Database we are
able to observe the weather condition at the site both visually
(through images) and from data released by meteorological
weather stations via their APIs. Table II summarizes the
outcome of our three database.

D. Flood Aware Dialogue Corpus

The last piece of data set that we need for our FloodBot is
starting knowledge base or the seed corpus. We experimented
with multiple non domain specific Question and Answering
corpus (Q&A) from various sources [10, 5, 9, 18]. After
performing the complexity and relevancy analysis on these
datasets, we used Facebook’s bAbI-QA for question answering
and text understanding [18] as our seed corpus. This dataset
is composed of a set of contexts, with multiple question-
answer pairs available based on the contexts. We infused more
data into same dataset and in same format. In order to create
natural hazard data, we collected Storm Events Database from
NOAA’s National Weather Service (NWS) storm database
and transformed into bAbI like Q&A dataset. We show the
examples of these dataset in Table III below.
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TABLE III: Sample Q&A Corpus

ID Event_Narrative Question Answer
1 Thunderstorms produced ~ What Produced  Thunderstorms
heavy rain. Multiple low  heavy rain?
water  crossings  were
closed.
2 Local roads, city streets ~ What is stuck in ~ Car
and multiple lanes were  flooding?
impassable. A car was
stuck in street flooding”
3 A landslide occurred on ~ What happened  LandSlide

Hwy 66. There was sig-
nificant damage to Hwy
66.

to Hwy 66?

VII. EXPERIMENT AND EVALUATION

In this section, we outline the experiment and setting for
three Deep Learning Models. We deployed three deep learning
models to create FloodBot. Two vision models (V-M1 and
V-M2) that enable the field reconnaissance of flooding and
possible hazard, and the language model (L-M1) enables
human-FloodBot conversation.

A. Vision Model 1

Rule Based Bulk Image Annotation: We call this a
rule-based supervised learning because the annotations for
training image dataset were provided using the current rainfall
intensity. We have collected the weather data synchronous
to the images. Thus we programmed database queries and
python package to label the image into one of the classes
based on recorded rainfall intensity during the image frame
timestamp. For example, a nice sunny day with no rain
recorded would yield ‘No Flood.” Light rain would cause
minor floods. Significant rainfall would classify an image as
‘Flood’. We categorize the flood images into three classes No
Flood, Minor Flood and Flood. The classes are based on
turbulence, turbidity and observed high velocity of the flowing
water predominantly caused by rainfall intensity. This is a
clever labeling technique that is robust and practical, given
the large data set.

This is our domain-specific Flood Categorization Model.
In order to classify the current flooding situation at the
site, we labeled 15,686 images in our training set. We used
the automated rule based bulk Image annotation technique
discussed above to label 322 images as ‘Flood’, 2440 as
‘minor flood’ and 13,125 as ‘No Flood’ images. This a highly
imbalanced dataset so we re-sampled the images to balance
the class distribution uniformly. To achieve a more balanced
dataset we recreated the images from ‘flood’ class by copying,
altering label data (up-sampling to 500 images) and randomly
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sampled images from other two classes (down sampling to 500
images).

B. Vision Model 2 V-M2

This is a vanilla grade SSD implementation of the Single
Shot Multi box Object detection used to detect objects ad en-
rich our chatbot knowledgebase We pass the identified objects
as an bag-of-words to the memory network model. The output
from this model enriches our FloodBot’s knowledgebase to
have a meaningful conversation about the flood location. SSD
generates scores for the presence of object category by a
drawing and bounding box around the detected object.

C. End to End Memory Network

The End to End Memory Network Model enables FloodBot
to have a conversation with the human . We implemented
attention based end to end memory network proposed by
[18]. The dataset contains language corpus in three tuples
{story: multiple sentences, Question: a single sentence and the
Answer}. There are many variations within the dataset but two
of the categories are relevant to our model. We implemented
two bAbI model types, the first one (yes/no) answering dataset
and the second one is two fact question answering system.We
train our language model with a predefined generic dialogue
data set (non-domain specific) and enrich them with a domain-
specific conversation.

VIII. RESULTS

In this section we present results from our deep learning
models and their inter dependencies and relevancy in creating
Al Conversing Chatbot. All our experiments were ran using
Google Colaboratory a GPU powered online machine learning
platform.

A. Vision Model 1

We trained The transfer learning based V-M1 for 100 epochs
with custom head. The model is able to achieve accuracy of
97.18%. It took us about 2.5 hours to train the model on 15,686
images. Figure 5 shows the result from one of our validation
set. In the given example, the model correctly classified the
image set into {No Flood, Minor Flood and Flood} from
respectively.

Fig. 5: Results: VM1

1) Baseline Methods: To understand V-M1’s comparative
performance, we build two kinds of classification models: a
shallow network using support vector machine (SVM) and
a deep convolutional neural network (CNN). We then train
our model on images without using transfer learning. Due to
the resource constraints, we sampled 500 images instead of
15,686 from each of the flood categories and extracted low-
level image features (1 channel-pixel values) from them and
ran through baseline models.
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TABLE V: Baseline Model Comparison

Model Type Parameters Accuracy
SVM RBF Kernels v =0.001,K =5 53%
CNN 4 Layer relu, softmax 67%
V-M1 Transfer Learning ~ GIb Avg Pooling,relu,Dropout  97%

Using the non-transfer learning based models we show that
the SVM based RBF model is only able to achieve 53%
accuracy where as the CNN based model achieves 67% . It is a
known fact in computer vision that there needs to be lot of low
level image pre-processing before achieving acceptable results
from shallow learning model such as SVM. The Cross-Domain
Transfer learning immediately improves the accuracy because
earlier layers within the base model has already performed and
learned feature properties of millions of images.

B. Vision Model 2

We randomly selected 2000 image frames and ran them
through the V-M2. Our motivation to identify objects in the
vicinity is to assess the potential damage should a flood occur.
From the dataset collected over a month, the V-M2 model

- uxﬁ ‘ ‘7 b

Fig. 6: Results: VM2
identified 90 distinct objects such as {Car, Wheel, House,
Tree, Building, Vehicle, Land vehicle, Tire, Window, Plant,
Bench, Truck}.Percentage wise summary of most and least

occurring objects detected from 2000 input image frames by
V-M2 is shown in Table VI.

TABLE VI: Most and Least Detected Objects

Objects:
Percentage:

Car
20.79%

Watercraft
0.55%

vehicle
16%

Tree
17.74%

Bicycle
0.40%

Since the camera is pointing to a parking lot area and
images are triggered by the motion mostly caused my moving
vehicles, the most of the objects detected in 2000 randomly
sampled images are those of car and trees.

C. Model Fusion V-M1 and V-M2

We show the results of joint learning from V-M1 and V-M2
in Table IV for one of the sample image frame (e.g. Frame80).
This is one of the sample image frames form our full dataset.
The output from V-M1 i.e, current Flooding condition as
‘Minor Flood’ is the output from our V-M1 and detected
objects {building, Car etc.} are the output of V-M2. Once
we have these two elements together (frame by frame and at a
given time), the FloodBot has current contextual information to
converse and answer queries about real time hazard potential.

D. End to End Memory Network & Chatbot Implementation

We motivate the results of chatbot implementation by re-
calling the basic type of chatbot system, a Closed Domain
Retrieval Chatbot. These chatbots can only converse around
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TABLE IV: Joint Model Learning VM1 & VM2

VM1 M2
frame_id summary precipIntensity humidity Flood_Label Object Total_Object
frame80.jpg Possible Light Snow and Windy 0.0257 0.81 Minor Flood Building 2
frame80.jpg Possible Light Snow and Windy 0.0257 0.81 Minor Flood Car 90
frame80.jpg Possible Light Snow and Windy 0.0257 0.81 Minor Flood Person 1
frame80.jpg Possible Light Snow and Windy 0.0257 0.81 Minor Flood Street light

information that is stored in the database. The learning and
outcomes from our vision models and output is depicted
in Figure 7. We have broken down the domain knowledge
required by the FloodBot into their own sub domains. The
FloodBot can respond to the sub domains{7ime, Weather,
Flood Risk, and Objects at Risk}. For example the answer to
”Is Ellicott City Flooding” can be easily answered by ‘yes/no
question’ based on the Flood Risk within that time domain.
The overall requirement of the chatbot implementation does
not change, so we still need to break the user request into two
main parts: utterance and intent. In the examples discussed
above, utterance is the sentence/phrase and the user intent
is to find the current flooding risk. With this background
we now digress into actual deep learning based Chatbot
Implementation Results.

Queries
Is Ellicott City Flooding
What's the weather now?
What/Who are at risk?
Is their a flooding risk?

Object + Flood Conditions
{ Time: year:2020, month:2 day:2,day of
B0 |week: Sunday 2 hour:15}
55 : |{ Weather : Passible Light Snow ,Windy}
{ Fload Risk: Minor Flood}
. { Object/Risk : Building:2, Car: 90,

3 Person:1, Street light: 6,Wheel: 1} L]

What is happening and
Ellicott City now?

Fig. 7: Floodbot: Q & A System

Our chatbot implementation is based on end to end memory
network [18]. We infused additional data into the bAbI corpus
and retrained our model. The end to end memory is built
using encoder decoder functions from Keras Sequential model
API. The model was trained for 120 epochs, with each epoch
limited to event narrative max length of 75 words. The
maximum query length was set to 6 words. We trained our
model with 10,000 event narrative which consists of 9000
original stories from bAbI and 1000 new ones from our
flood related narrative. We tested our model on the same
composition i.e 900 from original corpus and 100 is flood
related. We maintained the original batch-size of 32. We were
able to achieve 89% accuracy after infusing our data.

TABLE VII: Memory Network Comparison

After Data Fusion
89%

Model :
Accuracy:

BaseLine(bAbl)
98.55%

The original (baseline) model without the data fusion
achieves 98.55% accuracy. While there is a reduction in
the original accuracy the achieved accuracy is still within
acceptable range. We believe that the reduction in accuracy
is due to increase in vocabulary size and disjoint data sets.
The accuracy could increase if we use the dataset from same
domain with similar context.
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E. Model Fusion V-M1 and V-M2 and L-M1

The final output from our deep learning model stack is the
integration of all three models. In this section, we present
two question and answer result from our FloodBot in Q&A
Demo section. The first question is an example from data
fusion from NOAA’s website and the second example is from
the the joint learning V-M1 and V-M2 model infused into Q
& A knowledgebase corpus. FloodBot answers based on the
decoder portion of End to End Memory network and word
embedding.

Chatbot Q&A Demo

Story: {‘Six’, ‘inches’ ,‘water’ , *.” ‘Flooding’, ‘reported’,‘in’
, ‘town’ }

Question:{ ‘How’, ‘deep’, ‘is’, ‘water’, *?"}

FloodBot’s Answer: {Six}

Story: {’Minor’, "Flood’ * . * , ’Ninety’,’cars’ *Two’ ’Build-
ing’}

Question:{ ’Is’, "there flood risk’, *in’, "Ellicott City’, *?’}
FloodBot’s Answer: {yes-minor}

In the second, test scenario, the answer provided by the
FloodBot is a result of model fusion from three deep learning
model stack.

F. Model Run Time Metrics

One of the needs for our application is to be quick. After all
our models were trained and validated, we saved the model
weight as a static file. Running an end to end inference on
single image and asking a question to chatbot takes less
than a minute. The longest time spent in a single image
model inference is by the SSD image regeneration step. The
lag seems to be to create (re-writing) the image pixel with
bounding box. The bounding box and image reproduction is
only needed for Qualitative analysis. During the regular runs
we persist the object and score in our database.

IX. DISCUSSION
A. Latency Over Accuracy

The object detection count and score from the vision model
V-M2 is probabilistic and somewhat heuristic in nature. We
argue that the ultimate use of this kind of application is either
to have a sense of emergency or try to estimate the possible
damage. Thus the object detection and count measured are
mostly for estimation purposes. During disaster and life saving
events the timely information provided by our model could be
more valuable than trying to get to the correct count.
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B. Federated Deployment & Edge Computing

Currently the images are transported over 3G network for
our models inference. This causes some latency in real time
FloodBot message propagation and conversation stream. There
is no need of big computing power after the initial training
is completed and the learned model weights and parameters
are served (saved). The learned models can be federated to
edge devices. Therefore, a better approach would be to have a
Federated Deployment with an end to end system running on
an edge computing device such as Raspberry Pi, Jetson Nano
or Coral AL

X. CONCLUSION

In this paper we presented our approach in creating a FloodBot
and infusing multiple data sources. We believe that there could
be extensive uses of the proposed application. Chatbot and
conversational Al is an active research area and there is a lot of
innovation happening in the area. Successful implementation
of topics discussed in this paper will make chatbots more
robust and suitable for a broader range of applications. In par
with the current development in the computer vision research
areas, we believe that we have created robust deep learning
vision model stack however, our language model and the
FloodBot’s conversational power is still work in progress.

In our future work, we plan to extend the natural language
component of this work and enhance our Floodbot’s chat-
ting capacity. This work and architecture of this deploy-
ment can be traced using our FloodBot’s Twitter account
(@umbc_FloodBot). The Al Conversing power and the so-
cial media integration of FloodBot into Twitter verse is our

ongoing research.
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