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Abstract—Talking to the electronic device and getting the
required information at a minimal time has become today’s norm.
Although AI-powered conversational agents have percolated the
commercial market, their use in a communal setting is still evolv-
ing. We postulate that the deployments of chatbots in disaster-
prone areas can be beneficial to watch, monitor, and warn people
during the crisis. Furthermore, the successful implementation of
such technology can be life-saving.

In this work, we discuss our deployment of a real-time flood
monitoring chatbot called FloodBot. We collect, annotate and
visually parse images from potentially hazardous areas. We detect
the flood conditions and identify objects in harm’s way by
stacking deep learning models such as a convolutional neural
network (CNN), single-shot multi-box object detection (SSD).
We then feed the image contents to a knowledge base of our
artificially intelligent FloodBot and explore its AI-Conversing
power using end to end memory network. We also showcase
the power of cross-domain transfer learning and model fusion
techniques.

Index Terms—Chatbot, Deep Learning, Computer Vision, Deep
Natural Language Processing, Mobile Computing

I. INTRODUCTION

Every time there is a disaster, people scroll through various

news sources, social media, and television to get an update

on the current/on-going event. The information thus gained

may be scattered, often irrelevant, or diluted. Media curates

information far away from the epicenter of the event and such

content can either be irrelevant or less contextual to the actual

stakeholders, and disaster struck local inhabitants. A quick sta-

tus update from the local representative is more valuable than

trying to assimilate information from heterogeneous sources.

We argue that an artificially intelligent chatbot could be

one such local agent. While Alexa, Google Assistant, Siri,

Cortana, and Bixby have weaved their presence into our lives,

they can only answer queries about general things. There is

still a scarcity of the AI-powered chatbots, mainly designed

to disseminate information about the disaster at the grass-

root level. We postulate that people will want to know about

the potential danger in the area by asking questions. They

would rather get summarized and relevant information instead

of reading unnecessary contents or waiting for social media

posts.

Interest in machine conversation can be traced back to the

1950s when researchers were exploring machine’s abilities to

think with ”The Turing Test”. Though some exciting works

have happened in the past, it is now that the area of intelligent

chatbots and dialog systems is highly energized. The recent

rise in interest around chatbots can be attributed to the growing

sophistication and accuracy of artificial intelligence and ma-

chine learning capabilities. More specifically, deep learning in

the natural language process, computer vision, and machine’s

ability to understand the natural language and high availability

of computing power have revived current research paradigm.

Developing intelligent chatbots and dialogue systems have

been a topic of interest for both the commercial and academic

areas. For the industry, it is the cost-cutting measure, while

for academia, this is a profound research problem.

For industries, chatbots can automate customer services, re-

duce human labor costs and streamline their work order. Most

of the call centers have either eliminated consumer support

persons or significantly streamlined their workforce. Such a

reduction in the workforce can be attributed to the successful

implementation of chatbots. Chatbots can easily handle most

of the mundane tasks. Even for complex situations, the chatbot

can pre-gather the required information before transferring the

call to a real person and thereby increasing the effectiveness

of the problem resolution.

On the other hand, the academic interest in chatbot devel-

opment is fueled by the complexity of the problem domain

and its intricacy with various state of the art machine learning

algorithms. The chatbot may appear as a simple question

and answering agent, nonetheless several complex algorithms

and logical thinking make bot a reality. Building chatbot

requires many state of the art machine learning models from

natural language understanding to processing complex human

generated data. Chatbot development also requires the machine

to understand the underlying semantics of user input utterance

and generating coherent and meaningful responses.

Another prominent use of chatbots is in the news media.

Today, people consume information via social media such as

Twitter, Facebook, and WhatsApp. We are getting accustomed

to talking to our smart speakers and asking relevant questions.

As we get more comfortable in conversing with such agents,

the demand for chatbots is poised to rise. Likewise, people

will seek information about the potential local hazard in the

area by asking questions. They would rather get short real-time

and relevant information instead of reading news or waiting for

social media posts. Chatbots will need contextual intelligence

and domain-specific knowledge to answer the queries about

a potential hazard in the local context. Therefore, in this
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paper, we devise one such domain-specific chatbot. We call

it a FloodBot and outline steps involved in crafting it. We

then describe our first-hand experience from the real-world

deployment of FloodBot. -

Key Contributions
The main contributions of this paper are:

• Cross-Domain Transfer Learning : We propose a cross-

domain transfer learning in a rather uncharted domain

of flood detection. We use pre-trained deep learning

vision models and fine-tune them to infer ongoing flood

potential and severity.

• Deep Learning Model Stacking: We propose three dif-

ferent kinds of deep learning models, and stack them to

enable AI Conversing power of the FloodBot.

• Rule Based Bulk Image Annotation: Data annotation is a

resource-intensive task, especially on a larger data set like

ours (16K image frames). Thus, in this paper, we propose

a noble software-based image annotation technique to

annotate images in bulk.

• Domain Specific Q & A Corpus Enrichment: Starting

with an open-source Q & A corpus as a seed bank, we

infuse flood-related Q & A datasets to enable cohesive

conversation between FloodBot and human.

In Section II, we present some state-of-the-art work that

inspired us. In Section III we discuss our overall Architecture.

Section IV highlights our use of cross domain transfer learning

techniques. In section V we talk about the end to end memory

learning model. We then discuss our data collection in Section

VI. Section VII outlines our experiment and evaluations.

Section VIII provides the results of the implementation. We

share our insights Section IX and conclude in Section X .

II. RELATED WORK

The conversational AI research community defines chatbots

as an intelligent agent that can make engaging conversations

with a human counterpart. FloodBot’s functioning relies on

recognizing the scene context and conversing about it.

A. Types of Chatbot

Chatbot or conversational agents take natural language

uttered by a user as input and respond. There are two main

ways to generate responses. The traditional approach uses

hard-coded templates and rules. The more novel approach

is to use neural network-based deep learning frameworks.

This kind of generative model is trained on large dialogue

corpus. Chatbots then learn to generate relevant and gram-

matically correct responses to the user input. There are two

main types of chatbots. The classic type of Chatbot is Goal
Oriented Dialogue System. This kind of Chatbot posses lim-

ited conversational capabilities. However, it is very robust

at executing task-specific commands. Task-oriented Chatbots

are built to accomplish specific tasks like making restaurant

reservations[4, 6]. The other groundbreaking work in the

goal-oriented dialogue system was proposed by [15]. The

second and more challenging type of Chatbot is Open-Domain
Dialogue System.These are dialogue agents that are developed

for general purposes and are expected to converse or imitate

human dialogue capability. They are usually trained with large

human conversation databases. The training data volume must

be enormous for these types of dialogue systems. Therefore,

many successful benchmark works are based on publicly avail-

able datasets like movie scripts, twitter data or web scraped

question/answer pairs [16, 14, 13]. For these models, there

is no well-defined goal. However, they are required to have a

certain amount of world knowledge and commonsense to have

a logical conversation. The success of a fully functional Open

Domain dialogue system has been an active research area and

is still far from perfection. In the meantime, a hybrid approach

[19] is also being explored. Hybrid chatbots are developed

with some level of non-contextual conversing capability. The

proposed FloodBot belongs to the hybrid category where we

have used large corpus from the different domain and infused

flood data.
B. Computer Vision and Natural Language Processing

FloodBot is designed to converse and inform about the

situation remotely. Thus the overarching research area comes

under Visual Question and Answering [1]. There are many

exciting works in the area of deep learning, specifically in

the area of Visual Question and Answering (VQA). VQA has

the potential to build an end to end deep learning models for

real-life cases. Multi-modal image captioning tries to develop

a joint (image + text) model [7] to interpret the content

in an image. Deep learning and vision model can provide

a description which not only identifies the objects but also

infers activities they are involved in. [17] For a successful

chatbot implementation, the output needs to be coherent in

answering the multiple incoming questions. A solution for

this has been proposed by [8] as the Dynamic Memory

Network (DMN). DMN is a neural network-based framework

for general question-answer tasks that are trained using raw

input-question-answer triplets. [19] is another state of the art

architecture in solving sequence tagging tasks, classification

problems, sequence-to-sequence tasks, and question answering

tasks that require transitive reasoning.
The significant challenges in all the areas discussed above

have been the ability to create one unified model. There are

some generalized solutions, but they are mostly task-oriented.

Due to the complexity of the problem, researchers are only

focusing on individual area. This hinders the use of deep

learning in delivering end to end problem solution. Therefore,

in this work, we try to implement these technologies together

and propose a joint multi-modal learning technique to solve

real world problem.

III. OVERALL ARCHITECTURE

The objective of this work is to observe the cur-

rent situation of potential flood areas, infer other contex-

tual information, and converse about potential risk. In or-

der to achieve this goal, we propose three deep learn-

ing models: two vision-based and one language-based. Vi-

sion models understand the scene, and the language model

empowers the FloodBot to meet linguistic requirements.
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Fig. 1: Overall Architecture

Fig. 2: AI-Converse
Two parallel deep learning vision

models observe the flooding con-

dition and scene. The first one is

a Flood detection model called V-
M1 (Vision Model1). The second

model is a Single-shot Multi-box

object detection model called V-
M2 (Vision Model2). The joint

learning from these two models

are propagated to the third and

final model called L-M1 (Lan-
guage Model1). Inferences from

these three models provide the

required knowledge-base for AI-

Conversing FloodBot. The endpoint of our implementation

is an AI conversing-chatbot called FloodBot. FloodBot is a

user interface for computers and humans to communicate.

The deployment of our system follows a native client-server

architecture. The clients are cameras, and other sensing nodes

deployed on the ground while servers side include GPU

powered deep learning server. We show a simulated AI-

conversation in Figure 2 between FloodBot and human. The

FloodBot is expected to understand the intent and utterance of

the human counterpart and provide information as requested

via one of the user inputs (typing in a computer interface).

Once the model is trained to converse via a keystroke, it can be

easily converted into an automatic speech recognition system.

In this work, we use two state of the art deep learning

frameworks: Cross Domain Transfer Learning and End to

End Memory Network. They are the binding principle for our

Floodbot. In the following sections we briefly review them and

present our implementation and their relevance to our work.

IV. CROSS DOMAIN TRANSFER LEARNING

Traditional supervised machine learning methods typically

require sufficient labelled training instances to construct ac-

curate models. In practice, however, only limited labelled

training instances are available. Transfer learning is the im-

provement of learning in a new task through the transfer of

knowledge from a related task that has already been learned

[20].

In transfer learning we deal with the data D coming from

Source or Target Domains and the probability distribution P
there to. The source domain is expected to be knowledge-

able and containing ample annotated data. The main goal of

Transfer learning is to find an optimized learning function f(·)

which maps Ys and Yt (class labels from source and target

domain respectively). We can formally define transfer learning

as: Given a labelled source domain:

Ds = {xi, yi}ni=1andDt = {xj}n+m
j=n+1;P(xs) �= P(xt)

The purpose of transfer learning is to use the knowledge of

Ds and transfer the learned knowledge (weights and feature

characteristics) to the target domain Dt. Transfer learning

from natural image datasets, particularly ImageNet [11], using

standard large models and corresponding pre-trained weights,

has become a de-facto method for cross-domain deep learning

applications. Similarly, we use the pre-trained model[12] and

transfer the knowledge from their original dataset and weights

into our image dataset.

MobileNetV2 is a light weight pre-trained convolution neu-

ral network and has been claimed to surpass its predecessors

[12]. MobileNetV2 expects images to be of size {128∗128∗3}.

We use MobileNetV2 as our base model and transfer the

learning. The model was trained on millions of images from

the Imagenet[11] dataset. MobileNetV2 serves as a feature

extractor for our classification model.

The base model consists of more than 100 layers and over

2.5 million parameters and trained over millions of images.

We freeze the base model and add a new custom head for

our classification. If we do not freeze the base model then the

new run would recompute initial weight and parameters hence

defeating the purpose of using such a powerful pre-trained

model. The last layer of MobileNetV2 outputs {4 ∗ 4 ∗ 1280}
tensor. The output size is not useful for our classification

problem. We treat the output from MobileNetV2 as our

source domain. MobileNetV2 provides a very efficient mobile-

oriented model that can be used as a base for many visual

recognition tasks [12].

TABLE I: Cross Domain TL Model - VM-1

Layer (type) Output Shape Layer

MobileNetV2 Layers .. ..
out relu (ReLU) (4 x 4 * 1280) Existing
Global Average Pooling 1280 New
Fully Connected Layer 3 New

We flatten the output to fit our classification problem. In

order to flatten the output without loosing the weights, we

use global average layer. This layer functions similar to max

pooling layer where the highest pixel values are transferred to

the next layer. Instead, the Global average Layer averages the

layer there by maintaining the semantics of learned feature
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weights. Global Average Layer reduces the output from the

base model to a vector size of 1280. We then add a drop

out, and a fully connected layer to the base model, and create

our prediction model for three classes. We use Softmax as

an activation function. Table I summarizes addition of custom

layers and their types. Algorithm 1 outlines our approach in

using Cross Domain Transfer Learning.

Algorithm 1 Cross Domain Transfer Learning

Input: Real Time Images from Flood Potential Site

Output: Flood Label: Flood, No Flood, Minor Flood
1: Get Rainfall Intensity at ti
2: Label training image Yi into one of the class-Labels based

on rainfall intensity

3: Start with the PreTrained Model(s) of choice

4: Freeze the base Model and transfer learned parameters to

custom head model

5: Align output of the Base Model to required vector length

6: Add a drop out and a fully connected (dense) layer +

Softmax Classifier

7: Validate Model Performance

8: Save Model Weights for Real Time Image Classification

V. END TO END MEMORY NETWORK

A simple RNN carries over memory from many previous

steps, and hence their implementation becomes cumbersome

and resource-intensive [3]. Specially for a chatbot, recalling

information from the distant past is not very critical. Chatbot is

essentially a question and answering system so it only needs to

remember the last statement and the flow. Hence we opted for a

variation of encoder decoder model called End to End Memory

Network.[15]. Memory network helps chatbot by capturing the

most important fact from the provided information.

In memory network, the input sentences are broken down

into word vectors and treated as a bag of words (Input memory
representation). Thus, each sentence(fact) becomes a group of

individual vectors {xi}. Formally, given an input sentence X
containing words {x1, x2, . . . , xi}, memory networks vector-

ize the words and store them in memory vectors {mi} of

dimension d computed by embedding each {xi} of dimension

d. This results an embedding matrix A of size (d ∗ V ). The

exact same procedure is repeated for the question sentence q
set yielding another embedding matrix B of same size as A.

The internal state of the queries is vectorized into u. Now

the only remaining part is to find the most relevant answer-

sentence to the encoded question. This is measured using the

cosine distance or dot product between memory vector {mi}
and question’s internal state vector u.

(p)i = Softmax(uTmi) where

softmax(z)i =
exp(zi)∑
j exp(xj))

and (p)i is the probability vector. Similarly the output of

the sentences are represented into ci and into a matrix C.

The resulting response vectors from the output memory o is

summed over the transformed inputs ci

o =

i∑

i=1

pi ∗ ci

Finally, to get the prediction for a single question/answer case
the sum of the output vector o and the input embedding u is

passed through a final weight matrix W (of size V ∗ d) and a

softmax to produce the predicted label:

o = softmax(W)(o+ u)

A very related yet more complex method is proposed by [2]

called attention model. The working of the encoder decoder

model/attention model is depicted in Figure 3. At a high level

the attention mechanism helps the next step in recurrent neural

networks to find the most relevant words mostly based on the

dot product (distance metric) and softmax over it. The concept

of context vector is analogous to the memory vector in end to

end memory network[15].

Fig. 3: Attention Mechanism

Attention mechanism ensures that the words we want to focus

on are kept as is, and the unnecessary words are discarded.

We highlight these two topics as they are the core concepts

in FloodBot’s successful implementation. Simply put, we use

transfer learning to make sense of scene and use end to end

memory model to teach Floodbot to response to user queries.

Algorithm 2 End to End Memory Network

Input: User Queries about the event and scene context

Output: Chatbot Response(s): Answer

1: Collect and enrich Question and Answering Corpus

2: Encode Question and Answer into Word Embedding

3: Compute Memory Vector from the word Embedding

4: Multiply memory vector with word embedding

5: Perform dot product memory and softmax them to find

the most relevant fact

6: Repeat {2,3,4,5} for each question qi
7: Compute the context vector ci
8: Perform stacked softmax on output and questions internal

memory vector

9: Return the most relevant answer

VI. DATA COLLECTION

We drive our process based on three data sources, the

images captured by field camera, the real-time weather data

API, and the dialogue corpus. Data is assimilated into their

own databases and made available for deep learning models.
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TABLE II: Image to Weather Data

Video time Frame Id Summary Icon PrecipIntensity PrecipType Temperature Humidity

1/25/2020 11:00 frame3971.jpg Possible Light Rain rain 0.0735 rain 34.41 0.94
1/25/2020 11:00 frame3972.jpg Possible Light Rain rain 0.0735 rain 34.41 0.94
1/27/2020 10:00 frame5739.jpg Mostly Cloudy partly-cloudy-day 0.0014 snow 31.07 0.88
1/27/2020 10:00 frame5740.jpg Mostly Cloudy partly-cloudy-day 0.0014 snow 31.07 0.88

A. Flood Image Database

The FloodBot implementation starts with real-time images

acquisition. These images are transferred into the cloud for

pre-processing.The Flood Image database contains images

captured in various weather conditions for more than a month.

Figure 4 shows the sample images captured during various

ambient conditions from the testbed.

Fig. 4: Flood-Watch Camera
B. Weather Database

During same deployment time frame, we also collected the

weather data from an public weather application interface. We

find the weather in the area at the time we captured those

images. The weather data API allows us to extract weather at

that particular location based on latitude and longitude of our

camera. We collect and store these records by minutes in our

database.

C. Image to Weather Database

We establish a temporal join (image captured time and

weather timestamp) and tie the weather condition of the site to

our image database. With Image to Weather Database we are

able to observe the weather condition at the site both visually

(through images) and from data released by meteorological

weather stations via their APIs. Table II summarizes the

outcome of our three database.

D. Flood Aware Dialogue Corpus

The last piece of data set that we need for our FloodBot is

starting knowledge base or the seed corpus. We experimented

with multiple non domain specific Question and Answering

corpus (Q&A) from various sources [10, 5, 9, 18]. After

performing the complexity and relevancy analysis on these

datasets, we used Facebook’s bAbI-QA for question answering

and text understanding [18] as our seed corpus. This dataset

is composed of a set of contexts, with multiple question-

answer pairs available based on the contexts. We infused more

data into same dataset and in same format. In order to create

natural hazard data, we collected Storm Events Database from

NOAA’s National Weather Service (NWS) storm database

and transformed into bAbI like Q&A dataset. We show the

examples of these dataset in Table III below.

TABLE III: Sample Q&A Corpus

ID Event Narrative Question Answer

1 Thunderstorms produced
heavy rain. Multiple low
water crossings were
closed.

What Produced
heavy rain?

Thunderstorms

2 Local roads, city streets
and multiple lanes were
impassable. A car was
stuck in street flooding”

What is stuck in
flooding?

Car

3 A landslide occurred on
Hwy 66. There was sig-
nificant damage to Hwy
66.

What happened
to Hwy 66?

LandSlide

VII. EXPERIMENT AND EVALUATION

In this section, we outline the experiment and setting for

three Deep Learning Models. We deployed three deep learning

models to create FloodBot. Two vision models (V-M1 and

V-M2) that enable the field reconnaissance of flooding and

possible hazard, and the language model (L-M1) enables

human-FloodBot conversation.

A. Vision Model 1

Rule Based Bulk Image Annotation: We call this a

rule-based supervised learning because the annotations for

training image dataset were provided using the current rainfall

intensity. We have collected the weather data synchronous

to the images. Thus we programmed database queries and

python package to label the image into one of the classes

based on recorded rainfall intensity during the image frame

timestamp. For example, a nice sunny day with no rain

recorded would yield ‘No Flood.’ Light rain would cause

minor floods. Significant rainfall would classify an image as

‘Flood’. We categorize the flood images into three classes No
Flood, Minor Flood and Flood. The classes are based on

turbulence, turbidity and observed high velocity of the flowing

water predominantly caused by rainfall intensity. This is a

clever labeling technique that is robust and practical, given

the large data set.

This is our domain-specific Flood Categorization Model.

In order to classify the current flooding situation at the

site, we labeled 15,686 images in our training set. We used

the automated rule based bulk Image annotation technique

discussed above to label 322 images as ‘Flood’, 2440 as

‘minor flood’ and 13,125 as ‘No Flood’ images. This a highly

imbalanced dataset so we re-sampled the images to balance

the class distribution uniformly. To achieve a more balanced

dataset we recreated the images from ‘flood’ class by copying,

altering label data (up-sampling to 500 images) and randomly
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sampled images from other two classes (down sampling to 500

images).

B. Vision Model 2 V-M2

This is a vanilla grade SSD implementation of the Single

Shot Multi box Object detection used to detect objects ad en-

rich our chatbot knowledgebase We pass the identified objects

as an bag-of-words to the memory network model. The output

from this model enriches our FloodBot’s knowledgebase to

have a meaningful conversation about the flood location. SSD

generates scores for the presence of object category by a

drawing and bounding box around the detected object.

C. End to End Memory Network

The End to End Memory Network Model enables FloodBot

to have a conversation with the human . We implemented

attention based end to end memory network proposed by

[18]. The dataset contains language corpus in three tuples

{story: multiple sentences, Question: a single sentence and the

Answer}. There are many variations within the dataset but two

of the categories are relevant to our model. We implemented

two bAbI model types, the first one (yes/no) answering dataset

and the second one is two fact question answering system.We

train our language model with a predefined generic dialogue

data set (non-domain specific) and enrich them with a domain-

specific conversation.
VIII. RESULTS

In this section we present results from our deep learning

models and their inter dependencies and relevancy in creating

AI Conversing Chatbot. All our experiments were ran using

Google Colaboratory a GPU powered online machine learning

platform.

A. Vision Model 1

We trained The transfer learning based V-M1 for 100 epochs

with custom head. The model is able to achieve accuracy of

97.18%. It took us about 2.5 hours to train the model on 15,686

images. Figure 5 shows the result from one of our validation

set. In the given example, the model correctly classified the

image set into {No Flood, Minor Flood and Flood} from

respectively.

Fig. 5: Results: VM1

1) Baseline Methods: To understand V-M1’s comparative

performance, we build two kinds of classification models: a

shallow network using support vector machine (SVM) and

a deep convolutional neural network (CNN). We then train

our model on images without using transfer learning. Due to

the resource constraints, we sampled 500 images instead of

15,686 from each of the flood categories and extracted low-

level image features (1 channel-pixel values) from them and

ran through baseline models.

TABLE V: Baseline Model Comparison

Model Type Parameters Accuracy

SVM RBF Kernels γ = 0.001,K = 5 53%
CNN 4 Layer relu, softmax 67%
V-M1 Transfer Learning Glb Avg Pooling,relu,Dropout 97%

Using the non-transfer learning based models we show that

the SVM based RBF model is only able to achieve 53%

accuracy where as the CNN based model achieves 67% . It is a

known fact in computer vision that there needs to be lot of low

level image pre-processing before achieving acceptable results

from shallow learning model such as SVM. The Cross-Domain

Transfer learning immediately improves the accuracy because

earlier layers within the base model has already performed and

learned feature properties of millions of images.

B. Vision Model 2

We randomly selected 2000 image frames and ran them

through the V-M2. Our motivation to identify objects in the

vicinity is to assess the potential damage should a flood occur.

From the dataset collected over a month, the V-M2 model

Fig. 6: Results: VM2

identified 90 distinct objects such as {Car, Wheel, House,
Tree, Building, Vehicle, Land vehicle, Tire, Window, Plant,
Bench,Truck}.Percentage wise summary of most and least

occurring objects detected from 2000 input image frames by

V-M2 is shown in Table VI.

TABLE VI: Most and Least Detected Objects

Objects: Car Tree vehicle Watercraft Bicycle
Percentage: 20.79% 17.74% 16% 0.55% 0.40%

Since the camera is pointing to a parking lot area and

images are triggered by the motion mostly caused my moving

vehicles, the most of the objects detected in 2000 randomly

sampled images are those of car and trees.

C. Model Fusion V-M1 and V-M2

We show the results of joint learning from V-M1 and V-M2

in Table IV for one of the sample image frame (e.g. Frame80).

This is one of the sample image frames form our full dataset.

The output from V-M1 i.e, current Flooding condition as

‘Minor Flood’ is the output from our V-M1 and detected

objects {building, Car etc.} are the output of V-M2. Once

we have these two elements together (frame by frame and at a

given time), the FloodBot has current contextual information to

converse and answer queries about real time hazard potential.

D. End to End Memory Network & Chatbot Implementation

We motivate the results of chatbot implementation by re-

calling the basic type of chatbot system, a Closed Domain
Retrieval Chatbot. These chatbots can only converse around
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TABLE IV: Joint Model Learning VM1 & VM2

VM1 VM2

frame id summary precipIntensity humidity Flood Label Object Total Object

frame80.jpg Possible Light Snow and Windy 0.0257 0.81 Minor Flood Building 2
frame80.jpg Possible Light Snow and Windy 0.0257 0.81 Minor Flood Car 90
frame80.jpg Possible Light Snow and Windy 0.0257 0.81 Minor Flood Person 1
frame80.jpg Possible Light Snow and Windy 0.0257 0.81 Minor Flood Street light 6

information that is stored in the database. The learning and

outcomes from our vision models and output is depicted

in Figure 7. We have broken down the domain knowledge

required by the FloodBot into their own sub domains. The

FloodBot can respond to the sub domains{Time, Weather,
Flood Risk, and Objects at Risk}. For example the answer to

”Is Ellicott City Flooding” can be easily answered by ‘yes/no

question’ based on the Flood Risk within that time domain.

The overall requirement of the chatbot implementation does

not change, so we still need to break the user request into two

main parts: utterance and intent. In the examples discussed

above, utterance is the sentence/phrase and the user intent

is to find the current flooding risk. With this background

we now digress into actual deep learning based Chatbot

Implementation Results.

Fig. 7: Floodbot: Q & A System

Our chatbot implementation is based on end to end memory

network [18]. We infused additional data into the bAbI corpus

and retrained our model. The end to end memory is built

using encoder decoder functions from Keras Sequential model

API. The model was trained for 120 epochs, with each epoch

limited to event narrative max length of 75 words. The

maximum query length was set to 6 words. We trained our

model with 10,000 event narrative which consists of 9000

original stories from bAbI and 1000 new ones from our

flood related narrative. We tested our model on the same

composition i.e 900 from original corpus and 100 is flood

related. We maintained the original batch-size of 32. We were

able to achieve 89% accuracy after infusing our data.

TABLE VII: Memory Network Comparison

Model : BaseLine(bAbI) After Data Fusion
Accuracy: 98.55% 89%

The original (baseline) model without the data fusion

achieves 98.55% accuracy. While there is a reduction in

the original accuracy the achieved accuracy is still within

acceptable range. We believe that the reduction in accuracy

is due to increase in vocabulary size and disjoint data sets.

The accuracy could increase if we use the dataset from same

domain with similar context.

E. Model Fusion V-M1 and V-M2 and L-M1

The final output from our deep learning model stack is the

integration of all three models. In this section, we present

two question and answer result from our FloodBot in Q&A

Demo section. The first question is an example from data

fusion from NOAA’s website and the second example is from

the the joint learning V-M1 and V-M2 model infused into Q

& A knowledgebase corpus. FloodBot answers based on the

decoder portion of End to End Memory network and word

embedding.

Chatbot Q&A Demo

Story: {‘Six’, ‘inches’ ,‘water’ , ‘.’ ‘Flooding’, ‘reported’,‘in’

, ‘town’}
Question:{ ‘How’, ‘deep’, ‘is’, ‘water’, ’?’}
FloodBot’s Answer: {Six}
Story: {’Minor’, ’Flood’ ’ . ’ , ’Ninety’,’cars’ ’Two’ ’Build-

ing’}
Question:{ ’Is’, ’there flood risk’, ’in’, ’Ellicott City’, ’?’}
FloodBot’s Answer: {yes-minor}
In the second, test scenario, the answer provided by the

FloodBot is a result of model fusion from three deep learning

model stack.

F. Model Run Time Metrics

One of the needs for our application is to be quick. After all

our models were trained and validated, we saved the model

weight as a static file. Running an end to end inference on

single image and asking a question to chatbot takes less

than a minute. The longest time spent in a single image

model inference is by the SSD image regeneration step. The

lag seems to be to create (re-writing) the image pixel with

bounding box. The bounding box and image reproduction is

only needed for Qualitative analysis. During the regular runs

we persist the object and score in our database.

IX. DISCUSSION

A. Latency Over Accuracy

The object detection count and score from the vision model

V-M2 is probabilistic and somewhat heuristic in nature. We

argue that the ultimate use of this kind of application is either

to have a sense of emergency or try to estimate the possible

damage. Thus the object detection and count measured are

mostly for estimation purposes. During disaster and life saving

events the timely information provided by our model could be

more valuable than trying to get to the correct count.
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B. Federated Deployment & Edge Computing

Currently the images are transported over 3G network for

our models inference. This causes some latency in real time

FloodBot message propagation and conversation stream. There

is no need of big computing power after the initial training

is completed and the learned model weights and parameters

are served (saved). The learned models can be federated to

edge devices. Therefore, a better approach would be to have a

Federated Deployment with an end to end system running on

an edge computing device such as Raspberry Pi, Jetson Nano

or Coral AI.

X. CONCLUSION

In this paper we presented our approach in creating a FloodBot

and infusing multiple data sources. We believe that there could

be extensive uses of the proposed application. Chatbot and

conversational AI is an active research area and there is a lot of

innovation happening in the area. Successful implementation

of topics discussed in this paper will make chatbots more

robust and suitable for a broader range of applications. In par

with the current development in the computer vision research

areas, we believe that we have created robust deep learning

vision model stack however, our language model and the

FloodBot’s conversational power is still work in progress.

In our future work, we plan to extend the natural language

component of this work and enhance our Floodbot’s chat-

ting capacity. This work and architecture of this deploy-

ment can be traced using our FloodBot’s Twitter account

(@umbc FloodBot). The AI Conversing power and the so-

cial media integration of FloodBot into Twitter verse is our

ongoing research.
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