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Abstract—Successful implementation of the Internet of Thing
(IoT) is precursory to a thriving smart city. However, the
technical, physical, and environmental conditions can often pose
challenges in their successful deployments. The deployment is
further complicated if the time and location of implementation
are amidst a natural disaster.

In this work, we use flash flood detection as a natural hazard
testbed and describe various IoT deployment, our progression,
and first-hand experience from those implementations. We com-
pare and contrast three IoTs and their performance in real-time
execution. Next, we discuss systems architecture and their end-to-
end design and present lessons learned from these heterogeneous
deployments. Additionally, we evaluate and outline our observa-
tions, challenges, and opportunities for further improvement. We
also formulate standard evaluation metrics for their scoring and
document our deployment journey.

Index Terms—IoT, Edge and Cloud computing, Smart City,
Smart Services and Computing, Flood Detection

1. INTRODUCTION

The vision of smart cities encompasses a safe, clean,
healthy, inclusive, resilient environment that can provide eco-
nomic opportunity and high quality of life for their residents.
When the daily chores of city inhabitants are fully integrated
into successful Information and Communication Technology
(ICT), one can say that Smart living is achieved. Smart cities
and ICT address the quality of life by improving the health,
safety, and security of their citizens [1], [2].

The concept of smart living becomes more valuable when
a community is dealing with a crisis and unforeseeable sit-
uations. A city is indeed smart if it succeeds in helping the
community navigate through the information overload during
such emergencies. Smart IoTs can be those agents in the time
of crisis. Thus, IoTs and ICT systems play a vital role in
disaster management in smart cities. They enable effective
communication between the first respondents, government
agencies, and local inhabitants.

Internet of thing (IoT)s and ICT systems have been well-
integrated in the transportation industry, mainly due to the
advancements of self-driving vehicles. On the other hand,
water resource management and specifically the flash flood
monitoring is one of the areas within civil engineering that
has lagged ICT and IoT integration. Water-induced disasters
such as floods, storms, heavy rainfall, etc. are some of the
most dangerous and devastating forms of calamities. Flash
flood is a common occurrence and can happen on tranquil
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streams and creeks in the neighborhood, city streets, and
highway underpasses [3]. Motivated by this, we designed
various early and intermediate stage prototypes to mitigate the
problem. Over the last two years, we have developed multiple
prototypical systems that allow us to gather real-time data and
empower decision-makers to act in advance to the disaster. Our
prototype can remotely monitor/sense the flooding situation
and deliver a functional cyber-physical system. We also believe
that our systems can be used to create a community watchdog
via social media integration in a smart city. In this work, we
present our findings from the flood detection and monitoring
systems, deployed in Ellicott City, Maryland, USA.

A. Objective

This work’s main objective is to understand and document
the complexity and challenges involved in the deployment pro-
cess of a disaster risk reduction IoT systems. The underlying
tasks in attaining this objective are:

o Design and deploy smart IoT systems for early warning
and enhancement in the decision support system.

o Assess and validate the design, implementation, and
deployment of IoT systems under harsh conditions and
heterogeneity.

o Stress-test the IoT systems for their reliability during
disastrous/extreme situations.

B. Contributions
The main contributions of this paper are as follows:

o This paper presents a detailed architecture and design
approach used in three different kinds of flash flood
detection IoTs.

« We deploy our IoTs in real-world hazardous conditions
and experiment with their robustness in a heterogeneous
environment.

« We frame each deployment into its generation to evaluate
its performance based on the underlying technology.

e We rationalize our progression from one deploy-
ment/generation to next by documenting the actionable
learning and shortcoming.

II. RELATED WORK

Ashton [4] introduced the term Internet of Things (IoT), and
it has been one of the most revolutionary technologies of the
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215 century. In recent times, IoT has become a common and
integral part of everyone’s daily lives. It has improved people’s
lifestyle in several domains through millions of sensors and
devices which perform various tasks such as to measure,
collect, store, process and transfer huge amounts of data
everyday [5], [6].

The research [7] reviews various innovative applications in
multiple domains such as health-care, smart buildings, smart
cities, transport, agriculture mining from the utility perspective
in the area of IoT and data analytics. The research [7] reviews
various innovative applications in multiple domains along
with the challenges they encountered while executing the
whole process (development and deployment) from the utility
perspective in IoT and data analytics. It is quite prominent
based on the survey [7] that these applications will continue
to improve our lives. However, there are some serious chal-
lenges, and researchers are working towards addressing these
challenges and making it more effective and efficient. The
difficulties in deployment have been well studied and can be
categorized into the following major areas [7], [8].

Performance & Scalability: It is caused by the need for
infrastructure scaling and real-time, fast analytic processing
(accurate predictive measures), especially during disasters.

Heterogeneity in Data Sources: As we integrate multiple
IoTs and sensors, we start to assimilate different types of data,
for example, social media contents, audio-visual elements,
satellite, and geospatial data. Heterogeneity in the data set
increases the possibility of richer knowledge and insights but
also deepens the complexity of the process.

Time-Space Complexity Computing: Another challenging
critical component is the velocity and veracity of real-time [oT
data collection, processing, and its overall management.

Device Reliability: Faulty sensors in the devices sending
malicious or missing data can mislead or make the machine
learning model bias resulting in less optimal results.

Individual privacy concerns: As connected IoTs integrate
into people’s lives as a society, the individual’s fundamental
privacy could be compromised. It is a challenging task to
maintain the balance of privacy concerns while providing the
appropriate individualistic solution of daily smart living.

III. GENERAL SYSTEM ARCHITECTURE

All our deployments adhere to similar technology and
architecture. They follow a three-layer IoT architecture, which
contains a Perception layer, a Network/Gateway layer, and
an Application layer. These layers are shown in Figure 1.
The communication protocols, IoTs units, target infrastructure,
are different in every generation (Gen) deployment, but their
overall data flow and working are the same. The target
structure for Gen-1, Gen-2, and Gen-3 deployments are on-
premise server, edge computing unit, and the cloud computing
infrastructure, respectively.

IV. DEPLOYMENT PROGRESSION

We describe these IoT’s and their echo system as gener-
ations of their own. We then describe and present how we
leaped into next-generation using the previous deployment as
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Fig. 1. General System Architecture

our stepping stone. As we progress into the next generation,
we also experiment with different technology and underlying
computing units such as on-premise server-based computing,
edge computing, and cloud computing. The progression and
primary contributing technology used in each of these deploy-
ments are summarized in Figure 2.

On-Prem Cloud Computing

Ge-1— Gen-2- Gen-3- Decision
|oT loT o Support
Edge Computing Al & ML

Fig. 2. Deployment & Progression Plan
5
A. Gen-1 On-Prem IoT

Our first IoT deployment is based on “On-Premise IoT
Solutions, called Smart Security P&S Unit. We purchased and
acquired the sensor along with the CPU from a European
company named Libelium. The Waspmote Plug & Sense
contains an internal SD (Secure Digital) card with up to 2
GB storage. The battery in the unit is charged through the
solar panel.

336 Connection

1. Licuid Level Sesnor

(a) IoT Description

(b) Field Deployment

Fig. 3. Gen-1 Deployment

1) Method and Materials: Figure 3(a) explains the func-
tionality of Gen-1 IoT and Figure 3(b) depicts the field
deployments of the same. The Gen-1 10T’s preceptor is a float
switch that sends a binary signal to the CPU when the rising
water level triggers and closes the circuit. Until the threshold
is reached, the float switch remains deactivated. Table I shows
a sample reading during flooding and non-flooding/regular
scenarios, including one flood triggering event denoted by
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Y in the last column. When the float switch is closed, i.e.,
flood level is reached, the CPU transmits a byte into our
on-premise server provisioned with LAMP (Linux, Apache,
MySQL, PHP). The server-side programs based on JAVA and
cron are used to detect the signal and send email notifications
based on the set thresholds.

TABLE I
SAMPLE READING FROM GEN-1 10T

TimeStamp Temp  Flood
Threshold
10/11/2017 21:18  74.6 N
10/15/2017 23:42 76 Y
10/16/2017 9:18 77 N

2) Shortcomings and Challenges: While this deployment
gave us ample learning opportunities, and we iterated multiple
times within this generation, the following are some of the
challenges and shortcomings of this deployment.

Data Limitations: This device is only capable of sending
a binary signal when the preset flood threshold is reached.
Limited Predictive Capability: Real-time flash flood
detection requires a predictive model which can forecast
future flood level in the area. However, the data limitation
capability of this system does not accommodate the
predictive power well. This deployment would be able
to create at most a Rule Based engine.
Cost: Given a limited data ability for our application,
the device is also cost-prohibitive. The equipment cost
us almost two thousand dollars.
International Device: Being an imported device con-
necting to the American network service providers is a
challenge

Among others, this deployment possessed an unforeseen
impediment for us. This is an imported device from a Spanish
company called Libelium. The Libelium unit was unable to
connect with any of the leading US telecommunication sys-
tems such as AT&T, Verizon, T-Mobile, etc. Finally, we had to
work with the vendors from Spain to get the basic functionally
to work. To mitigate the problem, the company had to develop
a special device solely for our research purposes.

3) Lessons Learned: Making Gen-1 functional has been
quite a difficult and time-consuming endeavor. First and fore-
most, this is our first cyber-physical system to be deployed
and tested outside the controlled lab setting. We had to make
sure that the device will be deployed in a secured area and
away from vandalism or theft. Although the unit is marketed
as a Plug & Play unit, it required a lot of custom coding to
make it operational. We had to study and understand various
hardware, software, and networking aspects of the unit.
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TABLE II
GEN-1 I0T DEPLOYMENT SUMMARY

Gen-1 On-Prem IoT

3G

Flood Level Threshold Sensor
Custom Code (LAMP, JAVA)

Network Protocol

Perceptor

The application layer

Major Capability Binary Data and Email Trigger

Once we were able to operate the device, it was adequately
reliable. We deployed the system for more than three months
without any problem. The server performed the critical func-
tion of this unit, and hence the unit itself is less prone to
failure at the IoT node. Table II summarizes the findings from
our Gen-1 deployment. The main capability of this deployment
is being able to send a binary trigger to the server when the
unit would reach the preset flood threshold. As soon as the
water level rose to the float sensor level, the rising water level
closes the circuit, and IoT sends a binary signal. The signal
then triggered a series of server deployed applications such as
database inserts, SMS, and email alerts.

4) Motivation for Gen-2: Thereafter the deployment of
Gen-1 and learning from them, we move to our second-
generation (Gen-2) deployment. The main motivation for us
to delve into this iteration is to try to build an in-house lab
unit and circumvent the main challenges presented by Gen-
1. In Gen-2, we strive for a more economical solution and
look for a richer data set. We also lost a significant amount
of time in the back and forth shipment of the devices across
continents. Soon we realized that working across the globe and
timezone was not a viable solution. Subsequently, we move on
to the next options and explore building an in-house flash flood
detection system.

B. Gen-2 Edge Computing loT

This deployment primarily explored the concept and work-
ing of edge computing. There are two separate units within
proximity, the physical unit, a riser structure, and the compu-
tational edge unit. The riser structure is a color-coded flood
gauge.

1) Method and Materials: The IoT system is shown in
Figure 4(a), where the perceptor is a camera unit continuously
taking a picture of the Riser Structure. The Field Deployment
for Gen-2 is depicted in Figure 4(b) with RaspPi_Camera and
Flood_Gauge marked on the Figure 4(b). In-depth analysis and
deployment detail are discussed in our previous work [9].

Edge Computing: The unit is based on scene text recog-
nition, which allows locating the area of interest with an
image. We use various image pre-processing techniques such
as background subtractions, template matching, and Region of
Interest (ROI) trimming to isolate the areas to perform infor-
mation extraction. We use the K-Means clustering technique
to separate the most dominant colors.

We then leverage digit recognition techniques to identify
the flood level in a stream. The edge computing unit is a
microcomputer (Raspberry Pi), runs on the Linux operating
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(a) IoT Description

(b) Field Deployment

Fig. 4. Gen-2 Deployment
system. We installed the MySQL database to store and manage

the meta-data such as image, time, label, size, deployment
location, etc. The unit contains a pre-trained deep learning
model capable of recognizing digit and color. The edge unit
used K-Means clustering to identify the most dominant colors.
We then used digit recognition techniques to determine the
flood level in a stream. The CPU unit is a Raspberry Pi
unit loaded with a pre-trained deep learning model capable of
recognizing digit and color. At the end of each run, the unit
takes a picture, performs image pre-processing, and prepares
input for the color and digit recognition deep learning model.

2) Shortcomings and Challenges: This device is built lo-
cally, with commodities such hardware (pipes, gauges, over-
flow structures) and software (computing models, image data
storage and processing), it has its own set of challenges and
learning opportunities. Some of the major challenges and
shortcomings of this deployment are listed below.

o Stability: The major challenge in this design and deploy-
ment is the physical stability of the unit. Figure 4(b)
shows the precarious physical stability of this deploy-
ment.

o Reliability: Lose wire connections, dangling parts, and
stand-alone camera reduced the reliability of this unit.
Safety: The units will also be hard to deploy in harsh
flooding or unforeseeable scenarios. It would be easily
swept away during flooding and misplaced.

o Accessibility: The camera is unable to capture clear
images in extreme/foggy weather and at night.

TABLE III
GEN-2 IoT DEPLOYMENT SUMMARY

Gen-2 Edge Computing IoT

Networking On Device Storage

Perceptor Camera Unit

The application layer ~ Pre-Trained Deep Learning Model

Major Capability Real time Flood Detection on Edge

3) Lessons Learned: This work is based on the challenging
area of computer vision and provided us with good research
opportunities. However, besides the shortcoming listed above,
the main challenge of this unit is its inability to detect the
flooding condition at night. The computer vision technique
described above works on camera being able to read the
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color and digit, and hence during the night, the device would
be unable to detect flood level. The unit taught us basic
knowledge about the cyber-physical device’s development that
different yet intricate components need to work in tandem to
have a successful IoT. These main components, as described,
included the hardware (physical units), the IoT sensing elec-
tronic components, and the final software components. As
seen, they are often the expertise of different engineering
groups such as mechanical/civil, electronics, and software
engineering. To that end, it would have been an uphill battle
for a single lab to produce a scalable device in this generation.
Nevertheless, we believe this unit has huge potential, and
further data exploration and research activities are currently
in progress.

4) Motivation for Gen-3: With our lessons learned from
the previous generation and experimenting with them for
some time, it is evident that the most time-consuming part
of IoT development is its reliability, physical stability, and
data granularity. We finally decided to move towards the
off the shelf IoT product solutions. During our first two
deployments, we learn that maintaining in house server and
hardware component is yet another overhead for the main
research work, i.e., to detect flash flood readily. To that end, we
decided to use Software as a Service (SaaS) technology and
opted to use a cloud provider for day to day data storage and
application management. Our main goal in moving to the next-
gen is to focus more on building a robust machine learning
solution and less on physical stability and mundane tasks.

C. Gen-3 Cloud Computing loT

In Gen-3, we attempt to
solve our previous flood de-
tection problems by selecting
the ready to use IoT prod-
uct. The deployment, along
with sensors of this system,
is shown in Figure 5. The
units come with the percep-
tors ready to connect to the
CPU that transfer data to the
cloud. Once the raw data is in
the cloud server, we are ready
to access them and perform
machine learning actitivites.

1) Method and Materials: One of the Gen-3 deployment
setups is depicted in Figure 5, which displays two sensors
water level measuring unit, a pressure-based water sensor,
and the camera unit along with field deployment. The camera
triggers when the flooding is sensed by the water measuring
unit. Table IV shows sample reading from one of our deployed
sensors. In this deployment, we use four such units into hydro-
logically significant stream locations. They are online and
collecting real-time flood data, the Ellicott City, Maryland
streams, which was devastated by flash in the past. Figure
6 shows the water level recorded at the same time by two
different sensors located along the same tributary. It shows
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Fig. 5. Gen-3 Cloud Computing IoT

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 08,2020 at 00:12:47 UTC from IEEE Xplore. Restrictions apply.



TABLE IV
SAMPLE READING FROM GEN-3 IOT

RECORD_TIME  Water Temp
Level oF
(inch)

10/10/2019 12:00 9.668 86.93

10/9/2019 1:00 5.828 60.67

10/12/2019 17:00 2.957 71.60

that the bottom graph is a feeder stream to the upper one and
hence has a higher water reading. Gen-3 is already integrated
with the social media platform Twitter to broadcast the sensor
reading regularly via the twitter handle umbc_floodbot '. One
such tweet is depicted in Figure 6.

=

UMBC Flood Bot @umbc_floodbo

Temperature reading at Hamilton Street Parking at 2019/10/13 18:00 Lot is:
64.4 and the water level at the Hudson Branchis: 4.7 i

ng,#HoCoMD,

v

Water Level Reading by Two Sensors

Hourly Water Level Reading

20191006 2019-10-07 2019-10-08 2019-10-09 2019-10-10 2019-10-11 2019-10-12 2019-10-13 2019-10-14

Fig. 6. Gen3-Data Dissemination

2) Shortcomings and Challenges: The systems are up and
running online for a few months now. We have begun to
understand the functionality of the unit and its challenges. The
following are a few challenges that we have encountered so
far.

Hardware Issues: Once ordered, it took us a few months
to get the system operational because of some internal
hardware failure and network connectivity challenges.
Proprietary Parts: The device and its perceptor (CPU and
other units) are all proprietary to the vendor, and hence
we have limited accessibility and low modifiability to the
inner functionality of the unit.

Stability: One recent flash flood event, washed away one
of the perceptor (pressure transducer); thus, this unit is
also susceptible to physical stability.

Clogging Debris: The sensor unit is submerged in the
water and often gets clogged by siltation and other debris.
The debris also causes connectivity issues and data loss.

3) Lessons Learned: As of the writing of this paper, Gen-
3 units have been live for a few months. Similar to previous
deployments, this deployment gave us ample learning oppor-
tunities. As we progressed from Gen-1, Gen -2, we notice
that some of the same fundamental challenges still remain.
For example, the washing away of our sensor on Gen 3

1 https://twitter.com/umbc_floodbot
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or vandalism, the reliability in network connectivity are all
still ongoing challenges. However, we do believe that this
deployment is one of the significant achievements for us and is
expected to bring multi-facet learning opportunities. We have
been expanding and collaborating with other vendors to deploy
more sensors in the area. The unit is fully integrated with a
camera, which allows us to see and validate the data remotely.

In addition to the current research, we have another entirely
different and noble research direction that has emerged from
this deployment. Given the easy integration of sensor reading
and social media, we are exploring various ideas to integrate
the cyber-physical system with social media. The reading from
this device and images captured are propagated as tweets using
the umbc_floodbot twitter handler. On top of four sensors,
we are also recording weather data (historical and foretasted)
for the area, so it will be an interesting research work to
see if we can predict the flow patterns based on weather and
rainfall data. Similarly, ample opportunity for research lies in
the integration of computer vision into a physical phenomenon
captured by our deployed sensors.

TABLE V
GEN-3 IOT DEPLOYMENT SUMMARY

Gen-3 Cloud Computing IoT
Cloud Connected 3G

Network

Perceptor hydro-static level sensor

Cloud hosted API

The application layer

Major Capability Water Level, Images and Social Media Posting

V. RESULT AND DISCUSSION

We evaluate the overall success of our deployments based
on the following evaluation criteria.

A. System Evaluation

We score the systems and their success based on evaluation
criteria discussed by Fahmideh et al. and Maoling and et al.
[10], [11]. Based on their study, we have selected the four
evaluation metrics to assess the quality of our deployment
and system. Performance to measure the device capacity
from parallelism, their ability to query the unit from both
multiple user interfaces and Operating Systems. Modifiability
to measure the ability and flexibility to make changes from
both hardware and software in the deployment. Reliability to
measure the overall reliability of the system. Availability to
measure the capability of usage and execution of the software
developed during intervals of time.The results are shown in
Table VI. Gen-1 deployment was available for the duration
of execution time despite difficult communication networks.
Since the Gen-1 was primarily a plug and play device, it
had less adaptable to change for scalability and customized
needs. The performance for Gen-1 was limited as it could
not support multiple users or distributed environments. Gen-2
deployment’s availability was minimal since it was designed
and installed in a precarious state and dependent on the mercy
of environmental/weather conditions.
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The overall performance of the Gen-2 system was medium
since the data collected and analyzed using this system was
not up to the mark due to the physical instability of the system
and bad image data due to the night vision of the camera.

As yet, the Gen-3 deployment seems to be promising in
fulfilling the gaps left out by the previous Gen deployments.
Gen-3 is high in availability .We can access the data in
real-time through the API call and dashboard. The sensors
and devices are efficient and well connected to the network.
The Gen-3 system would still face extreme physical/weather
conditions but more reliable than the previous Gen systems.
Gen-3 uses fully functional, pre-built, ready to use systems
with data visualization and web interface. Thus, it does not
provide much flexibility in modifying the system, making
it less in Modifiability and more reliable than our Gen-2
deployment. The performance of the Gen-3 system is expected
to be higher than the previous Gen systems because the good
quality of data, system stability, network connectivity, and data
analysis would be superior relatively. Gen-3 has the potential
to achieve the final goal with efficiency.

TABLE VI
EVALUATION METRICS

Evaluation Report Card

10T Performance  Modifiability  Reliability — Availability
Gen-1 Low Low High High
Gen-2  Medium High Low Limited
Gen-3  High Low High High

B. Point of Failure Analysis

Table VII shows the information against our 3-layered
architecture. The weakest link and lesson learned from these
generations are summarized in table VIL.

TABLE VII
WEAKEST LINK ANALYSIS

Point of Failure Analysis

Deployment ~ Weakest Link  Discussion
Gen-1 Perceptor Float switch does not give granular
Gateway flood stage
Application
Gen-2 CPU Device lacked proper enclosure for
harsh weather
Image-based solution needs night-
vision
Gen-3 Perceptor Data loss issues, Cloud Connectiv-
Gateway ity

C. loT-Service Delivery Model

We observed that the proper selection of IoT Service De-
livery Model is also important in the overall success of the
IoT implementation. Gen-1 and Gen-2 were based on-premise
server for data analytic, and since we implemented all the
server-side code, the overall process is very reliable. All the
challenges that we are currently facing are mostly attributed
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because IoT is an evolving field and applicable to other
projects as well. Hitherto, Gen 3 seems to be the best solution
for scalable IoT deployment. This mode of deployment could
be better used to perform more sophisticated tasks such as
utilizing machine learning and Artificial Intelligence methods
to find suitable smart solutions.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented our experience in creating
IoT solutions around three heterogeneous environments. We
have presented our learning from all of these implementations.
We have intentionally left out the discussion from the data
quality and analytically perspective. In our future work, we
will divulge more on each of the unit’s performances and
the readiness of data usage for a decision support system
and their machine learning potentials. IoTs play an important
role in informing people and, more so, during disastrous
situations. We firmly believe that the success of smart cities
lies in the success of many successful IoTs. Furthermore, it
has been our experience that the IoTs (hardware) and the
application (software) are two different and rich research area
in themselves. Looking at all three option and our experience
with cloud deployment, IoTs are the perfect candidate for
cloud-based solutions.
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