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Beyond Truth-Telling: Preference Estimation with 
Centralized School Choice and College Admissions†

By Gabrielle Fack, Julien Grenet, and Yinghua He*

We propose novel approaches to estimating student preferences 
with data from matching mechanisms, especially the Gale-Shapley 
deferred acceptance. Even if the mechanism is strategy-proof, 
assuming that students truthfully rank schools in applications may be 
restrictive. We show that when students are ranked strictly by some 
ex ante known priority index (e.g., test scores), stability is a plausible 
and weaker assumption, implying that every student is matched with 
her favorite school/college among those she qualifies for ex post. 
The methods are illustrated in simulations and applied to school 
choice in Paris. We discuss when each approach is more appropriate 
in real-life settings. (JEL D11, D12, D82, I23)

The past decade has seen the Gale-Shapley deferred acceptance (DA) becoming 
the leading centralized mechanism for the placement of students to public schools 
at every education level, and it is now used by many education systems around the 
world, including Amsterdam, Boston, Hungary, New York, Paris, and Taiwan.

One of the main reasons for the growing popularity of DA is its strategy-proof-
ness (Abdulkadiroǧlu and Sönmez 2003). When applying for admission, students 
are asked to submit rank-order lists (ROLs) of schools, and it is in their best interest 
to rank schools truthfully. Students and their parents are thus released from strategic 
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considerations. Consequently, DA also provides policymakers “with more credible 
data about school choices, or parent ‘demand’ for particular schools,” as argued by 
Thomas Payzant (former Boston Public Schools superintendent) (Abdulkadiroǧlu 
et al. 2006, p. 25). Indeed, such rank-ordered data contain rich information on stu-
dent preferences over schools, and are increasingly used in the empirical literature.

Due to the strategy-proofness of DA, one may be tempted to assume that the 
submitted ROLs reveal students’ true preferences over schools. However, this 
truth-telling assumption can be restrictive in settings where students face only 
limited uncertainty about their admission outcomes. One such environment is the 
“strict-priority” setting in which schools rank students by some priority index, e.g., 
a test score, which is known to students when submitting their ROL. Consider a 
student who likes a highly selective school but has a low test score. The student 
may “skip the impossible” and choose not to apply to this school, as she rationally 
expects a zero admission probability based on available information such as past 
admission outcomes. This implies that not all students have strong incentives to rank 
all schools truthfully in their ROLs.1

Based on theoretical investigations of student incentive and behavior, we aim to 
provide empirical approaches to estimating student preferences in the strict-prior-
ity setting, which remains largely unexplored in the empirical literature on school 
choice and college admissions. Our proposed approaches can potentially be applied 
in many real-life systems, such as those in Table 1, including school choice in 
Finland, Paris, and Turkey (panel A) as well as college admissions in Chile, Norway, 
and Taiwan (panel B).

The paper’s first contribution is to clarify the implications of the truth-telling 
assumption, which hypothesizes that students always report true preferences. Given 
the flourishing empirical literature on the setting in which schools rank students 
with post-application lotteries (Pathak and Shi 2014; Abdulkadiroǧlu, Agarwal, 
and Pathak 2017), it is natural to extend those truth-telling-based approaches to the 
strict-priority setting. Unfortunately, strategy-proofness implies that truth-telling is 
a weakly dominant strategy, leaving open the issue of multiple equilibria because a 
student may obtain the same outcome by opting for non-truth-telling strategies—as 
shown in the “skipping the impossible” example above. Making truth-telling even 
less likely, many applications of DA restrict the length of submittable ROLs, which 
destroys strategy-proofness (Haeringer and Klijn 2009).

These arguments are formalized in a theoretical model. Deviating from the liter-
ature, we introduce an application cost that students incur when submitting ROLs, 
and the model therefore has the common real-life applications of DA as special 
cases. Conditional on both preferences and priorities being private information, we 
show that for truth-telling to be the unique equilibrium, two conditions are needed: 
no application cost and large uncertainty in admission outcomes. Neither is easily 
satisfied in the strict-priority setting. Even without limits on the length of submit-
table ROLs, students may find it costly to rank a long list of schools. As students 

1 In contrast, students can be more uncertain about their admission outcomes if (i) schools use lotteries to break 
ties ex post, or (ii) schools rank students by test scores that are ex ante unknown. In these cases, the aforementioned 
student may choose to apply to the highly selective school, since uncertainty in priority indices implies that admis-
sion probabilities are rarely zero ex ante.
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know their own priority indices, uncertainty about admission outcomes can also be 
limited.

Going beyond truth-telling, the paper’s second contribution is to propose a 
set of novel empirical approaches that are theoretically founded. We consider a 
weaker assumption implied by truth-telling: stability, or justified-envy-freeness, of 
the matching (Abdulkadiroǧlu and Sönmez 2003), meaning that every student is 
matched with her favorite feasible school. A school is feasible for a student if its 
ex post cutoff is below the student’s priority index. These cutoffs are well-defined 
and often observable to the researcher: given the admission outcome, each school’s 
cutoff is the lowest priority index of the students accepted there. Conditional on the 
cutoffs, stability therefore defines a discrete choice model with personalized choice 
sets, which is straightforward to analyze empirically.

We show that stability is a plausible assumption, as there exists an equilibrium 
outcome that is asymptotically stable under certain conditions. When school capaci-
ties and the number of students increase proportionally while the number of schools 
is fixed, the fraction of students not matched with their favorite feasible school tends 
to zero. Although stability, as an ex post optimality condition, is not guaranteed 
when students’ information is incomplete, we provide numerical evidence sug-
gesting that typical real-life markets are sufficiently large for stability to be almost 
exactly satisfied.

Table 1—Centralized School Choice and College Admissions Based on the Deferred Acceptance 
Mechanism with Strict Priority Indices: Examples

Education system Assignment mechanism Restrictions Sources

Panel A. Secondary education
Boston (exam schools)a Student-proposing DA Unrestricted Abdulkadiroǧlu, Angrist, and Pathak (2014)
Chicago (exam schools)a DA (serial dictatorship)c Up to 6 choices Pathak and Sönmez (2013)
NYC (exam schools)a DA (serial dictatorship)c Unrestricted Abdulkadiroǧlu, Angrist, and Pathak (2014)
Finland School-proposing DA Up to 5 choices Salonen (2014)
Ghana DA (serial dictatorship)c Up to 6 choices Ajayi (2013)
Paris School-proposing DA Up to 8 choices Hiller and Tercieux (2014)
Romania DA (serial dictatorship)c Unrestricted Pop-Eleches and Urquiola (2013)
Singapore DA (serial dictatorship)c Up to 6 choices Teo, Sethuraman, and Tan (2001)
Turkey DA (serial dictatorship)c Up to 12 choices Akyol and Krishna (2017)

Panel B. Higher education
Australia (Victoria) College-proposing DA Up to 12 choices Artemov, Che, and He (2017)
Chile Student-proposing DA Up to 10 choices Hastings, Neilson, and Zimmerman (2013)
Hungary Student-proposing DA Unrestrictedb Biró (2011)
Ireland College-proposing DA Up to 10 choices Chen (2012)
Norway College-proposing DA Up to 15 choices Kirkebøen, Leuven, and Mogstad (2016)
Spain Student-proposing DA Region-specific Mora and Romero-Medina (2001)
Taiwan College-proposing DA Up to 100 choices UAC (2014)
Tunisia College-proposing DA Up to 10 choices Luflade (2018)
Turkey College-proposing DA Up to 24 choices Saygin (2013)

Notes: 
a �For exam schools in Boston, selective enrollment high schools in Chicago, and specialized high schools in 

NYC, strict priority indices are used in the admission. In contrast, admissions to other schools often do not 
use strict priority indices.  

b �In Hungary, students may apply for any number of programs but they are charged a fee (of approximately 
ten euros) for every program after the third application.  

c �In all of the countries/cities listed in this table, students’ priorities are based on various combinations of 
grades, entrance/exit exams, and other criteria (aptitude tests, interviews, etc.). When priority indices are not 
school-specific, i.e., schools/universities rank students in the same way, DA, whether student-proposing or 
school/college-proposing, is equivalent to serial dictatorship, under which students, in the order of their prior-
ity indices, are allowed to choose among the remaining schools or universities.
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Based on the theoretical results, we propose a menu of approaches for preference 
estimation. We start by formalizing the truth-telling assumption under which one 
can apply rank-ordered models on submitted ROLs. In practice, students rarely rank 
all available schools, and, therefore, the truth-telling assumption often imposes the 
exogeneity of the length of a submitted ROL.2

Stability, but not asymptotic stability, leads to a discrete choice model with per-
sonalized choice sets, so the nonparametric identification in the discrete-choice 
literature can be applied (e.g., Matzkin 1993), under the assumption that priority 
indices and unobserved preference heterogeneity are independent conditional on 
observables. An advantage of this approach is that it enables estimation with data on 
admission outcomes only, although ignoring the information in ROLs entails some 
efficiency loss in the estimation.

We also provide a solution if neither truth-telling nor stability is satisfied: as 
long as students do not play dominated strategies, the submitted ROLs reveal true 
partial preference orders of schools (Haeringer and Klijn 2009),3 allowing us to 
derive probability bounds for one school being preferred to another. The corre-
sponding moment inequalities can be used for inference (for a survey, see Tamer 
2010). When stability is satisfied and identifies student preferences, these inequal-
ities provide over-identifying information that can improve estimation efficiency 
(Moon and Schorfheide 2009).

To guide the choice between these identifying assumptions, we consider sev-
eral statistical tests, provided that the model is correctly specified and identified. 
Truth-telling, leading to more restrictions than stability, can be tested against sta-
bility using a Hausman-type test (Hausman 1978) or a test of over-identifying 
restrictions (Hansen 1982). Similarly, stability can be tested against undominated 
strategies: if the outcome is unstable, the stability restrictions are incompatible with 
the moment inequalities implied by undominated strategies, allowing us to use tests 
such as Bugni, Canay, and Shi (2015).

Our third contribution is to evaluate the performance of each approach based 
on simulated and real-life data. Having illustrated the main theoretical results with 
Monte Carlo simulations, we apply the empirical approaches to school choice data 
from Paris. There are 1,590 middle school students applying for admissions to 11 
academic-track high schools in Paris’ southern district through a version of DA. 
Schools rank applicants by their academic grades but give priority to low-income 
students. The findings are more consistent with stability than truth-telling. Our pro-
posed statistical tests reject truth-telling in favor of stability but fail to reject stability 
against undominated strategies. The tests, however, do not provide definitive proof 
against truth-telling, since they are conditional on the model’s parametric assump-
tions. Additionally, we provide reduced-form evidence on students’ ranking behav-
ior suggesting that some students may have omitted the most selective schools from 
their ROLs because of low admission probabilities. Moreover, the truth-telling-based 

2 Hence, we distinguish strict from weak truth-telling. The former assumes that every student ranks all schools 
truthfully, while the latter requires students to rank their most-preferred schools truthfully and allows them to omit 
the least-preferred schools.

3 An ROL is a true partial preference order if the listed schools are ranked according to true preferences.
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estimator is outperformed by the stability-based one when it comes to predicting 
admission outcomes and student preferences.

To highlight the differences between the proposed approaches and their underly-
ing behavioral assumptions, we summarize the theoretical results and describe the 
nesting structure of the assumptions in Section V. We also emphasize the key fea-
tures of school choice and college admissions in practice that can help researchers to 
choose the most appropriate empirical approach to preference estimation.

Other Related Literature.—Since the seminal work of Abdulkadiroǧlu and 
Sönmez (2003), the theoretical study of student behavior and matching properties 
under DA has been extensive, and large-market asymptotics are a common analytical 
tool (see the survey by Kojima 2015). Closely related to our study is Azevedo and 
Leshno (2016), who show the asymptotics of stable matchings. Our paper extends 
theirs to outcomes of Bayesian Nash equilibrium, whereas they assume that students 
are always truth-telling.

There is a burgeoning literature on preference estimation using centralized school 
choice data. One strand of this literature uses data from settings in which researchers 
argue that truth-telling behavior by students is plausible. For example, Hastings, 
Kane, and Staiger (2008) use data from Charlotte-Mecklenburg public school dis-
trict, and Abdulkadiroǧlu, Agarwal, and Pathak (2017) study school choice data 
from New York City, which is a “lottery” setting.4 Both papers estimate student 
preferences under the assumption that students truthfully report their preferences. In 
the same spirit, assuming students report their true preferences in surveys, Budish 
and Cantillon (2012) and De Haan et al. (2018) use reported student ordinal prefer-
ences to conduct analysis without estimating preferences.

The second strand of the empirical literature explicitly considers students’ strate-
gic behavior when estimating student preferences, especially if the mechanism is not 
strategy-proof, e.g., the (Boston) immediate-acceptance mechanism (Calsamiglia, 
Fu, and Güell 2014; He 2015; Hwang 2016; Kapor, Neilson, and Zimmerman 2016; 
Agarwal and Somaini 2018). In those settings, observed ROLs are sometimes con-
sidered as solutions to the maximization of students’ expected utility. Avoiding 
some difficulties of this strategy-based approach, we instead propose methods that 
rely on equilibrium outcome of the school choice game.5

As to the strict-priority setting, there are only a handful of empirical studies 
(Ajayi 2013, Burgess et al. 2014, Akyol and Krishna 2017). Most of them use 
ad-hoc solutions to the potential problem of students’ non-truth-telling behavior.6 
Akyol and Krishna (2017) is an exception. Observing the outcome and the cutoffs 

4 The authors perform robustness checks, e.g., only considering students’ top three submitted choices.
5 With assumptions on students’ beliefs, the strategy-based approach formulates a discrete choice problem 

defined on the set of possible ROLs. It faces some challenges. (i) Degenerate admission probabilities can occur, 
leading to multiple equilibria (He 2015). (ii) Application costs, especially those related to cognitive load, are often 
unobservable, necessitating additional assumptions in the maximization of expected utility. (iii) A given ROL is 
evaluated against a large number of alternative ROLs, sometimes creating computational burden (e.g., there exist ​
S !/(S − K) !​ lists ranking ​1  ≤  K  ≤  S​ schools).

6 Analyzing school choice in the United Kingdom, where proximity to schools breaks ties in determining admis-
sion to oversubscribed primary schools, Burgess et al. (2014) restrict each student’s set of schools to those in close 
proximity to the student’s residence. In the context of admissions to secondary schools in Ghana, where exam 
scores determine priority, Ajayi (2013) considers a subset of schools with similar selectivity.
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of high school admissions in Turkey, the authors estimate preferences based on the 
assumption that every student is assigned to her favorite feasible school, which 
amounts to assuming stability of the matching. We formalize and clarify this stabil-
ity assumption, along with other extensions. Although stability is a rather common 
identifying assumption in the two-sided matching literature (see the surveys by Fox 
2009, Chiappori and Salanié 2016),7 it is new in empirical studies of school choice 
and college admissions.

Lastly, estimation of student preferences with college admissions data is 
under-explored, often due to the decentralized nature of the admission process. 
Among centralized admissions, however, there are many applications of the DA 
mechanism (see Table 1).8 The specifics of the mechanism have led to numerous 
studies on the causal effects of education (e.g., Hastings, Neilson, and Zimmerman 
2015; Kirkebøen, Leuven, and Mogstad 2016), but few on preference estimation. 
One exception is Kirkebøen (2012) who uses the truth-telling assumption while 
excluding from a student’s choice set every college program at which the student 
does not meet the formal requirements or is below its previous-year cutoff. Another 
is Bucarey (2018) who applies our stability-based estimator to evaluate the crowd-
ing-out effects of free college tuition for low-income students in Chile.

Organization of the Paper.—Section I presents the model and the theoretical 
foundation. Section II formalizes the empirical approaches and tests, which are 
illustrated in Monte Carlo simulations in Section III. School choice in Paris and 
the empirical results are shown in Section IV. Section V discusses practical con-
siderations for applying the approaches to data and outlines some extensions. We 
conclude in Section VI.

I.  The Model

To study student behavior, we extend the model in Azevedo and Leshno (2016). 
An economy, as a school choice/college admissions problem, consists of a finite 
set of schools/colleges, ​  ≡ ​ {1, … , S}​​, and a set of students. Student ​i​ has a 
type ​​θ​i​​  = ​ (​u​i​​, ​e​i​​)​  ∈  Θ  ≡ ​​ [0, 1]​​​ S​ × ​​[0, 1]​​​ S​​, where ​​u​i​​  = ​ (​u​i,1​​, … , ​u​i,S​​)​  ∈ ​​ [0, 1]​​​ S​​  
is a vector of von Neumann-Morgenstern (vNM) utilities of being assigned to 
schools, and ​​e​i​​  = ​ (​e​i,1​​, … , ​e​i,S​​)​  ∈ ​​ [0, 1]​​​ S​​ is a vector of priority indices at schools, 
a student with a higher index having a higher priority at a school. To simplify nota-
tion, we assume that all schools and students are acceptable.9 Students are matched 
with schools through a centralized mechanism.

The continuum economy with a unit mass of students is denoted by ​E  = ​ {G, q, C}​​,  
where ​G​ is an atomless probability measure over ​Θ​ representing the distribution 
of student types; ​q  = ​ (​q​1​​, …, ​q​S​​)​​ are masses of seats available at each school, 
where ​​q​s​​  ∈ ​ (0, 1)​​ for all ​s​; lastly, ​C​ is an application cost, to be specified shortly. 

7 This literature usually considers decentralized matching markets; Agarwal (2015) is an exception.
8 Some centralized college admissions do not use DA, e.g., Brazil (Carvalho, Magnac, and Xiong forthcoming).
9 Assuming acceptability of all schools justifies the normalization of ​u  ∈  ​​[0, 1]​​​ S​​. Although we could extend the 

preference domain to allow for negative values, this would create the possibility that students avoid being assigned 
to schools with negative vNM utilities when maximizing expected utility.
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Probability measure ​G​ being atomless implies a measure-zero set of students with 
indifference in either utilities or priority indices.

A random finite economy of size ​I​ is denoted by ​​F​​ ​(I)​​  = ​ {​G​​ ​(I)​​, ​q​​ ​(I)​​, C}​​; ​​F​​ ​(I)​​​ is 
constructed by independently drawing ​I​ students, indexed by ​i  ∈ ​ {1, … , I}​​, from 
the distribution ​G​ and adjusting the numbers of seats to integers. Specifically,  
​​G​​ ​(I)​​​ is the random empirical distribution of types for a sample of ​I​ students;10  
​​q​​ ​(I)​​  = ​ [q · I]​/I​ is the supply of seats per student, where ​​[x]​​ is the vector of integers 
nearest to ​x​ (with a rounding down in case of a tie). We use ​​​F ˆ ​​​ ​(I)​​  = ​ {​​G ˆ ​​​ ​(I)​​, ​q​​ ​(I)​​, C}​​  
to denote a realization of ​​F​​ ​(I)​​​.

In the following, we start with ​​F​​ ​(I)​​​ to specify the matching process and to analyze 
student behavior, because empirical studies deal with finite economies; the exten-
sion to the continuum economy ​E​ is deferred to Section ID.

In a realization of the random economy, ​​​F ˆ ​​​ ​(I)​​​, schools first announce their capaci-
ties, and every student then submits a rank-order list (ROL) of ​1  ≤ ​ K​i​​  ≤  S​ schools, 
denoted by ​​L​i​​  = ​ (​l​ i​ 1​, … , ​l​ i​ k​, … , ​l​ i​ ​K​i​​​)​​, where ​​l​ i​ k​  ∈  ​ is ​i​’s ​k​th choice. Note that ​​L​i​​​ 
also represents the set of schools being ranked in ​​L​i​​​. We define ​​≻​​L​i​​​​​ such that ​s ​≻​​L​i​​​​ ​s ′ ​​ 
if and only if school ​s​ is ranked above school ​s′​ in ​​L​i​​​. The set of all possible ROLs 
is , which includes all ROLs ranking at least one school. Student ​i​’s true ordinal 
preference induced by her vNM utilities ​​u​i​​​ is denoted by ​r​(​u​i​​)​  = ​ (​r​ i​ 1​, … , ​r​ i​ S​)​  ∈  ​.

When submitting an ROL, a student incurs a cost ​C​(| L |)​​, which depends on the 
number of schools being ranked in ​L​, ​| L |​. Furthermore, ​C​(| L |)​  ∈ ​ [0, +∞]​​ for all ​
L​ and is weakly increasing in ​| L |​. To simplify students’ participation decisions, we 
set ​C​(1)​  =  0​.

Such a cost function flexibly captures many common applications of school 
choice mechanisms. If ​C​(| L |)​  =  0​ for all ​L​, we are in the traditional setting with-
out costs (e.g., Abdulkadiroǧlu and Sönmez 2003); if ​C​(| L |)​  =  ∞​ for ​| L |​ greater 
than a constant ​​K 

–
 ​​, it corresponds to the constrained school choice where students 

cannot rank more than ​​K 
–
 ​​ schools (e.g., Haeringer and Klijn 2009); when ​C​(| L |)​  

=  max​{0, ​(| L | − ​ K _ ​)​c}​​, students pay a constant marginal cost ​c​ for each choice 
beyond the first ​​ K _ ​​ choices, as in Hungarian college admissions (Biró 2011); lastly, 
the monotonic cost function may simply reflect that it is cognitively burdensome to 
rank too many schools.

The student-school match is then solved by a mechanism that takes into account 
students’ ROLs and schools’ rankings over students. Our main analysis focuses on 
the student-proposing Gale-Shapley deferred acceptance (DA), leaving the discus-
sion of other variants to Section VB. As a computerized algorithm, DA works as 
follows.

Round 1.—Every student applies to her first choice. Each school rejects the low-
est-ranked students in excess of its capacity and temporarily holds the other students.

Generally, in

Round k.—Every student who is rejected in Round ​​(k − 1)​​ applies to the next 
choice on her list. Each school, pooling together new applicants and those it holds 

10 For a realized economy with realized student types ​​(​θ​1​​, … , ​θ​I​​)​​, the realized empirical distribution ​​​G ˆ ​​​ ​(I)​​​ is 
defined as ​​​G ˆ ​​​ ​(I)​​​(θ)​  =  ​ 1 _ I ​ ​∑ i=1​ I  ​​ 1​(​θ​i​​  ≤  θ)​​, ​∀ θ  ∈  ​ℝ​​ 2S​​, where ​1​( · )​​ is an indicator function.
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from Round  ​​(k − 1)​​, rejects the lowest-ranked students in excess of its capacity. 
Those who are not rejected are temporarily held by the schools.

The process terminates after any Round ​k​ when no rejections are issued. Each 
school is then matched with the students it is currently holding.

A. Information Structure and Decision-Making

In a realization of the finite economy, ​​​F ˆ ​​​ ​(I)​​​, given its construction, every student’s 
preferences and priority indices are private information, and are i.i.d. draws from ​G​,  
which is common knowledge (but ​​​G ˆ ​​​ ​(I)​​​, the realization of ​​G​​ ​(I)​​​, remains unknown).

We start by taking student ​i​’s point of view. Conditional on others’ submitted 
ROLs and priority indices (​​L​−i​​​, ​​e​−i​​​), as well as student ​i​’s (​​L​i​​​, ​​e​i​​​), her admission 
outcome is deterministic, given the algorithm. Specifically, ​i​’s admission outcome 
at school ​s​ is:

​​a​s​​​(​L​i​​, ​e​i​​; ​L​−i​​, ​e​−i​​)​​

​≡ ​​{​​​1​(i is rejected by  ​l​ i​ 1​, …, ​l​ i​ k​  and accepted by  ​l​ i​ k+1​  =  s ∣ ​L​i​​, ​e​i​​; ​L​−i​​, ​e​−i​​)​​      
  0
  ​​​

  if s  ∈ ​ L​i​​​   if s  ∉ ​ L​i​​
​,​

where ​1​( · ∣ ​L​i​​, ​e​i​​; ​L​−i​​, ​e​−i​​)​​ is an indicator function. Moreover, due to the centralized 
mechanism, a student can receive at most one offer, so ​​∑ s=1​ S  ​​ ​a​s​​​(​L​i​​, ​e​i​​; ​L​−i​​, ​e​−i​​)​  =  0​ 
or ​1​.

Of course, ​​L​−i​​​ and ​​e​−i​​​ are unknown to ​i​ at the time of submitting her ROL, so ​i​ takes 
into account the uncertainty when choosing an action. A pure strategy is ​σ : Θ  →  ​. 
Given ​σ​, the admission probabilities are ​∫ ​a​s​​​(σ​(​θ​i​​)​, ​e​i​​; ​σ​−i​​​(​θ​−i​​)​, ​e​−i​​)​ 𝑑G​(​θ​−i​​)​​ 
for all ​i​ and ​s​, where ​​σ​−i​​​(​θ​−i​​)​  ≡ ​​ {σ​(​θ​j​​)​}​​j≠i​​​. We consider a (type-)symmetric equi-
librium ​​σ​​ ∗​​ in pure strategies such that ​​σ​​ ∗​​ solves the following maximization prob-
lem for every ​​θ​i​​​:11

(1)�​ ​σ​​ ∗​​(​θ​i​​)​  ∈ ​ arg max​ 
σ​(​θ​i​​)​∈

​ ​​
{

​ ∑ 
s∈

​​​ ​u​i,s​​ ​∫ 
 
​ 
 
​​​a​s​​​(σ​(​θ​i​​)​, ​e​i​​; ​σ​ −i​ ∗ ​​(​θ​−i​​)​, ​e​−i​​)​ 𝑑G​(​θ​−i​​)​ − C​(​| σ​(​θ​i​​)​ |​)​}​.​

The existence of pure-strategy Bayesian Nash equilibrium can be established by 
applying Theorem 4 (Purification Theorem) in Milgrom and Weber (1985), although 
there can be multiple equilibria. For ease of exposition, the following analysis 
focuses on pure-strategy equilibrium. We note that while economy ​​F​​ ​(I)​​​ is random, a 
strategy ​σ​ is “deterministic” in the sense that it only depends on ​​(G, I, C)​​ but not on 
the realization of ​​F​​ ​(I)​​​.

We define a realized matching ​​μ ˆ ​​ as a mapping from ​Θ​ to ​ ∪ ​{∅}​​ such that  
(i) ​​μ ˆ ​​(​θ​i​​)​  =  s​ if student ​i​ is matched with ​s​; (ii) ​​μ ˆ ​​(​θ​i​​)​  =  ∅​ if student ​i​ is unmatched; 
and (iii) ​​​μ ˆ ​​​ −1​​(s)​​ is the set of students matched with ​s​, while ​| ​​μ ˆ ​​​ −1​​(s)​ |​ is the number 
of students matched with ​s​ and does not exceed ​s​’s capacity.

11 It is innocuous to focus on symmetric equilibrium, because it does not restrict the strategy of any student 
given that they all have different priority indices (almost surely).
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The terms ​​​F ˆ ​​​ ​(I)​​​ and ​σ​ together lead to an ROL profile as inputs into the DA mech-
anism and result in a matching, ​​μ​​(​​F ˆ ​​​ ​(I)​​,σ)​​​​, which is uniquely determined by the mech-
anism. Note that ​​μ​​(​F​​ ​(I)​​,σ)​​​​ is a random matching because ​​F​​ ​(I)​​​ is a random economy.

Moreover, the (random) cutoff of school ​s​ in random matching ​​μ​​(​F​​ ​(I)​​,σ)​​​​ is defined 
as:

	​ ​P​s​​​(​μ​​(​F​​ ​(I)​​,σ)​​​)​  = ​​ {​​​min​{​e​i,s​​ ∣ ​μ​​(​F​​ ​(I)​​,σ)​​​​(​θ​i​​)​  =  s}​​   
0
 ​  ​​

if |​μ​ ​(​F​​ ​(I)​​,σ)​​ 
−1 ​ ​(s)​|  = ​ q​ s​ ​(I)​​

​  
if |​μ​ ​(​F​​ ​(I)​​,σ)​​ 

−1 ​ ​(s)​|  < ​ q​ s​ ​(I)​​
​​.

That is, ​​P​s​​​(​μ​​(​F​​ ​(I)​​,σ)​​​)​​ is zero if ​s​ does not meet its capacity; otherwise, it is the low-
est priority index among all accepted students. The vector of cutoffs is denoted by  
​P​(​μ​​(​F​​ ​(I)​​,σ)​​​)​​, and its realization in ​​​F ˆ ​​​ ​(I)​​​ is ​P​(​μ​​(​​F ˆ ​​​ ​(I)​​,σ)​​​)​​.

B. Truth-Telling Behavior in Equilibrium

To assess the plausibility of the truth-telling assumption in empirical studies, we 
begin by investigating students’ truth-telling behavior in equilibrium. A clarification 
of the concepts is in order. Student ​i​ is weakly truth-telling (WTT, hereafter) if  
​σ​(​θ​i​​)​  = ​ (​r​ i​ 1​, ​r​ i​ 2​, … , ​r​ i​ ​K​i​​​)​​ for ​​K​i​​  ≤  S​. That is, ​i​ ranks her ​​K​i​​​ most-preferred schools 
by her true preference order but may not rank all schools. If a WT T strategy always 
truthfully ranks all ​S​ schools and thus ​σ​(​θ​i​​)​  =  r​(​u​i​​)​​, ​i​ is strictly truth-telling (STT, 
hereafter).12

We emphasize the difference between WT T and STT because strategy-proof-
ness concerns the latter. However, WTT is often considered in empirical studies 
because in practice, students rarely rank all available schools, as we shall revisit in 
Section IIB.

It is known that DA is strategy-proof when there is no application cost (Dubins 
and Freedman 1981, Roth 1982). That is, when ​C​(​| L |​)​  =  0​ for all ​L  ∈  ​, STT is 
a weakly dominant strategy for all students. However, strategy-proofness, or weak 
dominance of STT, leaves open the possibility of multiple equilibria. Even when all 
others play STT, there may exist multiple best responses for a given student.13 It is 
therefore useful to clarify the conditions under which STT is the unique equilibrium. 
The following example highlights two sources of equilibrium multiplicity in a com-
plete-information environment.

EXAMPLE 1 (Multiple Equilibria under DA without Application Cost): Consider 
a finite economy that has two students (​​i​1​​, ​i​2​​​), three one-seat schools (​​s​1​​, ​s​2​​, ​s​3​​​), but 
no application cost. As common knowledge, all schools rank ​​i​1​​​ above ​​i​2​​​; student  
​​i​1​​​’s preference order is ​​(​s​1​​, ​s​2​​, ​s​3​​)​​, but ​​i​2​​​’s is ​​(​s​2​​, ​s​1​​, ​s​3​​)​​. There are many equilibria in 
addition to STT, stemming from two sources: irrelevance at the bottom and skip-
ping the impossible. Both arise when some admission probabilities are zero.

12 Related to the distinction between STT and WTT, the literature on lab experiments on school choice some-
times also defines truth-telling as being different from ST T. For example, Chen and Sönmez (2006) call a student 
truth-telling under the DA mechanism if she ranks her most-preferred schools up to her district school, at which she 
has guaranteed admission. 

13 Unfortunately, it is impossible to make ST T a strictly dominant strategy, because it would require ST T to be 
strictly better than all other strategies against all possible action profiles of other students.
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For ​​i​1​​​, the bottom part of her submitted ROL is irrelevant as long as ​​s​1​​​ is top-
ranked. In fact, any ROL (​​s​1​​, s′, s″​ ), for ​s′, s″  ∈ ​ {​s​2​​, ​s​3​​}​  ∪ ​ {∅}​​, is weakly dominant 
for ​​i​1​​​, as she is always accepted by ​​s​1​​​.

For student ​​i​2​​​, “skipping the impossible” comes into play. She can omit ​​s​1​​​ from 
her submitted ROL without affecting her outcome, because ​​s​1​​​ is always taken by ​​i​1​​​ in 
any equilibrium. Making things worse, how she ranks ​​s​1​​​ is payoff-irrelevant.

One may conjecture that STT might survive as the unique equilibrium when 
information is incomplete. Indeed, specifying the incompleteness of informa-
tion, the following proposition provides sufficient conditions and a necessary  
condition.

PROPOSITION 1: 

	 (i)	 Sufficiency: STT is the unique Bayesian Nash equilibrium under DA if (i) 
there is no application cost: ​C​(| L |)​  =  0,​ ​∀ L  ∈  ​; and (ii) the joint distri-
bution of preferences and priorities ​G​ has full support.

	 (ii)	 Necessity: For any nonzero application cost, there always exist student types 
for whom STT is not an equilibrium strategy.

All proofs can be found in online Appendix A. The no-cost condition is violated 
if students cannot rank as many schools as they wish, or if they suffer a cognitive 
burden when ranking too many schools. It should also be emphasized that the cost 
need not be large to make students deviate from STT, because the marginal benefit 
of ranking an additional school can be close to zero. When a student considers her 
admission probability at her ​k​th choice, she may face a close-to-one probability 
of being accepted by at least one of her earlier choices. This is in the same spirit 
as the “irrelevance at the bottom” in Example 1. When the marginal application 
cost exceeds marginal benefits, STT is no longer a best response, which implies the 
necessity of the zero-cost condition.

The full-support condition, also considered in Chen and Pereyra (2017), makes 
all admission probabilities non-zero by introducing uncertainties, and therefore any 
deviation from STT is costly. This is more plausible when the priority index is deter-
mined by an ex post lottery and when the information on others’ preferences over 
schools is less precise.

REMARK 1: Proposition 1 specifies when students have incentives to rank all 
schools truthfully, but this result does not extend to WTT. Although it is sometimes 
used for identification and estimation, the WTT assumption is not supported as an 
equilibrium.14

We may take one step back and focus on whether students have incentives to order 
the ranked schools truthfully. We call ​​L​i​​​, ​| ​L​i​​ |  ≤  S​, a partial preference order of 

14 The equilibrium condition, equation (1), implies that a student may “skip the impossible” by omitting her 
most-preferred school if the admission probability is close to zero, thus violating WTT.
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schools if ​​L​i​​​ respects the true preference order among those ranked in ​​L​i​​​. That is, ​​L​i​​​ 
ranks ​s​ above ​​s ′ ​​, only if ​​u​i,s​​  > ​ u​i,​s ′ ​​​​; when ​s​ is not ranked in ​​L​i​​​, there is no informa-
tion on how ​s​ is ranked relative to any other school according to ​i​’s true preferences.

PROPOSITION 2: Under DA with application cost, if students do not play weakly 
dominated strategies, a student’s submitted ROL is a partial order of her true 
preferences.

Proposition 2 can be considered as a corollary of Proposition  4.2 in 
Haeringer and Klijn (2009), and thus we omit its proof. The key is that a 
non-partial-preference-order ROL is weakly dominated by the ROL that ranks 
the same schools according to their true preference order. This result is useful for 
empirical analysis, as it specifies students’ revealed preferences. Section IIE for-
mulates how to use this information in estimation.

C. Admission Outcome: Stability

The above results speak to the plausibility of the truth-telling assumptions, WTT 
and STT, in empirical studies. In particular, WTT is not theoretically supported as 
a weakly dominant strategy even in DA with no application cost; whenever there is 
any form of application cost, STT is no longer a dominant strategy.

Taking a different perspective, we note that all equilibria lead to the same match-
ing in Example  1. This motivates us to investigate the properties of equilibrium 
outcomes of DA. Intuitively, the degree of multiplicity in equilibrium outcomes 
must be smaller than that in equilibrium strategies. In the two-sided matching 
literature, stability is the leading concept for equilibrium outcome and the main 
identifying assumption (Chiappori and Salanié 2016). We investigate whether 
stability can also be satisfied in all equilibrium outcomes of school choice and  
college admissions.

Unfortunately, we shall demonstrate that having stability satisfied in all equi-
librium outcomes requires similar conditions to those for STT being the unique 
equilibrium. In fact, whenever there are application costs, stability is not guaranteed 
in equilibrium either. This is because Bayesian Nash equilibrium implies ex ante 
optimality of student strategy, while stability requires ex post optimality.

As we study a matching’s ex post properties, let us consider ​​μ ˆ ​​, a realization of the 
random matching. Say ​​(i, s)​​ forms a blocking pair if (i) ​i​ prefers ​s​ over her matched 
school ​​μ ˆ ​​(​θ​i​​)​​ while ​s​ has an empty seat (​| ​​μ ˆ ​​​ −1​​(s)​ |  <  I × ​q​ s​ ​(I)​​​), or if (ii) ​i​ prefers ​s​ 
over ​​μ ˆ ​​(​θ​i​​)​​ while ​s​ has no empty seats (​| ​​μ ˆ ​​​ −1​​(s)​ |  =  I × ​q​ s​ ​(I)​​​) but ​i​’s priority index 
is higher than its cutoff, ​​e​i,s​​  > ​ min​​{j:​μ ˆ ​​(​θ​j​​)​=s}​​​​{​e​j,s​​}​​. Matching ​​μ ˆ ​​ is stable if there is 
no blocking pair. Stability is also known as elimination of justified envy in school 
choice (Abdulkadiroǧlu and Sönmez 2003).

Given a realized matching ​​μ ˆ ​​, school ​s​ is ex post feasible for ​i​ if ​i​’s priority index 
at ​s​ is above ​s​’s cutoff, ​​e​i,s​​  ≥ ​ P​s​​​(​μ ˆ ​)​​. Let ​​(​e​i​​, P​(​μ ˆ ​)​)​​ be the set of feasible schools 
for ​i​.

With these definitions, combining Lemmata  1 and 2 in Balinski and Sönmez 
(1999), we reach an important result: a realized matching ​​μ ˆ ​​ is stable if and 



1497FACK ET AL.: BEYOND TRUTH-TELLINGVOL. 109 NO. 4

only if every student is matched with her favorite feasible school (i.e., ​​μ ˆ ​​(​θ​i​​)​  
= ​ arg max​s∈​(​e​i​​,P​(​μ ˆ ​)​)​​​ ​u​i,s​​, ∀ i​). As the cutoffs of a matching are observed ex post by the 
researcher, we can define every student’s set of feasible schools; stability therefore 
implies a discrete choice model with observable, personalized choice sets. We fur-
ther formalize this in Section IIC.

We are interested in stability being satisfied in an outcome of dominant-strategy 
equilibrium, which would free us from specifying the information structure and 
from imposing additional equilibrium conditions. The following lemma provides 
necessary and sufficient conditions, which are similar to those for ST T to be the 
unique equilibrium.

LEMMA 1: Under DA, a Bayesian Nash equilibrium in dominant strategy always 
leads to a stable matching if and only if ​C​(​| L |​)​  =  0​ for all ​L​. It is the unique equi-
librium outcome if additionally ​G​ has full support.

The “if and only if” statement of the lemma is implied by strategy-proofness of DA 
without application cost, while the uniqueness statement is a result of Proposition 1.

DA is known to produce a stable matching when students are STT (Gale and 
Shapley 1962), but not when students are only WT T. The following results, clarify-
ing the relationship between WTT and stability, have implications for our empirical 
approaches.

PROPOSITION 3: Suppose that every student is WTT under DA, which may not be 
an equilibrium. Given a realized matching,

	 (i)	 whenever a student is assigned, she is matched with her favorite feasible 
school;

	 (ii)	 if everyone who has at least one feasible school is assigned, the matching is 
stable.

The above results describe the nesting structure of the two assumptions, WTT 
and stability, although they do not speak to the plausibility of either of them being 
an equilibrium strategy/outcome. Specifically, WTT is more restrictive, as it implies 
the no-blocking property among assigned students. We use these results to formu-
late statistical tests for the choice between WTT and stability in Section IID.

D. Asymptotic Stability in Bayesian Nash Equilibrium

So far, we have shown that neither truth-telling (STT and WTT) nor stability can 
emerge in equilibrium without some potentially restrictive assumptions. Following 
the literature on large markets, we study whether stability can be asymptotically 
satisfied.

We now revisit the continuum economy, ​E​, and additionally introduce a sequence 
of random finite economies ​​​{​F​​ ​(I)​​}​​I∈ℕ​​​ that are constructed from ​E​ as before.

The definitions of matching, DA, and stability can be naturally extended to con-
tinuum economies as in Abdulkadiroǧlu, Che, and Yasuda (2015) and Azevedo and 
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Leshno (2016), which are discussed in online Appendix A.2.1. These definitions 
are similar to their counterparts in finite economies. For example, a matching in ​
E​ when everyone adopts ​σ​ is ​​μ​​(E,σ)​​​ : Θ  →    ∪ ​ {∅}​​, which satisfies (i) ​​μ​​(E,σ)​​​​(​θ​i​​)​  
=  s​ when type ​​θ​i​​​ is matched with ​s​ and (ii) ​G​(​μ​ ​(E,σ)​​ −1  ​​(s)​)​  ≤ ​ q​s​​​.

It is known that, generically, there exists a unique stable matching in the con-
tinuum economy (Azevedo and Leshno 2016);15 we impose the conditions 
for the uniqueness and denote this stable matching in ​E​ as ​​μ​​ ∞​​ and the corre-
sponding cutoffs as ​​P​​ ∞​​. To continue our exploration, we make the following  
assumption.

ASSUMPTION 1: Every Bayesian Nash equilibrium of the continuum economy ​E​ 
results in the unique stable matching, ​​μ​​ ∞​​.

A sufficient condition for Assumption 1 is ​C​(2)​  >  0​ (i.e., it is costly to apply to 
more than one school), and when ​C​(2)​  =  0​, a sufficient and necessary condition 
is Ergin acyclicity (Proposition A3 in online Appendix A.2.5). An economy is acy-
clical if no student can block a potential settlement between any other two students 
without affecting her own match (Ergin 2002). Online Appendix A.2.5 gives its for-
mal definition in continuum economies. This condition is satisfied when all schools 
rank every student by a single priority index.

Because we are interested in equilibrium outcomes, we augment the sequence of 
economies with equilibrium strategies, ​​​{​F​​ ​(I)​​, ​σ​​ ​(I)​​}​​I∈ℕ​​​, where ​​σ​​ ​(I)​​​ is a pure-strategy 
Bayesian Nash equilibrium in ​​F​​ ​(I)​​​ and satisfies the following assumption.

ASSUMPTION 2: There exists ​​σ​​ ∞​​ such that ​​lim​I→∞​​ G​(​{​θ​i​​  ∈  Θ ∣ ​σ​​ ​(I)​​​(​θ​i​​)​  
= ​ σ​​ ∞​​(​θ​i​​)​}​)​  =  1​.

A sufficient condition for Assumption 2 is ​C​(2)​  >  0​ (Lemma A5 in online 
Appendix A.2.4).16 Although ​​F​​ ​(I)​​​ is a random economy, ​​σ​​ ​(I)​​​ is fixed given the 
size of the economy. In other words, ​​σ​​ ​(I)​​​ remains as an equilibrium strategy in any 
realization of ​​F​​ ​(I)​​​. Assumption 2 regulates how the equilibria evolve with econ-
omy size, which is necessary as there are multiple equilibria. By this assumption, in 
the sequence ​​​{​σ​​ ​(I)​​}​​I∈ℕ​​​, fewer and fewer student types need to adjust their optimal 

15 A sufficient condition for the uniqueness of stable outcome in ​E​ is that ​G​ has full support. Even when ​G​ does 
not have full support, the uniqueness can be achieved when ​​∑ s=1​ S  ​​ ​q​s​​  <  1​. Let ​​σ​​ STT​​ be the STT strategy. We define the 
demand for each school in ​​(E, ​σ​​ STT​ )​​ as a function of cutoffs, ​​D​s​​​(P ∣ E, ​σ​​ STT​ )​  =  ∫  1​(​u​i,s​​  = ​ max​s′∈​(​e​i​​,P)​​​ ​u​i,s′​​)​ dG​(​θ​i​​)​​.  
Let ​D​(P ∣ E, ​σ​​ STT​ )​  = ​​ [​D​s​​​(P ∣ E, σ)​]​​s∈

​​​. Note that ​E​ admits a unique stable matching if the image under ​D​(P ∣ E, ​σ​​ STT​)​​  
of the closure of the set

	​ ​{P  ∈  ​​(0, 1)​​​ S​ : D​(P ∣ E, ​σ​​ STT​ )​ is not continuously differentiable at P}​​

has Lebesgue measure 0.
16 Allowing ​C​(2)​  =  0​, online Appendix A.2.4 investigates the properties of equilibrium strategies. The results, 

Lemmata A2–A4, imply strong restrictions on the sequence of Bayesian Nash equilibria in the direction of satis-
fying Assumption 2. Specifically, it is shown that a strategy that does not lead to ​​μ​​ ∞​​ in the continuum economy 
cannot survive as an equilibrium when ​I  →  ∞​. This immediately implies that in sufficiently large economies, 
every student includes in her ROL the school prescribed by ​​μ​​ ∞​​. Moreover, students do not pay a cost to rank more 
schools in large economies.
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actions when the economy enlarges. Moreover, given Assumption 1, the limit strat-
egy ​​σ​​ ∞​​ leads to ​​μ​​ ∞​​ in ​E​ (Proposition A1 in online Appendix A.2.2).

Asymptotic Stability: Definition and Results.—Let the random matching ​​μ​​(​F​​ ​(I)​​,​σ​​ ​(I)​​)​​​​ 
be ​​μ​​ (I)​​, and the associated random cutoffs ​P​(​μ​​ ​(I)​​)​​ be ​​P​​ ​(I)​​​. The following definition 
formalizes the concept of asymptotic stability.17

DEFINITION 1: A sequence of random matchings, ​​​{​μ​​ ​(I)​​}​​I∈핅​​​, associated with the 
sequence of random economies and equilibrium strategies, ​​​{​F​​ ​(I)​​, ​σ​​ ​(I)​​}​​I∈핅​​​, is asymp-
totically stable if the fraction of students who are matched with their favorite fea-
sible school in a random finite economy (​​F​​ ​(I)​​​) converges to 1, almost surely, or, 
equivalently,

	​ ​ lim​ 
I→∞

​​ ​G​​ ​(I)​​​
(

​
{

​θ​i​​  ∈  Θ ∣ ​μ​​ ​(I)​​​(​θ​i​​)​  = ​  arg max​ 
s∈​(​e​i​​,​P​​ ​(I)​​)​

​​ ​u​i,s​​
}

​
)

​  =  1,  almost surely.​

We are now ready to introduce our main result.

PROPOSITION 4: In the sequence of random economies and equilibrium strate-
gies, ​​​{​F​​ ​(I)​​, ​σ​​ ​(I)​​}​​I∈핅​​​, if Assumptions 1 and 2 are satisfied, then

	 (i)	 the random cutoffs converge to those of the stable matching in the continuum 
economy: ​​lim​I→∞​​ ​P​​ ​(I)​​  = ​ P​​ ∞​​, almost surely;

	 (ii)	 the sequence of random matchings, ​​​{​μ​​ ​(I)​​}​​I∈핅​​​, is asymptotically stable.

Part (ii) implies that the fraction of students who are matched with their favorite 
feasible school, or not in any blocking pair, converges to one almost surely, as the 
economy grows. This provides justifications for the stability assumption in large 
markets.18

Probability of Being in a Blocking Pair for a Given Student.—To assess if 
a matching is likely to be stable, we investigate how the probability that a given 
student is in a blocking pair changes with economy attributes. The following 
proposition shows how economy size, application cost, and other factors play  
a role.

17 We define the probability space, ​​(Ω, , )​​. Specifically, ​Ω  =  ​∏ I∈ℕ​   ​​  ​Θ​​ I​​, and an element in ​Ω​ is denoted by ​ω  
=  ​(​ω​1​​, ​ω​2​​, …)​​, where ​​ω​I​​​ is a possible realization of student types in the random economy ​​F​​ ​(I)​​​. Further, ​​ is a Borel  
​σ​-algebra of ​Ω​, and ​​ is a probability measure from  to ​​[0, 1]​​.

18 This result, however, does not mean that the probability of a matching being stable converges to one as the 
market grows. As long as there is at least one blocking pair, a matching is not stable.
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PROPOSITION 5: Suppose student ​i​ exists in all economies in the sequence  

​​​{​F​​ ​(I)​​}​​I∈핅​​​ which is associated with a sequence of Bayesian Nash equilibria in pure 

strategies ​​​{​σ​​ ​(I)​​}​​I∈핅​​​.

	 (i)	 Let ​​σ​​ ​(I)​​​(​θ​i​​)​  = ​ L​​ ​(I)​​​; then ​​L​​ ​(I)​​​ is a partial order of ​i​’s ordinal preferences. If ex 
post ​i​ forms a blocking pair with ​s​, ​s​ must not be included in ​​L​​ ​(I)​​​, ​s  ∉ ​ L​​ (I)​​. 
The probability that ​i​ is in a blocking pair with any school in the random 
matching ​​μ​​ ​(I)​​​, denoted by ​​B​ i​ ​(I)​​  =  Pr​(∃s  ∈  , ​u​i,s​​  > ​ u​i,​μ​​ ​(I)​​​(​θ​i​​)​​​, and ​e​i,s​​  ≥ ​
P​ s​ ​(I)​​)​​, satisfies:

	 (ii)	​​ B​ i​ ​(I)​​​ is bounded above: ​​B​ i​ ​(I)​​  ≤  | \​L​​ ​(I)​​| ​ C​(|​L​​ ​(I)​​| + 1)​ − C​(|​L​​ ​(I)​​|)​  _____________  ​max​s∈\​L​​ ​(I)​​​​ ​u​i,s​​ ​ ​;

	 (iii)	 if ​​​{​σ​​ ​(I)​​}​​I∈핅​​​ satisfies Assumptions 1 and 2, ​​B​ i​ ​(I)​​​ converges to 0 almost surely.

Because in equilibrium student ​i​ reports a partial order of her true preferences, she 
can only form a blocking pair with a school that she did not rank (part i). Therefore, 
the probability that ​i​ is in a blocking pair decreases whenever it is less costly to 
rank more schools (part  ii). Together, Proposition 5 shows that stability is more 
plausible when the cost of ranking more schools is lower and/or the economy is 
large. Moreover, in the case of constrained/truncated DA where there is a limit on 
the length of ROLs, the higher the number of schools that can be ranked, the more 
likely stability is to be satisfied.

II.  Empirical Approaches

Building on the theoretical results, we formalize the estimation of student pref-
erences under different sets of assumptions and propose a series of tests to guide 
the selection of the appropriate approach. To be more concrete, we consider a 
logit-type random utility model, although our approaches can be extended to other 
specifications.

This section focuses on a random finite economy ​​F​​ ​(I)​​​ in which ​I​ students compete 
for admissions to ​S​ schools. Each school has a positive capacity, and students are 
assigned through a version of the student-proposing DA. Besides submitted ROLs 
and admission outcomes, the researcher observes priority indices, student charac-
teristics, and school attributes. Given these observables, we discuss the probability 
of a student submitting a given ROL or being matched with a given school from the 
researcher’s perspective.

A. Model Setting and Revealed Preferences

As is traditional and more convenient in empirical analysis, we let the student 
utility functions take any value on the real line.19 With some abuse, we still use the 

19 In the theoretical discussion, the utility functions are restricted to be in ​​[0, 1]​​. One can use the inverse of the 
standard normal distribution, ​​Φ​​ −1​​, to transform them to be on the real line. Note that the expected utility theory 
cannot be applied to the transformed utility functions; indeed, we do not.
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same notation for utility functions. To facilitate the analysis, student ​i​’s utility from 
attending schools ​s​ is parameterized:

(2)	​ ​u​i,s​​  = ​ V​i,s​​ + ​ϵ​i,s​​  =  V​(​Z​i,s​​, β)​ + ​ϵ​i,s​​,​

where ​V​( · , · )​​ is a known function, taking as arguments ​​Z​i,s​​​, a vector of observable 
student-school characteristics, and ​β​, a vector of unknown parameters to be esti-
mated; ​​ϵ​i,s​​​ is the unobservable student heterogeneity.

We further define ​​Z​i​​ ≡ ​​ {​Z​i,s​​}​​ s=1​ 
S ​ ​, and ​​ϵ​i​​ ≡ ​​ {​ϵ​i,s​​}​​ s=1​ 

S ​ ​. It is assumed that ​​ϵ​i​​ ⟘ ​ Z​i​​​ and 
that ​​ϵ​i,s​​​ is i.i.d. over ​i​ and ​s​ with the type-I extreme value (Gumbel) distribution. Such 
a formulation rules out outside options, although this assumption can be relaxed.

We also assume that a student’s preferences are not affected by other students’ 
school assignments (no peer effects) and that statistics associated with the realized 
matching, such as cutoffs, do not enter the utility function. This is consistent with 
the theoretical model in Section I and implies that ​​Z​i​​​ does not include variables that 
depend on the ex post observed matching.

The estimation relies on revealed student preferences in the data, and what infor-
mation is revealed crucially depends on the imposed assumption—WTT, stability, or 
undominated stategies. Figure 1 shows an example. WTT takes the submitted rank-
ing as truthful and assumes unranked schools being the least preferable. Stability 
dictates that a student is matched with her favorable feasible school. Lastly, a sub-
mitted ROL reveals the student’s partial preference order if no one plays dominated 
strategies. We now detail how to use this information in the estimation.

B. Truth-Telling

In the literature on school choice with lotteries, some empirical approaches 
are based on the truth-telling assumption (Hastings, Kane, and Staiger 2008; 
Abdulkadiroǧlu, Agarwal, and Pathak 2017). As similar mechanisms are commonly 
used in our strict-priority setting, we extend these approaches to our setting and 
clarify the assumptions embedded within.

We start with WTT instead of STT because in practice students in school choice 
and college admissions rarely rank the same number of choices (Abdulkadiroǧlu, 
Agarwal, and Pathak 2017; He 2015; Artemov, Che, and He 2017). Under the 
assumption of truth-telling without outside option, this can only be consistent with 
WTT but not STT, because STT requires everyone to rank all schools. We discuss 
STT with outside options in online Appendix A.4.

Figure 1. Revealed Preferences under Different Assumptions: An Example

Data

Available schools:
Student i’s priority indices:

Submitted ROL of i:
Admission outcome of i: 

Cuto�s: 

Revealed preferences

WTT:
Stability:

Undominated
strategies:

ui,s1 > ui,s3 > ui,s, for s = s
2
, s

4
   

ui,s3 > ui,s4 

ui,s1 > ui,s3 

s1, ..., s4

ei,s = 0.5, ∀s

(s1, s3)
s3

P = (0.8, 0.9, 0.4, 0.2)
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For notational convenience, we make it explicit that student ​i​’s type ​​θ​i​​​ is described 
by ​​(​u​i​​, ​e​i​​)​​. Let ​​σ​​ W​ : ​ℝ​​ S​ × ​​[0, 1]​​​ S​  →  ​ be a WTT pure strategy.20 More precisely, 
the WTT assumption amounts to the following.

ASSUMPTION 3 (Characterization of Weak Truth-Telling): 

	WTT1.	� Suppose ​​σ​​ W​​(​u​i​​, ​e​i​​)​  =  L  = ​ (​l​​ 1​, … , ​l​​ ​K​i​​​)​​. Here, ​L​ ranks ​i​’s top ​​K​i​​​ preferred 
schools according to her true preferences: ​​u​i,​l​​ 1​​​  >  ⋯  > ​ u​i,​l​​ ​K​i​​​​​  > ​ u​i,s′​​​ for 
all  ​s′​ not ranked in ​L​; 

	WTT2.	� The number of schools ranked by a student is exogenous:  
​​u​i​​  ⟘  | ​σ​​ W​​(​u​i​​, ​e​i​​)​ |​ , ​∀ i​.

We are interested in the choice probability of ​L​ conditional on observables, where 
the uncertainty from the researcher’s perspective is due to the utility shocks (​​ϵ​i​​​). 
Note that

 ​ Pr​(​σ​​ W​​(​u​i​​, ​e​i​​)​  =  L | ​Z​i​​; β)​​

	​​ =  Pr​(​σ​​ W​​(​u​i​​, ​e​i​​)​  =  L | ​Z​i​​; β; | ​σ​​ W​​(​u​i​​, ​e​i​​)​ |  =  K)​ × Pr​(​​| ​σ​​ W​​(​u​i​​, ​e​i​​)​ |  =  K | ​Z​i​​; β​)​​,​​

which is calculated by integrating out the unobservables (​​ϵ​i​​​) in ​​u​i​​​. Assumption WTT2 
implies that ​Pr​(|​σ​​ W​​(​u​i​​, ​e​i​​)​|  =  K | ​Z​i​​; β)​​ does not depend on preferences. Thus, in the 
estimation, it suffices to focus on the following conditional probability:

 ​ Pr​(​σ​​ W​​(​u​i​​, ​e​i​​)​  =  L |  ​Z​i​​; β; |​σ​​ W​​(​u​i​​, ​e​i​​)​|  =  K)​​

​      =  Pr​(​u​i,​l​​ 1​​​  >  ⋯  > ​ u​i,​l​​ K​​​  > ​ u​i,s′​​ ∀ s′  ∈  \L | ​Z​i​​; β; |​σ​​ W​​(​u​i​​, ​e​i​​)​|  =  K)​​

	​ = ​  ∏ 
s∈L

​​​​(​ 
exp​(​V​i,s​​)​  ___________  

​∑ s′​⊁​L​​ s​ 
  ​​  exp​(​V​i,s′​​)​

 ​)​,​

where ​s′ ​ ⊁​L​​  s​ indicates that ​s′​ is not ranked before ​s​ in ​L​, including ​s​ itself and 
those excluded from ​L​. This rank-ordered (or “exploded”) logit model can be seen 
as a series of conditional logits: one for the top-ranked school (​​l​​ 1​​) being the most 
preferred, another for the second-ranked school (​​l​​ 2​​) being preferred to all schools 
except ​​l​​ 1​​, and so on.

Let ​|​σ​​ W​|​ be the vector of lengths of all submitted ROLs. The model can be esti-
mated by maximum likelihood estimation (MLE) with the log-likelihood function:

	​ ln ​L​TT​​​(β | 𝐙, |​σ​​ W​|)​  = ​  ∑ 
i=1

​ 
I

  ​​ ​  ∑ 
s∈​σ​​ W​​(​u​i​​,​e​i​​)​

​​​​V​i,s​​ − ​ ∑ 
i=1

​ 
I

  ​​ ​  ∑ 
s∈​σ​​ W​​(​u​i​​,​e​i​​)​

​​​ ln​
(

​  ∑ 
s′​⊁​​σ​​ W​​(​u​i​​,​e​i​​)​​​s

​​​exp​(​V​i,s′​​)​)
​.​

20 Because the preference space is transformed from ​​​[0, 1]​​​ S​​ to ​​ℝ​​ S​​, a strategy is now defined on the transformed 
type space. Moreover, it will be clear that ​​σ​​ W​​ does not depend on priority indices, ​​e​i​​​.
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The estimator is denoted by ​​​β ˆ ​​TT​​​. Alternatively, the generalized method of moment 
(GMM) can be employed, for which the moment conditions are derived as in 
Section  IIE. WTT implies additional restrictions beyond standard discrete choice 
models (see details in Section  IID). Thus, the discrete-choice literature (e.g., 
Matzkin 1993) implies that student preferences are nonparametrically identified 
(also see Agarwal and Somaini 2018).

C. Stability

We now assume that the matching is stable, which is different from, but in large 
samples justified by, asymptotic stability. The following analysis abstracts away 
from the matching mechanism and ignores how stability is obtained. We formulate a 
stable matching as the outcome of a discrete choice model and clarify the conditions 
that are needed for identification and estimation.

Consider the matching ​μ​ and the associated cutoffs ​P​(μ)​​, which are random vari-
ables determined by the unobserved utility shocks (​ϵ​). Matching ​μ​ is the outcome 
of a discrete choice model with personalized choice set, ​ ​(​e​i​​, P​(μ)​)​​ (i.e., the set 
of ​i​’s feasible schools). The probability that ​i​ is matched with ​s​, or chooses ​s​ in  
​ ​(​e​i​​, P​(μ)​)​​, is

	​ Pr​
(

s  =  μ​(​u​i​​, ​e​i​​)​  = ​  arg max​ 
s∈​(​e​i​​,P​(μ)​)​

​​ ​u​i,s​​ | ​Z​i​​, ​e​i​​, ​(​e​i​​, P​(μ)​)​; β
)

​.​

To proceed, we impose the following assumptions.

ASSUMPTION 4 (Exogeneity of Priority Index and Feasible Set): 

	EXO1.	 �For all ​i​, ​​e​i​​  ⊥ ​ ϵ​i​​ | ​Z​i​​​: Conditional on observables ​​Z​i​​​, student preferences  
and priority indices are independent. 

	EXO2.	 �For all ​i​ and ​s​, ​1​(​e​i,s​​  < ​ P​s​​​(μ)​)​  ⊥ ​ ϵ​i​​ | ​Z​i​​​, or ​​(​e​i​​, P​(μ)​)​  ⊥ ​ ϵ​i​​ | ​Z​i​​​: Conditional 
on observables ​​Z​i​​​, a student’s preferences and her set of feasible  schools 
are independent.

Assumption EXO1 implies that, when priority indices (​​e​i​​​) are determined  
by test scores, no student intentionally under-performs or over-performs in  
exams.

Assumption EXO2 deserves some discussion. Most importantly, it does not 
require that cutoffs ​P​(μ)​​ are conditionally independent of preferences shocks ​​ϵ​i​​​. 
Instead, it only assumes that the personalized choice set, ​​(​e​i​​, P​(μ)​)​​, is exogenously 
given, which is necessary for identification in a discrete choice model with personal-
ized choice sets. For instance, if instead ​​(​e​i​​, P​(μ)​)​​ is endogenous and only includes 
school ​s​ when ​s​ is ​i​’s most preferred school, we lose the identification of ​i​’s prefer-
ences, because there is no variation in ​i​’s choice whenever ​s​ is in ​​(​e​i​​, P​(μ)​)​​. Online 
Appendix A.5 details such an example, along with a discussion and an example in 
which the assumption is satisfied.
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One may argue that, in a finite market, a student can affect some cutoffs by apply-
ing to a school or not, and thus can change the feasibility of some schools. Another 
concern is that given student preferences, there can be multiple stable matchings. If 
a single student can select among the stable matchings, Assumption EXO2 is also 
violated.

These concerns diminish as the economy grows large, because the potential 
influence on cutoffs by any student decreases and there tends to be a unique sta-
ble matching. For instance, part (i) of Proposition 4 implies that a single student’s 
impact on cutoffs diminishes to 0, almost surely. Moreover, even in small mar-
kets, Assumption EXO2 can be satisfied, because the assumption does not require  
​P​(μ)​  ⊥ ​ ϵ​i​​ | ​Z​i​​​. An example is when every school ranks students in the same way, or ​​
e​i,s​​  = ​​ e –​​i​​​ for all ​s​ and ​i​.21

Given the parametric assumptions on utility functions, the corresponding (condi-
tional) log-likelihood function is

(3)  ​  ln ​L​ST​​​(β ∣ 𝐙, 𝐞, ​(​e​i​​, P​(μ)​)​)​  = ​  ∑ 
i=1

​ 
I

  ​​​ ∑ 
s=1

​ 
S

  ​​ ​V​i,s​​ × 1​(μ​(​u​i​​, ​e​i​​)​  =  s)​ 

	 − ​ ∑ 
i=1

​ 
I

  ​​ ln​
(

​  ∑ 
s′∈​(​e​i​​,P​(μ)​)​

​​​exp​(​V​i,s′​​)​
)

​.​

This estimator is denoted by ​​​β ˆ ​​ST​​​. Similarly, GMM can be applied, as in Section IIE.

Identification.—The above discussion transforms the matching game into a discrete 
choice model.22 Therefore, the nonparametric identification arguments for discrete 
choice models still apply (Matzkin 1993). An important feature in the stability-based 
estimation is that students face personalized choice sets. As long as the choice sets are 
determined exogenously (Assumption EXO2), the identification goes through.

Another concern is that a student’s priority index may enter her utility functions 
directly, when, for example, priority indices are determined by test score or stu-
dent ability. In this case, the stability assumption does not reveal information about 
low-scoring students’ preferences over popular schools, because such schools are 
often infeasible to them. This may lead to a failure of identifying how test scores 
determine student preferences.

21 In this case, DA is equivalent to serial dictatorship in which students choose among the remaining schools 
one by one in the order determined by their priority indices. There is a unique stable matching for each realization 
of student types. Moreover, the set of feasible schools for student ​i​ is determined by the students with higher prior-
ity indices. Because preferences are independent across students by assumption, we have ​​(​e​i​​, P​(μ)​)​  ⊥  ​ϵ​i​​ | ​Z​i​​​, or  
​1​(​e​i,s​​  <  ​P​s​​​(μ)​)​  ⊥  ​ϵ​i​​ | ​Z​i​​​ for all ​s​.

It should be noted that ​P​(μ)​  ⊥̸  ​ϵ​i​​  | ​Z​i​​​ even in this case. For example, when ​i​ chooses ​s​ among the feasible 
schools, the cutoff of ​s​ will possibly increase; similarly, ​i​ may decrease ​s​’s cutoff by choosing a different school. 
However, we always have ​1​(​e​i,s​​  <  ​P​s​​​(μ)​)​  ⊥  ​ϵ​i​​ | ​Z​i​​​, because ​s​ will remain feasible to ​i​ either way.

22 A simplification is that we ignore the restrictions implied by the cutoffs ​P​(μ)​​, which may lead to efficiency 
loss in estimation. That is, even when the sets of feasible schools are exogenous to every single student’s prefer-
ences, ​P​(μ)​​ is endogenously determined by the model’s parameters. However, the additional information in these 
restrictions may be negligible, since we use the information on the whole matching already. An earlier version of the 
paper relaxes this assumption and uses the restrictions implied by the cutoffs. Our estimation results from simulated 
data and school choice data from Paris show that using the cutoff restrictions makes a negligible difference in the 
estimation results.



1505FACK ET AL.: BEYOND TRUTH-TELLINGVOL. 109 NO. 4

This problem is mitigated if we have another measure of student ability, as in 
our empirical exercise. We assume that conditional on student ability, priority indi-
ces do not determine preferences and only affect school feasibility. If, additionally, 
priority indices have full support (i.e., can take any possible value) at each given 
level of student ability, we can observe some low-ability students having all schools 
feasible. This restores nonparametric identification in discrete choice models as in 
Matzkin (1993).

Relative to WTT, the stability assumption uses unambiguously less information 
from the data (see Figure 1 for an example). WTT utilizes all information implied 
by the submitted ROLs, while stability only imposes restrictions on admission —
outcome. One may expect that the stability-based approach leads to a loss of infor-
mation; in particular, we may lose some precision in estimating the substitution 
patterns when we allow for more flexible random utility models (Berry, Levinsohn, 
and Pakes 2004; Abdulkadiroǧlu, Agarwal, and Pathak 2017). Indeed, as we shall 
see in our Monte Carlo simulations and the analysis of the school choice data from 
Paris, there is a clear bias-variance tradeoff: stability tolerates non-truth-telling 
behavior at the cost of yielding less precise estimates.

Estimation with Asymptotic Stability.—When taking the above results to  
real-life data, one may be concerned that the matching may not be exactly stable. 
Indeed, our theoretical results only prove asymptotic stability. This raises the 
question of whether the estimator is still consistent. In online Appendix A.3, we 
show that the MLE with asymptotic stability is consistent (Proposition A4). In 
a finite economy, the stability-based estimation is incorrectly specified, because 
some students may not be assigned to their favorite feasible school and their 
revealed preferences are mis-classified when stability is imposed. However, the 
fraction of students who are not assigned to their favorite feasible school con-
verges to zero at an exponential rate (part iii of Proposition A2), implying that the 
mis-classification in revealed preferences vanishes with economy size. By veri-
fying the conditions in Theorem 2.1 of Newey and McFadden (1994), we show 
that the stability-based estimator is consistent even when the matching is only  
asymptotically stable.

D. Testing Truth-Telling against Stability

Having two distinct estimators, ​​​β ˆ ​​TT​​​ and ​​​β ˆ ​​ST​​​, makes it possible to test the 
truth-telling assumption against stability. Maintaining the assumption of identi-
fication given stability, we shall see shortly that WTT provides over-identifying 
restrictions.

Before we present the tests, a few caveats are in order. First, one should check 
that the conditions for identification (for example, those in Matzkin 1993) are sat-
isfied before conducting the tests. Second, because the tests are essentially about 
joint restrictions on the parametric assumptions and the behavioral assumptions, one 
should be aware of the consequence of model misspecification. Rejecting truth-tell-
ing in favor of stability may not provide definitive proof against truth-telling, since 
the proposed tests are conditional on the model’s parametric assumptions. In light 
of these limitations, it is often useful to provide additional empirical results, such as 
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reduced-form results on student behavior (see, e.g., Section IVB) and goodness of 
fit of the estimates (see, e.g., Section IVD).

Over-Identifying Restrictions.—As summarized in Proposition  3, if every 
student is WTT and is assigned to a school, the matching is stable. Stability, 
however, does not imply that students are WTT and is therefore a less restrictive  
assumption.

To see the additional restrictions from WTT, let us consider student ​i​ who submits 
a ​K​-choice list ​L​ and is matched with school ​s​. Therefore, ​s​ must be ranked in ​L​. 
WTT implies the following conditions on the choice probability:

(4) ​ Pr​(​σ​​ W​​(​u​i​​, ​e​i​​)​  =  L ​|​​ ​Z​i​​; β; ​|​σ​​ W​​(​u​i​​, ​e​i​​)​|​  =  K)​​

​      =  Pr​
(

​u​i,​l​​ 1​​​  >  ⋯  > ​ u​i,​l​​ K​​​  > ​ u​i,s′​​, ∀ s′  ∈   \L | ​Z​i​​; β;

	  ​|​σ​​ W​​(​u​i​​, ​e​i​​)​|​  =  K; s  = ​  arg max​ 
s∈ ​(​e​i​​,P​(μ)​)​

​​ ​u​i,s​​
)

​​

	​ × Pr​
(

s  =  μ​(​u​i​​, ​e​i​​)​  = ​  arg max​ 
s∈​(​e​i​​,P​(μ)​)​

​​ ​u​i,s​​ | ​Z​i​​; β;  ​(​e​i​​, P​(μ)​)​
)

​​.

This equality uses the fact that the event, ​​(​u​i,​l​​ 1​​​ > ⋯ > ​ u​i,​l​​ ​K​i​​​​​ > ​u​i,s′​​, ∀ s′ ∈   \L)​​,  
implies ​​(s  = ​ arg max​s∈​(​e​i​​,P​(μ)​)​​​​u​i,s​​)​​ but not the reverse.23 This is because ​i​’s feasible 
schools are either ranked below ​s​ in ​L​ or are omitted from ​L​; in either case, WTT 
requires that ​s​ is preferred to any other feasible school. Therefore, the first condi-
tional probability on the right-hand side of the equality cannot always be one. As the 
restrictions implied by stability are just

	​ Pr​
(

s  =  μ​(​u​i​​, ​e​i​​)​  = ​  arg max​ 
s∈ ​(​e​i​​,P​(μ)​)​

​​ ​u​i,s​​ ∣ ​Z​i​​; β;  ​(​e​i​​, P​(μ)​)​
)

​,​

the additional restrictions from WTT are summarized in the first term. When the 
model is identified under stability, equation (4) summarizes the over-identifying 
restrictions.

Hausman Test.—Our estimator ​​​β ˆ ​​TT​​​ uses all the restrictions implied by WTT. 
Therefore, under the null hypothesis that students are WTT, both estimators ​​​β ˆ ​​TT​​​ 
and ​​​β ˆ ​​ST​​​ are consistent but only ​​​β ˆ ​​TT​​​ is asymptotically efficient. Under the alternative 
that the matching is stable but not all students are WTT, only ​​​β ˆ ​​ST​​​ is consistent.

23 We also make use of the exogeneity of the set of feasible schools (Assumption EXO2) and the exogeneity of 
the length of submitted ROL (Assumption WTT2). Therefore, 

​Pr​
(

s  =  μ​(​u​i​​, ​e​i​​)​  =  ​ arg max​ 
s∈​(​e​i​​,P​(μ)​)​

​​ ​u​i,s​​ ∣ ​Z​i​​; β; ​(​e​i​​, P​(μ)​)​)
​​  = ​ Pr​

(
s  =  ​ arg max​ 

s∈​(​e​i​​,P​(μ)​)​
​​ ​u​i,s​​ ∣ ​Z​i​​; β; | ​σ​​ W​(​u​i​​, ​e​i​​) |  =  K

)
​,​
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In this setting, the general specification test developed by Hausman (1978) can be 
applied by computing the following test statistic:

	​ ​T​H​​  = ​ (​​β ˆ ​​ST​​ − ​​β ˆ ​​TT​​)​′ ​​(​​𝐕̂  ​​ST​​ − ​​𝐕̂  ​​TT​​)​​​ 
−1

​​(​​β ˆ ​​ST​​ − ​​β ˆ ​​TT​​)​,​

where ​​​(​​𝐕̂  ​​ST​​ − ​​𝐕̂  ​​TT​​)​​​ 
−1

​​ is the inverse of the difference between the asymptotic cova-
riance matrices of ​​​β ˆ ​​ST​​​ and ​​​β ˆ ​​TT​​​.24 Under the null hypothesis, ​​T​H​​  ∼ ​ χ​​ 2​​(​d​β​​)​​, where  
​​d​β​​​ is the dimension of ​β​. If the model is correctly specified and the matching is 
stable, the rejection of the null hypothesis implies that WTT is violated in the data.

Testing Over-Identifying Restrictions.—The above Hausman test requires that 
we have a consistent and efficient estimator, ​​​β ˆ ​​TT​​​. When relying on MLE or GMM, 
this calls for strong parametric assumptions. An alternative is to construct a test for 
over-identifying restrictions (Hansen 1982), which is made feasible because of the 
nesting structure of WTT and stability due to Proposition 3. Instead of requiring ​​​β ˆ ​​TT​​​ 
to be asymptotically efficient, the test for over-identifying restrictions only requires 
that ​​​β ˆ ​​TT​​​ utilizes more restrictions than ​​​β ˆ ​​ST​​​. With equation (4), we can separate out the 
additional restrictions and test whether they are satisfied based on Hansen (1982).

No-Blocking among Assigned Students.—The above estimation and tests can be 
applied even if stability is violated. Part (i) of Proposition 3 states that whenever a 
WTT student is assigned, she is matched with her favorite feasible school and thus is 
not in any blocking pair. However, this no-blocking condition can be violated among 
unassigned students, implying the violation of stability. We can thus re-formulate 
the above tests as WTT against “no-blocking among assigned students.” The estima-
tion based on “no-blocking among assigned students” will exclude unassigned stu-
dents; it does not create selection bias under the null hypothesis, because the length 
of every submitted ROL, which determines the probability of being unassigned, is 
exogenous under WTT.

E. Undominated Strategies and Stability

The stability-based approach described above is only valid when the matching is 
stable. However, as we have shown theoretically, stability can fail. Without stability, 
one may consider the undominated-strategies assumption, under which observed 
ROLs are students’ true partial preference orders. That is, a submitted ROL, ​​L​i​​​, 
respects ​i​’s true preference order among the schools ranked in ​​L​i​​​ (see, for an exam-
ple, Figure 1).

These partial orders provide information that can be used to identify student 
preferences, but only partially, because the econometric structure is now incom-
plete (Tamer 2003). In other words, for a student with type ​​(​u​i​​, ​e​i​​)​​, the assumption 
of undominated strategies does not predict a unique ROL for the student. As we 
shall see, undominated strategies lead to a set of inequality restrictions that can be 

24 Since exact stability is assumed, the calculation of ​​​𝐕 ˆ ​​ST​​​ does not take into account the sampling variance of 
cutoffs in a finite economy.
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satisfied by a set of ​β​ s, instead of a unique vector of ​β​. Therefore, we lose point 
identification.

Moment Inequalities.—Students’ submitted ROLs can be used to form condi-
tional moment inequalities. Without loss of generality, consider two schools ​​s​1​​​ and ​​
s​2​​​. Since not everyone ranks both schools, the probability of ​i​, who adopts the strat-
egy ​σ​(​u​i​​, ​e​i​​)​​, ranking ​​s​1​​​ before ​​s​2​​​, i.e., ​​s​1​​ ​ ≻​σ​(​u​i​​,​e​i​​)​​​ ​s​2​​​, is

(5)	​ Pr​(​s​1​​ ​≻​σ​(​u​i​​,​e​i​​)​​​ ​s​2​​ ∣ ​Z​i​​; β)​  =  Pr​(​u​i,​s​1​​​​  > ​ u​i,​s​2​​​​ and ​s​1​​, ​s​2​​  ∈  σ​(​u​i​​, ​e​i​​)​ ∣ ​Z​i​​; β)​​

​	 ≤  Pr​(​u​i,​s​1​​​​  > ​ u​i,​s​2​​​​ ∣ ​Z​i​​; β)​​.

The first equality is due to undominated strategies, and the inequality defines a lower 
bound for the conditional probability of ​​u​i,​s​1​​​​  > ​ u​i,​s​2​​​​​. Similarly, an upper bound is

(6)	​ Pr​(​u​i,​s​1​​​​  > ​ u​i,​s​2​​​​ ∣ ​Z​i​​; β)​  ≤  1 − Pr​(​s​2​​ ​ ≻​σ​(​u​i​​,​e​i​​)​​​ ​ s​1​​ ∣ ​Z​i​​; β)​.​

Inequalities (5) and (6) yield the following conditional moment inequalities:

	​ Pr​(​u​i,​s​1​​​​  > ​ u​i,​s​2​​​​ ∣ ​Z​i​​; β)​ − E​[1​(​s​1​​ ​≻​σ​(​u​i​​,​e​i​​)​​​ ​s​2​​)​ ∣ ​Z​i​​; β]​  ≥  0;​

	​ 1 − E​[1​(​s​2​​ ​≻​σ​(​u​i​​,​e​i​​)​​​ ​s​1​​)​ ∣ ​Z​i​​; β]​ − Pr​(​u​i,​s​1​​​​  > ​ u​i,​s​2​​​​ ∣ ​Z​i​​; β)​  ≥  0.​

Similar inequalities can be computed for any school pair and can be generalized to 
any ​n​ schools in , for ​2  ≤  n  ≤  S​. In the simulations and empirical analysis, we 
focus on inequalities for pairs. The bounds become uninformative if ​n  ≥  3​, because 
not many schools are simultaneously ranked by the majority of students. We interact ​​
Z​i​​​ with the conditional inequalities and obtain ​​M​1​​​ unconditional moment inequali-
ties, ​​(​m​1​​, … , ​m​​M​1​​​​)​​.

Estimation with Moment Inequalities.—For estimation with moment inequali-
ties, one can follow the approach of Andrews and Shi (2013), which is valid for 
both point and partial identifications. The objective function is a test statistic,  
​​T​MI​​​(β)​​, of the Cramer-von Mises type with the modified method of moments (or sum 
function). With the unconditional moment inequalities, it is constructed as follows:

(7)	​ ​T​MI​​​(β)​  = ​  ∑ 
j=1

​ 
​M​1​​

 ​​ ​​[​ 
​​m – ​​j​​​(β)​ ____ 
​​σ ˆ ​​j​​​(β)​ ​]​​ 

−
​ 

2

 ​​,

where ​​​m – ​​j​​​(β)​​ and ​​​σ ˆ ​​j​​​(β)​​ are the sample mean and standard deviation of the ​j​th 
moment, ​​m​j​​​(β)​​, respectively; and ​​​[ ∙ ]​​−​​​ is such that ​​​[a]​​−​​  =  min​{0, a}​​. One can then 
follow Bugni, Canay and Shi (2017) to construct marginal confidence intervals. For 
a given coordinate ​​β​k​​​ of ​β​, the authors test the hypothesis ​​H​0​​: ​β​k​​  = ​ β​0​​​, for a given ​​
β​0​​  ∈  ℝ​. The confidence interval for ​​β​k​​​’s true value is the convex hull of all ​​β​0​​​s at 
which ​​H​0​​​ is not rejected.
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While the assumption of undominated strategies seems plausible, it should be 
noted that the above approach often leads to uninformative confidence intervals 
of parameters of interest, constrained by the available econometric techniques. 
However, one can integrate the inequalities with the restrictions implied by stability, 
when stability is also plausible.

Integrating Stability with Undominated Strategies.—An important advantage 
of the stability-based approach is that it only requires data on the admis-
sion outcomes. However, submitted ROLs are often observed and can be 
used to improve estimation efficiency. Under the assumption that stability  
provides point identification of student preferences, these ROLs provide  
over-identifying information that can be used together with stability  
in estimation.

The potential benefits can be illustrated in a simple example. Consider a con-
strained/truncated DA where students are only allowed to rank up to three schools 
out of four. With personalized sets of feasible schools under the stability assump-
tion, the preferences over two schools, say ​​s​1​​​ and ​​s​2​​​, are estimated mainly from the 
sub-sample of students who are assigned to either of these schools while having 
priority indices above the cutoffs of both. Yet it is possible that all students include ​​
s​1​​​ and ​​s​2​​​ in their ROLs, even if these schools are not ex post feasible for some 
students. In such a situation, all students could be used to estimate the preference 
order of ​​s​1​​​ and ​​s​2​​​, rather than just a sub-sample. As shown below, this argument can 
be extended to the case where two or more schools are observed being ranked by a 
subset of students.

Moment Equalities.—To integrate the above over-identifying information in 
ROLs with that from stability, we reformulate the likelihood function described in 
equation (3) into moment equalities. The choice probability of the matched school 
can be rewritten as a moment condition by equating theoretical and empirical 
probabilities:

​​ ∑ 
i=1

​ 
I

  ​​ Pr​
(

s  = ​ arg max​ 
s′∈​(​e​i​​,P)​

​ ​​(​u​i,​s ′ ​​​)​ ∣ ​Z​i​​, P​(μ)​; β
)
​ − E​(​ ∑ 

i=1
​ 

I

  ​​ 1​(μ​(​u​i​​, ​e​i​​)​  =  s)​)​  =  0,  ∀ s  ∈  ,​

where ​1​(μ​(​u​i​​, ​e​i​​)​  =  s)​​ is an indicator function taking the value of one if and only if ​
μ​(​u​i​​, ​e​i​​)​  =  s​. We again interact the variables in ​Z​ with the above conditions, leading 
to ​​M​2​​​ moment equalities, ​​(​m​​M​1​​+1​​, …, ​m​​M​1​​+​M​2​​​​)​​.

Estimation with Moment (In)equalities.—To obtain consistent point estimates 
with both equality and inequality moments (henceforth, moment (in)equalities), 
we augment the test statistic in equation (7) to incorporate the ​​M​2​​​ unconditional 
moment equalities:

(8)	​ ​T​MEI​​​(β)​  = ​  ∑ 
j=1

​ 
​M​1​​

 ​​ ​​[​ 
​​m ¯ ​​j​​​(β)​ _ 
​​σ ˆ ​​j​​​(β)​ ​]​​ 

−
​ 

2

 ​ + ​  ∑ 
j=​M​1​​+1

​ 
​M​1​​+​M​2​​

 ​​ ​​[​ 
​​m ¯ ​​j​​​(β)​ _ 
​​σ ˆ ​​j​​​(β)​ ​]​​​ 

2

​.​
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We denote the point estimate ​​​β ˆ ​​MEI​​​, which minimizes ​​T​MEI​​​(β)​​, and we can take the 
same approach as in Bugni, Canay, and Shi (2017) to construct marginal confidence 
intervals for ​β​.

F. Testing Stability against Undominated Strategies

Given the identification of student preferences under stability, the moment 
inequalities add over-identifying information. This constitutes a test of stability, 
provided that students do not play dominated strategies. More precisely, if both 
assumptions are satisfied, the moment (in)equalities in Section IIE should yield a 
point estimate that fits the data relatively well; otherwise, there should not exist a 
point ​β​ that satisfies all moment (in)equalities. Formally, we follow the specification 
test in Bugni, Canay, and Shi (2015).

It should be noted that, for the above test, we maintain the undominated-strategies 
assumption, which may raise concerns, because students could make mistakes as 
documented in several real-life contexts; moreover, untrue partial preference order-
ing is not dominated under the school-proposing DA. We revisit these issues in 
Section VB.

The discussion in Section IIE provides another test of the undominated-strategies 
assumption, which also relies on the non-emptyness of the identified set under the 
null hypothesis (Bugni, Canay, and Shi 2015). That is, if there is no value of ​β​ satis-
fying the moment inequalities, the undominated-strategies assumption is not satisfied. 
Unfortunately, the available methods of moment (in)equalities tend to result in con-
servative confidence sets of parameters, which implies that this test may lack power.

III.  Results from Monte Carlo Simulations

To illustrate the proposed estimation approaches and tests, we carry out Monte 
Carlo simulations, the details of which are consigned to online Appendix C.

Bayesian Nash equilibrium of the school choice problem is simulated in two 
settings where ​I​ students compete for admission to 6 schools with per capita capac-
ities ​​​{​q​s​​}​​ s=1​ 6  ​  = ​ {0.1, 0.1, 0.05, 0.1, 0.3, 0.3}​​.25 The first is the constrained/trun-
cated DA where students are allowed to rank up to ​K​ schools (​K  <  6​). The second 
setting, labelled as DA with cost, allows students to rank as many schools as they 
wish but imposes a constant marginal cost ​c​ per additional school in the list after the 
first choice.

Student preferences over schools follow a random utility model:

(9)	​ ​u​i,s​​  = ​ α​s​​ − ​d​i,s​​ + 3​(​a​i​​ · ​​a –​​s​​)​ + ​ϵ​i,s​​,​

25 Online Appendix C.2 describes the details on solving equilibrium. In general, there are multiple equilibria. 
We focus on the one that is found by an algorithm iterating over the following steps: (i) for each candidate ROL 
(a true partial preference order of the schools), every student calculates the admission probability at each school 
by comparing her priority indices to the cutoff distribution; (ii) each student selects the ROL that maximizes her 
expected utility; (iii)  the matchings across ​M​ simulation samples jointly lead to an updated cutoff distribution; 
(iv) students update the admission probabilities based on the updated distribution. The initial cutoff distribution is 
the empirical cutoff distribution with strictly truth-telling students, and steps (i)–(iv) are repeated until a fixed point 
in the cutoff distribution is found.
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where ​​α​s​​​ is school ​s​’s fixed effect; ​​d​i,s​​​ is the distance from student ​i​’s residence to ​s​;  
​​a​i​​​ is ​i​’s ability; ​​​a –​​s​​​ is school ​s​’s quality; and ​​ϵ​i,s​​​ is randomly drawn from the type-I 
extreme value distribution. Student priority indices are constructed such that (a) ​i​’s 
priority index at each school is correlated with her ability ​​a​i​​​ (correlation coefficient 
0.7) and (b) ​i​’s priority indices at any two schools ​s​ and ​s​′ are also correlated (cor-
relation coefficient 0.7).

Several lessons can be drawn from these simulations. The first is that in both 
settings, the distribution of school cutoffs is close to jointly normal and degenerates 
as school capacities and the number of students increase proportionally while hold-
ing constant the number of schools (Figure 2); the matching is almost stable (i.e., 
almost every student is assigned to her favorite feasible school) even in moderately 
sized economies. By contrast, WTT is often violated among the majority of the 
students, even when they can rank four out of six schools (constrained DA) or when 
the cost of including an extra school is negligibly small (DA with cost).26 When the 
application cost increases, equilibrium strategies may prescribe that many students 
rank fewer than six schools even though they are allowed to rank all of them. Based 
on these results, observing that only a few students make full use of their ranking 
opportunities may not be viewed as a compelling argument in favor of truth-telling 
when the application cost is a legitimate concern.

The second insight is that stability leads to estimates much closer to the true 
values than WTT. Table 2 reports the results from estimation under each of the 
following assumptions: (i) weak truth-telling (columns 2–4); (ii) stability (columns 
5–7); and (iii) stability and undominated strategies (columns 8 and 9). Panel A is for 

26 Consistent with Proposition 5, our simulations show that the fraction of students who are matched with their 
favorite feasible school decreases with the application cost. However, students with justified envy are rare unless 
students face very large application costs (see Figure C4 in online Appendix C.3).

Figure 2. Monte Carlo Simulations: Impact of Economy Size on the Equilibrium Distribution of Cutoffs 
(Constrained/Truncated DA)

Notes: This figure shows the marginal distribution of school cutoffs in equilibrium under the constrained/truncated 
DA (ranking 4 out of 6 schools) when varying the number of students, ​I​, who compete for admission to 6 schools 
with a total enrollment capacity of ​I × 0.95​ seats. Using 500 simulated samples, the line fits are from a Gaussian 
kernel with optimal bandwidth using MATLAB’s ksdensity command. See online Appendix C for details on the 
Monte Carlo simulations.
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Table 2—Monte Carlo Results (500 Students, 6 Schools, 500 Samples)

Identifying assumptions

Weak Truth-telling
Stability of 

the matching

Stability and
undominated 

strategies

True value Mean SD CP Mean SD CP Mean SD

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Constrained/truncated DA (ranking up to 4 out of 6 schools)
Parameters
School 2 ​​​0.50 ​−​0.13 ​​​0.06 ​​​0.00 ​​​0.51 ​​​0.29 ​​​0.94 ​​​0.50 ​​​0.28
School 3 ​​​1.00 −2.08 ​​​0.14 ​​​0.00 ​​​1.05 ​​​0.58 ​​​0.96 ​​​1.02 ​​​0.57
School 4 ​​​1.50 −1.29 ​​​0.12 ​​​0.00 ​​​1.54 ​​​0.52 ​​​0.96 ​​​1.52 ​​​0.50
School 5 ​​​2.00 ​​​0.56 ​​​0.07 ​​​0.00 ​​​2.02 ​​​0.31 ​​​0.96 ​​​2.01 ​​​0.29
School 6 ​​​2.50 ​​​0.23 ​​​0.12 ​​​0.00 ​​​2.53 ​​​0.45 ​​​0.96 ​​​2.51 ​​​0.43
Own ability ​×​ school quality ​​​3.00 ​​​9.40 ​​​0.64 ​​​0.00 ​​​2.97 ​​​2.29 ​​​0.96 ​​​3.05 ​​​2.26
Distance −1.00 ​−​0.71 ​​​0.08 ​​​0.08 ​−​1.01 ​​​0.20 ​​​0.95 ​−​1.01 ​​​0.20

Summary statistics (averaged across Monte Carlo samples)
Average length of submitted ROLs     4.00
Fraction of weakly truth-telling students     0.39
Fraction of students assigned to favorite feasible school     1.00

Model selection tests
Truth-telling (​​H​0​​​) versus stability (​​H​1​​​): ​​H​0​​​ rejected in 100 percent of samples (at ​5 percent​ significance level)
Stability (​​H​0​​​) versus undominated strategies (​​H​1​​​): ​​H​0​​​ rejected in 0 percent of samples (at ​5 percent​ significance level)

Panel B. DA with application cost (constant marginal cost ​c  =  ​10​​ −6​​)
Parameters
School 2 ​​​0.50 ​​​0.41 ​​​0.09 ​​​0.88 ​​​0.51 ​​​0.29 ​​​0.94 ​​​0.49 ​​​0.28
School 3 ​​​1.00 ​​​0.57 ​​​0.16 ​​​0.23 ​​​1.05 ​​​0.58 ​​​0.96 ​​​1.00 ​​​0.53
School 4 ​​​1.50 ​​​1.17 ​​​0.15 ​​​0.37 ​​​1.54 ​​​0.52 ​​​0.96 ​​​1.49 ​​​0.48
School 5 ​​​2.00 ​​​1.74 ​​​0.11 ​​​0.32 ​​​2.02 ​​​0.30 ​​​0.96 ​​​1.99 ​​​0.29
School 6 ​​​2.50 ​​​2.24 ​​​0.14 ​​​0.50 ​​​2.54 ​​​0.45 ​​​0.96 ​​​2.48 ​​​0.41
Own ability ​×​ school quality ​​​3.00 ​​​2.19 ​​​0.72 ​​​0.77 ​​​2.96 ​​​2.29 ​​​0.96 ​​​3.16 ​​​2.29
Distance −1.00 ​−​0.93 ​​​0.09 ​​​0.88 −1.01 ​​​0.20 ​​​0.95 ​−​1.00 ​​​0.20

Summary statistics (averaged across Monte Carlo samples)
Average length of submitted ROLs     4.60
Fraction of weakly truth-telling students     0.79
Fraction of students assigned to favorite feasible school     1.00

Model selection tests
Truth-telling (​​H​0​​​) versus stability (​​H​1​​​): ​​H​0​​​ rejected in 37 percent of samples (at ​5 percent​ significance level)
Stability (​​H​0​​​) versus undominated strategies (​​H​1​​​): ​​H​0​​​ rejected in 0 percent of samples (at ​5 percent​ significance level)

Notes: This table reports Monte Carlo results from estimations under different sets of identifying assumptions: 
(i) weak truth-telling; (ii) stability; (iii) stability and undominated strategies. 500 Monte Carlo samples of school 
choice are simulated under two data generating processes for an economy in which 500 students compete for admis-
sion to 6 schools: a constrained/truncated DA where students are allowed to rank up to 4 schools out of 6 (panel A); 
an unconstrained DA where students can rank as many schools as they wish, but incur a constant marginal cost  
​c  =  ​10​​ −6​​ for including an extra school in their ROL beyond the first choice (panel B). Under assumptions (i) 
and (ii), student preferences are estimated using maximum likelihood estimation. Under assumption (iii), they are 
estimated using Andrews and Shi (2013)’s method of moment (in)equalities. Column 1 reports the true parame-
ter values. The mean and standard deviation (SD) of point estimates across the Monte Carlo samples are reported 
in columns 2, 5, and 8, and in columns 3, 6, and 9, respectively. Columns 4 and 7 report the coverage probabilities 
(CP) for the 95 percent confidence intervals. The confidence intervals in estimations (i) and (ii) are the Wald-type 
confidence intervals obtained from the inverse of the Hessian matrix. The marginal confidence intervals in estima-
tion (iii) are computed using the method proposed by Bugni, Canay, and Shi (2017). The CP in estimation (iii) is 
100 percent for every parameter. Truth-telling is tested against stability by constructing a Hausman-type test statis-
tic from the estimates of both approaches. Stability is tested against undominated strategies by checking if the iden-
tified set of the moment (in)equality model is empty, using the test proposed by Bugni, Canay, and Shi (2015). See 
online Appendix C for details on the Monte Carlo simulations. �
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the constrained/truncated DA where students are allowed to rank up to 4 schools; 
panel B is for the DA with a marginal application cost equal to ​​10​​ −6​​.

The WTT-based estimator (​​​β ˆ ​​TT​​​) is severely biased (column 2). Particularly in 
panel A, we note that low-ability students’ valuation of the most popular schools 
(e.g., School 6) tends to be underestimated, because such schools are more likely to 
be omitted from these students’ ROLs due to their low admission probabilities. This 
bias is also present among small schools (e.g., Schools 3 and 4), which are often left 
out of ROLs because their cutoffs tend to be higher than those of equally desirable 
but larger schools.

By contrast, the average of the stability-based estimates (​​​β ˆ ​​ST​​​) is reasonably close 
to the true values. Its standard deviations, however, are larger than those obtained 
under WTT. This efficiency loss is a direct consequence of ignoring the information 
content of ROLs.27 The Hausman test strongly rejects WTT in favor of stability.

The estimator based on moment (in)equalities (​​​β ˆ ​​MEI​​​), which integrates stability 
with information in ROLs, is also consistent (column 8). Moreover, the test based 
on moment (in)equalities never rejects the null hypothesis that stability is consistent 
with undominated strategies. A limitation of this approach, however, is that the cur-
rently available methods for conducting inference based on moment (in)equalities 
are typically conservative. As a result, the 95 percent marginal confidence intervals 
based on moment (in)equalities cover the true values too often (coverage probabil-
ity, or CP, is 100 percent for every parameter, although not shown in Table 2).

IV.  School Choice in Paris

Since 2008, the Paris Education Authority (Rectorat de Paris) assigns stu-
dents to public high schools based on a version of the school-proposing DA called 
AFFELNET (Hiller and Tercieux 2014). At the district level, student priority indices 
are not school-specific (as detailed below) and the mechanism is equivalent to a 
serial dictatorship.

Towards the end of the Spring term, final-year middle school students who 
are admitted to the upper secondary academic track (Seconde générale et tech-
nologique)28 are requested to submit an ROL of up to eight public high schools to 
the Paris Education Authority. Students’ priority indices are determined as follows:

	 (i)	 Students’ academic performance during the last year of middle school is 
graded on a scale of 400 to 600 points.

	 (ii)	 Paris is divided into four districts. Students receive a “district” bonus of 
600 points at each school located in their home district. Thus, students apply-
ing to a within-district school have full priority over out-of-district applicants 
to the same school.

27 Online Appendix C.4 further quantifies the efficiency loss in simulations with strictly truth-telling students.
28 In the French educational system, students are tracked at the end of the final year of collège (equivalent to 

middle school), at the age of 15, into vocational or academic upper secondary education.
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	 (iii)	 Low-income students are awarded a bonus of 300 points.29 As a result, these 
students are given full priority over all other students from the same district.

The DA algorithm is run at the end of the academic year to determine school 
assignment for the following academic year. Unassigned students can participate in 
a supplementary round of admissions by submitting a new ROL of schools among 
those with remaining seats, the assignment mechanism being the same as for the 
main round.

Note that the mechanism would be strategy-proof if there were no constraints 
on the length of ROLs, because it is equivalent to serial dictatorship. Nonetheless, 
under the current mechanism, it is still a dominated strategy to submit an ROL that 
is not a partial order of true preferences (Proposition 2).

A. Data

For our empirical analysis, we use data from Paris’ southern district (Sud) and 
study the behaviors of 1,590 within-district middle school students who applied for 
admission to the district’s 11 public high schools for the academic year 2013–2014. 
Owing to the 600-point “district” bonus, this district is essentially an independent 
market.30

Along with socio-demographic characteristics and home addresses, our data 
contain all the relevant variables to replicate the matching algorithm, including the 
school capacities, the submitted ROLs, and the priority indices (converted into per-
centiles between 0 and 1). Individual examination results for the Diplôme national 
du brevet (DNB)—a national exam that all students take at the end of middle  
school—are used to construct different measures of academic ability (French, math, 
and composite score), which are normalized as percentiles between 0 and 1. Note 
that the DNB exam scores are not used in the computation of the student priority 
index, which is based on the grades obtained throughout the final year of middle 
school. The DNB scores therefore provide additional measures of student ability.31 
Table 3 reports students’ characteristics, choices, and admission outcomes. Almost 
half of the students are of high socioeconomic status (SES), while 15 percent receive 
the low-income bonus. Ninety-nine percent are assigned to a within-district school 
in the main admission round, but only half obtain their first choice.

Table 4 presents summary statistics for the 11 high schools. Columns 1–4 show a 
high degree of stratification among the schools, both in terms of the average ability of 
students enrolled in 2012 and of their social background (measured by the fraction of 
high SES students). Columns 5–8 describe school choice in 2013. The district’s total 
capacity (1,692 seats) is unevenly distributed across schools: the smallest school has 
62 seats while the largest has 251. School cutoffs in 2013 are strongly correlated with 

29 The low-income status is conditional on a student applying for and being granted the means-tested low-income 
financial aid in the last year of middle school. A family with two children would be eligible in 2013 if its taxable 
income was below 17,155 euros. The aid ranges from 135 to 665 euros per year.

30 Out-of-district applicants could affect the availability of school seats in the supplementary round, but this is 
of little concern since, in the district, only 22 students were unassigned at the end of the main round (for the com-
parison between assigned and unassigned students, see online Appendix Table E1).

31 See online Appendix B for a description of the data sources and online Appendix Figure E1 for a map.
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school quality. The last column shows the fraction of submitted ROLs in which each 
school is ranked. The least popular three schools are each ranked by less than 24 per-
cent of students, and two of them remain under-subscribed (Schools 1 and 3) and thus 
have a 0 cutoff. Consistent with our Monte Carlo results, smaller schools are omitted 
by more students, even if they are of high quality. Likewise, a sizeable fraction of stu-
dents (20 percent) do not rank the best-performing school (School 11) in their ROLs.

Enrollment data further reveals a high level of compliance with the assignment 
outcome. Among the assigned students, 96 percent attend the school they were 
matched with (online Appendix Table E1), about 1 percent attend a public high 
school different from their assignment school, and less than 3 percent opt out to 
enroll in a private school.

B. Evaluating the Assumptions: Reduced-Form Evidence

To evaluate the WTT and stability assumptions, we investigate if students are less 
likely to rank schools at which they expect low admission probabilities. Similar to 
“skipping the impossible” as in Example 1, this behavior would be inconsistent with 
WTT.

Table 3—High School Applicants in the Southern District of Paris: Summary Statistics

Mean SD Min Max Observations

Panel A. Student characteristics
Age 15.0 0.4 13 17 1,590
Female 0.51 0.50 0 1 1,590
French score 0.56 0.25 0.00 1.00 1,590
Math score 0.54 0.24 0.01 1.00 1,590
Composite score 0.55 0.21 0.02 0.99 1,590
High SES 0.48 0.50 0 1 1,590
With low-income bonus 0.15 0.36 0 1 1,590

Panel B. Choices and outcomes
Number of choices within district 6.6 1.3 1 8 1,590
Assigned to a within-district school 0.99 0.12 0 1 1,590
Assigned to first choice school 0.56 0.50 0 1 1,590

Panel C. Attributes of first-choice school
Distance (km) 1.52 0.93 0.01 6.94 1,590
Mean student French score 0.62 0.11 0.32 0.75 1,590
Mean student math score 0.61 0.13 0.27 0.78 1,590
Mean student composite score 0.61 0.12 0.31 0.77 1,590
Fraction high SES in school 0.53 0.15 0.15 0.71 1,590

Panel D. Attributes of assigned school
Distance (km) 1.55 0.89 0.06 6.94 1,568
Mean student French score 0.56 0.12 0.32 0.75 1,568
Mean student math score 0.54 0.14 0.27 0.78 1,568
Mean student composite score 0.55 0.13 0.31 0.77 1,568
Fraction high SES in school 0.48 0.15 0.15 0.71 1,568

Notes: This table provides summary statistics on the choices of middle school students from the southern district of 
Paris who applied for admission to the district’s 11 public high schools for the academic year starting in 2013, based 
on administrative data from the Paris Education Authority (Rectorat de Paris). All scores are from the exams of the 
Diplôme national du brevet (DNB) in middle school and are measured in percentiles and normalized to be in ​​[0, 1]​​.  
The composite score is the average of the scores in French and math. The correlation coefficient between French 
and math scores is ​0.50​. School attributes, except distance, are measured by the average characteristics of students 
enrolled in each school in the previous year (2012).
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Figure 3 focuses on the district’s 4 most selective schools (as measured by their 
cutoffs). For each school, we separately plot the fraction of students who rank it in 
their ROL as a function of their distance to the school cutoff, measured by the dif-
ference (using the original scale in points) between the student’s priority index and 
the cutoff.32 Each plot shows that almost all students with a priority index above a 
school’s cutoff include that school in their ROL, whereas the fraction of students 
ranking the school decreases rapidly when the priority index falls below the cutoff. 
Irrespective of strategic considerations, one might expect high priority students to 
have a stronger preference for the most selective schools—since priorities are posi-
tively correlated with academic performance—and hence to rank them more often. 
However, the kink around the cutoffs is consistent with students omitting the most 
selective schools from their ROL because of the low admission probabilities. In 
online Appendix D.1, we show that the kink-shaped relationship between student 
priority index and their ranking behavior is robust to controlling for potential deter-
minants of preferences, including distance to school and the student’s DNB exam 
scores in French and math. Recall that DNB scores are not used to calculate the pri-
ority indices. These results cannot be easily reconciled with truth-telling behavior.

The evidence in Figure 3 suggests the potential influence of expected admission 
probabilities on student ranking behavior. At the time of application, students know 
their academic grades and low-income status but not their priority ranking nor the 
ex post cutoffs.33 They can, however, gather information on past cutoffs to assess 
admission probabilities. While we do not have direct information on students’ 
beliefs, Figure  4 shows that the current year (2013) cutoffs are similar to those 

32 We restrict the sample for a school to students whose score is no more than 50 points away from its cutoff. 
Due to the low-income bonus of 300 points, low-income students’ priority indices are always well above the 
cutoffs. They are therefore not considered in the analysis.

33 This uncertainty in both priority ranking and cutoffs may explain why some students find it optimal to rank 
multiple schools, given that the cost of ranking up to eight choices is arguably negligible.

Table 4—High Schools in the Southern District of Paris: Summary Statistics

School attributes (2012) Admission outcomes (2013)
Mean
French 
score

Mean  
math  
score

Mean 
composite 

score

Fraction 
high SES 
students Capacity Count

Admission
cutoffs

Fraction 
ROLs 

ranking it
(1) (2) (3) (4) (5) (6) (7) (8)

School 1 0.32 0.31 0.31 0.15 72 19 0.000 0.22
School 2 0.36 0.27 0.32 0.17 62 62 0.015 0.23
School 3 0.37 0.34 0.35 0.16 67 36 0.000 0.14
School 4 0.44 0.35 0.39 0.46 140 140 0.001 0.59
School 5 0.47 0.44 0.46 0.47 240 240 0.042 0.83
School 6 0.47 0.46 0.46 0.32 171 171 0.069 0.71
School 7 0.58 0.54 0.56 0.56 251 251 0.373 0.91
School 8 0.58 0.66 0.62 0.30 91 91 0.239 0.39
School 9 0.65 0.62 0.63 0.66 148 148 0.563 0.83
School 10 0.68 0.66 0.67 0.49 237 237 0.505 0.92
School 11 0.75 0.78 0.77 0.71 173 173 0.705 0.80

Notes: This tables provides summary statistics on the attributes of high schools in the southern district of Paris and 
on the outcomes of the 2013 assignment round, based on administrative data from the Paris Education Authority 
(Rectorat de Paris). School attributes in 2012 are measured by the average characteristics of the schools’ enrolled 
students in 2012–2013. All scores are from the exams of the Diplôme national du brevet (DNB) in middle school 
and are measured in percentiles and normalized to be in ​​[0, 1]​​. The composite score is the average of the scores in 
French and math. The correlation coefficient between school-average math and French scores is ​0.97​.
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from the previous year (2012).34 This lends support to the assumption that students 
have some ability to predict their admission probabilities. Although not a necessary 
condition for the matching to be stable, this feature makes the stability assumption 
more likely to be satisfied.

C. Estimation and Test Results

We parameterize student ​i​’s utility of being matched with school ​s​ as follows:

(10)	​ ​u​i,s​​  = ​ α​s​​ − ​d​i,s​​ + ​Z​ i,s​ ′ ​ γ + λ ​ϵ​i,s​​,  s  =  1, …, 11;​

34 The comparison could not be performed for earlier years due to the modifications in the computation of the 
priority index and the small changes in the set of available schools.

Figure 3. Fraction of Students Ranking Each of the Four Most Selective Schools in the Southern 
District of Paris, by Distance to School Cutoff

Notes: The results are calculated with data from the Paris Education Authority on students who applied to the 11 
high schools of the southern district in 2013. The figure shows the ranking behavior of students as a function of 
the distance (using the original scale in points) between each school’s cutoff and students’ priority index. For each 
school, the sample only includes students with a priority index within ​−​50 and +50 points of the cutoff, and stu-
dents are grouped into bins of 10-point width. Bins with less than ten observations are excluded. Each point rep-
resents the fraction of students in a given bin who rank the school in their list. The dotted lines show the 95 percent 
confidence interval. Low-income students are not included because the low-income bonus of 300 points places them 
well above the cutoffs.
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where ​​α​s​​​ is the school fixed effect, ​​d​i,s​​​ is the distance to ​s​ from ​i​’s residence, and ​​
Z​i,s​​​ is a vector of student-school-specific observables. As observed heterogeneity, ​​
Z​i,s​​​ includes 2 variables that capture potential non-linearities in the disutility of dis-
tance and control for potential behavioral biases towards certain schools: “closest 
school” is a dummy variable equal to one if ​s​ is the closest to student ​i​ among 
all 11 schools; “high school colocated with middle school” is another dummy that 
equals one if high school ​s​ and the student’s middle school are colocated at the 
same address.35 To account for students’ heterogeneous valuation of school quality, 
interactions between student scores and school scores are introduced separately for 
French and math, as well as an interaction between own SES and the fraction of high 
SES students in the school. These school attributes are measured among the entering 
class of 2012, whereas our focus is on students applying for admission in 2013. We 
normalize the variables in ​​Z​i,s​​​ so that each school’s fixed effect can be interpreted as 
the mean valuation, relative to School 1, of a non-high-SES student who has median 

35 There are five such high schools in the district.
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school, with its cutoff in 2013 on the y-axis and the one in 2012 on the x-axis. The dashed line denotes the 45-degree 
line.
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scores in both French and math, whose middle school is not colocated with that high 
school, and for whom the high school is not the closest to her residence.

The error term ​​ϵ​i,s​​​ is assumed to be an i.i.d. type-I extreme value, and the variance 
of unobserved heterogeneity is ​​λ​​ 2​​ multiplied by the variance of ​​ϵ​i,s​​​. The effect of 
distance is normalized to ​− 1​, and, therefore, the fixed effects and ​γ​ are all measured 
in terms of willingness to travel. As a usual position normalization, ​​α​1​​  =  0​. We do 
not consider outside options because of students’ almost perfect compliance with 
the assignment outcome.

Using the same procedures as in the Monte Carlo simulations (described in online 
Appendix C), we obtain the results summarized in Table 5, where each column 
reports estimates under a given set of identifying assumptions: (i) weak truth-telling 
(column 1); (ii) stability (column 2); and (iii) stability with undominated strategies 
(column 3).36

The results provide clear evidence that the WTT-based estimates (column 1) are 
rather different from the others. Specifically, a downward bias is apparent for popu-
lar schools that are not ranked by many students, such as Schools 8 and 11. School 
8, which is omitted by 61 percent of students, is deemed by WTT to be less desirable 
than all the schools included in the ROL, which leads to a low estimated fixed effect. 
Similarly, the fixed effect estimate of School 11, one of the most popular schools, 
varies substantially across the identifying assumptions. The under-estimation is mit-
igated when the model is estimated under a different assumption (columns 2 and 
3). Provided that the model is correctly specified, the Hausman test rejects WT T in 
favor of stability ( p-value ​<  0.01​); the test based on moment (in)equalities does not 
reject the null hypothesis that stability is consistent with undominated strategies at 
the 5 percent significance level.

The results show that “closest school” has no significant effect, but students sig-
nificantly prefer colocated schools. Compared with low-score students, those with 
high French (math) scores have a stronger preference for schools with higher French 
(math) scores. Moreover, high  SES students prefer schools that have admitted a 
larger fraction of high SES students in the previous year (2012).

Although the WTT-based estimates of the coefficients of covariates (panel B) 
are not markedly different from the stability-based estimates, one cannot conclude 
that the WTT assumption produces reasonable results, as shown by the estimates of 
fixed effects. To provide a better evaluation, we now compare the estimators by their 
model fit.

36 For the estimates in column 3, we use the method of moment (in)equalities where inequalities are constructed 
as described in Section IIE. Determined by ​​Z​i,s​​​, we interact French score, math score, and distances to Schools 1 
and  2 with the conditional moments. Although one could use more variables, e.g., SES status and distance to 
other schools, they provide little additional variation. In principle, the assumption of undominated strategies alone 
implies partial identification (Section IIE). Because stability is not rejected by our test, we do not present results 
based on this approach (available upon request). We note that the marginal confidence intervals from moment 
inequalities only turn out to be wide in our empirical setting, and hence are relatively uninformative. The possible 
reasons are that the empirical bounds for the probability of a preference ordering over a pair of schools are fairly 
wide, and that the available methods to conduct inference based on moment inequalities are typically conservative.
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D. Goodness of Fit

In three dimensions (cutoffs, assignment, and revealed preferences), we compare 
the observed values to those predicted by the estimates from Table 5. This compar-
ison reveals that the stability-based estimates fit the data well, as opposed to those 
based on WTT (see online Appendix D.2 for computational details).

Table 5—Estimation Results under Different Sets of Identifying Assumptions

Identifying assumptions

Weak
Truth-telling

Stability of 
the matching

Stability and  
undominated strategies

(1) (2) (3)

Panel A. School fixed effects
School 2 ​−​0.71 1.46 1.21

[​−​1.17, ​−​0.24] [0.64, 2.28] [0.14, 2.29]
School 3 ​−​2.12 1.03 0.84

[​−​2.66, ​−​1.58] [0.19, 1.86] [​-​0.56, 2.01]
School 4 3.31 2.91 2.90

[2.75, 3.86] [2.07, 3.76] [2.36, 3.39]
School 5 5.13 4.16 4.16

[4.41, 5.84] [3.22, 5.10] [3.71, 4.49]
School 6 4.87 4.24 4.30

[4.21, 5.54] [3.29, 5.18] [3.73, 4.82]
School 7 7.33 6.81 6.24

[6.47, 8.18] [5.65, 7.98] [5.76, 7.28]
School 8 1.59 4.46 4.27

[1.10, 2.08] [3.46, 5.47] [2.98, 5.26]
School 9 6.84 7.77 6.57

[6.07, 7.61] [6.55, 8.99] [5.84, 7.26]
School 10 7.84 7.25 6.44

[6.94, 8.75] [6.01, 8.49] [5.87, 7.05]
School 11 5.35 7.28 5.61

[4.62, 6.08] [6.06, 8.51] [4.98, 7.33]

Panel B. Covariates
Closest school ​−​0.37 ​−​0.19 ​−​0.15

[​−​0.63, ​−​0.11] [​−​0.47, 0.10] [​−​0.75, 0.57]
High school colocated 2.54 1.76 1.54
  with middle school [2.02, 3.07] [1.19, 2.32] [0.17, 3.12]
Student French score [​× 10​] 0.20 0.18 0.23
 ​ ×​ school French score [​× 10​] [0.16, 0.23] [0.13, 0.24] [0.10, 0.35]
Student math score [​× 10​] 0.30 0.27 0.30
 ​ ×​ school math score [​× 10​] [0.26, 0.34] [0.21, 0.32] [0.18, 0.40]
High SES 6.79 4.92 8.12
 ​ ×​ fraction high SES in school [5.62, 7.97] [3.31, 6.54] [4.18, 12.55]
Scaling parameter (λ) 3.09 1.33 1.50

[2.79, 3.38] [1.16, 1.50] [1.20, 1.64]

Number of students 1,590 1,568 1,590

Notes: This table reports the estimates of the parameters in equation (10) for the southern district of Paris, with the 
coefficient on distance being normalized to ​−1​. The point estimates in columns 1 and 2 are based on maximum 
likelihood, whereas those in column 3 are based on moment equalities and inequalities, with 95 percent confidence 
intervals in brackets. Model selection tests: A Hausman test, testing weak truth-telling against stability (or columns 
1 against 2), rejects WTT in favor of stability ( p-value ​ <​  0.01); a test based on moment equalities and inequali-
ties does not reject the null hypothesis that stability is consistent with undominated strategies at the 5 percent sig-
nificance level.
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Specifically, Figure 5 and online Appendix Table D2 show that the stability-based 
estimates (with or without undominated strategies) predict cutoffs close to the 
observed ones.37 By contrast, WTT substantially under-predicts the cutoffs of the 
most popular schools.

Panel A of Table 6 compares each student’s predicted assignment to the observed 
one. The stability-based estimates have 33–38 percent success rates, whereas the 
WTT-based estimates accurately predict only 22 percent of the assignments. In 
panel B, we take as given the schools that a student has included in her submit-
ted ROL, and compute the probability of observing this particular preference order 
among the ranked schools. The observed order of students’ top two choices has a 
mean predicted probability of 60 or 62 percent based on the stability-based estimates, 
higher than the 55  percent achieved by the WTT-based estimates. We next con-
sider the observed order of a student’s full list of choices. Again, the stability-based 
estimates outperform those based on WTT, with an average predicted probability 
between 2.2 and 2.5 percent for the former versus 1.2 percent for the latter. The 
predictive power of the stability-based estimates along the two measures in panel B 
is noteworthy because the prediction is partly out of sample.38

V.  Summary and Discussion

As a summary of the results, we clarify when each approach is more appropriate 
for empirical analysis. We also discuss whether the results can be extended to the 
school-proposing DA, the case with non-equilibrium behavior, and settings beyond 
school choice.

A. Choosing among the Approaches: A Summary

In the preference estimation with real-life data from centralized school choice 
and college admissions, some practical considerations should be taken into account. 
Recall that we focus on the strict-priority setting in which students are ranked based 
on strict priority indices that are ex ante known privately. Building on the results 
from our theoretical and empirical analyses, this section emphasizes some of the key 
market features that deserve careful examination when one decides which approach 
to use in a given context.

The Nesting Structure of Identifying Assumptions.—Our results imply that the 
identifying assumptions follow a nesting structure, as depicted in Figure 6.

Truth-telling is a natural candidate identifying assumption because of DA’s 
strategy-proofness. However, strict truth-telling (i.e., students truthfully rank 
all schools) is not an equilibrium, if students cannot rank all schools at no cost 
(Proposition 1). In real-life data, students seldom rank all schools, which calls for a 

37 It should be emphasized that the stability-based estimation does not try to fit cutoffs directly, neither does 
it restrict a student’s preferences over infeasible schools. The difference in predicted cutoffs between stability and 
WT T is solely due to their differences in predicting preferences.

38 In the data, 54 percent of students ranked at least 1 infeasible school among their top 2 choices (34 percent 
ranked 1 infeasible school, while 20 percent ranked 2). The average fraction of infeasible schools among all sub-
mitted choices is 30 percent.
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Notes: This figure compares the cutoffs observed for the 11 high schools of Paris’ southern district in 2013 to those 
simulated with the three sets of estimates in Table 5. The simulated cutoffs are averaged over 300 simulated sam-
ples. See online Appendix D.2 for details.

Table 6—Goodness-of-Fit Measures Based on Different Sets of Identifying Assumptions

Estimates from

Weak
Truth-telling

Stability of
the matching

Stability and 
undominated 

strategies

(1) (2) (3)

Panel A. Simulated versus observed assignment (300 simulated samples)
Mean predicted fraction of students 0.220 0.383 0.326
  assigned to observed assignment (0.011) (0.010) (0.012)

Panel B. Predicted versus observed partial preference order of given schools
Mean predicted probability that a student
  prefers the top-ranked school to the 0.553 0.615 0.595
  2nd-ranked in her submitted ROL

Mean predicted probability that a student’s partial
  preference order among the schools in her ROL 0.012 0.025 0.022
  coincides with the submitted rank order

Notes: This table reports two sets of goodness-of-fit measures comparing the observed outcomes to those predicted 
under the different sets of identifying assumptions as in Table 5, for the high school assignment of students in the 
southern district of Paris. Panel A compares students’ observed assignment with their predicted assignment in 300 
simulated samples. In all simulations, we vary only the utility shocks, which are kept common across columns 1–3 
(see online Appendix D.2 for details). Predicted and observed assignments are compared by computing the average 
predicted fraction of students who are assigned to their observed assignment school, with standard deviations across 
the simulation samples reported in parentheses; in other words, this is the average fraction of times each student is 
assigned to her observed assignment in the 300 simulated samples. Panel B uses two measures to compare students’ 
observed partial preference order of given schools (revealed in their submitted ROL) with the prediction, among 
students who rank at least two schools: (i) mean predicted probability that a student prefers the top-ranked school 
to the second-ranked in her submitted ROL, which is averaged across students; and (ii) mean predicted probability 
that a student’s partial preference order among the schools in her ROL coincides with the submitted rank order. Due 
to the logit specification, those probabilities can be calculated without simulation.
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weaker version of the truth-telling assumption. As clarified in the theoretical analy-
sis, weak truth-telling (i.e., students truthfully rank their most preferred schools and
omit some least preferred ones) does not follow directly from strategy-proofness,
since it requires additional assumptions such as the length of ROLs being indepen-
dent of preferences.

Stability is an even weaker assumption on student behavior, while still allowing 
for the identification of preferences. It states that every student is assigned to her 
favorite ex post feasible school, and is always satisfied when students are strictly 
truth-telling. Although stability is not guaranteed in all Bayesian Nash equilibria, 
even when students are weakly truth-telling, it is asymptotically satisfied when the 
economy grows large (Proposition 4).

The third candidate identifying assumption is that students do not play dominated 
strategies (Proposition 2), so that submitted ROLs reveal students’ partial prefer-
ence orders of schools. Weak truth-telling is a special case of this more general 
assumption, whereas stability may hold even if students play dominated strategies.

The Choice of Empirical Approaches.—When choosing among the candidate 
identifying assumptions, consideration should be given to the features of the prob-
lem under study, as well as the available data. For each assumption, Table 7 summa-
rizes the features making it more plausible, the required data, and some discussion 
about identification and estimation.

Truth-telling is more likely to be satisfied when students can rank as many schools 
as they wish at no cost, and face large uncertainty about each school’s exact ranking 

Figure 6. Nesting Structure of Identifying Assumptions

Notes: This figure shows the nesting structure of the identifying assumptions that can be used to analyze data gen-
erated by DA and its variants in the strict-priority setting. The numbered areas correspond to different combinations 
of identifying assumptions: ① strict truth-telling; ② weak truth-telling and stability; ③ weak truth-telling without
stability; ④ stability and undominated strategies; ⑤ stability without undominated strategies; ⑥ undominated strat-
egies without stability.

5
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Undominated strategies

1

3

2
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of students. Conditional on students’ submitted ROLs being observed, preferences 
can be estimated using either MLE or GMM. The choice between weak truth-telling 
and strict truth-telling depends on whether students rank all schools (Section IIB) 
and on the importance of outside options (online Appendix A.4).

When students face some cost of ranking more schools (e.g., if the length of 
submittable ROLs is restricted), stability can be a more plausible assumption than 
truth-telling. This assumption is more likely to hold when the market is larger (i.e., 
many students and many seats per school), when students are less constrained in 
applying to multiple schools (e.g., longer ROLs), when they are less uncertain about 
each school’s ranking of all students at the time of application, when they know 
more about others’ preferences, or when it is easier for them to predict school cut-
offs (Proposition 5). Our Monte Carlo simulations additionally provide numerical 
evidence suggesting that stability is a plausible assumption even when students face 
non-negligible application costs (online Appendix C.3).

Estimating preferences based on stability uses information on the admission out-
come, the school capacities, and the priority indices, but has the advantage of not 
requiring data on submitted ROLs. However, it is necessary to assume the condi-
tional independence between priority index and unobserved preference heteroge-
neity. Compared to truth-telling, the main cost of the stability-based approach is its 
limited power to identify rich substitution patterns, because the information content 
of ROLs is discarded.

Weak truth-telling does not always imply stability, but it does imply no-blocking 
among all assigned students (Proposition 3). Therefore, weak truth-telling can be 
tested against stability (or no-blocking among assigned students) using the Hausman 
(1978) and Hansen (1982) tests. It should be emphasized that these tests do not 
provide definitive proof against truth-telling unless the model is correctly specified 
and identified.

If it is believed that neither truth-telling nor stability is likely to be satisfied, 
preferences can still be partially identified under the assumption that students do 
not play dominated strategies. This assumption is more plausible when no school 
is either “safe” or “impossible” for students, making it less likely that students rank 
some schools in an arbitrary manner. Submitted ROLs can then be used to form 
conditional moment inequalities that partially identify preferences.

When the conditions for both stability and undominated-strategies assumptions 
are jointly satisfied, the moment inequalities from the latter assumption provide 
over-identifying information that can be integrated with the stability assumption to 
estimate preferences based on all of the available data (ROLs, matching outcome, 
school capacities, and priority indices). Additionally, the stability assumption can be 
tested against the undominated-strategies assumption using the specification test in 
Bugni, Canay, and Shi (2015).

B. Discussion and Extension

The School-Proposing DA.—Our main results can be extended to the school-pro-
posing DA, which is also commonly used in practice (see Table 1). Under this mech-
anism, schools “propose” to students following the order of student priority indices. 
Proposition 2 no longer holds; that is, students might have incentives not to report a 
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true partial preference order (Haeringer and Klijn 2009). Nonetheless, the asymptotic 
stability result (Proposition 4) is still valid, as its proof does not rely on Proposition 2. 
Indeed, the matching can be stable in equilibrium (Haeringer and Klijn 2009).

To summarize, if the market under the school-proposing DA has features making 
the matching stable (see Table 7), we can formulate identification and estimation 
of student preferences based on stability. However, the truth-telling assumption no 
longer has theoretical support, as the school-proposing DA is not strategy-proof for 
students (Roth 1982). The approach based on undominated strategies does not apply 
either, since there are no dominated strategies under this mechanism (Haeringer and 
Klijn 2009).

Non-Equilibrium Strategies.—We have thus far assumed that everyone plays an 
equilibrium strategy with a common prior. More realistically, some students could 
have different information and make mistakes when strategizing.

Indeed, a growing number of studies find that strategic mistakes are common 
even in strategy-proof environments. Laboratory experiments show that a signifi-
cant fraction of subjects do not report their preferences truthfully in strategy-proof 
mechanisms (Chen and Sönmez 2006). More relevantly, mistakes occur in real-
world contexts, e.g., the admissions to Israeli graduate programs in psychology 
(Hassidim, Romm, and Shorrer 2016), the medical resident match in the United 

Table 7—Summary of Empirical Approaches

Identifying assumption What makes the assumption more plausible?
Required

data
Identification

and estimation

Weak truth-telling:
Schools in a submitted ROL 
are ranked in true preference 
order and omitted ones are less 
preferred

(a) No cost of ranking more schools, e.g., 
no restriction on the length of submittable 
ROLs and choice set not being too large 
(b) At the time of application, each student 
knows her own priority index but not 
others’, and the distribution of priority 
indices has a large variance

Submitted ROLs Point identification

Estimation by, e.g., 
MLE/GMM

Stability of the matching:
Every student is assigned to 
her favorite feasible school. 
Priority indices and unobserved 
preference heterogeneity are 
conditionally independent

Stability is satisfied if truth-telling holds and 
(almost) everyone is assigned. Otherwise, 
it is more likely to be true when (a) market 
is large (many students, big schools); 
(b) students are less constrained when 
applying to more schools; (c) students face 
limited uncertainty about how schools rank 
them at the time of application; (d) students 
know more about others’ preferences; or (e) 
cutoffs are easy to predict

Admission outcome,
school capacities,
priority indices

Point identification

Estimation by, e.g., 
MLE/GMM

Undominated strategies:
Submitted ROLs are true partial 
preference orders

(a) No “safety school” so that “irrelevance 
at the bottom” of one’s ROL is less likely. 
(b) No “impossible school” so that students 
do not rank impossible school arbitrarily.

Submitted ROLs Partial identification

Estimation with  
moment inequalities

Stability and undominated 
strategies:
See the conditions laid out 
separately for stability and 
undominated strategies

See the conditions laid out separately for 
stability and undominated strategies

Submitted ROLs,
admission outcome,
school capacities,
priority indices

Point identification

Estimation with 
moment equalities and 
moment inequalities

Notes: This table describes the empirical approaches to analyses of data generated by DA and its variants in the 
strict-priority setting. In addition, there are two tests available: (i) weak truth-telling can be tested against stability  
(​​H​0​​​: both weak truth-telling and stability are satisfied; ​​H​1​​​: only stability is satisfied), e.g., using the Hausman (1978) 
or Hansen (1982) tests; (ii) stability can be tested against undominated strategies (​​H​0​​​: both stability and undom-
inated strategies are satisfied; ​​H​1​​​: only the undominated-strategies assumption is satisfied) using the approach in 
Bugni, Canay, and Shi (2015).
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States (Rees-Jones 2018), and the Australian university admissions (Artemov, Che, 
and He 2017). Without estimating preferences, these studies show that a non-negli-
gible fraction of participants make unambiguous mistakes in their ROLs.

However, the vast majority of these mistakes are not payoff relevant. In other 
words, although some students play dominated strategies, the matching is still 
close to stable, corresponding to area ⑤ in Figure 6. Based on these observations, 
the results in Artemov, Che, and He (2017) imply that, as identifying restrictions, 
assuming stability can be more robust and more plausible than the assumption of 
undominated strategies.

Beyond School Choice and College Admissions.—Although the analysis has 
focused on school choice and college admissions, our results can apply to certain 
assignment procedures based on DA. Let us call agents on the two sides “appli-
cants” and “recruiters,” respectively. The key requirement is that when applying, 
applicants have sufficiently precise information on how recruiters rank them and 
that researchers observe how recruiters exactly rank applicants.39 Examples include 
the assignment of teachers to schools in France (Combe, Tercieux, and Terrier 2017) 
and the Scottish Foundation Allocation Scheme matching medical school gradu-
ates with training programs (Irving 2011). The estimation approaches discussed in 
Section II could be implemented in these settings.

VI.  Conclusion

We present novel approaches to estimating student preferences with school choice 
or college admissions data generated by the popular deferred acceptance mechanism 
when applicants are ranked strictly by some ex ante known priority index. We pro-
vide theoretical and empirical evidence showing that, in this commonly observed 
setting, it can be rather restrictive to assume that students truthfully rank schools 
when applying for admission. Instead, stability (or justified-envy-freeness) of the 
matching provides rich identifying information, while being a weaker assumption 
on student behavior. Assuming that students do not play dominated strategies, we 
also discuss methods with moment inequalities, which can be useful with or with-
out stability. A series of tests are proposed to guide the selection of the appropriate 
approach.

The estimation and testing methods are illustrated with Monte Carlo simulations. 
When applied to school choice data from Paris, our results are more consistent with 
stability than with truth-telling. Reduced-form evidence on ranking behavior sug-
gests that some students omit the most selective schools from their list because 
of low admission probabilities. Provided that the model is correctly specified, our 
proposed tests reject truth-telling but not stability. Compared with our preferred esti-
mates based on stability (with or without imposing undominated strategies), assum-
ing truth-telling leads to an under-estimation of preferences for popular or small 
schools. Moreover, the stability-based estimators outperform the truth-telling-based 
estimator in predicting matching outcomes and student preferences.

39 Without information on how either side ranks the other, it becomes the classical two-sided matching, and 
additional assumptions are needed for identification and estimation (Chiappori and Salanié 2016).
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Our approaches are applicable to many school choice and college admissions 
systems around the world, as well as to other matching schemes such as teacher 
assignment in France and medical matching in Scotland.
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