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Beyond Truth-Telling: Preference Estimation with
Centralized School Choice and College Admissions’

By GABRIELLE FACK, JULIEN GRENET, AND YINGHUA HE*

We propose novel approaches to estimating student preferences
with data from matching mechanisms, especially the Gale-Shapley
deferred acceptance. Even if the mechanism is strategy-proof,
assuming that students truthfully rank schools in applications may be
restrictive. We show that when students are ranked strictly by some
ex ante known priority index (e.g., test scores), stability is a plausible
and weaker assumption, implying that every student is matched with
her favorite school/college among those she qualifies for ex post.
The methods are illustrated in simulations and applied to school
choice in Paris. We discuss when each approach is more appropriate
in real-life settings. (JEL D11, D12, D82, 123)

The past decade has seen the Gale-Shapley deferred acceptance (DA) becoming
the leading centralized mechanism for the placement of students to public schools
at every education level, and it is now used by many education systems around the
world, including Amsterdam, Boston, Hungary, New York, Paris, and Taiwan.

One of the main reasons for the growing popularity of DA is its strategy-proof-
ness (Abdulkadiroglu and S6nmez 2003). When applying for admission, students
are asked to submit rank-order lists (ROLs) of schools, and it is in their best interest
to rank schools truthfully. Students and their parents are thus released from strategic
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considerations. Consequently, DA also provides policymakers “with more credible
data about school choices, or parent ‘demand’ for particular schools,” as argued by
Thomas Payzant (former Boston Public Schools superintendent) (Abdulkadiroglu
et al. 2006, p. 25). Indeed, such rank-ordered data contain rich information on stu-
dent preferences over schools, and are increasingly used in the empirical literature.

Due to the strategy-proofness of DA, one may be tempted to assume that the
submitted ROLs reveal students’ true preferences over schools. However, this
truth-telling assumption can be restrictive in settings where students face only
limited uncertainty about their admission outcomes. One such environment is the
“strict-priority” setting in which schools rank students by some priority index, e.g.,
a test score, which is known to students when submitting their ROL. Consider a
student who likes a highly selective school but has a low test score. The student
may “skip the impossible” and choose not to apply to this school, as she rationally
expects a zero admission probability based on available information such as past
admission outcomes. This implies that not all students have strong incentives to rank
all schools truthfully in their ROLs.!

Based on theoretical investigations of student incentive and behavior, we aim to
provide empirical approaches to estimating student preferences in the strict-prior-
ity setting, which remains largely unexplored in the empirical literature on school
choice and college admissions. Our proposed approaches can potentially be applied
in many real-life systems, such as those in Table 1, including school choice in
Finland, Paris, and Turkey (panel A) as well as college admissions in Chile, Norway,
and Taiwan (panel B).

The paper’s first contribution is to clarify the implications of the truth-telling
assumption, which hypothesizes that students always report true preferences. Given
the flourishing empirical literature on the setting in which schools rank students
with post-application lotteries (Pathak and Shi 2014; Abdulkadiroglu, Agarwal,
and Pathak 2017), it is natural to extend those truth-telling-based approaches to the
strict-priority setting. Unfortunately, strategy-proofness implies that truth-telling is
a weakly dominant strategy, leaving open the issue of multiple equilibria because a
student may obtain the same outcome by opting for non-truth-telling strategies—as
shown in the “skipping the impossible” example above. Making truth-telling even
less likely, many applications of DA restrict the length of submittable ROLs, which
destroys strategy-proofness (Haeringer and Klijn 2009).

These arguments are formalized in a theoretical model. Deviating from the liter-
ature, we introduce an application cost that students incur when submitting ROLs,
and the model therefore has the common real-life applications of DA as special
cases. Conditional on both preferences and priorities being private information, we
show that for truth-telling to be the unique equilibrium, two conditions are needed:
no application cost and large uncertainty in admission outcomes. Neither is easily
satisfied in the strict-priority setting. Even without limits on the length of submit-
table ROLs, students may find it costly to rank a long list of schools. As students

'In contrast, students can be more uncertain about their admission outcomes if (i) schools use lotteries to break
ties ex post, or (ii) schools rank students by test scores that are ex ante unknown. In these cases, the aforementioned
student may choose to apply to the highly selective school, since uncertainty in priority indices implies that admis-
sion probabilities are rarely zero ex ante.
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TABLE 1—CENTRALIZED SCHOOL CHOICE AND COLLEGE ADMISSIONS BASED ON THE DEFERRED ACCEPTANCE

MECHANISM WITH STRICT PRIORITY INDICES: EXAMPLES

Education system

Assignment mechanism

Restrictions

Sources

Panel A. Secondary education

Boston (exam schools)®
Chicago (exam schools)*
NYC (exam schools)*
Finland

Ghana

Paris

Romania

Singapore

Turkey

Panel B. Higher education
Australia (Victoria)

Student-proposing DA
DA (serial dictatorship)®
DA (serial dictatorship)®

School-proposing DA
DA (serial dictatorship)®

School-proposing DA
DA (serial dictatorship)®
DA (serial dictatorship)®
DA (serial dictatorship)®

College-proposing DA

Unrestricted
Up to 6 choices
Unrestricted
Up to 5 choices
Up to 6 choices
Up to 8 choices
Unrestricted
Up to 6 choices
Up to 12 choices

Up to 12 choices

Abdulkadiroglu, Angrist, and Pathak (2014)
Pathak and Sénmez (2013)
Abdulkadiroglu, Angrist, and Pathak (2014)
Salonen (2014)

Ajayi (2013)

Hiller and Tercieux (2014)
Pop-Eleches and Urquiola (2013)
Teo, Sethuraman, and Tan (2001)

Akyol and Krishna (2017)

Artemov, Che, and He (2017)

Chile Student-proposing DA Up to 10 choices  Hastings, Neilson, and Zimmerman (2013)
Hungary Student-proposing DA Unrestricted” Bir6 (2011)

Ireland College-proposing DA Up to 10 choices Chen (2012)

Norway College-proposing DA Up to 15 choices  Kirkebgen, Leuven, and Mogstad (2016)
Spain Student-proposing DA Region-specific Mora and Romero-Medina (2001)
Taiwan College-proposing DA Up to 100 choices UAC (2014)

Tunisia College-proposing DA Up to 10 choices Luflade (2018)

Turkey College-proposing DA Up to 24 choices Saygin (2013)

Notes:

4For exam schools in Boston, selective enrollment high schools in Chicago, and specialized high schools in
NYC, strict priority indices are used in the admission. In contrast, admissions to other schools often do not
use strict priority indices.
In Hungary, students may apply for any number of programs but they are charged a fee (of approximately
ten euros) for every program after the third application.

®In all of the countries/cities listed in this table, students’ priorities are based on various combinations of
grades, entrance/exit exams, and other criteria (aptitude tests, interviews, etc.). When priority indices are not
school-specific, i.e., schools/universities rank students in the same way, DA, whether student-proposing or
school/college-proposing, is equivalent to serial dictatorship, under which students, in the order of their prior-
ity indices, are allowed to choose among the remaining schools or universities.

know their own priority indices, uncertainty about admission outcomes can also be
limited.

Going beyond truth-telling, the paper’s second contribution is to propose a
set of novel empirical approaches that are theoretically founded. We consider a
weaker assumption implied by truth-telling: stability, or justified-envy-freeness, of
the matching (Abdulkadiroglu and Soénmez 2003), meaning that every student is
matched with her favorite feasible school. A school is feasible for a student if its
ex post cutoff is below the student’s priority index. These cutoffs are well-defined
and often observable to the researcher: given the admission outcome, each school’s
cutoff is the lowest priority index of the students accepted there. Conditional on the
cutoffs, stability therefore defines a discrete choice model with personalized choice
sets, which is straightforward to analyze empirically.

We show that stability is a plausible assumption, as there exists an equilibrium
outcome that is asymptotically stable under certain conditions. When school capaci-
ties and the number of students increase proportionally while the number of schools
is fixed, the fraction of students not matched with their favorite feasible school tends
to zero. Although stability, as an ex post optimality condition, is not guaranteed
when students’ information is incomplete, we provide numerical evidence sug-
gesting that typical real-life markets are sufficiently large for stability to be almost
exactly satisfied.
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Based on the theoretical results, we propose a menu of approaches for preference
estimation. We start by formalizing the truth-telling assumption under which one
can apply rank-ordered models on submitted ROLs. In practice, students rarely rank
all available schools, and, therefore, the truth-telling assumption often imposes the
exogeneity of the length of a submitted ROL.?

Stability, but not asymptotic stability, leads to a discrete choice model with per-
sonalized choice sets, so the nonparametric identification in the discrete-choice
literature can be applied (e.g., Matzkin 1993), under the assumption that priority
indices and unobserved preference heterogeneity are independent conditional on
observables. An advantage of this approach is that it enables estimation with data on
admission outcomes only, although ignoring the information in ROLs entails some
efficiency loss in the estimation.

We also provide a solution if neither truth-telling nor stability is satisfied: as
long as students do not play dominated strategies, the submitted ROLs reveal true
partial preference orders of schools (Haeringer and Klijn 2009),® allowing us to
derive probability bounds for one school being preferred to another. The corre-
sponding moment inequalities can be used for inference (for a survey, see Tamer
2010). When stability is satisfied and identifies student preferences, these inequal-
ities provide over-identifying information that can improve estimation efficiency
(Moon and Schorfheide 2009).

To guide the choice between these identifying assumptions, we consider sev-
eral statistical tests, provided that the model is correctly specified and identified.
Truth-telling, leading to more restrictions than stability, can be tested against sta-
bility using a Hausman-type test (Hausman 1978) or a test of over-identifying
restrictions (Hansen 1982). Similarly, stability can be tested against undominated
strategies: if the outcome is unstable, the stability restrictions are incompatible with
the moment inequalities implied by undominated strategies, allowing us to use tests
such as Bugni, Canay, and Shi (2015).

Our third contribution is to evaluate the performance of each approach based
on simulated and real-life data. Having illustrated the main theoretical results with
Monte Carlo simulations, we apply the empirical approaches to school choice data
from Paris. There are 1,590 middle school students applying for admissions to 11
academic-track high schools in Paris’ southern district through a version of DA.
Schools rank applicants by their academic grades but give priority to low-income
students. The findings are more consistent with stability than truth-telling. Our pro-
posed statistical tests reject truth-telling in favor of stability but fail to reject stability
against undominated strategies. The tests, however, do not provide definitive proof
against truth-telling, since they are conditional on the model’s parametric assump-
tions. Additionally, we provide reduced-form evidence on students’ ranking behav-
ior suggesting that some students may have omitted the most selective schools from
their ROLs because of low admission probabilities. Moreover, the truth-telling-based

2Hence, we distinguish strict from weak truth-telling. The former assumes that every student ranks all schools
truthfully, while the latter requires students to rank their most-preferred schools truthfully and allows them to omit
the least-preferred schools.

3 An ROL is a true partial preference order if the listed schools are ranked according to true preferences.
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estimator is outperformed by the stability-based one when it comes to predicting
admission outcomes and student preferences.

To highlight the differences between the proposed approaches and their underly-
ing behavioral assumptions, we summarize the theoretical results and describe the
nesting structure of the assumptions in Section V. We also emphasize the key fea-
tures of school choice and college admissions in practice that can help researchers to
choose the most appropriate empirical approach to preference estimation.

Other Related Literature—Since the seminal work of Abdulkadiroglu and
Sénmez (2003), the theoretical study of student behavior and matching properties
under DA has been extensive, and large-market asymptotics are a common analytical
tool (see the survey by Kojima 2015). Closely related to our study is Azevedo and
Leshno (2016), who show the asymptotics of stable matchings. Our paper extends
theirs to outcomes of Bayesian Nash equilibrium, whereas they assume that students
are always truth-telling.

There is a burgeoning literature on preference estimation using centralized school
choice data. One strand of this literature uses data from settings in which researchers
argue that truth-telling behavior by students is plausible. For example, Hastings,
Kane, and Staiger (2008) use data from Charlotte-Mecklenburg public school dis-
trict, and Abdulkadiroglu, Agarwal, and Pathak (2017) study school choice data
from New York City, which is a “lottery” setting.* Both papers estimate student
preferences under the assumption that students truthfully report their preferences. In
the same spirit, assuming students report their true preferences in surveys, Budish
and Cantillon (2012) and De Haan et al. (2018) use reported student ordinal prefer-
ences to conduct analysis without estimating preferences.

The second strand of the empirical literature explicitly considers students’ strate-
gic behavior when estimating student preferences, especially if the mechanism is not
strategy-proof, e.g., the (Boston) immediate-acceptance mechanism (Calsamiglia,
Fu, and Giiell 2014; He 2015; Hwang 2016; Kapor, Neilson, and Zimmerman 2016;
Agarwal and Somaini 2018). In those settings, observed ROLs are sometimes con-
sidered as solutions to the maximization of students’ expected utility. Avoiding
some difficulties of this strategy-based approach, we instead propose methods that
rely on equilibrium outcome of the school choice game.’

As to the strict-priority setting, there are only a handful of empirical studies
(Ajayi 2013, Burgess et al. 2014, Akyol and Krishna 2017). Most of them use
ad-hoc solutions to the potential problem of students’ non-truth-telling behavior.®
Akyol and Krishna (2017) is an exception. Observing the outcome and the cutoffs

“#The authors perform robustness checks, e.g., only considering students’ top three submitted choices.

SWith assumptions on students’ beliefs, the strategy-based approach formulates a discrete choice problem
defined on the set of possible ROLs. It faces some challenges. (i) Degenerate admission probabilities can occur,
leading to multiple equilibria (He 2015). (ii) Application costs, especially those related to cognitive load, are often
unobservable, necessitating additional assumptions in the maximization of expected utility. (iii) A given ROL is
evaluated against a large number of alternative ROLs, sometimes creating computational burden (e.g., there exist
S1/(S — K)! lists ranking 1 < K < S schools).

6 Analyzing school choice in the United Kingdom, where proximity to schools breaks ties in determining admis-
sion to oversubscribed primary schools, Burgess et al. (2014) restrict each student’s set of schools to those in close
proximity to the student’s residence. In the context of admissions to secondary schools in Ghana, where exam
scores determine priority, Ajayi (2013) considers a subset of schools with similar selectivity.
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of high school admissions in Turkey, the authors estimate preferences based on the
assumption that every student is assigned to her favorite feasible school, which
amounts to assuming stability of the matching. We formalize and clarify this stabil-
ity assumption, along with other extensions. Although stability is a rather common
identifying assumption in the two-sided matching literature (see the surveys by Fox
2009, Chiappori and Salanié 2016),” it is new in empirical studies of school choice
and college admissions.

Lastly, estimation of student preferences with college admissions data is
under-explored, often due to the decentralized nature of the admission process.
Among centralized admissions, however, there are many applications of the DA
mechanism (see Table 1).% The specifics of the mechanism have led to numerous
studies on the causal effects of education (e.g., Hastings, Neilson, and Zimmerman
2015; Kirkebgen, Leuven, and Mogstad 2016), but few on preference estimation.
One exception is Kirkebgen (2012) who uses the truth-telling assumption while
excluding from a student’s choice set every college program at which the student
does not meet the formal requirements or is below its previous-year cutoff. Another
is Bucarey (2018) who applies our stability-based estimator to evaluate the crowd-
ing-out effects of free college tuition for low-income students in Chile.

Organization of the Paper.—Section I presents the model and the theoretical
foundation. Section II formalizes the empirical approaches and tests, which are
illustrated in Monte Carlo simulations in Section III. School choice in Paris and
the empirical results are shown in Section IV. Section V discusses practical con-
siderations for applying the approaches to data and outlines some extensions. We
conclude in Section VI.

I. The Model

To study student behavior, we extend the model in Azevedo and Leshno (2016).
An economy, as a school choice/college admissions problem, consists of a finite
set of schools/colleges, S = {1, .. .,S}, and a set of students. Student i has a
type 6; = (ue;) € © = [0,1]°x [0,1]%, where u; = (u;y,...,u;5) € [0,1]°
is a vector of von Neumann-Morgenstern (VNM) utilities of being assigned to
schools, and e¢; = (e,-,l, ... ,€i,s) € [0, l]s is a vector of priority indices at schools,
a student with a higher index having a higher priority at a school. To simplify nota-
tion, we assume that all schools and students are acceptable.” Students are matched
with schools through a centralized mechanism.

The continuum economy with a unit mass of students is denoted by £ = {G, q, C},
where G is an atomless probability measure over © representing the distribution
of student types; ¢ = (ql, .. .,qS) are masses of seats available at each school,
where g, € (0,1) for all s; lastly, C is an application cost, to be specified shortly.

7This literature usually considers decentralized matching markets; Agarwal (2015) is an exception.

8Some centralized college admissions do not use DA, e.g., Brazil (Carvalho, Magnac, and Xiong forthcoming).

9 Assuming acceptability of all schools justifies the normalization of u € [O, 1]5. Although we could extend the
preference domain to allow for negative values, this would create the possibility that students avoid being assigned
to schools with negative vNM utilities when maximizing expected utility.
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Probability measure G being atomless implies a measure-zero set of students with
indifference in either utilities or priority indices.

A random finite economy of size [ is denoted by FU) = {G(I),q(l), C}; FU is
constructed by independently drawing / students, indexed by i € {1, . ,1}, from
the distribution G and adjusting the numbers of seats to integers. Specifically,
G is the random empirical distribution of types for a sample of I students;'°
q(l) = [q . I] /1 is the supply of seats per student, where [x] is the vector of integers
nearest to x (with a rounding down in case of a tie). We use FO = { G(I),q(’), C
to denote a realization of F(/),

In the following, we start with F ") to specify the matching process and to analyze
student behavior, because empirical studies deal with finite economies; the exten-
sion to the continuum economy E is deferred to Section ID.

In a realization of the random economy, F (I), schools first announce their capaci-
ties, and every student then submits a rank-order list (ROL) of 1 < K; < Sschools,
denoted by L; = (l}, Y L ,l{(f), where /¥ € Sis i’s kth choice. Note that L,
also represents the set of schools being ranked in L;. We define >, such that s >, s’
if and only if school s is ranked above school s”in L;. The set of all possible ROLs
is £, which includes all ROLs ranking at least one school. Student i’s true ordinal
preference induced by her vNM utilities u; is denoted by r(ui) = (r}, .. ,rf) e L.

When submitting an ROL, a student incurs a cost C (\ L|), which depends on the
number of schools being ranked in L, | L|. Furthermore, C(|L]) € [0, 400 for all
L and is weakly increasing in | L|. To simplify students’ participation decisions, we
set C (1) = 0.

Such a cost function flexibly captures many common applications of school
choice mechanisms. If C ( |L |) = O for all L, we are in the traditional setting with-
out costs (e.g., Abdulkadiroglu and S6nmez 2003); if C(|L|) = oo for |L| greater
than a constant K, it corresponds to the constrained school choice where students
cannot rank more than K schools (e.g., Haeringer and Klijn 2009); when C(|L)
= maX{O, (L] - K )c}, students pay a constant marginal cost ¢ for each choice
beyond the first K choices, as in Hungarian college admissions (Biré 2011); lastly,
the monotonic cost function may simply reflect that it is cognitively burdensome to
rank too many schools.

The student-school match is then solved by a mechanism that takes into account
students’ ROLs and schools’ rankings over students. Our main analysis focuses on
the student-proposing Gale-Shapley deferred acceptance (DA), leaving the discus-
sion of other variants to Section VB. As a computerized algorithm, DA works as
follows.

Round 1.—Every student applies to her first choice. Each school rejects the low-
est-ranked students in excess of its capacity and temporarily holds the other students.
Generally, in

Round k.—Every student who is rejected in Round (k — 1) applies to the next
choice on her list. Each school, pooling together new applicants and those it holds

19For a realized economy with realized student types (6, .... 0,), the realized empirical distribution G is

defined as G<')(0) = %Z{:, 1(6; < 0),V0 € R, where 1(-) is an indicator function.
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from Round (k — 1), rejects the lowest-ranked students in excess of its capacity.
Those who are not rejected are temporarily held by the schools.

The process terminates after any Round k& when no rejections are issued. Each
school is then matched with the students it is currently holding.

A. Information Structure and Decision-Making

In a realization of the finite economy, F (1), given its construction, every student’s
preferences and priority indices are private information, and are i.i.d. draws from G,
which is common knowledge (but G(l), the realization of G ), remains unknown).

We start by taking student i’s point of view. Conditional on others’ submitted
ROLSs and priority indices (L_;, e_;), as well as student i’s (L;, ¢;), her admission
outcome is deterministic, given the algorithm. Specifically, i’s admission outcome
at school s is:

aS(Li, e;L_,, €7i>

_ l(iis rejected by £}, .. .,I¥ and accepted by I = s|L;, e,-;L,,-,e,i) ifs € L
o O if s g Li’

where 1( ‘| Ly e;L_,, e,,-) is an indicator function. Moreover, due to the centralized
mechanism, a student can receive at most one offer, so Y 5_, aS(L,-, esL_;, e_,-) =0
or 1.

Of course, L_;and e_; are unknown to i at the time of submitting her ROL, so i takes
into account the uncertainty when choosing an action. A pure strategyiso : © — L.
Given o, the admission probabilities are [ay(o(6;),e;0 (0_;),e_;)dG(0_,)
for all i and s, where o (0 ;) = {0(9]-) }j - We consider a (type-)symmetric equi-
librium o in pure strategies such that o™ solves the following maximization prob-
lem for every 6!

(1) %) € argmax{S;Su,-,sfas(g(ei),eﬁg*i(9i),ei) dG(0_;) — C(‘U(aiﬂ)}-

a(ﬂ,»)eﬁ

The existence of pure-strategy Bayesian Nash equilibrium can be established by
applying Theorem 4 (Purification Theorem) in Milgrom and Weber (1985), although
there can be multiple equilibria. For ease of exposition, the following analysis
focuses on pure-strategy equilibrium. We note that while economy F () is random, a
strategy o is “‘deterministic” in the sense that it only depends on (G, I, C) but not on
the realization of FU.

We define a realized matching /i as a mapping from © to S U {@} such that
(i) i(#;) = sif student i is matched with s; (ii) /i(#;) = @ if student i is unmatched;
and (iii) 1~ '(s) is the set of students matched with s, while | i~ (s)| is the number
of students matched with s and does not exceed s’s capacity.

"1t is innocuous to focus on symmetric equilibrium, because it does not restrict the strategy of any student
given that they all have different priority indices (almost surely).
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The terms £ and & together lead to an ROL profile as inputs into the DA mech-
anism and result in a matching, fi(30 ), which is uniquely determined by the mech-
anism. Note that y(r( ;) is a random matching because F () is a random economy.

Moreover, the (random) cutoff of school s in random matching H(F0,5) is defined
as:

min{e;, | u(ro,)(0) = s} I IR0 ()] = a5
0 if |1 (70,0 (s)| < V"

Py(p(rq)) = {
That is, PS([/L(F(I)’O-)) is zero if s does not meet its capacity; otherwise, it is the low-
est priority index among all accepted students. The vector of cutoffs is denoted by
P( o F(IJ’U)), and its realization in FU) is P( u(ﬁ(l),(,)).

B. Truth-Telling Behavior in Equilibrium

To assess the plausibility of the truth-telling assumption in empirical studies, we
begin by investigating students’ truth-telling behavior in equilibrium. A clarification
of the concepts is in order. Student i is weakly truth-telling (WTT, hereafter) if
J(Gi) = <rl~1,r,2, - ,r,K") for K; < S. That is, i ranks her K; most-preferred schools
by her true preference order but may not rank all schools. If a WTT strategy always
truthfully ranks all S schools and thus o(6;) = r(u;), i is strictly truth-telling (STT,
hereafter).!?

We emphasize the difference between WTT and STT because strategy-proof-
ness concerns the latter. However, WTT is often considered in empirical studies
because in practice, students rarely rank all available schools, as we shall revisit in
Section IIB.

It is known that DA is strategy-proof when there is no application cost (Dubins
and Freedman 1981, Roth 1982). That is, when C(|L]) = OforallL € L,STTis
a weakly dominant strategy for all students. However, strategy-proofness, or weak
dominance of STT, leaves open the possibility of multiple equilibria. Even when all
others play STT, there may exist multiple best responses for a given student.'? It is
therefore useful to clarify the conditions under which STT is the unique equilibrium.
The following example highlights two sources of equilibrium multiplicity in a com-
plete-information environment.

EXAMPLE 1 (Multiple Equilibria under DA without Application Cost): Consider
a finite economy that has two students (iy,i,), three one-seat schools (sy,s,,53), but
no application cost. As common knowledge, all schools rank i, above i,; student
i;’s preference order is (sl,sz,s3), but iy’s is (sz,sl,s3). There are many equilibria in
addition to STT, stemming from two sources: irrelevance at the bottom and skip-
ping the impossible. Both arise when some admission probabilities are zero.

12Related to the distinction between STT and WTT, the literature on lab experiments on school choice some-
times also defines truth-telling as being different from STT. For example, Chen and Sonmez (2006) call a student
truth-telling under the DA mechanism if she ranks her most-preferred schools up to her district school, at which she
has guaranteed admission.

13 Unfortunately, it is impossible to make STT a strictly dominant strategy, because it would require STT to be
strictly better than all other strategies against all possible action profiles of other students.
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For iy, the bottom part of her submitted ROL is irrelevant as long as s, is top-
ranked. In fact, any ROL (sy,s',s"), for s',s" € {sz,s3} U {@}, is weakly dominant
for iy, as she is always accepted by s,.

For student i,, “skipping the impossible” comes into play. She can omit s| from
her submitted ROL without affecting her outcome, because s is always taken by i, in
any equilibrium. Making things worse, how she ranks s, is payoff-irrelevant.

One may conjecture that STT might survive as the unique equilibrium when
information is incomplete. Indeed, specifying the incompleteness of informa-
tion, the following proposition provides sufficient conditions and a necessary
condition.

PROPOSITION 1:

(i) Sufficiency: STT is the unique Bayesian Nash equilibrium under DA if (i)
there is no application cost: C(|L|) = 0,YL € L; and (ii) the joint distri-
bution of preferences and priorities G has full support.

(ii) Necessity: For any nonzero application cost, there always exist student types
for whom STT is not an equilibrium strategy.

All proofs can be found in online Appendix A. The no-cost condition is violated
if students cannot rank as many schools as they wish, or if they suffer a cognitive
burden when ranking too many schools. It should also be emphasized that the cost
need not be large to make students deviate from STT, because the marginal benefit
of ranking an additional school can be close to zero. When a student considers her
admission probability at her kth choice, she may face a close-to-one probability
of being accepted by at least one of her earlier choices. This is in the same spirit
as the “irrelevance at the bottom” in Example 1. When the marginal application
cost exceeds marginal benefits, STT is no longer a best response, which implies the
necessity of the zero-cost condition.

The full-support condition, also considered in Chen and Pereyra (2017), makes
all admission probabilities non-zero by introducing uncertainties, and therefore any
deviation from STT is costly. This is more plausible when the priority index is deter-
mined by an ex post lottery and when the information on others’ preferences over
schools is less precise.

REMARK 1: Proposition 1 specifies when students have incentives to rank all
schools truthfully, but this result does not extend to WTT. Although it is sometimes
used for identification and estimation, the WI'T assumption is not supported as an
equilibrium.'*

We may take one step back and focus on whether students have incentives to order
the ranked schools truthfully. We call L;, |L;| < S, a partial preference order of

4The equilibrium condition, equation (1), implies that a student may “skip the impossible” by omitting her
most-preferred school if the admission probability is close to zero, thus violating WTT.
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schools if L; respects the true preference order among those ranked in L;. That is, L;
ranks s above s, only if u;; > u; ; when s is not ranked in L;, there is no informa-
tion on how s is ranked relative to any other school according to i’s true preferences.

PROPOSITION 2: Under DA with application cost, if students do not play weakly
dominated strategies, a student’s submitted ROL is a partial order of her true
preferences.

Proposition 2 can be considered as a corollary of Proposition 4.2 in
Haeringer and Klijn (2009), and thus we omit its proof. The key is that a
non-partial-preference-order ROL is weakly dominated by the ROL that ranks
the same schools according to their true preference order. This result is useful for
empirical analysis, as it specifies students’ revealed preferences. Section IIE for-
mulates how to use this information in estimation.

C. Admission Outcome: Stability

The above results speak to the plausibility of the truth-telling assumptions, WTT
and STT, in empirical studies. In particular, WTT is not theoretically supported as
a weakly dominant strategy even in DA with no application cost; whenever there is
any form of application cost, STT is no longer a dominant strategy.

Taking a different perspective, we note that all equilibria lead to the same match-
ing in Example 1. This motivates us to investigate the properties of equilibrium
outcomes of DA. Intuitively, the degree of multiplicity in equilibrium outcomes
must be smaller than that in equilibrium strategies. In the two-sided matching
literature, stability is the leading concept for equilibrium outcome and the main
identifying assumption (Chiappori and Salanié¢ 2016). We investigate whether
stability can also be satisfied in all equilibrium outcomes of school choice and
college admissions.

Unfortunately, we shall demonstrate that having stability satisfied in all equi-
librium outcomes requires similar conditions to those for STT being the unique
equilibrium. In fact, whenever there are application costs, stability is not guaranteed
in equilibrium either. This is because Bayesian Nash equilibrium implies ex ante
optimality of student strategy, while stability requires ex post optimality.

As we study a matching’s ex post properties, let us consider [i, a realization of the
random matching. Say (i, s) forms a blocking pair if (i) i prefers s over her matched
school fu(6;) while s has an empty seat (| 4~ '(s)| < I x gl!)), or if (ii) i prefers s
over [i(6;) while s has no empty seats (| 2~ '(s)| = Ix qgl)) but i’s priority index
is higher than its cutoff, ¢; > min{j:ﬁ(gj)zs}{ej,s}. Matching /i is stable if there is
no blocking pair. Stability is also known as elimination of justified envy in school
choice (Abdulkadiroglu and S6nmez 2003).

Given a realized matching /i, school s is ex post feasible for i if i’s priority index
at s is above s’s cutoff, e;, > P(f1). Let S(e,-, P(,&)) be the set of feasible schools
for i.

With these definitions, combining Lemmata 1 and 2 in Balinski and Sonmez
(1999), we reach an important result: a realized matching [i is stable if and
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only if every student is matched with her favorite feasible school (i.e., ﬁc(&i)
= ArgmaXese,p() Uis: Vi). As the cutoffs of a matching are observed ex post by the
researcher, we can define every student’s set of feasible schools; stability therefore
implies a discrete choice model with observable, personalized choice sets. We fur-
ther formalize this in Section IIC.

We are interested in stability being satisfied in an outcome of dominant-strategy
equilibrium, which would free us from specifying the information structure and
from imposing additional equilibrium conditions. The following lemma provides
necessary and sufficient conditions, which are similar to those for STT to be the
unique equilibrium.

LEMMA 1: Under DA, a Bayesian Nash equilibrium in dominant strategy always
leads to a stable matching if and only ifC(‘ L ‘) = Oforall L. It is the unique equi-
librium outcome if additionally G has full support.

The “if and only if” statement of the lemma is implied by strategy-proofness of DA
without application cost, while the uniqueness statement is a result of Proposition 1.

DA is known to produce a stable matching when students are STT (Gale and
Shapley 1962), but not when students are only WTT. The following results, clarify-
ing the relationship between WTT and stability, have implications for our empirical
approaches.

PROPOSITION 3: Suppose that every student is WI'T under DA, which may not be
an equilibrium. Given a realized matching,

(i) whenever a student is assigned, she is matched with her favorite feasible
school;

(ii) if everyone who has at least one feasible school is assigned, the matching is
stable.

The above results describe the nesting structure of the two assumptions, WTT
and stability, although they do not speak to the plausibility of either of them being
an equilibrium strategy /outcome. Specifically, WTT is more restrictive, as it implies
the no-blocking property among assigned students. We use these results to formu-
late statistical tests for the choice between WTT and stability in Section IID.

D. Asymptotic Stability in Bayesian Nash Equilibrium

So far, we have shown that neither truth-telling (STT and WTT) nor stability can
emerge in equilibrium without some potentially restrictive assumptions. Following
the literature on large markets, we study whether stability can be asymptotically
satisfied.

We now revisit the continuum economy, E, and additionally introduce a sequence
of random finite economies {F (’)} ren that are constructed from E as before.

The definitions of matching, DA, and stability can be naturally extended to con-
tinuum economies as in Abdulkadiroglu, Che, and Yasuda (2015) and Azevedo and
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Leshno (2016), which are discussed in online Appendix A.2.1. These definitions
are similar to their counterparts in finite economies. For example, a matching in
E when everyone adopts o is g, : © — S U {7}, which satisfies (i) 11(z,0)(6;)
= s when type 6; is matched with s and (ii) G( u(_El,U)(s)) < g,

It is known that, generically, there exists a unique stable matching in the con-
tinuum economy (Azevedo and Leshno 2016);'> we impose the conditions
for the uniqueness and denote this stable matching in E as ;> and the corre-
sponding cutoffs as P°°. To continue our exploration, we make the following
assumption.

ASSUMPTION 1: Every Bayesian Nash equilibrium of the continuum economy E
results in the unique stable matching, ;1.

A sufficient condition for Assumption 1 is C(Z) > 0 (i.e., it is costly to apply to
more than one school), and when C(2) = 0, a sufficient and necessary condition
is Ergin acyclicity (Proposition A3 in online Appendix A.2.5). An economy is acy-
clical if no student can block a potential settlement between any other two students
without affecting her own match (Ergin 2002). Online Appendix A.2.5 gives its for-
mal definition in continuum economies. This condition is satisfied when all schools
rank every student by a single priority index.

Because we are interested in equilibrium outcomes, we augment the sequence of
economies with equilibrium strategies, {F U a(’)} 1ens Where oV isa pure-strategy
Bayesian Nash equilibrium in F () and satisfies the following assumption.

ASSUMPTION 2: There exists o™ such that lim,_,ocG({Gi € @|0'(1)(‘95)

= o™(6)}) = 1.

A sufficient condition for Assumption 2 is C(2) > 0 (Lemma A5 in online
Appendix A.2.4).'® Although F ?) is a random economy, ol is fixed given the
size of the economy. In other words, o) remains as an equilibrium strategy in any
realization of FU. Assumption 2 regulates how the equilibria evolve with econ-
omy size, which is necessary as there are multiple equilibria. By this assumption, in
the sequence ol 1ens fewer and fewer student types need to adjust their optimal

15 A sufficient condition for the uniqueness of stable outcome in E is that G has full support. Even when G does
not have full support, the uniqueness can be achieved when Y 5_; g, < 1.Let 5" be the STT strategy. We define the
demand for each school in (E,o5™T) as a function of cutoffs, D,(P|E,o5™") = [ 1(u, = maxyes(e,p) Mi,s') dG(6;).

Let D(P |E, O'STT) = [DS(P |E, a)] e Note that E admits a unique stable matching if the image under D(P |E, O'STT)

of the closure of the set N

{P S (O, l)S : D(P |E, USTT) is not continuously differentiable at P}

has Lebesgue measure 0.

16 Allowing C| (2) = 0, online Appendix A.2.4 investigates the properties of equilibrium strategies. The results,
Lemmata A2—A4, imply strong restrictions on the sequence of Bayesian Nash equilibria in the direction of satis-
fying Assumption 2. Specifically, it is shown that a strategy that does not lead to > in the continuum economy
cannot survive as an equilibrium when / — oo. This immediately implies that in sufficiently large economies,
every student includes in her ROL the school prescribed by 1*°. Moreover, students do not pay a cost to rank more
schools in large economies.



VOL. 109 NO. 4 FACK ET AL.: BEYOND TRUTH-TELLING 1499

actions when the economy enlarges. Moreover, given Assumption 1, the limit strat-
egy 0> leads to 1™ in E (Proposition A1 in online Appendix A.2.2).

Asymptotic Stability: Definition and Results.—Let the random matching g (0 ,()
be ,u(’), and the associated random cutoffs P ( u(’)) be PU). The following definition
formalizes the concept of asymptotic stability.!”

DEFINITION 1: A sequence of random matchings, { ,u(l)} IeN» associated with the

sequence of random economies and equilibrium strategies, {F (), (1) } eNs IS asymp-
totically stable if the fraction of students who are matched with their favorite fea-
sible school in a random finite economy (F (1>) converges to 1, almost surely, or,
equivalently,

Ilim G" 0; € @|u(1)(9,~) = argmax u; = 1, almost surely.
e SGS(e,»,PU))

We are now ready to introduce our main result.

PROPOSITION 4: In the sequence of random economies and equilibrium strate-
gies, {F(I>,U(I)}1€N, if Assumptions I and 2 are satisfied, then

(i) the random cutoffs converge to those of the stable matching in the continuum
economy: lim_, P = P, almost surely;

(ii) the sequence of random matchings, { M(I)} 1ens IS asymptotically stable.

Part (ii) implies that the fraction of students who are matched with their favorite
feasible school, or not in any blocking pair, converges to one almost surely, as the
economy grows. This provides justifications for the stability assumption in large
markets.'®

Probability of Being in a Blocking Pair for a Given Student—To assess if
a matching is likely to be stable, we investigate how the probability that a given
student is in a blocking pair changes with economy attributes. The following
proposition shows how economy size, application cost, and other factors play
arole.

17We define the probability space, (9,7, P). Specifically, @ = []en O/, and an element in § is denoted by w
= (wy,wy, .. ) where w; is a possible realization of student types in the random economy F' (). Further, Fis a Borel
o-algebra of €2, and P is a probability measure from F to [O, 1].

18 This result, however, does not mean that the probability of a matching being stable converges to one as the
market grows. As long as there is at least one blocking pair, a matching is not stable.
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PROPOSITION 5: Suppose student i exists in all economies in the sequence

{F (1)} 1eny Which is associated with a sequence of Bayesian Nash equilibria in pure

strategies {0'(1)} JEN-

(i) Let 0(1)(9,-) = LU); then LY is a partial order of i’s ordinal preferences. If ex
post i forms a blocking pair with s, s must not be included in L(I), s & LY.
The probability that i is in a blocking pair with any school in the random
matching u(l), denoted by B,-(I) = Pr(Els € Siuis > uj, i), and ey >
Pgl) , satisfies:

(Ll + 1) - (),

maXge s\ () Ui >

(ii) B is bounded above: B{Y) < |S\LV)|
(iii) if {U(I)} IeN Satisfies Assumptions 1 and 2, Bi(l) converges to 0 almost surely.

Because in equilibrium student i reports a partial order of her true preferences, she
can only form a blocking pair with a school that she did not rank (part i). Therefore,
the probability that i is in a blocking pair decreases whenever it is less costly to
rank more schools (part ii). Together, Proposition 5 shows that stability is more
plausible when the cost of ranking more schools is lower and/or the economy is
large. Moreover, in the case of constrained/truncated DA where there is a limit on
the length of ROLs, the higher the number of schools that can be ranked, the more
likely stability is to be satisfied.

II. Empirical Approaches

Building on the theoretical results, we formalize the estimation of student pref-
erences under different sets of assumptions and propose a series of tests to guide
the selection of the appropriate approach. To be more concrete, we consider a
logit-type random utility model, although our approaches can be extended to other
specifications.

This section focuses on a random finite economy F () in which I students compete
for admissions to S schools. Each school has a positive capacity, and students are
assigned through a version of the student-proposing DA. Besides submitted ROLs
and admission outcomes, the researcher observes priority indices, student charac-
teristics, and school attributes. Given these observables, we discuss the probability
of a student submitting a given ROL or being matched with a given school from the
researcher’s perspective.

A. Model Setting and Revealed Preferences

As is traditional and more convenient in empirical analysis, we let the student
utility functions take any value on the real line.!® With some abuse, we still use the

191n the theoretical discussion, the utility functions are restricted to be in [O, 1]. One can use the inverse of the
standard normal distribution, ®~!, to transform them to be on the real line. Note that the expected utility theory
cannot be applied to the transformed utility functions; indeed, we do not.
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Data Revealed preferences
i DSy eeey S,
stud téva”_abl_? S_CZ?Ols ! 045 v WTT: Uy, > Ui > Ui, fOr s =, s,
uaent ;'s priority Indices: ¢;; = V.0, Vs§ .
priority " B Stability: #i,s, > Uis,

Submitted ROL of i: (51, 53) )
o . Undominated
Admission outcome of i: 53 strategies: u; > u;y,
Cutoffs: P = (0.8,0.9,0.4,0.2)

FIGURE 1. REVEALED PREFERENCES UNDER DIFFERENT ASSUMPTIONS: AN EXAMPLE

same notation for utility functions. To facilitate the analysis, student i’s utility from
attending schools s is parameterized:

(2) Ups = Vi,s +e€y = V(Zi,s9 ﬁ) + €

where V( ., ) is a known function, taking as arguments Z; ;, a vector of observable
student-school characteristics, and (3, a vector of unknown parameters to be esti-
mated; ¢;  is the unobservable student heterogeneity.

We further define Z; = {Zi,x}f:l, and¢; = {ei,s}le. Itis assumed thate; L Z; and
that ¢;  is i.i.d. over i and s with the type-I extreme value (Gumbel) distribution. Such
a formulation rules out outside options, although this assumption can be relaxed.

We also assume that a student’s preferences are not affected by other students’
school assignments (no peer effects) and that statistics associated with the realized
matching, such as cutoffs, do not enter the utility function. This is consistent with
the theoretical model in Section I and implies that Z; does not include variables that
depend on the ex post observed matching.

The estimation relies on revealed student preferences in the data, and what infor-
mation is revealed crucially depends on the imposed assumption—WTT, stability, or
undominated stategies. Figure 1 shows an example. WTT takes the submitted rank-
ing as truthful and assumes unranked schools being the least preferable. Stability
dictates that a student is matched with her favorable feasible school. Lastly, a sub-
mitted ROL reveals the student’s partial preference order if no one plays dominated
strategies. We now detail how to use this information in the estimation.

B. Truth-Telling

In the literature on school choice with lotteries, some empirical approaches
are based on the truth-telling assumption (Hastings, Kane, and Staiger 2008;
Abdulkadiroglu, Agarwal, and Pathak 2017). As similar mechanisms are commonly
used in our strict-priority setting, we extend these approaches to our setting and
clarify the assumptions embedded within.

We start with WTT instead of STT because in practice students in school choice
and college admissions rarely rank the same number of choices (Abdulkadiroglu,
Agarwal, and Pathak 2017; He 2015; Artemov, Che, and He 2017). Under the
assumption of truth-telling without outside option, this can only be consistent with
WTT but not STT, because STT requires everyone to rank all schools. We discuss
STT with outside options in online Appendix A.4.
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For notational convenience, we make it explicit that student i’s type 6, is described
by (upe;). Let o : RS x [0,1]° — L be a WTT pure strategy.® More precisely,
the WTT assumption amounts to the following.

ASSUMPTION 3 (Characterization of Weak Truth-Telling):

WTTI. Suppose aw(ui, ei) =L = (ll, ... ,lK"). Here, L ranks i’s top K; preferred
schools according to her true preferences: u;jp > --+ > u;x > u;y for
all s’ not ranked in L;

WTT2. The number of schools ranked by a student is exogenous:
w, L |oM(ue)|, Vi

We are interested in the choice probability of L conditional on observables, where
the uncertainty from the researcher’s perspective is due to the utility shocks (;).
Note that

Pr(O'W(u,-, el'> =L ’ Zl’ ﬂ)
= Pr(crw(ui,ei) = L|Z; 3| 0c™(upe;)| = K) X Pr(\aw(ui,ei)\ — K]Zi;ﬁ),
which is calculated by integrating out the unobservables (¢;) in u;. Assumption WTT2

implies that Pr( lo¥(ue;)] = K|Z; ﬁ) does not depend on preferences. Thus, in the
estimation, it suffices to focus on the following conditional probability:

Pr(UW(ui,ei) = L| Zi;ﬁ;‘aw(uivei)’ = K)

= Pr(lxli’ll > e > Mi,lK > Mi’sf Vs' c S\L ‘ Zi;ﬁ;’O'WO/li,ei)‘ = K)

exp( Vi
e )
seL Zg}é“ eXp(Vi,s’)

where s’ #; s indicates that s’ is not ranked before s in L, including s itself and
those excluded from L. This rank-ordered (or “exploded”) logit model can be seen
as a series of conditional logits: one for the top-ranked school (I') being the most
preferred, another for the second-ranked school (I%) being preferred to all schools
except !, and so on.

Let |o"| be the vector of lengths of all submitted ROLs. The model can be esti-
mated by maximum likelihood estimation (MLE) with the log-likelihood function:

L1 Z") =Y ¥ ve-Y % (X o))

i=1sea™(ue;) i=1sea™(ue; 5" oM uye)S

20Because the preference space is transformed from [O, 1]5 to RS, a strategy is now defined on the transformed
type space. Moreover, it will be clear that " does not depend on priority indices, e;.
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The estimator is denoted by BTT Alternatively, the generalized method of moment
(GMM) can be employed, for which the moment conditions are derived as in
Section IIE. WTT implies additional restrictions beyond standard discrete choice
models (see details in Section IID). Thus, the discrete-choice literature (e.g.,
Matzkin 1993) implies that student preferences are nonparametrically identified
(also see Agarwal and Somaini 2018).

C. Stability

We now assume that the matching is stable, which is different from, but in large
samples justified by, asymptotic stability. The following analysis abstracts away
from the matching mechanism and ignores how stability is obtained. We formulate a
stable matching as the outcome of a discrete choice model and clarify the conditions
that are needed for identification and estimation.

Consider the matching p and the associated cutoffs P(u), which are random vari-
ables determined by the unobserved utility shocks (€). Matching p is the outcome
of a discrete choice model with personalized choice set, S(e,-,P(;L)> (i.e., the set
of i’s feasible schools). The probability that i is matched with s, or chooses s in

S(ei,P(,u)), is

Pr(s = N(”i,ei) = 2;%“;?7;)“i,s‘Zi,ei,S@i,P(M));ﬁ)-
seSle, P

To proceed, we impose the following assumptions.
ASSUMPTION 4 (Exogeneity of Priority Index and Feasible Set):

EXOIl. For all i, e; 1 €;|Z;: Conditional on observables Z;, student preferences
and priority indices are independent.

EXO?2. Foralliands,l(ei,s < PS(,u)) 1 €|z, 0rS(e,~,P(,u)) 1 €| Z;: Conditional
on observables Z;, a student’s preferences and her set of feasible schools
are independent.

Assumption EXO1 implies that, when priority indices (e;) are determined
by test scores, no student intentionally under-performs or over-performs in
exams.

Assumption EXO2 deserves some discussion. Most importantly, it does not
require that cutoffs P(y) are conditionally independent of preferences shocks ;.
Instead, it only assumes that the personalized choice set, S(ei,P(u)), is exogenously
given, which is necessary for identification in a discrete choice model with personal-
ized choice sets. For instance, if instead S(ei, P( ,u)) is endogenous and only includes
school s when s is i’s most preferred school, we lose the identification of i’s prefer-
ences, because there is no variation in i’s choice whenever s is in S(el», P(u)). Online
Appendix A.5 details such an example, along with a discussion and an example in
which the assumption is satisfied.
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One may argue that, in a finite market, a student can affect some cutoffs by apply-
ing to a school or not, and thus can change the feasibility of some schools. Another
concern is that given student preferences, there can be multiple stable matchings. If
a single student can select among the stable matchings, Assumption EXO2 is also
violated.

These concerns diminish as the economy grows large, because the potential
influence on cutoffs by any student decreases and there tends to be a unique sta-
ble matching. For instance, part (i) of Proposition 4 implies that a single student’s
impact on cutoffs diminishes to 0, almost surely. Moreover, even in small mar-
kets, Assumption EXO2 can be satisfied, because the assumption does not require
P(p) L €]Z. An example is when every school ranks students in the same way, or
e, = e;forall sandi?'

Given the parametric assumptions on utility functions, the corresponding (condi-
tional) log-likelihood function is

(3) lnLST(ﬁ]Z,e,S(ei,P(,u))) = ii Vis X 1<,u(u,-,e,-) = s)

i=1s=1

1 s'€S(enP(n))

- :i ln< 3 exp(v,.,s,)).

This estimator is denoted by BST. Similarly, GMM can be applied, as in Section I1E.

Identification.—The above discussion transforms the matching game into a discrete
choice model.?? Therefore, the nonparametric identification arguments for discrete
choice models still apply (Matzkin 1993). An important feature in the stability-based
estimation is that students face personalized choice sets. As long as the choice sets are
determined exogenously (Assumption EX02), the identification goes through.

Another concern is that a student’s priority index may enter her utility functions
directly, when, for example, priority indices are determined by test score or stu-
dent ability. In this case, the stability assumption does not reveal information about
low-scoring students’ preferences over popular schools, because such schools are
often infeasible to them. This may lead to a failure of identifying how test scores
determine student preferences.

2Mn this case, DA is equivalent to serial dictatorship in which students choose among the remaining schools
one by one in the order determined by their priority indices. There is a unique stable matching for each realization
of student types. Moreover, the set of feasible schools for student i is determined by the students with higher prior-
ity indices. Because preferences are independent across students by assumption, we have S(e,-,P(u)) L €|Z;, or
(e, < Py(n)) L €lZforalls.

It should be noted that P(p) J/ €;|Z; even in this case. For example, when i chooses s among the feasible
schools, the cutoff of s will possibly increase; similarly, i may decrease s’s cutoff by choosing a different school.
However, we always have 1(e;; < PA(}I,)) L €| Z;, because s will remain feasible to i either way.

22 A simplification is that we ignore the restrictions implied by the cutoffs P(u), which may lead to efficiency
loss in estimation. That is, even when the sets of feasible schools are exogenous to every single student’s prefer-
ences, P(p) is endogenously determined by the model’s parameters. However, the additional information in these
restrictions may be negligible, since we use the information on the whole matching already. An earlier version of the
paper relaxes this assumption and uses the restrictions implied by the cutoffs. Our estimation results from simulated
data and school choice data from Paris show that using the cutoff restrictions makes a negligible difference in the
estimation results.
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This problem is mitigated if we have another measure of student ability, as in
our empirical exercise. We assume that conditional on student ability, priority indi-
ces do not determine preferences and only affect school feasibility. If, additionally,
priority indices have full support (i.e., can take any possible value) at each given
level of student ability, we can observe some low-ability students having all schools
feasible. This restores nonparametric identification in discrete choice models as in
Matzkin (1993).

Relative to WTT, the stability assumption uses unambiguously less information
from the data (see Figure 1 for an example). WTT utilizes all information implied
by the submitted ROLs, while stability only imposes restrictions on admission —
outcome. One may expect that the stability-based approach leads to a loss of infor-
mation; in particular, we may lose some precision in estimating the substitution
patterns when we allow for more flexible random utility models (Berry, Levinsohn,
and Pakes 2004; Abdulkadiroglu, Agarwal, and Pathak 2017). Indeed, as we shall
see in our Monte Carlo simulations and the analysis of the school choice data from
Paris, there is a clear bias-variance tradeoff: stability tolerates non-truth-telling
behavior at the cost of yielding less precise estimates.

Estimation with Asymptotic Stability.—When taking the above results to
real-life data, one may be concerned that the matching may not be exactly stable.
Indeed, our theoretical results only prove asymptotic stability. This raises the
question of whether the estimator is still consistent. In online Appendix A.3, we
show that the MLE with asymptotic stability is consistent (Proposition A4). In
a finite economy, the stability-based estimation is incorrectly specified, because
some students may not be assigned to their favorite feasible school and their
revealed preferences are mis-classified when stability is imposed. However, the
fraction of students who are not assigned to their favorite feasible school con-
verges to zero at an exponential rate (part iii of Proposition A2), implying that the
mis-classification in revealed preferences vanishes with economy size. By veri-
fying the conditions in Theorem 2.1 of Newey and McFadden (1994), we show
that the stability-based estimator is consistent even when the matching is only
asymptotically stable.

D. Testing Truth-Telling against Stability

Having two distinct estimators, Brr and fi‘ST, makes it possible to test the
truth-telling assumption against stability. Maintaining the assumption of identi-
fication given stability, we shall see shortly that WTT provides over-identifying
restrictions.

Before we present the tests, a few caveats are in order. First, one should check
that the conditions for identification (for example, those in Matzkin 1993) are sat-
isfied before conducting the tests. Second, because the tests are essentially about
joint restrictions on the parametric assumptions and the behavioral assumptions, one
should be aware of the consequence of model misspecification. Rejecting truth-tell-
ing in favor of stability may not provide definitive proof against truth-telling, since
the proposed tests are conditional on the model’s parametric assumptions. In light
of these limitations, it is often useful to provide additional empirical results, such as
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reduced-form results on student behavior (see, e.g., Section IVB) and goodness of
fit of the estimates (see, e.g., Section IVD).

Over-ldentifying Restrictions.—As summarized in Proposition 3, if every
student is WTT and is assigned to a school, the matching is stable. Stability,
however, does not imply that students are WTT and is therefore a less restrictive
assumption.

To see the additional restrictions from WTT, let us consider student i who submits
a K-choice list L and is matched with school s. Therefore, s must be ranked in L.
WTT implies the following conditions on the choice probability:

:K)

= Pr<u,-’ll > o > ux > u Vs € S\L|Z; 5

O'W(I/ll', ei)

(4) Pr(aw(ui,e,-) =L ‘ Z; 3,

‘O'W(ui, ei)

= K;s = argmax u;;
s€S(enP(11))

X Pr(s = w(u,e) = argmax u;y | Zi;ﬁ;S(ei,P(u)))
s€8(e;.P(11))

This equality uses the fact that the event, (”i,l‘ > e > upk > U Vs E S\L),
implies (§ = argmax,c SlenP( M))um) but not the reverse.?® This is because i’s feasible
schools are either ranked below s in L or are omitted from L; in either case, WTT
requires that s is preferred to any other feasible school. Therefore, the first condi-
tional probability on the right-hand side of the equality cannot always be one. As the
restrictions implied by stability are just

Pr(s = p(ue;) = zg%n%) ui,s\Zi;ﬁ;S(ei,P(u))),
seS(e;,P(p

the additional restrictions from WTT are summarized in the first term. When the
model is identified under stability, equation (4) summarizes the over-identifying
restrictions.

Hausman Test—Our estimator BTT uses all the restrictions implied by WTT.
Therefore, under the null hypothesis that students are WTT, both estimators (77
and [gr are consistent but only 377 is asymptotically efficient. Under the alternative
that the matching is stable but not all students are WTT, only (357 is consistent.

23We also make use of the exogeneity of the set of feasible schools (Assumption EXO2) and the exogeneity of
the length of submitted ROL (Assumption WTT2). Therefore,

Pr(s = u(ul-,e,-) = argmax u;, | Zi;ﬁ;S(ei,P(u)) = Pr(s = argmax u;, | Z:3:| 0" (uz e)| = K.
sES(e,,P(u)) AES(e,,P(;L))
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In this setting, the general specification test developed by Hausman (1978) can be
applied by computing the following test statistic:

Ty = (BST - BTT),(VST - VTT) 71(/@ST - BTT),

where (VST VTT) 1 is the inverse of the difference between the asymptotlc cova-
riance matrices of (3¢ and BTT 24 Under the null hypothesis, Ty ~ X (dﬁ) where
dj is the dimension of 3. If the model is correctly specified and the matching is
stable, the rejection of the null hypothesis implies that WTT is violated in the data.

Testing Over-Identifying Restrictions—The above Hausman test requires that
we have a consistent and efficient estimator, ﬁn When relying on MLE or GMM,
this calls for strong parametric assumptions. An alternative is to construct a test for
over-identifying restrictions (Hansen 1982), which is made feasible because of the
nesting structure of WTT and stability due to Proposition 3. Instead of requiring B
to be asymptotically efficient, the test for over-identifying restrictions only requires
that ﬁn utilizes more restrictions than ﬁST With equation (4), we can separate out the
additional restrictions and test whether they are satisfied based on Hansen (1982).

No-Blocking among Assigned Students.—The above estimation and tests can be
applied even if stability is violated. Part (i) of Proposition 3 states that whenever a
WTT student is assigned, she is matched with her favorite feasible school and thus is
not in any blocking pair. However, this no-blocking condition can be violated among
unassigned students, implying the violation of stability. We can thus re-formulate
the above tests as WTT against “no-blocking among assigned students.” The estima-
tion based on “no-blocking among assigned students” will exclude unassigned stu-
dents; it does not create selection bias under the null hypothesis, because the length
of every submitted ROL, which determines the probability of being unassigned, is
exogenous under WTT.

E. Undominated Strategies and Stability

The stability-based approach described above is only valid when the matching is
stable. However, as we have shown theoretically, stability can fail. Without stability,
one may consider the undominated-strategies assumption, under which observed
ROLs are students’ true partial preference orders. That is, a submitted ROL, L,
respects i’s true preference order among the schools ranked in L; (see, for an exam-
ple, Figure 1).

These partial orders provide information that can be used to identify student
preferences, but only partially, because the econometric structure is now incom-
plete (Tamer 2003). In other words, for a student with type (u;,e;), the assumption
of undominated strategies does not predict a unique ROL for the student. As we
shall see, undominated strategies lead to a set of inequality restrictions that can be

24Since exact stability is assumed, the calculation of V; does not take into account the sampling variance of
cutoffs in a finite economy.
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satisfied by a set of s, instead of a unique vector of (3. Therefore, we lose point
identification.

Moment Inequalities.—Students’ submitted ROLs can be used to form condi-
tional moment inequalities. Without loss of generality, consider two schools s; and
s5,. Since not everyone ranks both schools, the probability of i, who adopts the strat-
egy O'(u[, ei), ranking s; before s,, i.e., 51 >5(y,¢) 52,18

(5)  Pr(s1 =ofue) $21258) = Pr(u,, > w;,, and sy,5, € o(use)|Z;: B)
< Pr(”i,sl > Mi,szlzi;ﬂ>-

The first equality is due to undominated strategies, and the inequality defines a lower
bound for the conditional probability of u;,, > u;,,. Similarly, an upper bound is

(6) Pr(ui,s1 > ui,Sz]Zl-;B) < 1—Pr(s2 = o{une) SIIZZ-;B).
Inequalities (5) and (6) yield the following conditional moment inequalities:
Pr(“i,sl > ui,sz‘Zi;ﬁ) _E[l(sl = o(upe;) 52) ’Zﬁﬁ] > 05
1— E[l(s2 =olue) $1) 1 2 ﬁ] — Pr(u;, > w;,| Z56) > 0.

Similar inequalities can be computed for any school pair and can be generalized to
any n schools in S, for2 < n < S. In the simulations and empirical analysis, we
focus on inequalities for pairs. The bounds become uninformative if n > 3, because
not many schools are simultaneously ranked by the majority of students. We interact
Z; with the conditional inequalities and obtain M; unconditional moment inequali-
ties, (ml, - ,li).

Estimation with Moment Inequalities.—For estimation with moment inequali-
ties, one can follow the approach of Andrews and Shi (2013), which is valid for
both point and partial identifications. The objective function is a test statistic,
TM,( [3), of the Cramer-von Mises type with the modified method of moments (or sum
function). With the unconditional moment inequalities, it is constructed as follows:

(7) Tld) = 3. [”f”@r,

aled]

where nﬁj(ﬂ) and &j(ﬁ) are the sample mean and standard deviation of the jth

moment, mj(ﬂ), respectively; and []_ is such that [a]_ = min{O,a}. One can then
follow Bugni, Canay and Shi (2017) to construct marginal confidence intervals. For
a given coordinate 3, of (3, the authors test the hypothesis Hy: 5, = [, for a given
By € R. The confidence interval for 3;’s true value is the convex hull of all Fs at

which H is not rejected.
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While the assumption of undominated strategies seems plausible, it should be
noted that the above approach often leads to uninformative confidence intervals
of parameters of interest, constrained by the available econometric techniques.
However, one can integrate the inequalities with the restrictions implied by stability,
when stability is also plausible.

Integrating Stability with Undominated Strategies.—An important advantage
of the stability-based approach is that it only requires data on the admis-
sion outcomes. However, submitted ROLs are often observed and can be
used to improve estimation efficiency. Under the assumption that stability
provides point identification of student preferences, these ROLs provide
over-identifying information that can be used together with stability
in estimation.

The potential benefits can be illustrated in a simple example. Consider a con-
strained /truncated DA where students are only allowed to rank up to three schools
out of four. With personalized sets of feasible schools under the stability assump-
tion, the preferences over two schools, say s; and s,, are estimated mainly from the
sub-sample of students who are assigned to either of these schools while having
priority indices above the cutoffs of both. Yet it is possible that all students include
s; and s, in their ROLs, even if these schools are not ex post feasible for some
students. In such a situation, all students could be used to estimate the preference
order of s; and s,, rather than just a sub-sample. As shown below, this argument can
be extended to the case where two or more schools are observed being ranked by a
subset of students.

Moment Equalities.—To integrate the above over-identifying information in
ROLs with that from stability, we reformulate the likelihood function described in
equation (3) into moment equalities. The choice probability of the matched school
can be rewritten as a moment condition by equating theoretical and empirical
probabilities:

iPr(s = argmax(ui,sf)\Zi,P(,u);ﬁ> —E(il(u(ui,ei) = s)) =0, Vs €8,

s'eS(e;.P)

where 1( wuie) = s> is an indicator function taking the value of one if and only if
,u(ui, ei) = 5. We again interact the variables in Z with the above conditions, leading
to M, moment equalities, (my, 1, - - My, 41,)-

Estimation with Moment (In)equalities.—To obtain consistent point estimates
with both equality and inequality moments (henceforth, moment (in)equalities),
we augment the test statistic in equation (7) to incorporate the M, unconditional
moment equalities:

M\+M,

(8) TuelB) = :‘_4211 [@(5)]2_ + X mj((g))] 2-

&(8) j=M+1 L%
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We denote the point estimate BME,, which minimizes TME,(ﬁ), and we can take the
same approach as in Bugni, Canay, and Shi (2017) to construct marginal confidence
intervals for (3.

E. Testing Stability against Undominated Strategies

Given the identification of student preferences under stability, the moment
inequalities add over-identifying information. This constitutes a test of stability,
provided that students do not play dominated strategies. More precisely, if both
assumptions are satisfied, the moment (in)equalities in Section IIE should yield a
point estimate that fits the data relatively well; otherwise, there should not exist a
point /3 that satisfies all moment (in)equalities. Formally, we follow the specification
test in Bugni, Canay, and Shi (2015).

It should be noted that, for the above test, we maintain the undominated-strategies
assumption, which may raise concerns, because students could make mistakes as
documented in several real-life contexts; moreover, untrue partial preference order-
ing is not dominated under the school-proposing DA. We revisit these issues in
Section VB.

The discussion in Section IIE provides another test of the undominated-strategies
assumption, which also relies on the non-emptyness of the identified set under the
null hypothesis (Bugni, Canay, and Shi 2015). That is, if there is no value of /3 satis-
fying the moment inequalities, the undominated-strategies assumption is not satisfied.
Unfortunately, the available methods of moment (in)equalities tend to result in con-
servative confidence sets of parameters, which implies that this test may lack power.

II1. Results from Monte Carlo Simulations

To illustrate the proposed estimation approaches and tests, we carry out Monte
Carlo simulations, the details of which are consigned to online Appendix C.

Bayesian Nash equilibrium of the school choice problem is simulated in two
settings where [ students compete for admission to 6 schools with per capita capac-
ities {¢,}5_; = {0.1,0.1,0.05,0.1,0.3,0.3}.?° The first is the constrained/trun-
cated DA where students are allowed to rank up to K schools (K < 6). The second
setting, labelled as DA with cost, allows students to rank as many schools as they
wish but imposes a constant marginal cost ¢ per additional school in the list after the
first choice.

Student preferences over schools follow a random utility model:

(9) Uiy = O — di,s + 3(61,- : ‘_Zs) + €

25Online Appendix C.2 describes the details on solving equilibrium. In general, there are multiple equilibria.
We focus on the one that is found by an algorithm iterating over the following steps: (i) for each candidate ROL
(a true partial preference order of the schools), every student calculates the admission probability at each school
by comparing her priority indices to the cutoff distribution; (ii) each student selects the ROL that maximizes her
expected utility; (iii) the matchings across M simulation samples jointly lead to an updated cutoff distribution;
(iv) students update the admission probabilities based on the updated distribution. The initial cutoff distribution is
the empirical cutoff distribution with strictly truth-telling students, and steps (i)—(iv) are repeated until a fixed point
in the cutoff distribution is found.
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Panel A. 100 students, 6 schools Panel B. 500 students, 6 schools
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FIGURE 2. MONTE CARLO SIMULATIONS: IMPACT OF EcONOMY SIZE ON THE EQUILIBRIUM DISTRIBUTION OF CUTOFFS
(CONSTRAINED/TRUNCATED DA)

Notes: This figure shows the marginal distribution of school cutoffs in equilibrium under the constrained/truncated
DA (ranking 4 out of 6 schools) when varying the number of students, /, who compete for admission to 6 schools
with a total enrollment capacity of 7 x 0.95 seats. Using 500 simulated samples, the line fits are from a Gaussian
kernel with optimal bandwidth using MATLAB’s ksdensity command. See online Appendix C for details on the
Monte Carlo simulations.

where o is school s’s fixed effect; d; ; is the distance from student i’s residence to s;
a; is i’s ability; a; is school s’s quality; and ¢; ; is randomly drawn from the type-I
extreme value distribution. Student priority indices are constructed such that (a) i’s
priority index at each school is correlated with her ability a; (correlation coefficient
0.7) and (b) i’s priority indices at any two schools s and s are also correlated (cor-
relation coefficient 0.7).

Several lessons can be drawn from these simulations. The first is that in both
settings, the distribution of school cutoffs is close to jointly normal and degenerates
as school capacities and the number of students increase proportionally while hold-
ing constant the number of schools (Figure 2); the matching is almost stable (i.e.,
almost every student is assigned to her favorite feasible school) even in moderately
sized economies. By contrast, WTT is often violated among the majority of the
students, even when they can rank four out of six schools (constrained DA) or when
the cost of including an extra school is negligibly small (DA with cost).>® When the
application cost increases, equilibrium strategies may prescribe that many students
rank fewer than six schools even though they are allowed to rank all of them. Based
on these results, observing that only a few students make full use of their ranking
opportunities may not be viewed as a compelling argument in favor of truth-telling
when the application cost is a legitimate concern.

The second insight is that stability leads to estimates much closer to the true
values than WTT. Table 2 reports the results from estimation under each of the
following assumptions: (i) weak truth-telling (columns 2-4); (ii) stability (columns
5-7); and (iii) stability and undominated strategies (columns 8 and 9). Panel A is for

26 Consistent with Proposition 5, our simulations show that the fraction of students who are matched with their
favorite feasible school decreases with the application cost. However, students with justified envy are rare unless
students face very large application costs (see Figure C4 in online Appendix C.3).
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TABLE 2—MONTE CARLO RESULTS (500 STUDENTS, 6 SCHOOLS, 500 SAMPLES)

Identifying assumptions

Stability and

Stability of undominated
‘Weak Truth-telling the matching strategies
True value Mean SD CP Mean SD CP Mean  SD
(1) 2 3) (4) 5) (6) (7) @

Panel A. Constrained/truncated DA (ranking up to 4 out of 6 schools)
Parameters
School 2 0.50 —0.13 0.06 0.00 0.51 0.29 0.94 0.50 028
School 3 1.00 —2.08 0.14 0.00 1.05 0.58 0.96 1.02 057
School 4 1.50 —1.29 0.12 0.00 1.54 0.52 0.96 .52 050
School 5 2.00 0.56 0.07 0.00 2.02 0.31 0.96 2.01 029
School 6 2.50 0.23 0.12 0.00 2.53 0.45 0.96 251 043
Own ability x school quality ~ 3.00 9.40 0.64 0.00 2.97 2.29 0.96 3.05 226
Distance —1.00 -0.71 0.08 0.08 -1.01 020 0.95 —1.01 0.20
Summary statistics (averaged across Monte Carlo samples)
Average length of submitted ROLs 4.00
Fraction of weakly truth-telling students 0.39
Fraction of students assigned to favorite feasible school 1.00
Model selection tests
Truth-telling (H,) versus stability (H,): H, rejected in 100 percent of samples (at 5 percent significance level)
Stability (H,) versus undominated strategies (H,): H, rejected in O percent of samples (at 5 percent significance level)
Panel B. DA with application cost (constant marginal cost ¢ = 1076)
Parameters
School 2 0.50 0.41 0.09 0.88 0.51 0.29 0.94 049 028
School 3 1.00 0.57 0.16 0.23 1.05 0.58 0.96 1.00 0.3
School 4 1.50 1.17 0.15 0.37 1.54 0.52 0.96 1.49 048
School 5 2.00 1.74 0.11 0.32 2.02 0.30 0.96 1.99 029
School 6 2.50 2.24 0.14 0.50 2.54 0.45 0.96 248 041
Own ability x school quality ~ 3.00 2.19 0.72 0.77 2.96 2.29 0.96 3.16 229
Distance —1.00 -0.93 0.09 0.88 —-1.01 020 0.95 —1.00 020
Summary statistics (averaged across Monte Carlo samples)
Average length of submitted ROLs 4.60
Fraction of weakly truth-telling students 0.79
Fraction of students assigned to favorite feasible school 1.00
Model selection tests
Truth-telling (H,) versus stability (H,): H, rejected in 37 percent of samples (at 5 percent significance level)
Stability (H,) versus undominated strategies (H,): H, rejected in 0 percent of samples (at 5 percent significance level)

Notes: This table reports Monte Carlo results from estimations under different sets of identifying assumptions:
(i) weak truth-telling; (ii) stability; (iii) stability and undominated strategies. 500 Monte Carlo samples of school
choice are simulated under two data generating processes for an economy in which 500 students compete for admis-
sion to 6 schools: a constrained/truncated DA where students are allowed to rank up to 4 schools out of 6 (panel A);
an unconstrained DA where students can rank as many schools as they wish, but incur a constant marginal cost
¢ = 107 for including an extra school in their ROL beyond the first choice (panel B). Under assumptions (i)
and (ii), student preferences are estimated using maximum likelihood estimation. Under assumption (iii), they are
estimated using Andrews and Shi (2013)’s method of moment (in)equalities. Column 1 reports the true parame-
ter values. The mean and standard deviation (SD) of point estimates across the Monte Carlo samples are reported
in columns 2, 5, and 8, and in columns 3, 6, and 9, respectively. Columns 4 and 7 report the coverage probabilities
(CP) for the 95 percent confidence intervals. The confidence intervals in estimations (i) and (ii) are the Wald-type
confidence intervals obtained from the inverse of the Hessian matrix. The marginal confidence intervals in estima-
tion (iii) are computed using the method proposed by Bugni, Canay, and Shi (2017). The CP in estimation (iii) is
100 percent for every parameter. Truth-telling is tested against stability by constructing a Hausman-type test statis-
tic from the estimates of both approaches. Stability is tested against undominated strategies by checking if the iden-
tified set of the moment (in)equality model is empty, using the test proposed by Bugni, Canay, and Shi (2015). See
online Appendix C for details on the Monte Carlo simulations.
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the constrained/truncated DA where students are allowed to rank up to 4 schools;
panel B is for the DA with a marginal application cost equal to 10°C.

The WTT-based estimator ((377) is severely biased (column 2). Particularly in
panel A, we note that low-ability students’ valuation of the most popular schools
(e.g., School 6) tends to be underestimated, because such schools are more likely to
be omitted from these students” ROLs due to their low admission probabilities. This
bias is also present among small schools (e.g., Schools 3 and 4), which are often left
out of ROLs because their cutoffs tend to be higher than those of equally desirable
but larger schools. .

By contrast, the average of the stability-based estimates ([Js7) is reasonably close
to the true values. Its standard deviations, however, are larger than those obtained
under WTT. This efficiency loss is a direct consequence of ignoring the information
content of ROLs.?” The Hausman test strongly rejects WTT in favor of stability.

The estimator based on moment (in)equalities (3yz), which integrates stability
with information in ROLs, is also consistent (column 8). Moreover, the test based
on moment (in)equalities never rejects the null hypothesis that stability is consistent
with undominated strategies. A limitation of this approach, however, is that the cur-
rently available methods for conducting inference based on moment (in)equalities
are typically conservative. As a result, the 95 percent marginal confidence intervals
based on moment (in)equalities cover the true values too often (coverage probabil-
ity, or CP, is 100 percent for every parameter, although not shown in Table 2).

IV. School Choice in Paris

Since 2008, the Paris Education Authority (Rectorat de Paris) assigns stu-
dents to public high schools based on a version of the school-proposing DA called
AFFELNET (Hiller and Tercieux 2014). At the district level, student priority indices
are not school-specific (as detailed below) and the mechanism is equivalent to a
serial dictatorship.

Towards the end of the Spring term, final-year middle school students who
are admitted to the upper secondary academic track (Seconde générale et tech-
nologique)?® are requested to submit an ROL of up to eight public high schools to
the Paris Education Authority. Students’ priority indices are determined as follows:

1) Students’ academic performance during the last year of middle school is
p g y
graded on a scale of 400 to 600 points.

(ii) Paris is divided into four districts. Students receive a “district” bonus of
600 points at each school located in their home district. Thus, students apply-
ing to a within-district school have full priority over out-of-district applicants
to the same school.

27Online Appendix C.4 further quantifies the efficiency loss in simulations with strictly truth-telling students.
28In the French educational system, students are tracked at the end of the final year of collége (equivalent to
middle school), at the age of 15, into vocational or academic upper secondary education.
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(iii) Low-income students are awarded a bonus of 300 points.?® As a result, these
students are given full priority over all other students from the same district.

The DA algorithm is run at the end of the academic year to determine school
assignment for the following academic year. Unassigned students can participate in
a supplementary round of admissions by submitting a new ROL of schools among
those with remaining seats, the assignment mechanism being the same as for the
main round.

Note that the mechanism would be strategy-proof if there were no constraints
on the length of ROLs, because it is equivalent to serial dictatorship. Nonetheless,
under the current mechanism, it is still a dominated strategy to submit an ROL that
is not a partial order of true preferences (Proposition 2).

A. Data

For our empirical analysis, we use data from Paris’ southern district (Sud) and
study the behaviors of 1,590 within-district middle school students who applied for
admission to the district’s 11 public high schools for the academic year 2013-2014.
Owing to the 600-point “district” bonus, this district is essentially an independent
market.>°

Along with socio-demographic characteristics and home addresses, our data
contain all the relevant variables to replicate the matching algorithm, including the
school capacities, the submitted ROLs, and the priority indices (converted into per-
centiles between 0 and 1). Individual examination results for the Diplome national
du brevet (DNB)—a national exam that all students take at the end of middle
school—are used to construct different measures of academic ability (French, math,
and composite score), which are normalized as percentiles between 0 and 1. Note
that the DNB exam scores are not used in the computation of the student priority
index, which is based on the grades obtained throughout the final year of middle
school. The DNB scores therefore provide additional measures of student ability.>!
Table 3 reports students’ characteristics, choices, and admission outcomes. Almost
half of the students are of high socioeconomic status (SES), while 15 percent receive
the low-income bonus. Ninety-nine percent are assigned to a within-district school
in the main admission round, but only half obtain their first choice.

Table 4 presents summary statistics for the 11 high schools. Columns 1-4 show a
high degree of stratification among the schools, both in terms of the average ability of
students enrolled in 2012 and of their social background (measured by the fraction of
high SES students). Columns 5-8 describe school choice in 2013. The district’s total
capacity (1,692 seats) is unevenly distributed across schools: the smallest school has
62 seats while the largest has 251. School cutoffs in 2013 are strongly correlated with

29The low-income status is conditional on a student applying for and being granted the means-tested low-income
financial aid in the last year of middle school. A family with two children would be eligible in 2013 if its taxable
income was below 17,155 euros. The aid ranges from 135 to 665 euros per year.

30 Qut-of-district applicants could affect the availability of school seats in the supplementary round, but this is
of little concern since, in the district, only 22 students were unassigned at the end of the main round (for the com-
parison between assigned and unassigned students, see online Appendix Table E1).

31See online Appendix B for a description of the data sources and online Appendix Figure E1 for a map.
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TABLE 3—HIGH SCHOOL APPLICANTS IN THE SOUTHERN DISTRICT OF PARIS: SUMMARY STATISTICS

Mean SD Min Max Observations
Panel A. Student characteristics
Age 15.0 0.4 13 17 1,590
Female 0.51 0.50 0 1 1,590
French score 0.56 0.25 0.00 1.00 1,590
Math score 0.54 0.24 0.01 1.00 1,590
Composite score 0.55 0.21 0.02 0.99 1,590
High SES 0.48 0.50 0 1 1,590
With low-income bonus 0.15 0.36 0 1 1,590
Panel B. Choices and outcomes
Number of choices within district 6.6 1.3 1 8 1,590
Assigned to a within-district school 0.99 0.12 0 1 1,590
Assigned to first choice school 0.56 0.50 0 1 1,590
Panel C. Attributes of first-choice school
Distance (km) 1.52 0.93 0.01 6.94 1,590
Mean student French score 0.62 0.11 0.32 0.75 1,590
Mean student math score 0.61 0.13 0.27 0.78 1,590
Mean student composite score 0.61 0.12 0.31 0.77 1,590
Fraction high SES in school 0.53 0.15 0.15 0.71 1,590
Panel D. Attributes of assigned school
Distance (km) 1.55 0.89 0.06 6.94 1,568
Mean student French score 0.56 0.12 0.32 0.75 1,568
Mean student math score 0.54 0.14 0.27 0.78 1,568
Mean student composite score 0.55 0.13 0.31 0.77 1,568
Fraction high SES in school 0.48 0.15 0.15 0.71 1,568

Notes: This table provides summary statistics on the choices of middle school students from the southern district of
Paris who applied for admission to the district’s 11 public high schools for the academic year starting in 2013, based
on administrative data from the Paris Education Authority (Rectorat de Paris). All scores are from the exams of the
Dipléme national du brevet (DNB) in middle school and are measured in percentiles and normalized to be in [0, 1].
The composite score is the average of the scores in French and math. The correlation coefficient between French
and math scores is 0.50. School attributes, except distance, are measured by the average characteristics of students
enrolled in each school in the previous year (2012).

school quality. The last column shows the fraction of submitted ROLs in which each
school is ranked. The least popular three schools are each ranked by less than 24 per-
cent of students, and two of them remain under-subscribed (Schools 1 and 3) and thus
have a O cutoff. Consistent with our Monte Carlo results, smaller schools are omitted
by more students, even if they are of high quality. Likewise, a sizeable fraction of stu-
dents (20 percent) do not rank the best-performing school (School 11) in their ROLs.

Enrollment data further reveals a high level of compliance with the assignment
outcome. Among the assigned students, 96 percent attend the school they were
matched with (online Appendix Table E1), about 1 percent attend a public high
school different from their assignment school, and less than 3 percent opt out to
enroll in a private school.

B. Evaluating the Assumptions: Reduced-Form Evidence

To evaluate the WTT and stability assumptions, we investigate if students are less
likely to rank schools at which they expect low admission probabilities. Similar to
“skipping the impossible” as in Example 1, this behavior would be inconsistent with
WTT.
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TABLE 4—HIGH SCHOOLS IN THE SOUTHERN DISTRICT OF PARIS: SUMMARY STATISTICS

School attributes (2012) Admission outcomes (2013)
Mean Mean Mean Fraction Fraction
French math  composite high SES Admission ROLs
score score score students Capacity ~ Count cutoffs  ranking it
() ©) ©) 4) ®) (6) ™ (8)
School 1 0.32 0.31 0.31 0.15 72 19 0.000 0.22
School 2 0.36 0.27 0.32 0.17 62 62 0.015 0.23
School 3 0.37 0.34 0.35 0.16 67 36 0.000 0.14
School 4 0.44 0.35 0.39 0.46 140 140 0.001 0.59
School 5 0.47 0.44 0.46 0.47 240 240 0.042 0.83
School 6 0.47 0.46 0.46 0.32 171 171 0.069 0.71
School 7 0.58 0.54 0.56 0.56 251 251 0.373 0.91
School 8 0.58 0.66 0.62 0.30 91 91 0.239 0.39
School 9 0.65 0.62 0.63 0.66 148 148 0.563 0.83
School 10 0.68 0.66 0.67 0.49 237 237 0.505 0.92
School 11 0.75 0.78 0.77 0.71 173 173 0.705 0.80

Notes: This tables provides summary statistics on the attributes of high schools in the southern district of Paris and
on the outcomes of the 2013 assignment round, based on administrative data from the Paris Education Authority
(Rectorat de Paris). School attributes in 2012 are measured by the average characteristics of the schools’ enrolled
students in 2012-2013. All scores are from the exams of the Diplome national du brevet (DNB) in middle school
and are measured in percentiles and normalized to be in [0, 1]. The composite score is the average of the scores in
French and math. The correlation coefficient between school-average math and French scores is 0.97.

Figure 3 focuses on the district’s 4 most selective schools (as measured by their
cutoffs). For each school, we separately plot the fraction of students who rank it in
their ROL as a function of their distance to the school cutoff, measured by the dif-
ference (using the original scale in points) between the student’s priority index and
the cutoff.>> Each plot shows that almost all students with a priority index above a
school’s cutoff include that school in their ROL, whereas the fraction of students
ranking the school decreases rapidly when the priority index falls below the cutoff.
Irrespective of strategic considerations, one might expect high priority students to
have a stronger preference for the most selective schools—since priorities are posi-
tively correlated with academic performance—and hence to rank them more often.
However, the kink around the cutoffs is consistent with students omitting the most
selective schools from their ROL because of the low admission probabilities. In
online Appendix D.1, we show that the kink-shaped relationship between student
priority index and their ranking behavior is robust to controlling for potential deter-
minants of preferences, including distance to school and the student’s DNB exam
scores in French and math. Recall that DNB scores are not used to calculate the pri-
ority indices. These results cannot be easily reconciled with truth-telling behavior.

The evidence in Figure 3 suggests the potential influence of expected admission
probabilities on student ranking behavior. At the time of application, students know
their academic grades and low-income status but not their priority ranking nor the
ex post cutoffs.>* They can, however, gather information on past cutoffs to assess
admission probabilities. While we do not have direct information on students’
beliefs, Figure 4 shows that the current year (2013) cutoffs are similar to those

32We restrict the sample for a school to students whose score is no more than 50 points away from its cutoff.
Due to the low-income bonus of 300 points, low-income students’ priority indices are always well above the
cutoffs. They are therefore not considered in the analysis.

33This uncertainty in both priority ranking and cutoffs may explain why some students find it optimal to rank
multiple schools, given that the cost of ranking up to eight choices is arguably negligible.
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FIGURE 3. FRACTION OF STUDENTS RANKING EACH OF THE FOUR MOST SELECTIVE SCHOOLS IN THE SOUTHERN
DISTRICT OF PARIS, BY DISTANCE TO SCHOOL CUTOFF

Notes: The results are calculated with data from the Paris Education Authority on students who applied to the 11
high schools of the southern district in 2013. The figure shows the ranking behavior of students as a function of
the distance (using the original scale in points) between each school’s cutoff and students’ priority index. For each
school, the sample only includes students with a priority index within —50 and 450 points of the cutoff, and stu-
dents are grouped into bins of 10-point width. Bins with less than ten observations are excluded. Each point rep-
resents the fraction of students in a given bin who rank the school in their list. The dotted lines show the 95 percent
confidence interval. Low-income students are not included because the low-income bonus of 300 points places them
well above the cutoffs.

from the previous year (2012).3* This lends support to the assumption that students
have some ability to predict their admission probabilities. Although not a necessary
condition for the matching to be stable, this feature makes the stability assumption
more likely to be satisfied.

C. Estimation and Test Results
We parameterize student i’s utility of being matched with school s as follows:

(10) Ujs = Ozs—di,s—l—Z,{S’y—F )\El"s, S = 1,,11,

B

34The comparison could not be performed for earlier years due to the modifications in the computation of the
priority index and the small changes in the set of available schools.
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Notes: The results are calculated with administrative data from the Paris Education Authority. Each dot represents a
school, with its cutoff in 2013 on the y-axis and the one in 2012 on the x-axis. The dashed line denotes the 45-degree
line.

where o is the school fixed effect, d,  is the distance to s from i’s residence, and
Z; ¢ 1s a vector of student-school-specific observables. As observed heterogeneity,
Z; s includes 2 variables that capture potential non-linearities in the disutility of dis-
tance and control for potential behavioral biases towards certain schools: “closest
school” is a dummy variable equal to one if s is the closest to student i among
all 11 schools; “high school colocated with middle school” is another dummy that
equals one if high school s and the student’s middle school are colocated at the
same address.>> To account for students’ heterogeneous valuation of school quality,
interactions between student scores and school scores are introduced separately for
French and math, as well as an interaction between own SES and the fraction of high
SES students in the school. These school attributes are measured among the entering
class of 2012, whereas our focus is on students applying for admission in 2013. We
normalize the variables in Z; ; so that each school’s fixed effect can be interpreted as
the mean valuation, relative to School 1, of a non-high-SES student who has median

35 There are five such high schools in the district.
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scores in both French and math, whose middle school is not colocated with that high
school, and for whom the high school is not the closest to her residence.

The error term ¢, ; is assumed to be an i.i.d. type-I extreme value, and the variance
of unobserved heterogeneity is A? multiplied by the variance of €;5- The effect of
distance is normalized to — 1, and, therefore, the fixed effects and -y are all measured
in terms of willingness to travel. As a usual position normalization, &; = 0. We do
not consider outside options because of students’ almost perfect compliance with
the assignment outcome.

Using the same procedures as in the Monte Carlo simulations (described in online
Appendix C), we obtain the results summarized in Table 5, where each column
reports estimates under a given set of identifying assumptions: (i) weak truth-telling
(column 1); (ii) stability (column 2); and (iii) stability with undominated strategies
(column 3).3¢

The results provide clear evidence that the WTT-based estimates (column 1) are
rather different from the others. Specifically, a downward bias is apparent for popu-
lar schools that are not ranked by many students, such as Schools 8 and 11. School
8, which is omitted by 61 percent of students, is deemed by WTT to be less desirable
than all the schools included in the ROL, which leads to a low estimated fixed effect.
Similarly, the fixed effect estimate of School 11, one of the most popular schools,
varies substantially across the identifying assumptions. The under-estimation is mit-
igated when the model is estimated under a different assumption (columns 2 and
3). Provided that the model is correctly specified, the Hausman test rejects WTT in
favor of stability (p-value < 0.01); the test based on moment (in)equalities does not
reject the null hypothesis that stability is consistent with undominated strategies at
the 5 percent significance level.

The results show that “closest school” has no significant effect, but students sig-
nificantly prefer colocated schools. Compared with low-score students, those with
high French (math) scores have a stronger preference for schools with higher French
(math) scores. Moreover, high SES students prefer schools that have admitted a
larger fraction of high SES students in the previous year (2012).

Although the WTT-based estimates of the coefficients of covariates (panel B)
are not markedly different from the stability-based estimates, one cannot conclude
that the WTT assumption produces reasonable results, as shown by the estimates of
fixed effects. To provide a better evaluation, we now compare the estimators by their
model fit.

36For the estimates in column 3, we use the method of moment (in)equalities where inequalities are constructed
as described in Section IIE. Determined by Z; ;, we interact French score, math score, and distances to Schools 1
and 2 with the conditional moments. Although one could use more variables, e.g., SES status and distance to
other schools, they provide little additional variation. In principle, the assumption of undominated strategies alone
implies partial identification (Section IIE). Because stability is not rejected by our test, we do not present results
based on this approach (available upon request). We note that the marginal confidence intervals from moment
inequalities only turn out to be wide in our empirical setting, and hence are relatively uninformative. The possible
reasons are that the empirical bounds for the probability of a preference ordering over a pair of schools are fairly
wide, and that the available methods to conduct inference based on moment inequalities are typically conservative.
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TABLE 5—ESTIMATION RESULTS UNDER DIFFERENT SETS OF IDENTIFYING ASSUMPTIONS

Identifying assumptions

Weak Stability of Stability and
Truth-telling the matching undominated strategies
(1) 2 ®3)
Panel A. School fixed effects
School 2 —0.71 1.46 1.21
[—1.17, —0.24] [0.64, 2.28] [0.14, 2.29]
School 3 —2.12 1.03 0.84
[—2.66, —1.58] [0.19, 1.86] [-0.56, 2.01]
School 4 3.31 291 2.90
[2.75, 3.86] [2.07, 3.76] [2.36, 3.39]
School 5 5.13 4.16 4.16
[4.41,5.84] [3.22,5.10] [3.71, 4.49]
School 6 4.87 4.24 4.30
[4.21, 5.54] [3.29, 5.18] [3.73, 4.82]
School 7 7.33 6.81 6.24
[6.47, 8.18] [5.65,7.98] [5.76,7.28]
School 8 1.59 4.46 4.27
[1.10, 2.08] [3.46,5.47] [2.98, 5.26]
School 9 6.84 7.77 6.57
[6.07,7.61] [6.55,8.99] [5.84,7.26]
School 10 7.84 7.25 6.44
[6.94, 8.75] [6.01, 8.49] [5.87,7.05]
School 11 5.35 7.28 5.61
[4.62, 6.08] [6.06, 8.51] [4.98,7.33]
Panel B. Covariates
Closest school —-0.37 —0.19 —0.15
[—0.63, —0.11] [—0.47, 0.10] [-0.75, 0.57]
High school colocated 2.54 1.76 1.54
with middle school [2.02, 3.07] [1.19, 2.32] [0.17, 3.12]
Student French score [x 10] 0.20 0.18 0.23
x school French score [x 10] [0.16, 0.23] [0.13, 0.24] [0.10, 0.35]
Student math score [x 10] 0.30 0.27 0.30
% school math score [>< ]()] [0.26, 0.34] [0.21, 0.32] [0.18, 0.40]
High SES 6.79 4.92 8.12
x fraction high SES in school [5.62,7.97 [3.31, 6.54] [4.18,12.55]
Scaling parameter (\) 3.09 1.33 1.50
[2.79, 3.38] [1.16, 1.50] [1.20, 1.64]
Number of students 1,590 1,568 1,590

Notes: This table reports the estimates of the parameters in equation (10) for the southern district of Paris, with the
coefficient on distance being normalized to —1. The point estimates in columns 1 and 2 are based on maximum
likelihood, whereas those in column 3 are based on moment equalities and inequalities, with 95 percent confidence
intervals in brackets. Model selection tests: A Hausman test, testing weak truth-telling against stability (or columns
1 against 2), rejects WTT in favor of stability (p-value < 0.01); a test based on moment equalities and inequali-
ties does not reject the null hypothesis that stability is consistent with undominated strategies at the 5 percent sig-
nificance level.

D. Goodness of Fit

In three dimensions (cutoffs, assignment, and revealed preferences), we compare
the observed values to those predicted by the estimates from Table 5. This compar-
ison reveals that the stability-based estimates fit the data well, as opposed to those
based on WTT (see online Appendix D.2 for computational details).
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Specifically, Figure 5 and online Appendix Table D2 show that the stability-based
estimates (with or without undominated strategies) predict cutoffs close to the
observed ones.>” By contrast, WTT substantially under-predicts the cutoffs of the
most popular schools.

Panel A of Table 6 compares each student’s predicted assignment to the observed
one. The stability-based estimates have 33-38 percent success rates, whereas the
WTT-based estimates accurately predict only 22 percent of the assignments. In
panel B, we take as given the schools that a student has included in her submit-
ted ROL, and compute the probability of observing this particular preference order
among the ranked schools. The observed order of students’ top two choices has a
mean predicted probability of 60 or 62 percent based on the stability-based estimates,
higher than the 55 percent achieved by the WTT-based estimates. We next con-
sider the observed order of a student’s full list of choices. Again, the stability-based
estimates outperform those based on WTT, with an average predicted probability
between 2.2 and 2.5 percent for the former versus 1.2 percent for the latter. The
predictive power of the stability-based estimates along the two measures in panel B
is noteworthy because the prediction is partly out of sample.>®

V. Summary and Discussion

As a summary of the results, we clarify when each approach is more appropriate
for empirical analysis. We also discuss whether the results can be extended to the
school-proposing DA, the case with non-equilibrium behavior, and settings beyond
school choice.

A. Choosing among the Approaches: A Summary

In the preference estimation with real-life data from centralized school choice
and college admissions, some practical considerations should be taken into account.
Recall that we focus on the strict-priority setting in which students are ranked based
on strict priority indices that are ex ante known privately. Building on the results
from our theoretical and empirical analyses, this section emphasizes some of the key
market features that deserve careful examination when one decides which approach
to use in a given context.

The Nesting Structure of Identifying Assumptions.—Our results imply that the
identifying assumptions follow a nesting structure, as depicted in Figure 6.

Truth-telling is a natural candidate identifying assumption because of DA’s
strategy-proofness. However, strict truth-telling (i.e., students truthfully rank
all schools) is not an equilibrium, if students cannot rank all schools at no cost
(Proposition 1). In real-life data, students seldom rank all schools, which calls for a

371t should be emphasized that the stability-based estimation does not try to fit cutoffs directly, neither does
it restrict a student’s preferences over infeasible schools. The difference in predicted cutoffs between stability and
WTT is solely due to their differences in predicting preferences.

38In the data, 54 percent of students ranked at least 1 infeasible school among their top 2 choices (34 percent
ranked 1 infeasible school, while 20 percent ranked 2). The average fraction of infeasible schools among all sub-
mitted choices is 30 percent.
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FIGURE 5. GOODNESS OF FIT: OBSERVED VERSUS SIMULATED CUTOFFS
Notes: This figure compares the cutoffs observed for the 11 high schools of Paris’ southern district in 2013 to those

simulated with the three sets of estimates in Table 5. The simulated cutoffs are averaged over 300 simulated sam-
ples. See online Appendix D.2 for details.

TABLE 6—GOODNESS-OF-FIT MEASURES BASED ON DIFFERENT SETS OF IDENTIFYING ASSUMPTIONS

Estimates from

Stability and
Weak Stability of undominated
Truth-telling the matching strategies
) 2 ®3)
Panel A. Simulated versus observed assignment (300 simulated samples)
Mean predicted fraction of students 0.220 0.383 0.326
assigned to observed assignment (0.011) (0.010) (0.012)

Panel B. Predicted versus observed partial preference order of given schools

Mean predicted probability that a student
prefers the top-ranked school to the 0.553 0.615 0.595
2nd-ranked in her submitted ROL

Mean predicted probability that a student’s partial
preference order among the schools in her ROL 0.012 0.025 0.022
coincides with the submitted rank order

Notes: This table reports two sets of goodness-of-fit measures comparing the observed outcomes to those predicted
under the different sets of identifying assumptions as in Table 5, for the high school assignment of students in the
southern district of Paris. Panel A compares students’ observed assignment with their predicted assignment in 300
simulated samples. In all simulations, we vary only the utility shocks, which are kept common across columns 1-3
(see online Appendix D.2 for details). Predicted and observed assignments are compared by computing the average
predicted fraction of students who are assigned to their observed assignment school, with standard deviations across
the simulation samples reported in parentheses; in other words, this is the average fraction of times each student is
assigned to her observed assignment in the 300 simulated samples. Panel B uses two measures to compare students’
observed partial preference order of given schools (revealed in their submitted ROL) with the prediction, among
students who rank at least two schools: (i) mean predicted probability that a student prefers the top-ranked school
to the second-ranked in her submitted ROL, which is averaged across students; and (ii) mean predicted probability
that a student’s partial preference order among the schools in her ROL coincides with the submitted rank order. Due
to the logit specification, those probabilities can be calculated without simulation.
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FIGURE 6. NESTING STRUCTURE OF IDENTIFYING ASSUMPTIONS

Notes: This figure shows the nesting structure of the identifying assumptions that can be used to analyze data gen-
erated by DA and its variants in the strict-priority setting. The numbered areas correspond to different combinations
of identifying assumptions: @ strict truth-telling; @ weak truth-telling and stability; ® weak truth-telling without
stability; @ stability and undominated strategies; ® stability without undominated strategies; ® undominated strat-
egies without stability.

weaker version of the truth-telling assumption. As clarified in the theoretical analy-
sis, weak truth-telling (i.e., students truthfully rank their most preferred schools and
omit some least preferred ones) does not follow directly from strategy-proofness,
since it requires additional assumptions such as the length of ROLs being indepen-
dent of preferences.

Stability is an even weaker assumption on student behavior, while still allowing
for the identification of preferences. It states that every student is assigned to her
favorite ex post feasible school, and is always satisfied when students are strictly
truth-telling. Although stability is not guaranteed in all Bayesian Nash equilibria,
even when students are weakly truth-telling, it is asymptotically satisfied when the
economy grows large (Proposition 4).

The third candidate identifying assumption is that students do not play dominated
strategies (Proposition 2), so that submitted ROLs reveal students’ partial prefer-
ence orders of schools. Weak truth-telling is a special case of this more general
assumption, whereas stability may hold even if students play dominated strategies.

The Choice of Empirical Approaches.—When choosing among the candidate
identifying assumptions, consideration should be given to the features of the prob-
lem under study, as well as the available data. For each assumption, Table 7 summa-
rizes the features making it more plausible, the required data, and some discussion
about identification and estimation.

Truth-telling is more likely to be satisfied when students can rank as many schools
as they wish at no cost, and face large uncertainty about each school’s exact ranking
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of students. Conditional on students’ submitted ROLs being observed, preferences
can be estimated using either MLE or GMM. The choice between weak truth-telling
and strict truth-telling depends on whether students rank all schools (Section IIB)
and on the importance of outside options (online Appendix A.4).

When students face some cost of ranking more schools (e.g., if the length of
submittable ROLs is restricted), stability can be a more plausible assumption than
truth-telling. This assumption is more likely to hold when the market is larger (i.e.,
many students and many seats per school), when students are less constrained in
applying to multiple schools (e.g., longer ROLs), when they are less uncertain about
each school’s ranking of all students at the time of application, when they know
more about others’ preferences, or when it is easier for them to predict school cut-
offs (Proposition 5). Our Monte Carlo simulations additionally provide numerical
evidence suggesting that stability is a plausible assumption even when students face
non-negligible application costs (online Appendix C.3).

Estimating preferences based on stability uses information on the admission out-
come, the school capacities, and the priority indices, but has the advantage of not
requiring data on submitted ROLs. However, it is necessary to assume the condi-
tional independence between priority index and unobserved preference heteroge-
neity. Compared to truth-telling, the main cost of the stability-based approach is its
limited power to identify rich substitution patterns, because the information content
of ROLs is discarded.

Weak truth-telling does not always imply stability, but it does imply no-blocking
among all assigned students (Proposition 3). Therefore, weak truth-telling can be
tested against stability (or no-blocking among assigned students) using the Hausman
(1978) and Hansen (1982) tests. It should be emphasized that these tests do not
provide definitive proof against truth-telling unless the model is correctly specified
and identified.

If it is believed that neither truth-telling nor stability is likely to be satisfied,
preferences can still be partially identified under the assumption that students do
not play dominated strategies. This assumption is more plausible when no school
is either “safe” or “impossible” for students, making it less likely that students rank
some schools in an arbitrary manner. Submitted ROLs can then be used to form
conditional moment inequalities that partially identify preferences.

When the conditions for both stability and undominated-strategies assumptions
are jointly satisfied, the moment inequalities from the latter assumption provide
over-identifying information that can be integrated with the stability assumption to
estimate preferences based on all of the available data (ROLs, matching outcome,
school capacities, and priority indices). Additionally, the stability assumption can be
tested against the undominated-strategies assumption using the specification test in
Bugni, Canay, and Shi (2015).

B. Discussion and Extension

The School-Proposing DA.—OQOur main results can be extended to the school-pro-
posing DA, which is also commonly used in practice (see Table 1). Under this mech-
anism, schools “propose” to students following the order of student priority indices.
Proposition 2 no longer holds; that is, students might have incentives not to report a
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TABLE 7—SUMMARY OF EMPIRICAL APPROACHES
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Identifying assumption

What makes the assumption more plausible?

Required
data

Identification
and estimation

Weak truth-telling:

Schools in a submitted ROL
are ranked in true preference
order and omitted ones are less
preferred

Stability of the matching:
Every student is assigned to
her favorite feasible school.
Priority indices and unobserved
preference heterogeneity are
conditionally independent

Undominated strategies:
Submitted ROLs are true partial
preference orders

Stability and undominated
strategies:

(a) No cost of ranking more schools, e.g.,
no restriction on the length of submittable
ROLSs and choice set not being too large
(b) At the time of application, each student
knows her own priority index but not
others’, and the distribution of priority
indices has a large variance

Stability is satisfied if truth-telling holds and
(almost) everyone is assigned. Otherwise,

it is more likely to be true when (a) market
is large (many students, big schools);

(b) students are less constrained when
applying to more schools; (c) students face
limited uncertainty about how schools rank
them at the time of application; (d) students
know more about others’ preferences; or (e)
cutoffs are easy to predict

(a) No “safety school” so that “irrelevance
at the bottom” of one’s ROL is less likely.
(b) No “impossible school” so that students
do not rank impossible school arbitrarily.

See the conditions laid out separately for
stability and undominated strategies

Submitted ROLs

Admission outcome,
school capacities,
priority indices

Submitted ROLs

Submitted ROLs,
admission outcome,

Point identification

Estimation by, e.g.,
MLE/GMM

Point identification

Estimation by, e.g.,
MLE/GMM

Partial identification

Estimation with
moment inequalities

Point identification

Estimation with
moment equalities and
moment inequalities

See the conditions laid out
separately for stability and
undominated strategies

school capacities,
priority indices

Notes: This table describes the empirical approaches to analyses of data generated by DA and its variants in the
strict-priority setting. In addition, there are two tests available: (i) weak truth-telling can be tested against stability
(Hy: both weak truth-telling and stability are satisfied; H;: only stability is satisfied), e.g., using the Hausman (1978)
or Hansen (1982) tests; (ii) stability can be tested against undominated strategies (Hy: both stability and undom-
inated strategies are satisfied; H;: only the undominated-strategies assumption is satisfied) using the approach in
Bugni, Canay, and Shi (2015).

true partial preference order (Haeringer and Klijn 2009). Nonetheless, the asymptotic
stability result (Proposition 4) is still valid, as its proof does not rely on Proposition 2.
Indeed, the matching can be stable in equilibrium (Haeringer and Klijn 2009).

To summarize, if the market under the school-proposing DA has features making
the matching stable (see Table 7), we can formulate identification and estimation
of student preferences based on stability. However, the truth-telling assumption no
longer has theoretical support, as the school-proposing DA is not strategy-proof for
students (Roth 1982). The approach based on undominated strategies does not apply
either, since there are no dominated strategies under this mechanism (Haeringer and
Klijn 2009).

Non-Equilibrium Strategies.—We have thus far assumed that everyone plays an
equilibrium strategy with a common prior. More realistically, some students could
have different information and make mistakes when strategizing.

Indeed, a growing number of studies find that strategic mistakes are common
even in strategy-proof environments. Laboratory experiments show that a signifi-
cant fraction of subjects do not report their preferences truthfully in strategy-proof
mechanisms (Chen and Sonmez 2006). More relevantly, mistakes occur in real-
world contexts, e.g., the admissions to Israeli graduate programs in psychology
(Hassidim, Romm, and Shorrer 2016), the medical resident match in the United
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States (Rees-Jones 2018), and the Australian university admissions (Artemov, Che,
and He 2017). Without estimating preferences, these studies show that a non-negli-
gible fraction of participants make unambiguous mistakes in their ROLs.

However, the vast majority of these mistakes are not payoff relevant. In other
words, although some students play dominated strategies, the matching is still
close to stable, corresponding to area ® in Figure 6. Based on these observations,
the results in Artemov, Che, and He (2017) imply that, as identifying restrictions,
assuming stability can be more robust and more plausible than the assumption of
undominated strategies.

Beyond School Choice and College Admissions.—Although the analysis has
focused on school choice and college admissions, our results can apply to certain
assignment procedures based on DA. Let us call agents on the two sides “appli-
cants” and “recruiters,” respectively. The key requirement is that when applying,
applicants have sufficiently precise information on how recruiters rank them and
that researchers observe how recruiters exactly rank applicants.>* Examples include
the assignment of teachers to schools in France (Combe, Tercieux, and Terrier 2017)
and the Scottish Foundation Allocation Scheme matching medical school gradu-
ates with training programs (Irving 2011). The estimation approaches discussed in
Section II could be implemented in these settings.

VI. Conclusion

We present novel approaches to estimating student preferences with school choice
or college admissions data generated by the popular deferred acceptance mechanism
when applicants are ranked strictly by some ex ante known priority index. We pro-
vide theoretical and empirical evidence showing that, in this commonly observed
setting, it can be rather restrictive to assume that students truthfully rank schools
when applying for admission. Instead, stability (or justified-envy-freeness) of the
matching provides rich identifying information, while being a weaker assumption
on student behavior. Assuming that students do not play dominated strategies, we
also discuss methods with moment inequalities, which can be useful with or with-
out stability. A series of tests are proposed to guide the selection of the appropriate
approach.

The estimation and testing methods are illustrated with Monte Carlo simulations.
When applied to school choice data from Paris, our results are more consistent with
stability than with truth-telling. Reduced-form evidence on ranking behavior sug-
gests that some students omit the most selective schools from their list because
of low admission probabilities. Provided that the model is correctly specified, our
proposed tests reject truth-telling but not stability. Compared with our preferred esti-
mates based on stability (with or without imposing undominated strategies), assum-
ing truth-telling leads to an under-estimation of preferences for popular or small
schools. Moreover, the stability-based estimators outperform the truth-telling-based
estimator in predicting matching outcomes and student preferences.

39Without information on how either side ranks the other, it becomes the classical two-sided matching, and
additional assumptions are needed for identification and estimation (Chiappori and Salanié 2016).
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Our approaches are applicable to many school choice and college admissions
systems around the world, as well as to other matching schemes such as teacher
assignment in France and medical matching in Scotland.
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