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            Abstract: Change-point detection regains much attention recently for analyzing array or sequencing data

               for copy number variation (CNV) detection. In such applications, the true signals are typically very short

               and buried in the long data sequence, which makes it challenging to identify the variations efficiently

              and accurately. In this article, we propose a new change-point detection method, a backward procedure,

                which is not only fast and simple enough to exploit high-dimensional data but also performs very well

             for detecting short signals. Although motivated by CNV detection, the backward procedure is generally

               applicable to assorted change-point problems that arise in a variety of scientific applications. It is illustrated

               by both simulated and real CNV data that the backward detection has clear advantages over other

              competing methods, especially when the true signal is short. 48:The Canadian Journal of Statistics

       366–385; 2020 © 2020 Statistical Society of Canada

                Résumé: La détection de points de rupture gagne en popularité pour la détection de variations du nombre

                de copies (VNC) avec des données de micro-puces ou de séquençage. Dans de telles applications, un signal

               habituellement court se t rouve dans une longue séquence de données, ce qui complique sa détection efficace

               et précise. Les auteurs proposent une nouvelle méthode de détection du point de rupture, une procédure

                à rebours, qui en plus d’être suffisament simple et rapide pour exploiter des données en haute dimension,

                 offre de très bonnes performances dans la détection de signaux courts. Même si elle a été motivée par

                la détection de VNC, la méthode à rebours est généralement applicable à une panoplie de problèmes de

             détection du point de rupture qui émergent de différentes applications scientifiques. Les auteurs illustrent

                 les avantages clairs de la méthode à rebours, notamment lorsque le signal est court, par rapport aux autres

               méthodes, autant sur des données de VNC simulées que réelles. 48:La revue canadienne de statistique

       366–385; 2020 © 2020 Société statistique du Canada

 1. INTRODUCTION

             As a classic topic, change-point detection regains much attention recently in the context of

             uncovering structural change in big data. In particular, a normal mean change-point model and

             its variants have been applied to analyze high-throughput data for DNA copy number variation

               (CNV) detection. The CNV is defined as duplication or deletion of a segment of DNA sequences
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T           A B L E 1: Data types for CNV information and the corresponding resolutions.

  Data Measurement Resolution

      Array CGH Fluorescence intensity ratio 10 – 100 kb×

      SNP array Fluorescence intensity ratio/B-allele frequency kb

      NGS Read depth/distance of paired end b

              compared to the reference genome, and can cause significant effects at molecular levels and be

            associated with susceptibility (or resistance) to disease (Feuk, Carson & Scherer, 2006; Freeman

      et al., 2006; McCarroll & Altshuler, 2007).

             There are multiple sources of data that provide us with copy number information. The

          microarray Comparative Genomic Hybridization (aCGH) techniques have been widely used for

               CNV detection (Urban et al., 2006). The aCGH is helpful to detect long CNV segments with

                tens of kilobases (kb) or more, but is not able to l ocate small-scale CNVs with length shorter

               than its minimal resolution (>10 kb), which are common in the human genome (Sebat et al.,

               2004; Carter, 2007; Wong et al., 2007). In addition to the aCGH approach, the single nucleotide

            polymorphism (SNP) genotyping array has become an alternative in CNV detection because of

              its improved resolution (Sun et al., 2009). For example, popular SNP array platforms such as

              Illumina (Peiffer et al., 2006) and Affymetrix (McCarroll et al., 2008) allow detection of CNVs

            with kilobase-resolution. In SNP arrays, CNV information is measured by the total fluorescent

                intensity signal ratios from both alleles at each SNP locus referred to as the log-R-ratio (LRR). It

                also allows us to obtain the relative ratio of the fluorescent signals between two alleles, known as

             B allele frequency. Finally, in very recent applications, aligned DNA sequencing data with even

             higher resolution can be directly used for CNV detection. The next generation sequencing (NGS)

              techniques typically produce millions of short reads that are to be aligned with the reference

              genome. Both the associated read depth (RD) and distances of paired-end (DPE) from the aligned

            sequence are important sources of inferring CNV (Medvedev, Stanciu & Brudno, 2009; Abyzov

                  et al., 2011; Duan et al., 2013; Chen et al., 2017). Note that there is a trade-off between the

              resolution and data size. With higher resolution data, it is possible to discover shorter CNVs;

                at the same time, the larger data size brings great challenge in computation. This might be one

                of the reasons why the SNP array has been most popular in recent CNV studies since aCGH

                 data have low resolutions and RD or DPE data from NGS are t oo large to be handled directly.

             However, as related computing technologies advance, the NGS data are getting more attention in

             recent applications. Finally, we summarize popular data sources for CNV detection in Table 1.

           There have been many methods developed for CNV detection. Different approaches are

               applied to different types of data sources. As one of the most popular approaches, the CNV

              detection problem can be regarded as an application of the change-point model which has been

             actively studied in statistics. For example, both the LRR from SNP array and log2  ratio from

               aCGH have a mean value of zero for normal copy number, while negative (resp. positive) for

                the deletion (resp. duplication). Similar ideas can also be employed for the RD data in the sense

               that one may observe less (resp. more) read counts in a region with deleted (resp. duplicated)

               copy number. In all the examples, the data structure changes at CNVs. Naturally, one may infer

             CNVs by checking the subregions where the LRR or read-depth is significantly different from

   the mean of rest.
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              The change-point model has a long history that traces back to the 1950s. See Page
              (1955, 1957), Chernoff & Zacks (1964), Gardner (1969) and Sen & Srivastava (1975) for the

              early developments of the change-point model with at most one change point. The data size
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             considered in those papers is also small. However, new applications call for more flexible

            models capable of detecting multiple change points scattered along a huge sequence. Recent

          developments include circular binary segmentation ( CBS, Olshen et al., 2004; Venkatraman

   & Olshen, 2007), 1          penalization (Huang et al., 2005; Tibshirani & Wang, 2008; Zhang

         et al., 2010), total-variation-penalized estimation (TVP, Harchaoui & Lévy-Leduc, 2010),

           fragment assembling algorithm (FASeg, Yu et al., 2007), screening and ranking algorithm

              (SaRa, Niu & Zhang, 2012; Hao, Niu & Zhang, 2013), likelihood ratio selection (LRS, Jeng,

            Cai & Li, 2010), simultaneous multiscale change point estimator (SMUCE, Frick, Munk &

           Sieling, 2014) and wild binary segmentation (WBS, Fryzlewicz, 2014) among many others.

            Hidden Markov model is another popular approach for CNV detection (Fridlyand et al.,

               2004; Wang et al., 2007; Szatkiewicz et al., 2013). Yet the hidden Markov model relies on

          some application specific-assumptions valid only for certain copy-number data. Zhang (2010)

            provided a comprehensive overview on CNV detection as an application of the change-point

              model. Roy & Reif (2013) compared the performance of a f ew recent CNV detection methods

  under various scenarios.

              As an application of the change-point model, inferring CNV is regarded as a very challenging

               problem since the CNV subregions are usually very short and hidden in a very long sequence.

               The size of detectable CNVs typically ranges from a thousand to millions of base pairs (bp).

              The International HapMap 3 Consortium (2010) shows that the average size of total CNVs in

                the individual genome is 3. .5 0± 5 Mbp (0.1%). As an illustration, we analyze the SNP array

             data collected from the Autism Genetics Resource Exchange (AGRE; Bucan et al., 2009) which

            contain three parallel LRR sequences of a father--mother – offspring trio. Figure 1a depicts the

               LRR sequence of the mother’s whole genome and clearly illustrates that it is impossible to pick

                  CNV out by eye. Figure 1b shows a zoom-in plot of one of the detected CNVs from the mother’s

               sequence whereas Figure 1c displays a histogram of sizes (in terms of the number of biomarkers)

             of CNVs which are commonly detected by the methods considered in this article, respectively.

                 The size of the entire LRR sequence in Figure 1a is 561,466, while the one CNV depicted in

                    Figure 1b has size 6. We would like to remark that the most of CNVs are very short ( as shown in

               Figure 1c) and hidden in a long and noisy sequence, which makes the detection non-trivial. We

            will revisit this data in Section 6 where a complete analysis is illustrated.

             In this context, a desirable CNV-detection method should be not only accurate enough to

              detect such short CNVs but also computationally fast enough to get estimates within a practically

               manageable time limit even for a very long data sequence. Toward this, we propose a new

F 1 Th b l ( ) h th h l f th th ’ LRR (b) d i t f
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                F I G U R E 1: The subpanel (a) shows the whole sequence of the mother’s LRR; (b) depicts one of
                 them from the mother’s LRR sequence of the AGRE trio SNP array data; and (c) is a histogram

        of length of CNVs commonly detected by several methods.
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          change-point detection method called backward detection (BWD) whose name comes from

            the backward variable selection in linear regression. BWD is computationally efficient, with a

                complexity log . Moreover, it performs very well inO n( n) to analyze a sequence of length n

              picking out closely l ocated change-points. Therefore, it is an ideal tool for CNV detection. The

             idea of the BWD is conceptually similar to Wald’s agglomerative clustering (Wald, 1963), but

               different in that the location information of the sequence data is employed naturally. We also note

              that our method for change-point detection can be viewed as a “bottom-up” strategy which has

              not been studied as extensively in the literature as “top-down” ones (such as binary segmentation)

           mainly on account of the computational intensity of “top-down” methods. Recently, Fryzlewicz

           (2018) proposed an efficient “bottom-up” method for the general multiple change-point detection

            problem by using what he calls the tail-greedy unbalanced Haar (TGUH) transformation. Yet,

              our numerical simulation shows that the TCUH often fails to detect short and sparse signals

    commonly encountered in CNV detection.

               The rest of the article is organized as follows. In Section 2, a normal mean change-point

             model and several popular detection strategies are introduced. In Section 3, the BWD method

               is described in detail. A stopping rule for BWD is developed in Section 4. The numerical

               performance of the proposed method is evaluated in Section 5, and illustrations to both log R

                 ratio data from SNP arrays and the RDs from aligned sequence data are given in Section 6. A

    discussion follows in Section 7.

  2. CHANGE-POINT MODEL

     A normal mean change-point model assumes

Y i  = i  + i         , , , ,i = 1 2 … n (1)

 with i   being iid N(0, 2    ). The means i         are assumed to be piecewise constant with K change

   points at t = (t1  , t2    , ,… t K)
T   . Denote t 0    = 0 and tK+1       = n for convenience. Change points are

     characterized by the property that i  =     for any i,   {t k     + …1, , t k+1     }, 0  k K , and

t k
  tk +1                  for 1  k K . Yet the number of change points K is typically unknown. The goal

               of change-point detection is to estimate both the number K and the location vector of change

               points t. Thus CNV detection can be regarded as a direct application of the change-point model

                (1). However, the CNVs are often very short and buried in a very long data sequence, which

             makes the problem even more challenging because of the high dimension of  = (1   ,… , n)
T .

             The normal mean change-point model (1) is often reasonable in CNV application on account

               of random noise during the experiments (Barnes et al., 2008). In other cases, data may need

              to be transformed. For example, raw RD data are discrete and spatially correlated on account

             of the complicated sequencing process, and hence the normal error assumption is not proper.

              Nevertheless, the local median transformation can be used to ensure its normality (Cai, Jeng &

 Li, 2012).

             Suppose that the number of change points, , is known, then the change-point detectionK

                 problem can be formulated in terms of minimizing the sum of squared errors (SSE). For a set of

 numbers Yi          with index i i n a s et , we define their SSE by SSE({Y i     , i  }) =


i(Y i −
Y )

2

where Y =
1

 


i Y i

           and   denotes the cardinality of the index set . Then change-point
          detection is to estimate by solving the following optimization problemt

min

K


SSE


Y i  t + 1  i t+1


(2)
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mint


=0

SSE


Y i   t      + 1  i t+1


 , (2)

    subject to 0 = t 0  < t1  < t 2   < <· · · t K  < t K+1  = n.
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             Note that (2) is inherently a combinatorial problem and very challenging for large n. T h e

     total number of different combinations is
n!

K n K!( − )!



n

K

K

      which can be huge especially in the

                application of CNV. This makes it difficult to detect change points by solving (2) directly not to

                  mention the fact that is typically not known. When is bounded, the exhaustiveK n is small and K

                search method has been studied by Yao (1988) and Yao & Au (1989). They showed that an

             exhaustive search with BIC is consistent for estimating K and t. To improve computational

            efficiency, dynamic programming can be applied to solve (2) with complexity of O n( 2  ) (Braun,

             Braun & Muller, 2000; Jackson et al., 2005). Killick, Fearnhead & Eckley (2012) developed

              an efficient algorithm named PELT that solves the problem with linear cost , but requiresO n( )

            additional assumptions which might not be practical in certain applications. In general, these

        methods have not been widely applied in CNV applications.

              We remark that the mean change-point model (1) can be equivalently reformulated as a linear

             regression model (Huang et al., 2005; Tibshirani & Wang, 2008) and the change-point detection

             problem is then viewed as a variable selection one. Motivated by backward elimination methods

             in variable selection, we propose a stepwise procedure called BWD to solve the change-point

            detection problem. Some stepwise methods in the context of change-point detection have been

           explored. For example, a classical binary segmentation method (BS; Vostrikova, 1981) applies

             a single change-point detection tool recursively, identifying one change point at a time, until

               some stopping criterion is met. We consider BS to be a forward detection method because it

               starts with a null model with no change point and sequentially detects change points, by analogy

               to the forward variable selection in a regression context. In spite of its simplicity, as pointed

                out by Olshen et al., (2004), forward detection is not able to detect short segments buried in

             a long sequence of observations, which limits its utilization in certain applications such as

              CNV detection. The CBS (Olshen et al., 2004; Venkatraman & Olshen, 2007) modifies BS by

            identifying two change points simultaneously and has gained great popularity in CNV detection.

              However, we observe from limited numerical studies that on the account of the forward detection

                nature of CBS, it is still unsatisfactory when the true segment (i.e., CNV) is very short. Moreover,

             CBS has higher computational complexity than the BS, which brings additional burden to dealing

  with big data.

 3. METHOD

    3.1. Why Not Forward Detection?

              In what follows, we elaborate why forward detection may fail to detect short signals, thus

             providing a clear motivation for the proposed BWD in CNV detection. Forward detection starts

                with no change point and tries to detect the very first one by solving the following optimization

problem

min
s 1

1

=0

SSE({Y i   , i  {s     + …1, , s+1  }}), (3)

    subject to 0 = s 0  < s1  < s 2  = n.

  The optimizer s 1               of (3) estimates one of the change points and divides the data into two parts

{Y i      , i  {1 2, ,… , s1   }} and {Y i   , i  {s 1               + …1, , n}}. We may apply (3) to each of these two parts

               to detect further change points and this can be continued until we have identified all change

points.

N h h l b f bi i f (3) i d h h di i i i
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               Note that the total number of combinations for (3) is and thus the corresponding optimizationn
             is feasible. However, as mentioned above the performance of forward detection may not be

              satisfactory in some situations. For example, if there are only two change points at t 1  and t 2
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 and i    = 0 i f i t< 1    or i t 2    and  if t 1     i t< 2         , the forward detection does not work well if

      the length of signal L t= 2  − t 1     is small while both t 1    and n t− 2      are large. However, this type of

             challenging situation is very common in the CNV applications as shown in Figure 1.

             To illustrate drawbacks of the forward detection, we consider a simplified scenario in which

        the locations of the two potential change points t           ,  = 1, 2 are known, but it is not clear whether

                 the associated mean  is actually changed (i.e.,  = 0 or not). Proposition 1 formally states that

             forward detection asymptotically fails even in this simple scenario unless is sufficiently largeL

  compared to n.

   Proposition 1. Suppose lim n t 1          =n c  (0 1, ) =and L t2  − t 1  = (O n      ) for some   [0 1, ].

                If  < 1 2 then the forward detection fails as n   (for an arbitrary given , 2).

             Proof. The first step of forward detection declares that the mean-change occurs at t  ,  =

 1, 2 i f  D n t, 
  = Y t

− Y n t− 
      is significantly large enough. Here Yt =

t

i=1 Y i  t and Y n t− =
n

i t= +1
Yi             (n t t− ), for a given  {1 1 ., ,… n − }

   To test for t1     , the sampling distribution of D n t, 1
    for a given  is

D n t, 1
   −+ L(n t1 )

 n


1

t1
+

1

n t− 1

  N (  0 1, )   , in distribution,

 where 2
n       denotes a consistent estimator of unknown 2        . Then it can be shown that the

               associated asymptotic power converges to the nominal level for any given pair of (, 2  ) if

lim n n− 1 2           L t= 0. A similar result can be shown for 2      as well, which completes proof. 

             Proposition 1 provides a necessary condition for forward detection in terms of the relative

                   length of the true signal length as a function of sample sizeL n. The order of , denoted byL

                 , should be larger than 12 for the original change-point model in which the change points t1

 and t 2            are unknown. Recently, Fryzlewicz (2014) showed that forward selection is consistent for

          recovering the true change points when is larger than 3/4.

  3.2. Backward Detection

             Contrary to forward detection, the BWD starts from the opposite extreme that every single

                position is assumed to be a change point. That is, we begin with n groups corresponding to

               these n − 1 change points and each group contains only one observation. We introduce notation

  = {1  ,  2    , ,…  n   } with  i = {i}.

             The BWD works by repeatedly merging two neighbouring groups into one. Note that the

             merging of two neighbouring groups will increase the total SSE. For any two neighbouring

                 groups, we use the rise in the SSE to quantify the potential of merging them together. At each

              merging step, we choose to merge two neighbouring groups with the smallest rise of SSE.

  Namely, we define

Ri  = SSE ({Y   ,    i    i+1   }) − SSE({Y   ,    i   }) − SSE({Y   ,    i+1  }), (4)

 where SSE({Y             ,   }) denotes the SSE for all observations with indices in .

                      At the beginning of iteration groups. Denote the currentm n= …0 1, , , − 2, there are n m−

  groups by ( )m

= {

( )m

1

 , 
( )m

2 

( )m
n m−         } and the corresponding potential of merging two neigh-
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= { 1 2    , ,… 

   bouring groups by {R
( )m
1  , R

( )m
2    , ,… R

( )m
n m− −1          }. The superscript is used to represent the mth iteration.

  Identify  = argmini n m= …1 2, , , − −1 R
( )m

i
     . Then we merge groups 

( )m

  and 
( )m

+1
   into a new group.
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     Updated grouping is denoted by ( + )m 1 = {
( )m

1
 , 
( )m

2
   , ,… 

( )m

−1
 , 

( )m


  

( )m

+1
 , 
( )m

+2
   , ,… 

( )m
n m−  } and

      potentials of merging is updated to {R
( )m

1
 , R
( )m

2
   , ,… R

( )m

−2
 , R

( )m

−  , R
( )m

+  , R
( )m

+2
   , ,… R

( )m

n m− −1  }, where

R
( )m

−
 = SSE ({Y   ,   

( )m

−1
  

( )m

   
( )m

+1
})−

SSE({Y   ,   
( )m

−1
  }) − SSE({Y    ,   

( )m

   
( )m

+1
 }), and

R
( )m
+  = SSE ({Y   ,   

( )m


  

( )m

+1
  

( )m

+2
})−

SSE({Y   ,   
( )m


  

( )m

+1
  }) − SSE({Y   ,   

( )m

+2
}).

              Now, the steps described above are repeatedly applied until a desired stopping rule is satisfied.

              The associated stopping rule is discussed in the following section. If the procedure is not

             terminated, only one group will survive at the end of iteration n − 2.

           Despite their structural similarity, the BWD is substantially different from forward detection,

                since the null and alternative hypotheses at each step are reversed. At each step, the BWD tests

             the equivalence between the two group means while the forward tests their difference. Therefore,

               the BWD tends to stay with more groups with smaller sizes unless there is strong evidence

                 to merge some of them and hence is more powerful to detect short s ignals buried on a long

                sequence. We also remark that the BWD starts with solving a series of local problems (each of

                 which focuses on finding structural changes in a small part of the data) and at the end becomes

              a single global problem that employs the entire sequence. On the other hand, forward detection

                 starts as a global method and divides it into several local problems. This is one of the reasons

             why BWD is preferred for identifying short signals in lengthy noise sequences, where local

        methods are known to outperform global methods in general.

        Finally, t he BWD algorithm can be summarized as follows.

 Input: Y1    , ,… Y n.

  1. Initialize 
( )1      = {{1} … {, , n}} and R ( )1 = {R

( )1

1
   , ,… R

( )1

n−1
  } from (4).

            2. At the m m nth iteration, = …1, , − 1:

   2 – 1 Obtain  = argmin i R
( )m

i
.

     2 – 2 Break the loop if R
( )m


           is larger than a prespecified cutoff, and go to the next step

otherwise.

 2 – 3 Update


( + )m 1 = {

( )m

1
   , ,… 

( )m

−1
 , 

( )m


  

( )m

+1
 , 

( )m

+2
   , ,… ( )m

n m− },

R( + )m 1 = {R
( )m

1
 , R

( )m

2
   , ,… R

( )m

−2
 , R

( )m

−  , R
( )m

+  , R
( )m

+2
   , ,… R

( )m

n m− −1
},

      K n m= − − 1.

 Output: ( )K .

3 3 Modification f or Epidemic Change Points
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     3.3. Modification f or Epidemic Change Points
               In CNV analysis, most parts of a sequence (normal) have a known baseline mean, say 0   , and a

   mean-change away from 0         (variant) is followed by a change back to 0     . This is often referred
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                to as an epidemic change points (Yao, 1993) and is an important feature of CNV analysis. To

               take into account such a pairing structure, we modify the algorithm by adding the following Step

2 – 2     between Steps 2 – 2 and 2 – 3.

2 – 2          If the sample average of observations in the merged sets, Y

( )m



( )m

+1

  is not significantly

     different from the baseline mean 0    , that is, v1 2 −1
n


Y


( )m



( )m

+1

 − 0


 > z  where z is

            the upper th quantile of a standard normal random variable and v =


( )m


  

( )m

+1

  , then

 update R
( )m

−  and R
( )m

+   based on 0  instead of Y

( )m




( )m

+1
.

            Finally, we have developed the bwd R-package, available on CRAN, that implements the

 proposed algorithm.

  3.4. Computational Complexity

            Computational efficiency is of practical interest in CNV applications due to their inherent

             high-dimensionality. At each iteration in the BWD, the most computationally intensive part is to

  find  = argmin i R
( )m

i
            which takes O n( ) at the worst. This gives the total complexity of O n( 2),

         which is too slow especially when n is very large.

             However, it is realized that finding the maximum and corresponding index is straight forward

 once R( )1               is ordered, which takes computations. Note that the sorting step is requiredO n( log n)

                   only once at the initial stage. Once it is sorted, it takes to find the maximizer index at theO( )1

         mth iteration while we need additional effort to update R( + )m 1     in an ordered fashion. However,

               such an update takes only O(log computations. In particular, we borrow the idea from then)

           bi-section method, a well-known root finding algorithm. We can first compare R
( )m
+  (or R

( )m
− ) to

      the median of the values in R( )m             . Compare it with the 75th percentile if it is greater than the

             median and 25th percentile otherwise. We continue this until finding its exact location. Finally,

             the t otal computational complexity of the BWD is then reduced to O n( log n).

  4. STOPPING RULE

                  In every step of the BWD, two small groups are merged into a bigger group and we want to

                test whether this merging removes a real change point. In such a standard case, it is natural

               to use the -statistic. Since the unknown variance is assumed to be homogeneous across all thet

                observations, a global estimate of the noise variance is used at every step. At the mth iteration

  the f ollowing statistic

S( )m =


Y
( )m


− Y

( )m

+1



n


 

( )m



−1

+  
( )m

+1

−1

 , (5)

             is used to determine when to stop. The backward procedure is terminated if S( )m   is too large.

Here 2
n

              denotes an estimate of the unknown noise variance based on all the observation. If the

           true signals are very short and sparse, the sample variance of Yi        can also be used in practice as a

              simple alternative. The use of a global estimate brings an additional saving in computation since

R = 2
n

S2
( )m

. We use 2
n

 = n−1


n

i=1 
Yi −

Y
( )h

i 
2

with Y
( )h

i
  = (2 1h + )−1


i h+

= −i h
Y   for a given

                 window h > 0 in the upcoming analysis as used in Niu & Zhang (2012). An alternative estimate
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              is the median absolute deviation estimator, as pointed out in Jeng, Cai & Li (2010).
     Similarly to the usual t-statistic, S( )m            in (5) may cause a false alarm when both of the two

                 groups have small size. To avoid the possible false alarm caused by small group sizes, we can set
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S( )m                = 0 if both of the two consecutive segments are shorter than a minimum number M . Th e M

                 can be chosen to be, say, 3 or 5 depending on the application. Such a modification is acceptable

               in CNV applications since it is very unlikely that any of two CNVs are closely located.

                Now, the question is how large the critical value should be to attain a desired target level

                 where denotes the familywise error rate (FER) of the proposed BWD. We remark that the

                 ( −  )1  2 th quantile of the t -statistic with the associated degrees of freedom will fail to attain the

   nominal level since S( )m           is correlated with other group means via the maximizer index  . We pro-

                pose the following numerical procedure to select a cutoff value that controls FER being at most .

                 1. Repeat the s teps (a) – (c) below B times: for each iteration b b B, = …1, , ,

              1-(a) Randomly generate a sequence of size n from the null distribution that there exists

  no change point.

            1-(b) Apply the backward procedure until merging the whole sequence into one group.

 1-(c) ub  = maxm n= …1, , −1 S( )m .

        2. The (1 − )th sample quantile of u1    , ,… u B         would be the cutoff value which attains a given

 level  .

             We remark that the cutoff value is chosen from the null distribution of max m n= …1, , −1 S( )m ,

 not S( )m                , thus  controls the FER. The very first step 1-(a) that simulates samples from the

             null distribution is crucial in the proposed numerical procedure. Toward this we consider two

            scenarios: (i) Normality is assumed to be true while a noise variance 2    is still unknown. (ii)

   Neither normality nor 2            are known. In the first scenario, we can generate samples form the

              standard normal distribution. Note also that this can be easily extended to any distribution other

             than normal distribution, whenever it is known. In the second scenario when the underlying

             distribution is not known, the null distribution can be obtained by randomly permuting or

  bootstrapping residuals r i  = Y i −
Y
( )h

i
      , , ,i = 1 … n.

         The proposed numerical procedure becomes computationally too intensive especially when

                the sample size is very large, for instance over a million, which is not uncommon in CNV

          applications. Under the normality assumption, we numerically investigate cutoff values for

                different . Figure 2 depicts estimated .= 0 01, .0 05 and 0.10 as functions of sample size n

                cutoffs for different sample sizes from 1,000 to 100,000 by 1,000 and it shows a clear log-linear

              relationship between the estimated cutoffs and the sample size . Thus desired cutoffs for largen

        n can be approximated from the fitted regression line.

  5. SIMULATED EXAMPLES

           We evaluated the performance of the proposed backward procedure via numerical comparison

              against existing methods. The target levels considered were  .= 0 01 and 0.05. We considered

            both the original BWD (BWD1) and the modified BWD (BWD2) for epidemic change-points

       under the assumption that the baseline mean 0         is known. As described in Section 4, there are

                two ways to obtain the cutoff values depending on how to simulate null samples. We can obtain

             a cutoff either from standard normal samples under the normality assumption (cutoff1) or from

              the permuted residuals if the normality assumption is not valid (cutoff2). We used the former

               in Section 5.1 with Gaussian error and the latter in Section 5.2 with non-Gaussian error. We

               considered CBS, WBS, LRS and TVP as competing methods. CBS is one of the most widely
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              used methods in the literature and shares principals similar to a typical stepwise approach with
             the proposed method. WBS is a recent development based on binary segmentation (i.e., forward

             detection) that overcomes its shortcoming when detecting a short signal. LRS is a carefully
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             F 0 0 0I G U R E 2: Log-linear relationship between estimated cutoffs ( = .01, .05, .10) and sample

                size under normality assumption. The (red) solid lines in (a) and (b) are fitted regression linesn

         of cutoffs on sample size n and log n, respectively.

               designed method for detecting sparse and short signals and is known to be optimal under some

            required model assumptions that include normality, and shortness and sparsity of the signals.

             In addition, we compared our method to a recently proposed bottom-up method, called TGUH

            (Fryzlewicz, 2018). TGUH is designed for a general change-point detection problem and our

            simulation s hows that TBUH is in pain when it detects a short signal.

      We considered the following mean change-point model

y i =



k=1

 k 1{ i I k}
 + i ,

 where I k                    , , , ,{1 … n} k = 1 … ,  denote index sets corresponding to true signals with I k   I k  =

     0 for any k k             ,  is the number of signal segments (i.e., CNVs), and k   , are unknown

      means of true signals. We set I k     = L and k            = = …, k 1, , , and hence the strength of

               true signals is controlled by . We considered two different noise distributions ofL and   

             including the normal distribution and the -distribution with degrees of freedom (df). We sett

               (n L, , ) = {1 3 5,000, ,000, ,000} × {5, 10} × {1 5 2 0 2 5. , . , . } with  = 1 for the normal model, and

               (L d,  ) = {5, 10} × {10, 5} with n = 1,000 and = 3 f o r t h e t-distribution model. The number

               of true segments was given by 1,000 and minimum distance between two true segments = n

            was set to 200. Numerical performance was evaluated based on 1,000 independent repetitions.

      We claim that the signal segment I k    is correctly detected by I k  if I k 
Ik      and I k   < 2 .L

           To measure performance of the methods the following two measures are considered.

           • Sensitivity: (# of correctly detected signals) / (# of true signals, )

           • Precision : (# of correctly detected signals) / (# of detected signals)

S i i i l h bili id if i l d i i li bili f
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             Sensitivity relates to the ability to identify true signals and precision measures reliability of
                 the detected signals. Note that both measures lie between zero and one (by setting 0 =0 0) and

           a method is perfect if both measures have a value of one.
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T               A B L E 2: Performances under normal error — BWD and LRS outperform CBS and WBS. The BWD with

               .= 0 05 (0.01) shows higher (lower) sensitivity but lower (higher) precision compared to LRS.

 L 5 10

       1.5 2.0 2.5 1.5 2.0 2.5

             n Methods Sen. Pre. Sen. Pre. Sen. Pre. Sen. Pre. Sen. Pre. Sen. Pre.

1,000

BWD

.01
            cutoff1 .195 .924 .581 .975 .919 .985 .646 .983 .960 .993 .998 .994

            cutoff2 .229 .909 .640 .965 .925 .982 .696 .971 .970 .983 .999 .985

.05
            cutoff1 .335 .819 .727 .910 .952 .933 .777 .914 .983 .939 .999 .945

            cutoff2 .335 .819 .726 .913 .950 .943 .773 .920 .982 .944 .999 .948

            CBS .165 .948 .555 .975 .900 .979 .648 .972 .972 .976 .999 .977

            WBS .176 .884 .570 .942 .909 .954 .634 .948 .971 .956 .999 .957

            LRS .216 .911 .638 .973 .942 .983 .701 .979 .984 .988 1.000 .989

3,000

BWD

.01
            cutoff1 .123 .966 .493 .990 .856 .995 .543 .992 .954 .997 .999 .999

            cutoff2 .161 .947 .578 .985 .902 .992 .610 .988 .965 .995 .999 .997

.05
            cutoff1 .229 .911 .653 .972 .926 .982 .700 .972 .980 .982 .999 .988

            cutoff2 .250 .900 .676 .964 .931 .976 .718 .968 .982 .978 1.000 .981

            CBS .103 .960 .490 .984 .882 .985 .572 .983 .974 .982 .999 .983

            WBS .079 .967 .399 .991 .819 .990 .470 .991 .938 .992 .999 .990

            LRS .152 .948 .553 .986 .898 .993 .606 .988 .972 .994 .999 .996

5,000

BWD

.01
            cutoff1 .116 .967 .482 .994 .863 .997 .532 .992 .945 .996 .999 .996

            cutoff2 .112 .971 .472 .995 .852 .998 .517 .992 .941 .997 .999 .997

.05
            cutoff1 .212 .936 .632 .981 .924 .991 .667 .981 .974 .989 .999 .991

            cutoff2 .213 .937 .623 .983 .917 .993 .664 .982 .974 .989 .999 .991

            CBS .088 .973 .468 .989 .890 .987 .551 .983 .966 .985 1.000 .987

            WBS .052 .985 .327 .994 .730 .995 .383 .994 .891 .995 .997 .995

            LRS .130 .962 .512 .992 .881 .996 .563 .992 .957 .997 .999 .997

  5.1. Gaussian Error

            In many applications including CNV detection, the normality assumption is often used. Although

            our backward procedure does not strongly require the normality assumption, it performs best

               under normal noise because of the use of squared error loss. Table 2 reports the performance

            of different methods considered in various scenarios under normality. Both the original and

            modified versions of BWD outperform the others except LRS in most scenarios considered.

                 This is because the true signal was very short (L = 5 and 10). LRS performed quite well.

            This is not surprising since the designed simulation model perfectly satisfies the assumptions

              required for LRS. The modification for epidemic change points is useful when the true signals

                are not strong. TVP was very fast, but gave too many false positives. TGUH showed very low
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               sensitivity indicating that it cannot detect short signals well. It is interesting to observe that BWD
              still performed comparably well in the sense that it outperformed LRS in terms of sensitivity

                    with  .= 0 05 and in terms of precision with  .= 0 01. It is another benefit of BWD that it
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T             A B L E 3: Performance under -distributed error — BWD outperforms all other methods for detecting shortt

signals.

 L 5 10

    df 10 5 10 5

        Methods Sen. Pre. Sen. Pre. Sen. Pre. Sen. Pre.

BWD1
        .01 .932 .990 .589 .982 1.000 .993 .968 .983

        .05 .965 .949 .879 .879 1.000 .952 .994 .942

BWD2
        .01 .936 .993 .606 .985 1.000 .996 .967 .986

        .05 .969 .952 .876 .893 1.000 .958 .993 .954

        CBS .853 .987 .287 .986 .998 .986 .864 .990

        WBS .981 .867 .939 .644 1.000 .865 .999 .651

        LRS .983 .711 .907 .338 1.000 .741 .999 .375

        TVP .997 .183 .974 .212 1.000 .204 .999 .230

        TGUH .273 .720 .545 .619 .391 .752 .699 .666

            controls the relative importance between sensitivity and precision through the target level .

              We also remark that BWD is simple and does not require stringent model assumptions such

 as sparsity.

  5.2. Non-Gaussian Error

          Performance of the change-point detection methods was evaluated under t-distributed noise.

               BWD does not require the normality assumption and hence is not overly sensitive to the violation

            of normality, whereas LRS does. Before applying LRS, we standardized the observations first

              by using the sample mean and sample standard deviation. We remark that such naive estimates

             should work fairly well for standardizing observation since the signals are very short compared

              to the entire sequence of data. Table 3 displays the numerical performance of the methods

              under consideration. The advantages of BWD are much clearer than in the previous setting with

                normality. CBS failed to detect true signals when the signal strength is not very strong while the

             backward procedure performed well in all the scenarios considered. Both WBS and LRS were

                good in terms of sensitivity but they detect too many false signals in this case. Again, BWD2

        outperformed BWD1 when the true signals were not strong.

   5.3. Empirical Test Level

           We numerically checked whether the backward procedure actually attains a target nominal

                level  under the null hypothesis that there exists no signal. Since the two versions of BWD

               show similar results we report the results of only the original version to avoid redundancy. We

               generated samples under the null hypothesis by letting 0 and reported the proportion of =

                  cases for which any signal is detected by each of the methods (Table 4). Recall that we have two

             scenarios. The first scenario assumes normality and uses “cutoff1” for the cutoff value. Hence

                 the levels are correct if the data are indeed from a normal model but cannot satisfy the nominal
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                 level if the data are from -distribution. In this case, the ‘cutoff2’ can be used as an alternativet
                  cutoff value and the results seem good enough to be used in practice. Note that there are a couple

               of cases in which ‘cutoff2’ failed to produce the nominal level, which was partially caused by

            DOI: 10.1002/cjs The C anadian Journal of Statistics / La revue canadienne de statistique



        378 SHIN, WU AND HAO Vol. 48, No. 3

T               A B L E 4: Estimated level — cutoff1 performs well when the normality assumption is true and cutoff2 can

       be used if the normality assumption is suspect.

  Normal t(10) t(5)

                Methods 1,000 3,000 5,000 1,000 1,000 n = n = n = n = n =

BWD

cutoff1
     0.01 .011 .013 .009 .032 .030

     0.05 .051 .046 .058 .077 .065

cutoff2
     0.01 .014 .018 .010 .007 .002

     0.05 .065 .070 .053 .052 .022

      CBS N/A .007 .011 .010 .003 .003

      WBS N/A .016 .005 .004 .112 .395

      LRS N/A .022 .028 .028 .388 .905

      TVP N/A .966 .609 .600 .968 .925

      TGUH N/A .030 .023 .019 .098 .210

            the uncertainty about the null distribution. CBS seems very conservative about detecting signal

               and both LRS and TGUH break down when the normality assumption is not valid. TVP failed

              again to control the type I error. As mentioned before, it is another distinguishing advantage

                 of the proposed BWD to be able to control type I error. This is practically attractive since the

          relative i mportance of sensitivity and precision varies depending on the application.

   6. REAL DATA ILLUSTRATION

      6.1. Trio Data from an SNP array

               The BWD is demonstrated for the SNP array data collected from AGRE (Bucan et al., 2009).

              The data set contains three parallel sequences of LRR for 547,458 SNPs over 23 chromosomes

   of a father--mother – offspring trio.

               All methods considered in Section 5 were applied except TVP and TGUH. For LRS, the data

               were standardized by the sample mean and variance. We set 05 and the corresponding .= 0

             cutoff value was approximated from the log-linear relation between cutoff and sample size under

               the normality assumption as described in Section 4. We applied each of the methods to each

              chromosome. Figure 3 shows the results for the first two chromosomes (chromosomes 1 and 2)

             of the offspring. The detect signals are marked as vertical lines. The parameter t  estimated by

               three methods, CBS, LRS and BWD, is indicated by different line types and colours. Note that

                 LRS detected only very short or sparse signals. We would like to point out that although all of

              CBS, WBS and BWD are developed under a similar framework, the results are quite different.

              For example in chromosome 2 (Figure 3b), CBS detects no change point after around 54,000th

         SNP position, while both the BWD and WBS detected several.

              The complete CNV detection results for the trio data are summarized by a Venn diagram

               in Figure 4 which reports the number of CNVs detected by different methods for each of

             trio (father/mother/offspring) as well as the collapsed data. We consider CNVs to be detected

                segments whose lengths in terms of the SNP index are between 2 and 200 bp. First, LRS

d d h l b f CNV h h i h d hil h j i

Printed by [U
niversity O

f A
rizona Library - 150.135.165.139 - /doi/epdf/10.1002/cjs.11535] at [07/11/2020].



             detected a much larger number of CNVs than other competing methods, while the majority
                (237356 66= .5%) were unique calls which are likely to be suspect as false signals. BWD called

                121 CNVs which was more than those from CBS (84) and WBS (100), while the number of

            The C anadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



       2020 A BACKWARD PROCEDURE FOR CHANGE-POINT DETECTION 379

               F I G U R E 3: CNV detection results for chromosome 1 and 2 of offspring — All of CBS, WBS, and

             BWD show quite different results. The vertical lines represent the signals detected by LRS.

                 unique calls by BWD was only 12.4% (15/121), fewer than any of the others (CBS: 34/82 = 41%;

                WBS: 17/100 = 17%). This can be interpreted that BWD showed the best precision if we assume

               that most CNVs uniquely called by a single method are false positives. Next, BWD missed only

                 2 CNVs that were identified by all other methods, while CBS, WBS and LRS missed 24, 8 and

             6 such CNVs, respectively, meaning that BWD outperformed others in terms of sensitivity as

                 well. Finally, 25 CNVs identified by all the methods can be regarded as true CNVs and used in

              Figure 1 in order to show that short CNVs are indeed common in real data.

             The genetic information is inherited from parents to offsprings and can be utilized for

               validation of the detected CNVs. Table 5 lists all the offspring’s CNVs that were detected from

                   one of both parents as well. All the CNVs in Table 5 are nearly, if not exactly, identical to the

              corresponding ones detected from the parents and thus those CNVs are considered as true. We
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                 would like to emphasize that most true CNVs are quite short and both of CBS and WBS miss
                many of them while LRS and BWD missed only one and three, respectively. We claim that some

                jointly detected CNVs from (at least one of) parents and offspring are still suspected to be false
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         F I G U R E 4: Venn diagram of detected CNVs (father/mother/offspring) — BWD identifies the

                 least number of unique CNVs most of which are likely to be false positives, while it missed only

                 2 CNVs that are identified by all the other methods, while CBS, WBS, and LRS missed 24, 8,

    and 6 such CNVs, respectively.

               if only a very minor portion of the detected CNVs overlapped compared to their entire length.

               LRS detected nine such suspect CNVs while CBS WBS, and BWD detected one, one and two,

respectively.

               In summary judging, from the real-data analysis for the trio SNP array, LRS tended to call

               too many CNVs that included many false positives while CBS and WBS missed some true short

              CNVs. We can conclude that the proposed BWD outperformed all the others. This is concordant

         to the findings in the simulation studies in Section 5.

     6.2. RD from NGS Sequencing Data

             We further illustrate the BWD on the RD data from high-throughtput sequencing data on

            chromosome 19 of a HapMap Yoruban female sample (NA19240) from the 1,000 Genomes

   Project. The RD yi                 of the ith locus (i = …1, , 54 361 060) was adjusted by the guanine-cytosine

             content. Although the data can be used to analyze genomic variants in higher resolution

             with the raw measure, as mentioned earlier the observed values highly fluctuate due to

         complicated sequencing process and require a proper normalization/transformation. To handle

             these difficulties, we considered a local-median transformation as motivated by Cai, Jeng & Li

                 (2012). In particular, we first partitioned the RD data into small bins of size M , and then applied

               BWD to the sequence of the medians of observations in each bin. The transformed data sequence

            is then well-approximated by a normal distribution regardless of the underlying distribution of

                the original data. If M is large, the data are more accurately approximated by the normal model,

b CNV h h b b l id ifi d (i i i i l l i )

Printed by [U
niversity O

f A
rizona Library - 150.135.165.139 - /doi/epdf/10.1002/cjs.11535] at [07/11/2020].



                but a CNV shorter than bp cannot be accurately identified. (i.e.,M M is a minimal resolution).
                As shown in Section 5, BWD is not overly sensitive to violation of the normal assumption and

            we set a relatively small number of M = 100 in the analysis.
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T               A B L E 5: Offspring’s CNVs detected from one/both of parents — for each of CNVs, starting SNP indices

       are presented along with the size in parentheses.

  I. With father

    Index CBS WBS LRS BWD

      1 22,369 (7) 22,369 (7) 22,369 (7)

    2 76529 (3) 76529 (3)

      3 163,327 (18) 163,331 (14) 163,331 (15)

      4 252,509 (2) 252,509 (2) 252,509 (2)

  5 325625 (6)

    6 359,377 (11) 359,372 (14)

    7 379,916 (2) 379,916 (2)

      8 392,433 (5) 392,433 (5) 392,433 (4)

        9 507,037 (6) 507,039 (4) 507,038 (5) 507,038 (122)

    10 561,443 (2) 561,443 (2)

  II. With mother

    Index CBS WBS LRS BWD

    1 130,814 (10) 130,814 (7)

    2 228,119 (6) 228,119 (6)

    3 277,328 (2) 277,328 (2)

        4 363,744 (9) 363,744 (9) 363,744 (9) 363,744 (9)

      5 414,247 (3) 414,247 (3) 414,247 (3)

    6 457,597 (3) 457,597 (3)

      7 519,555 (10) 519,555 (10) 519,555 (10)

        8 532,211 (7) 532,210 (8) 532,211 (7) 532,210 (8)

     III. With both father and mother

   Index LRS BWD Comments

    1 53,949 (2) 53,949 (2)

    2 152,827 (2) 152,827 (2)

       3 359,377 (11) 359,377 (9) CBS missed father.

       4 442,247 (4) 442,243 (8) WBS missed mother.

       5 547,470 (146) 547,459 (157) WBS missed mother.

                For BWD we set  .= 0 05 and the cutoff value was computed under the normal assumption.
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               BWD called 15 CNVs. Figure 5 provides zoom-in plots of some of the CNVs identified by
               BWD. The proposed method worked reasonably well for the NGS read-depth data as well as for

     the data after a simple transformation.

            DOI: 10.1002/cjs The C anadian Journal of Statistics / La revue canadienne de statistique



        382 SHIN, WU AND HAO Vol. 48, No. 3

              F I G U R E 5: Zoom-in plots of the CNVs identified by the backward detection from the NGS

              read-depth data: The CNVs can be detected directly from the NGS read-depth after simple local

 median transformation.

             Many existing CNV analysis tools for high-throughput NGS data employ CBS as a primary

               tool for identifying CNVs. We would like to remark that BWD can be a desirable alternative

         under the presence of short CNVs hardly detected by CBS.

 7. DISCUSSION

              We propose a BWD procedure for change-point detection and apply it to CNV detection. The

             proposed BWD is a simple procedure that can be readily employed for high-dimensional data,

               but it still performs very well, as illustrated with both simulated and real data, especially when

                the true signals of interest are short, which is often the case in CNV detection problems. Similar

               to CBS, BWD is a general approach for change-point detection problems that can be used in

             various applications besides CNV detection from which it was originally motivated, since it does

     not depend on any application-specific assumptions.

              The simple idea of the proposed BWD provides a possibility for further extension in various

              ways. First, the gain of a backward procedure compared to forward detection, including CBS, i s

              obvious for short signal detection. However, forward detection also has a clear benefit when the

                  true signal is long and the mean change is minor. Thus we can select either of the two depending

             on application. Moreover, we can develop a method that hybridizes between forward and BWD

             analogous to stepwise variable selection in a regression context. The idea is straightforward but

          requires additional effort to improve computational efficiency, especially for CNV applications.

           Next, we can extend BWD to loss functions other than squared L 2     loss. For example, the absolute

                deviance error can be used as a reasonable alternative in the presence of outliers. It is also

                 possible to generalize the idea to more complex structures such as a graph (Chen et al., 2015) by
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               introducing a proper loss function defined on the space of the complex data object. Finally, as
               motivated by the trio data, the backward idea can be extended to detect common signals shared

    by multiple sequences of observations.
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