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We propose a deep learning-based restoration method to
remove honeycomb patterns and improve resolution for
fiber bundle (FB) images. By building and calibrating a
dual-sensor imaging system, we capture FB images and cor-
responding ground truth data to train the network. Images
without fiber bundle fixed patterns are restored from raw
FB images as direct inputs, and spatial resolution is signifi-
cantly enhanced for the trained sample type. We also con-
struct the brightness mapping between the two image types
for the effective use of all data, providing the ability to
output images of the expected brightness. We evaluate
our framework with data obtained from lens tissues and
human histological specimens using both objective and
subjective measures. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.001080

An imaging fiber bundle (FB) contains thousands of single fiber
cores which can relay images from remote regions to digital
sensors. Due to its unique flexible feature, the FB has been
extensively used in medical endoscopy [1]. However, its
geometric nature introduces honeycomb-like fixed patterns
on its output images. In addition, effective spatial resolution
of an FB imaging system is limited by the individual fiber core
diameter and fiber density, rather than the optical system and
camera sensor. Therefore, there is a critical need to remove
honeycomb patterns and improve spatial resolution.

We classify existing methods based on whether a single FB
image is used for input or multiple FB images are used for in-
put. In the case of single FB image input, initial methods [2,3]
include spatial and frequency domain filtering and interpola-
tion, together with prior learning of the FB structure. These
methods remove the fixed pattern, but spatial resolution is
not substantively improved. Using multiple images as input,
existing methods digitally register FB images first and recon-
struct high-resolution images by calculating median images

[4] or using maximum-a-posterior (MAP) estimation [5], lead-
ing to gains in resolution due to the additional information
available in multiple images.

Recently, Ravi et al. [6] reported the first attempt to translate
neural network methods into FB imaging. They first removed
honeycomb patterns using interpolation and then applied neu-
ral networks to learn mappings from restored FB images to
ground truth (GT) images for further resolution enhancement.
Due to the lack of actual image data, they estimated pseudo GT
data for FB images by registering multiple frames from a micro-
endoscope, and then generated FB images from the pseudo GT
data. The accuracy of the pseudo GT image generation depends
heavily on image registration, which can be computationally
costly and erroneous as pointed out by the authors. Thus, ef-
ficiently obtaining accurately matched pairs of FB images and
their “real” GT data is critical for applying neural networks into
FB imaging domain.

In this Letter, we propose a method for restoring FB images
using deep learning. To acquire well-registered GT and FB im-
ages simultaneously, we built a dual-sensor imaging system. We
propose a generative adversarial restoration neural network
(GARNN) to learn a direct mapping from FB images to their
corresponding GT data. We normalize brightness for training
to make the best use of our data. To restore images, we similarly
normalize network input and reverse the normalization on out-
put to get approximately correct brightness. We report experi-
ments using lens tissues and three types of human histological
specimens. We find that we can remove the fixed-pattern noise
completely, and that hidden details are also significantly recov-
ered when the training and testing images are from the same
type. We compare the GARNN with two state-of-the-art resto-
ration neural networks and our MAP-based method [5] with
single image input. Both objective and subjective image quality
measures suggest that the GARNN reconstructs sharper images
free of the fixed pattern. We also evaluate our system using
cross-brightness experiments to show the robustness of our
model under varying illuminations.
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Figure 1 shows our dual-sensor imaging system for captur-
ing “one-to-one” pairs of FB and GT images. We used a silica-
based FB (FIGH-30-650S, Fujikura) containing 30, 000�
3, 000 cores with 600� 30 μm diameter and three identical
0.25 NA microscope objectives. To obtain GT images and
FB images simultaneously, we added a beam splitter to split
the light from Objective 1 into two paths. Path 1 is a typical
microscope configuration consisting of Objective 1, Tube Lens
1, and Camera 1, for HR imaging. In Path 2, Objective 2
focuses the light onto the FB, and Objective 2 and Tube lens
2 image the output surface of the FB to Camera 2 for FB im-
aging. Since Objectives 1 and 2 form a perfect 1:1 relay system
imaging the input surface of the FB to the object directly, Path
2 is optically equivalent to the imaging condition where the FB
contacts the object for FB imaging. We aligned the system us-
ing a 1951 USAF target by observing overlaid images from the
two cameras. Specifically, we adjusted the relative position
between the FB and Objective 2 until the two images were
aligned to less than one pixel.

Figure 2 shows the architecture of the GARNN. It consists
of a generative network and a discriminative network. We con-
struct the generative network by following a state-of-the-art re-
storation neural network design [7]. Block 1 serves as the input
layer of the FB image. It has 64 convolutional (Conv) filters
with a kernel size of 3 × 3 and uses rectified linear units
(ReLU) [8] for the activation functions. Blocks 2 to 16 contain
64 filters with a kernel size of 3 × 3 × 64. Batch normalization
(BN) is added between Conv and ReLU for faster convergence
[9]. The last Block, 17, outputs the restored clean image, and it
contains one Conv filter with a size of 3 × 3 × 64.

The objective function of this generative network, G, is the
content loss between FB and GT images given by

LContent �
1

N

X
kX − G�G�k22, (1)

where k · k22 denotes L2 norm, X is GT data, and G�G� rep-
resents the generative network output restored image with FB
imageG as input. N is the number of image pairs for one train-
ing iteration. However, by using content loss alone, this
approach usually leads to unwanted over-smoothing, where
output images lack high frequency information [10].

Thus, to obtain sharper and more realistic restored images,
we add a discriminative network by following the design
proposed by Ledig et al. [10] to perform adversarial learning.
This discriminative network is trained to differentiate between
restored and GT images, and helps the generative network learn
to output images that are more similar to GT data. In this
discriminative network, Block 1 is the input layer, which
contains 64 Conv filters and uses Leaky ReLU [11] as its
activation function. The layers in Blocks 2 to 8 have in-
creasing numbers of filters (kernel size 3 × 3) with strided
convolution. BN is added between Conv and leaky ReLu to
increase training speed. Block 9 is the output block, consisting
of two dense layers with Leaky ReLU and a sigmoid activation
function.

The loss function of this discriminative network, D, is:

LD � E�D�X �, 1� � E�D�G�G��, 0�, (2)

where E denotes the binary cross-entropy. Specifically,
E�p, q� � q log�p� � �1 − q� log�1 − p� and E�D�X �, 1� is the
binary cross-entropy between the discriminator’s prediction
on the GT image and the desired label 1. E�D�G�G��, 0� is
the binary cross-entropy between the discriminator’s decision
on a restored image estimated from the generative network
and the desired label 0.

Finally, by adding the content loss and adversarial loss, we
formulate the generative loss function of our GARNN as

LG � LContent � βE�D�G�G��, 1�, (3)

where E�D�G�G��, 1� is the adversarial loss term. We calculate
it as the binary cross-entropy between the discriminator’s pre-
diction on the restored image and label 1 so that our generative
network restored image output is encouraged to be like te GT
data. β is a tunable weighting parameter that depends on the

Fig. 1. Dual-sensor imaging system for capturing raw FB images
and corresponding GT data for the training neural network.

Fig. 2. Architecture of the GARNN. k is the kernel size, n represents the number of filters, and s is the stride size for each Conv layer.
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content loss data range, which varies for different kinds of sam-
ples. During training, we first initialize the network by only
minimizing the content loss by updating the trainable param-
eters in network G. Then we alternately minimize LD and LG,
with trainable parameters in both G and D being updated. In
testing, we use the trained network G.

To be able to experiment with different illumination con-
ditions, we captured four image pairs for each physical region of
the sample by adjusting the power of an external white LED
light source. In other words, each sample region has image pairs
under four different brightness levels. Initial experiments dem-
onstrated that normalization is more effective for handling
images of different brightness levels compared to training with
images of different brightness levels. Hence, in all reported
experiments, we use the brightness normalization method
described next. Such normalization is also called image whiten-
ing and has improved performance in some neural network
tasks [12].

To normalize the brightness of captured images, we subtract
off their mean intensity, μ, followed by dividing by their stan-
dard deviation (STD) σ of intensity. In training, we also fit the
two mapping relationships (μFB → μGT and σFB → σGT).
Figure 3 shows the mapping for the lens tissue experiment.
The red lines show the fitted regression model for μ and σ.
In testing, we normalize the test image, recording its μ and
σ, and then feed the normalized image into the network, to
get an estimated normalized restored image. We then adjust
the brightness of that output using the input image’s μ and
σ, and the mapping fit during training.

We first evaluated our method on lens tissue data. We
captured 800 × 800 image pairs for 79 (training) and 13 (test-
ing) distinct regions at four illumination levels. We normalized
these images and then extracted patches with a size 40 × 40.
Each patch had a 50% overlap with neighboring ones giving
39 × 39 windows per region and 480636 total training win-
dows. For each epoch, we broke the set of windows into dis-
joint subsets of size 128 (batch size). Each batch was the input
for an iteration of minimizing the loss function. We initialize
our network by only training the generative network with con-
tent loss for the first 50 epochs; then we alternately train both
discriminative and generative networks for another 50 epochs.
β was set to 0.15 for the lens tissue study.

We compared the GARNN with two state-of-the-art resto-
ration neural networks: (1) RED30 [13], which is a very deep
residual encoder-decoder network; and (2) a generative resto-
ration neural network (GRNN) [7]. GRNN only minimizes
the content loss in Eq. (3), and it can be considered as a special

case for the GARNN where β � 0. We also provide results
from our MAP method [5]. Despite being designed for multi-
ple FB frames, this method can efficiently remove fixed-pattern
noises and recover limited details for a single FB image due to
its Laplacian smoothing prior.

In Table 1, we use a peak signal-to-noise ratio (PSNR) and a
structural similarity index (SSIM) [14] to objectively measure
differences. Specifically, PSNR � 20 log10�Imax∕

ffiffiffiffiffiffiffiffiffiffi
MSE

p �,
where Imax is the possible largest pixel value, and MSE is
the mean squared error between a noise-free image (GT image)
and its noisy measurement (FB or restored FB image). RED30
and GRNN both achieve large PSNR and SSIM gains, and the
GARNN has a slightly smaller PSNR and SSIM.

As noted by others (e.g., [10]), the PSNR or SSIM is not
necessarily a good proxy for perceptual image quality. Hence,
we conducted mean opinion score (MOS) studies. We asked 10
raters to score all the restored images with an integral grade
from 1 (worst) to 5 (best) based on sharpnesses and visual image
fidelity compared to GT data. The last row of Table 1 provides
average MOS results. Our GARNN achieves the best MOS
among all three methods, since the GARNN is benefiting from
adversarial learning to output images more visually similar to
GT data [10].

Figure 4 shows the test results from one lens tissue sample
region. Images in (a) and (b) represent matched FB and GT
image pairs which are under four different illumination bright-
nesses. Images in (c)–(f ) show results from the MAP, RED30,
GRNN, and GARNN methods, respectively. All four methods
can efficiently remove fixed-pattern noises in FB images, but
images from the MAP have the poorest visual quality.
Furthermore, the images suggest that the GARNN is able to
reduce blur and reveal finer details than RED30 and GRNN.

Fig. 3. Plots for μ and σ mapping relationships from FB to GT
images in a lens tissue training dataset: (a) mean intensity μ mapping
and (b) STD σ mapping. Each blue dot is from one captured image.
The red lines mark the predicted linear models of μ and σ.

Table 1. Average PSNR, SSIM, and MOS Results for the
Lens Tissue Test Dataset

FB MAP RED30 GRNN GARNN

PSNR 19.4 dB 17.5 dB 31.8 dB 31.7 dB 31.4 dB
SSIM 0.54 0.80 0.89 0.89 0.87
MOS N/A 1.37 3.38 3.32 3.80

Fig. 4. Experimental results with a lens tissue under four illumina-
tions conditions: (a) raw FB images, (b) GT images, (c) results from
MAP, (d) results from RED30, (e) results from GRNN, and (f ) results
from the GARNN. The brightness increases from top to bottom.
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Next, we evaluate our GARNN under different illumination
brightness conditions by conducting leave-one-out-of-four
(LOOF) cross-validation experiments. Each time we train only
on images from three brightness levels and test on the images
with a left-out level. We compare this performance to training
on all four (TAF) illumination conditions. The PSNR results
for all levels (1 for darkest and 4 for brightest) are shown in
Table 2. We see that our model is insensitive to different
brightness conditions.

Finally, we trained our framework on human histological
specimens. Similar to the lens tissue experiment, we captured
FB and GT images from 73 (training) and 12 (testing) regions
for both stained human kidney and liver slides, again at four
different illumination conditions. We combined liver and kid-
ney training data to get 584 training images to study training
on multiple types. We also captured images for 12 regions of a
tonsil tissue only for testing. We set β to 0.6. All other training
parameters were the same as in the lens tissue experiments.

In Table 3, we show the average PSNR, SSIM, and MOS
results for each method and sample type using the liver-kidney
training data. All three neural network methods achieve signifi-
cant PSNR and SSIM improvements for all three test samples,
although, not surprisingly, the cross-type experiments on the
tonsil show less gains than the two that have representation in
the training data. The MAP method generally has less PSNR
improvement than the neural network methods, but is compa-
rable to that on the cross-type experiment. Since the MAP
method is not based on training data, we expect less advantage
for the neural networks on the tonsil data. For subjective MOS
studies, our GARNN shows the best perceptual performance
among all methods for all samples, including cross-type sample
tonsil. The qualitative results of this human specimen study can
be found in Fig. 5.

In conclusion, we propose a deep learning FB image
restoration method. We develop a dual-sensor imaging system
to obtain aligned GT data for FB images and a GARNN to

remove honeycomb patterns and improve spatial resolution.
The experimental results on the lens tissue and human histo-
logical samples show that our network can remove fixed
patterns in FB images and recover hidden information for res-
olution enhancement. Based on subjective MOS studies, we
further show that restored images are generally sharper and
more realistic with adversarial learning. Our future plans for
better restoration accuracy include collecting larger datasets
from extensive sample types and modifying the network to
exploit information from multiple input FB frames.

Funding. National Institute of Biomedical Imaging and
Bioengineering (NIBIB) (R21EB022378).
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Table 2. Cross-Validation Experiments for a Lens Tissue
Sample

Level 1 Level 2 Level 3 Level 4 Mean

TAF 35.1 dB 32.4 dB 30.1 dB 28.1 dB 31.4 dB
LOOF 35.1 dB 32.1 dB 30.0 dB 27.7 dB 31.2 dB

Table 3. PSNR, SSIM, and MOS Results for Human
Specimens Test Dataset, Trained Using a Combined Liver
and Kidney Data Set

FB MAP RED30 GRNN GARNN

Kidney PSNR 15.9 dB 18.7 dB 30.1 dB 30.0 dB 29.8 dB
SSIM 0.33 0.77 0.83 0.83 0.82
MOS N/A 1.31 2.93 2.95 3.81

Liver PSNR 16.6 dB 18.6 dB 30.3 dB 30.3 dB 30.2 dB
SSIM 0.34 0.77 0.84 0.84 0.83
MOS N/A 1.23 2.83 2.80 3.86

Tonsil PSNR 17.1 dB 24.6 dB 25.7 dB 25.7 dB 25.5 dB
SSIM 0.42 0.69 0.72 0.72 0.72
MOS N/A 1.40 2.55 2.59 3.07

Fig. 5. Experimental results with human histological specimens
(from top to bottom: kidney, liver, and tonsil). (a) Raw FB images,
(b) GT images, (c) results from MAP, (d) results from RED30, (e) re-
sults from GRNN, and (f ) results from the GARNN.
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