Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SIAM J. IMAGING SCIENCES © 2020 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 1717-1753

Solving Jigsaw Puzzles by the Graph Connection Laplacian*

Vahan HuroyanT, Gilad Lerman®, and Hau-Tieng Wub

Abstract. We propose a novel mathematical framework to address the problem of automatically solving large
jigsaw puzzles. This problem assumes a large image, which is cut into equal square pieces that
are arbitrarily rotated and shuffled, and asks to recover the original image given the transformed
pieces. The main contribution of this work is a method for recovering the rotations of the pieces
when both shuffles and rotations are unknown. A major challenge of this procedure is estimating
the graph connection Laplacian without the knowledge of shuffles. A careful combination of our
proposed method for estimating rotations with any existing method for estimating shuffles results in
a practical solution for the jigsaw puzzle problem. Our theory guarantees, in a clean setting, that our
basic idea of recovering rotations is robust to some corruption of the connection graph. Numerical
experiments demonstrate the competitive accuracy of this solution, its robustness to corruption, and
its computational advantage for large puzzles.

Key words. jigsaw puzzles, graph connection Laplacian, vector diffusion maps, Z4 synchronization
AMS subject classifications. 90C20, 90C27, 90C35, 90C90

DOI. 10.1137/19M1290760

1. Introduction. Solving jigsaw puzzles is an entertaining task commonly explored by
children and adults. It is also a challenging mathematical and engineering problem that oc-
cupies researchers in computer science, mathematics, and engineering. The solution of this
problem is useful for several industrial applications. One example is reassembling archaeo-
logical artifacts [5, 20, 30, 37, 40], where one tries to recover the shape of an archaeological
object from damaged pieces. Another example is recovering shredded documents or photo-
graphs [10, 19, 22, 24], where one tries to recover a document or a picture from small pieces
of it. Additional applications appear in biology [23] and speech descrambling [45].

The automatic solution of puzzles, without having any information on the underlying
image, is known to be NP hard [1, 11]. The first algorithm that attempted to automatically
solve general puzzles was introduced by Freeman and Garder [15] in 1964. It was designed to
solve puzzles with 9 pieces by only considering the geometric shapes of the pieces.

In this paper we consider a setting of “jigsaw” puzzles which is common in the imaging
sciences [2, 6, 16, 27, 29, 31, 38, 39]. In this setting, an image is cut into equal square pieces,

*Received by the editors October 2, 2019; accepted for publication (in revised form) July 7, 2020; published
electronically October 8, 2020.
https://doi.org/10.1137/19M1290760
Funding: This research was supported by National Science Foundation awards DMS-14-18386 and DMS-18-
30418.
tDepartment of Mathematics, The University of Arizona, Tucson, AZ 85721 USA (vahan-
huroyan@math.arizona.edu).
School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN 55455 USA (lerman@umn.edu).
§Department of Mathematics and Department of Statistical Science, Duke University, Durham, NC 27708 USA,
and Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan (hau.tieng.wu@duke.edu).

1717

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/19M1290760
mailto:vahanhuroyan@math.arizona.edu
mailto:vahanhuroyan@math.arizona.edu
mailto:lerman@umn.edu
mailto:hau.tieng.wu@duke.edu

Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1718 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

and the problem is to recover this image from the given pieces, which are possibly rotated
and shifted along the puzzle grid. We refer to these puzzles as square jigsaw puzzles. Some
examples are demonstrated in Figure 1. Gallagher [16] categorized these puzzles into three
types. In type 1 puzzles, the pieces are not rotated but shifted. In type 3 puzzles, the pieces
are not shifted but rotated. In type 2 puzzles, the pieces are both shifted and rotated. This
work aims to solve type 2 and type 3 puzzles.

Many proposals for solving the square jigsaw puzzles are based on greedy methods [2,
6, 16, 27, 29, 31, 38, 39]. However, greedy algorithms can easily get trapped in locally op-
timal solutions, which are not global. Some proposals also involve nongreedy constructive
methods [7, 32, 34], which are often combined with greedy procedures. This work proposes
a constructive framework for recovering orientations of puzzle pieces. The overall procedure
for recovering both orientations and locations requires various heuristics. However, it avoids
common greedy procedures in solving this problem. Our main purpose is to convey the effec-
tive use of the recent mathematical idea of the graph connection Laplacian [36] for recovering
orientations of type 2 puzzles. Unlike previous methods, it is easy to understand its construc-
tive mechanism and even guarantee some robustness to measurement errors in a clean setting.
In practice, we demonstrate robustness to corruption and computational efficiency for large
puzzles.

1.1. Previous work. Several algorithms have been recently proposed for the automatic
solution of square jigsaw puzzles [2, 6, 7, 16, 27, 29, 31, 32, 33, 34, 35, 38, 39, 42, 43]. The
problem becomes more challenging when the number of puzzle pieces increases and the sizes
of puzzle pieces decrease. Some of these algorithms only consider type 1 puzzles (see, e.g.,
[2, 7, 31, 32, 45]), since recovering orientations increases the possible comparisons between
two pieces by four and may also decrease the accuracy of solving the puzzle. The rest of these
algorithms focus on type 2 puzzles; [16] also separately discusses type 3 puzzles. Other models
of jigsaw puzzles and probabilistic results for their solutions are discussed in [4, 25, 28].

Cho, Avidan, and Freeman [7] proposed a probabilistic, graphical model approach to the
square jigsaw puzzle problem and discussed different compatibility metrics between puzzle
pieces. Yang, Adluru, and Latecki [42] proposed another probabilistic solution by using a
particle filter and a state permutations framework. Pomeranz, Shemesh, and Ben-Shahar [31]
proposed a greedy method, discussed a few compatibility metrics, and included some analysis
on how to pick the correct compatibility metric for their method. Gallagher [16] proposed
a tree-based reassembly algorithm which greedily merges components while respecting the
geometric consistence constraints. It runs in three steps: building a constrained tree, trim-
ming, and filling. Mondal, Wang, and Durocher [27] used the algorithm of Gallagher [16], but
they replaced its proposed metric with a combination of two existing metrics. They claimed
to achieve a more robust metric using this technique. Andalé, Taubin, and Goldenstein [2]
proposed a quadratic assignment approach, which maximizes a constrained quadratic function
via constrained gradient ascent. Jin et al. [18] proposed a scoring approach that, in addition
to considering edge similarity, also takes into account content similarity between puzzle pieces.
Paikin and Tal [29] proposed a greedy algorithm for handling puzzles of unknown size and
with missing entries. Sholomon, David, and Netanyahu [32, 33, 34] proposed a genetic algo-
rithm. In [35] they proposed a new deep neural network-based approach for the prediction of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1719

the likelihood of correct matches.

Son, Hays, and Cooper [38] incorporated the “geometric structure” of the square jigsaw
puzzle by searching for small loops (4-cycles) of puzzle pieces, which form consistent cycles, and
then hierarchically combining these small loops with higher order loops in a bottom-up fashion.
They argued that loop constraints could effectively eliminate pairwise matching outliers. Son
et al. [39] proposed a growing consensus approach that assembles pieces by multiple modest
bonds and uses a new objective function that maximizes consensus configurations. Yu, Russell,
and Agapito [43] proposed a linear programming-based formulation, which combines global
and greedy approaches. Their proposed solver simultaneously exploits all the pairwise matches
and globally computes the location of each piece/component at each step of the algorithm.
Chen, Cao, and Liu [6] proposed a greedy algorithm and combined several metrics to improve
the performance of this algorithm.

The only previous procedure for solving type 3 puzzles is by Gallagher [16]. It uses a
greedy and nonconstructive method. We are unaware of any previous constructive method
for finding the orientations of type 2 puzzle pieces.

1.2. Our contribution. In this paper we propose a novel approach to solving type 2
and type 3 jigsaw puzzles. For type 3 puzzles, we suggest a fast, robust, constructive, and
straightforward solution that uses the graph connection Laplacian (GCL) [36] (discussed in
section 3.1). For type 2 puzzles we propose a novel iterative algorithm which solves the
following two subproblems: The Rotation Problem (RotP) and the Location Problem (LocP):
RotP: Finding the orientations of all puzzle pieces.

LocP: Finding the locations of all puzzle pieces.

These two steps are iteratively repeated until the desired result is achieved. We solve RotP
by using the GCL, where the main challenge is to construct the GCL despite the unknown
locations. We solve LocP by applying any state-of-the-art solution of type 1 puzzles to the
puzzle obtained from the solution of RotP. Some information inferred from the solution of
LocP is further used to improve the solution of RotP.

All previous algorithms for solving type 2 puzzles simultaneously address RotP and LocP.
On the other hand, this work separately solves the two subproblems, with a constructive
and better understood solution of RotP. Moreover, we aim to present a principled approach
and thus avoid greedy steps that are common in previous algorithms and help improve the
accuracy. Empirically, the proposed method is faster than other methods for large puzzles,
e.g., with thousands of patches. We can also specify more easily the overall computational
complexity of our proposed components (excluding the borrowed type 1 puzzle solver). This
complexity is comparable to that of the most common component of any puzzle solver. Our
numerical results also demonstrate that our algorithm is more robust to corruption of the
sides of puzzle patches than other algorithms.

In theory, we verify robustness under a certain mathematical setting and contribute with
perturbation-type results to the general mathematical area of group synchronization. How-
ever, we would like to emphasize that the paper addresses a real applied problem, where it
is unclear how to make sufficiently good measurements, which are assumed by the theory.
We thus have two different components that may seem in tension. One is the clean theory
that justifies recovery of orientations given a special type of measurements. The other one is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1720 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

a set of methods, supported by numerical experimentation, with specific choices of measure-
ments of initial relative orientations and graph affinities between puzzle patches. The methods
include various heuristics, for example, for improving the latter measurements given better
information of patch locations. This is a first attempt to incorporate a successful puzzle solver
within a rigorous mathematical setting. We hope that with time the proposed mathematical
foundations and algorithms can be further improved and simplified.

1.3. Structure of this paper. This paper is organized as follows: section 2 mathemati-
cally formulates the square jigsaw puzzle problem; section 3 presents a solution for RotP, given
some initial measurements of relative orientations and graph affinities between puzzle patches.
It also theoretically guarantees the robustness of the solution to errors in the initial measure-
ments; section 4 explains how to measure in practice the initial relative orientations and graph
affinities for type 2 and type 3 puzzles. Note that the combination of this construction with
the method of section 3 provides the desired solution to RotP. While section 3 has a clean
formulation with a theoretical guarantee, section 4 relies on various heuristics, which we try
to motivate; section 5 describes additional heuristics for improving the initial measurements
and consequently the solution of RotP given the solution of LocP. It also summarizes our full
algorithm for solving square jigsaw puzzles; section 6 presents numerical experiments that test
the accuracy, efficiency, and robustness to corruption of the proposed algorithm using digital
images; Finally, section 7 concludes with a short discussion that includes possible extensions
of this work.

2. Mathematical formulation and notation. We mathematically formulate the square
jigsaw puzzle problem and introduce relevant notation in section 2.1. In section 2.2 we em-
phasize the main challenge in solving this problem. We remark that a more general formulation
appears in the accompanying supplemental material (M129076_01.pdf [local/web 965KB]).

2.1. Setting and notation. The setting of the square jigsaw puzzle problem assumes a
rectangle M = [a1,b1] X [az,be] in R? and open squares {P;}" ; that tile M. We refer to
{P;}?_, as patches and to the four nearest neighbors of a given patch (left, right, top, and
bottom) as neighboring patches. The setting further assumes a function f € L?(M,R¥) and
k > 1, so that the image to be recovered is the graph {(z, f(x)) : * € M C R?}. One may
use k = 1 for gray-scale images, k = 3 for color images, and higher k£ for multispectral and
hyperspectral images. In this paper we use £ = 3. Since a main challenge of the practical
problem is dealing with discrete images, we further assume that f is piecewise constant with
discrete values in the following way. Each patch is divided by a uniformly spaced grid into s x s
subsquares, and the vector-valued f is constant on each subsquare, where each coordinate of
the constant vector is discrete; for example, it lies in 0, ..., 255.

The setting also assumes arbitrary orientations and shuffles of puzzle pieces. It is sufficient
to represent all possible orientations with rotations by 0°, 90°, 180°, and 270°, which are
elements of the cyclic group Zy, and translations of patches {F;}i_; by {Fy( }iz;, where
o is a permutation of degree n. Therefore, we can write the set of image patches as Q =
{(Ro(iy(Poi)), Roiy © [P, ) tie1: where R, (;) is an element of the cyclic group Z4 and the
action o is defined by R; o f|p, := f (Rj_l)| p;- While we use a very formal notation, an image
patch is composed of a shifted and rotated patch together with the appropriately aligned value

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://epubs.siam.org/doi/suppl/10.1137/19M1290760/suppl_file/M129076_01.pdf

Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1721

of f. With this notation the square jigsaw puzzle problem can be expressed as follows: Given
M and the above set of image patches Q, recover the function f|j; or equivalently the image

Figure 1 demonstrates the particular instance of the square jigsaw puzzle problem we
discuss in this paper. We remark that the last column of this figure illustrates the image
patches Q = {(Ry(i)(P (i), Roi) © [P, ;) Hiz1 discussed above. We assumed above that f is
a piecewise constant function. In this figure, f has constant values on squares corresponding
to image pixels. Since the resolution is relatively high, one cannot notice that f is piecewise
constant. However, this is noticeable in the low-resolution demonstration of patches of another
puzzle at the top right image of Figure 2.

i
-

T

5
|

B

Figure 1. Ezamples of puzzles with 12 patches. Left column: The original image. Central column: Division
of the image into 12 square patches of the same size. Right column: The 12 patches are randomly reordered
and rotated.

2.2. A challenge of square jigsaw puzzles. We recall that the formulation of the square
jigsaw puzzle problem requires finding a permutation o and rotations {R;}}' ; C Z4. Equiva-
lently, one may solve for locations {z;}? ; on a uniform grid, representing the centers of the
patches, and rotations {R;}!" ;. In order to estimate these from the set of image patches Q
with a function f, one needs to rely on the similar function values on the sides of neighboring
patches. However, in our setting of digital images, f is often discontinuous in the direction
from one side of a patch to a side of a neighboring patch. The top right image of Figure 2
demonstrates this phenomenon for two patches selected from the puzzles shown in top left im-
age with lower resolution. Such discontinuity can result in loss of information for determining
neighbors and may lead to ill-posed problems.

There are also special images for which the puzzle problem is ill-posed. For example, the
bottom left image of Figure 2 demonstrates a case where several patches look very similar to
each other and it is impossible to determine the right permutation. Nevertheless, the output
of common algorithms given this particular puzzle is often visually acceptable. On the other

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1722 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

hand, the bottom right image of Figure 2 demonstrates a case where the image consists of
two parts that are disconnected by a uniform background. The background is the white sky,
one part is the main scene of the image, and the other part includes two short branches of
another tree at the top left corner of the image. In this case, it would be impossible to figure
out the exact position of the latter part of the image.

The following definition quantifies an ideal type of metric between sides of image patches
that, if it exists (i.e., if the problem is well-posed), can be used to solve the square jigsaw
puzzle problem.

Definition 2.1. Fiz an image I and a set of image patches Q := {F;, f|p,}’_;. A metric
defined on all sides of image patches in Q is called perfect if there exists ¢ > 0 so that any two
matching sides (of neighboring patches) have a distance less than ¢ and any two nonmatching
stdes have a distance greater than c.

The main challenge of solving reasonable instances of the square jigsaw puzzle problem is
to find a nearly perfect metric. Empirically, we have found that the Mahalanobis Gradient
Compatibility (MGC) metric, defined in [16] and described in section 4.1, is often near perfect
in well-posed cases.

3. A framework for recovering rotations of puzzle pieces. This section applies the frame-
work of [12, 36] for recovering the global orientations of puzzle patches. This framework re-
quires the construction of a graph whose vertices correspond to the puzzle patches and whose
edges connect neighboring patches. The rest of the section is organized as follows: section
3.1 forms the connection graph and its graph connection Laplacian (GCL) and explains how
to estimate the rotations of puzzle patches using this Laplacian; and section 3.2 theoretically
justifies the method described in section 3.1.

3.1. Estimation of orientations using the connection graph. The general connection
graph [36] G = (V, E, W, R) consists of four components: vertices V, edges E, the affinity
function (or weight function) W : E — [0, 1], and the connection function R : E — G, where
G is a given group. The first three components are determined by the weighted graph, and
the fourth depends on the application in which the graph is used. This formulation is most
natural for the problem of group synchronization, which is carefully reviewed in the first two
sections of [21]. In this problem, one is given a graph G = (V, E) with affinity function W
and needs to estimate for any vertex i € V' a group element g; € G from corrupted (or noisy)
measurements of group ratios gig;1 € G among all {i,j} € E. It is natural to form the
connection function by the given measurements.

In the particular case of the square jigsaw puzzle, G = Z4 and the connection function
for any edge {i,j} assigns the rotation represented by the block R][i,j], which was defined
in section 3.1. For convenience, we represent the affinity and connection functions by their
corresponding matrices W € R™*™ and R € R?>"*?"_ and thus write the connection graph
as G = (V,E,W,R). In this case, the group synchronization problem is referred to as Z4
synchronization. This is the underlying mathematical problem for recovering the orientations
of the patches. However, there are several practical considerations that make the problem of
orientation recovery of puzzle patches more complicated than the synthetic Z4 synchronization
problem. A primary issue is that one needs to find a way to measure the group ratios; that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1723

il |

Figure 2. Examples of square jigsaw puzzles, where the comparison of two neighboring patches is challenging
or impossible. The top left image shows a puzzle with 432 pieces, each of size 28 X 28. The top right image
demonstrates an example of 2 neighboring patches in the latter puzzle that have different pizel values around
the boundaries due to the discrete nature of a digital image. These patches are circled with red in the original
puzzle (top left image), and their nearby sides are circled with red in the top right image. The bottom two
images demonstrate examples of puzzles that have patches with uniformly white sides (circled with red in the
bottom left image) and also have some uniformly white patches. Natural solutions of the bottom left puzzle
seem to yield visually correct images that may not coincide with the original assignment. However, there are
natural solutions of the bottom right puzzle that result in different images than the original one. Indeed, the
small component of the image circled with red can be placed in different areas within the skies.

is, a connection function needs to be estimated from the given puzzle patches. Another issue
is that erroneous location assignments of patches may result in a poorly estimated connection
function.

If one has a perfect metric (recall Definition 2.1) for the square jigsaw puzzle, the ideal
connection graph is formed as follows. The vertices represent patches in 9, the edges connect
neighboring patches, and the weights are 1 for all edges and 0 otherwise. The underlying
group Z4 can be represented either by the four complex numbers {1,4, —1, —i} with complex
multiplication or by the following four 2 x 2 matrices:

ERiN R Ead R

(1

~—

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1724 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

with matrix multiplication. Note that if i < j and {i, j} is an edge connecting patches P; and
P;, then RJ[i, j] is a rotation in G = Z4 whose application to P;, together with an appropriate
plane translation, results in P;. Throughout the paper we use the representation of Z4 in (1).

For possibly imperfect scenarios of the square jigsaw puzzles, the vertices are formed as
above, but one needs to construct meaningful edges, affinity function, and connection function
(with G = Z4). A heuristic construction of these is suggested for type 2 and type 3 puzzles
in section 4.3 and section 4.2, respectively. Here we propose a general heuristic that uses a
given connection graph of square jigsaw puzzles to estimate the unknown orientations of the
patches. This heuristic is later justified in section 3.2 under special assumptions. The main
idea of this heuristic is to use the GCL for inferring global information (in the form of a certain
eigendecomposition) from local information (needed to form the GCL).

Next, we review several matrices associated with a general connection graph. Recall that
the functions W and R are defined on the set {1,...,n}x{1,...,n}, where n is the number of
puzzle pieces. Thus, from now on, we denote these functions by their corresponding matrices
W € R™ ™ and R € R?™*?" respectively. Note that R is a block matrix whose 2 x 2 blocks
represent two-dimensional rotations. For 1 < i,j < n, we denote by R][i,j] the [i,j]th 2 x 2
block of R. We index blocks by [7, j] and matrix elements by (4,j). The connection graph is
thus G = (V, E, W, R). The connection adjacency matriz is an n x n block matrix S with
2 x 2 submatrices, where for 1 < ¢,j < n the (7, j)th submatrix is

The degree matrixz is an n x n block diagonal matrix D, where for 1 < i < n, its ith diagonal
submatrix is

(3) Dli,i] = d(i)I5, where d(i) =Y W(i, ),
J#i

where Iy is the 2 x 2 identity matrix. We define C := D~'S§ as the graph connection weight
(GCW) matrix. We define the (normalized) GCL matrix as I — C. In practice, we directly
form the GCW matrix and use its eigendecomposition. Clearly, this is equivalent to using the
eigendecomposition of the GCL matrix, and we thus refer to our method with the term GCL.

The GCW matrix is associated with a random walk whose transition probability matrices
are W (i,4), 1 <1i,j <n. This can be seen by its action on a block vector v € R?"*2, whose
nth 2 x 2 submatrices are

. Voj— Voj— .
v[]] — 2] '171 2] ‘1,2 c R2X2, 1 S ] S n7
V25,1 V25,2

in the following way:

v)[i] = Wi, J) i, jlvlj
ooli= 3 [Zk:@-,k)@; W(z‘,k)] Ri o).

That is, a block vector v[j] is rotated by R]i, j| and is assigned to the ith patch with probability
W(i,5)/ ki pyee W (G k).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1725

To recover the global orientations of the puzzle patches, we follow the procedures of [3, 36].
First, we form the block vector U € R?"*? whose columns are the top 2 eigenvectors of C.
Then, we project each of the 2 x 2 blocks of U onto Z,4 (that is, we replace each block with
its closest element, with respect to the Frobenius norm, in (1)) and use the resulting blocks
as the global orientations. Algorithm 1 summarizes the above straightforward procedure of
recovering the unknown orientations of the image patches for a given square jigsaw puzzle.

Algorithm 1 The GCL algorithm.

Input: Connection graph: G = (V, E, W R)
Construct the Connection Adjacency Matrix S by (2)
Construct the degree matrix D by (3)
Let C=D'S
Form U € R?"*2 whose columns are the 2 top eigenvectors of C
e For 1 <i<mn,let R; € Z4 be the projection of the ith block of U onto Z,
Return: Global rotation matrices Ry,..., R,

We emphasize that the GCL algorithm for recovering the orientations of patches is non-
greedy. Indeed, it directly constructs the orientation of patches using the information in the
connection graph via diffusion. On the other hand, other methods, such as [16, 31, 38, 39],
try to greedily match pieces based on their relative orientations. We also mention that the
GCL algorithm does not use any knowledge of the size of the puzzle image or, equivalently,
of the number of puzzle pieces per length or width of the image.

3.2. Theoretical justification of the GCL algorithm. We show that the proposed esti-
mation of orientations for type 2 puzzles is robust to incorrect measurements, where incorrect
measurements are mistakes in estimating the connection graph. The three puzzles in Figure 2
exemplify cases where incorrect measurements are expected due to indistinguishability or low
resolution of patches. Incorrect measurements can also arise due to mistakes in estimating
patches’ locations. Indeed, such mistakes result in incorrect estimation of the connection
graph.

We distinguish between the ground truth solution (or “true” solution) and the estimated
one. We denote by Fiue the set of “true edges,” that is, edges connecting neighboring patches
of the true solution. We find it most natural to define (V, Eiye) as the underlying uniform grid
for the patches. Nevertheless, there is some freedom in defining (V, Eiyue). For example, if one
wants to also emphasize diagonal edges, then (V, Eiye) can be formed by adding these edges
to the uniform grid. These two different choices of (V, Eirye) can make a slight difference in
the estimates of our proposed theory described below. Using the prefixed indexing of patches,
we define the true affinity function

1if {i,7} € Eirue,

0 otherwise,

(4) Wtrue(imj) = {
and the true connection function

. R,RY if {i,j} € Fyue,
(5) Rtrue[l,j] — { Jj { J} t

0 otherwise,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1726 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

where Ry,..., R, are the rotation matrices of the rotations Ry, ..., R, defined in section 2.1.
Note that unlike Eirye, Wirne and Ryyye are unknown to the user. Let Gest = (V) Eesty West, Rest)
denote the estimated connection graph. We remark that the graph (V, Ees) may be rather
different than (V, Fiue) as the user can have some uncertainties about connecting patches.
Finally, denote by Clest the GCW matrix corresponding to Gest.

The following perturbation theorem states that if the estimated connection graph is a good

approximation of the true connection graph and certain conditions hold, then the estimated
rotations are close in some sense to the underlying rotations. To be more specific, we denote
by Vet € R?™*2 the matrix whose 2 columns are the top eigenvectors of Ceg. Recall that
the estimated rotations are obtained by projecting the blocks of this matrix onto Z4. We
denote the set of underlying rotations by Ry,..., R, € Zs. We further denote by R the
block matrix in R?"*2 whose n blocks are these underlying rotations. The theorem claims
that under some conditions, the principal angles between the column spaces of Vg and R,
are sufficiently close. Note that there are only two such angles, 61 and 02, and recall that they
can be computed as follows: sin(f;) = cos™!(o1) and sin(f2) = cos™!(03), where o1 and o9
are the singular values of VL, Rt .
We use the following notation: sin(O(R, V)) denotes the 2 x 2 diagonal matrix with
diagonal elements sin(f;) and sin(f3) (specified above); || - || denotes the Frobenius norm;
dmax denotes the maximal degree of the estimated graph (using the oo matrix norm, we can
express it as dmax = ||[West||co); for a set E' C E, ¢ denotes the second smallest eigenvalue
of the normalized graph Laplacian of the graph G’ = (V, E’) (a precise formula for ¢ g is given
at the end of the proof of the theorem). Using this notation we express below the closeness
of Vs and Rt which we further discuss and interpret after proving the theorem.

Theorem 3.1. Let Ggue = (V, Egrues Wirue, Rirue) be the ground-truth connection graph,
where Wiye and Ryrye are as defined in (4) and (5). Assume that a user estimates this connec-
tion graph from possibly corrupted data with the connection graph Gest = (V, Festy West, Rest),
which has maximal degree dymay, and that there exwists a set E' C Eiue N Fost satisfying the
following properties: (V, E') is a connected graph;

(6) Rest[iaj] = Rtrue[iyj] fOT' {17]} € El;
there exist € > 0 and cq,...,c, > 0 such that

1 o W) We(i,5)\°
0 max =] .Z. (Wtr“e(z’])_i * Z : =
g, YeR’ J{i g

and there exists v > € such that

(8) mln Z Wtrue(iy ])/dmax > ’Y

1<i<n &
J{igrer’

(0) I DRSS Ve < 2y 7(

L.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1727

Proof. We denote the restriction of the affinity and connection functions, Wiue and Rirye,
onto the edges in E' by W1, .. and R}, ., respectively. The corresponding connection grauph7
connectlon adjacency matrlx diagonal matrix, and GCW matrix are denoted by G}, =
(V,E' W e Rirue)s Strues Dérue, and Cf, . € IR{2"X2”, respectively. In addition to the above
notation for the estimated connection graph, we denote its connection adjacency matrix and
diagonal matrix by Si,,. and D, respectively. Following (3), we denote the diagonal
elements of D ., and Dest by dirue(i) and dest(i), @ = 1,...,n. Note that the maximal
degree of the estimated graph can be expressed as follows: dmax = maxj<i<p dest(i). Let
Vi e € R?"2 denote the matrix whose 2 columns are the top eigenvectors of C}, .

We note that division of the ith row of the affinity matrix W by the constant ¢;, where
1 <4 < n, does not change the GCW matrix of (V, E, Weg, Rest). Thus, we can assume,
without loss of generality, that ¢; = -+ = ¢, = 1. Using this assumption and the definition

of Wi, ., we rewrite (7) as

n

Z( {nrue(z J) West(iyj))Q < €.
j=1

1
(10) o g —

We further note that the assumption in (8) can be rewritten as

(11) d

true

(1)/dmax >y forall 1 <i<n.

The proof of Theorem 3.1 consists of three steps.
Step I. We prove that

2n € 1
12 Ciw—C < — (1 .
(12 [Cle— Cusllr < 4/ = & (14 L)

This result is analogous to Lemmas 3.1 and 3.2 of El Karoui and Wu [12] but uses the Frobenius
norm instead of the spectral norm and has weaker conditions in (7) and (8). El Karoui and
Wu [12] also allow a very small perturbation of the connection function restricted to E’, but
in the special case of Z4, this assumption is equivalent to (6).

Using the definitions of C7},, . and Ces, we express and then bound the left-hand side
(LHS) of (12) as follows:

true

1 _
(13) HDltrue true est estHF - ||D/true ( true — Sest) <D/true - Des%) SestHF

1 1 _
< ”D,true ( ;:rue - SESt) HF + (D,true - Des%) SeSt F

We follow with bounding the first term of the right-hand side (RHS) of (13):

14 HD’true true - Sest) HF = H( {crue/dmax)il ( érue/dmax — Sest/dmax) ’F

§ ‘ (D;rue/dmax)_lHQ H( /true/dmax - Sest/dmax) HF .

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1728 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

We then control the first multiplicative term in the RHS of (14) using (11):

(15) H(ljérue/dmax)_lH2S max dmax S

We next control the second multiplicative term in the RHS of (14), where we follow with
justification

(16)
1S rue/dmax — Sest/dmaXH%“ = Z Z 1 ruelis J] est[iaj]H%“

maxil]l

ZZ ||Wtrue i j R‘/crue[ivj] - ReSt[ivj]) + (Wérue(i’j) - WeSt(ivj)) RESt[iaj]H%‘

maxz‘u 1

ZZ e(57) = Wesi (i, 1) | Restliy ][|% =

maxilj 1

. . 2ne?
ZZ Wtrue i j WeSt(Zvj))2 — d2 max true WeSt<Z7]))2 S dn6

max =1 j—1 max 1<Z<n —

max

The third equality uses (6) and the fact that Wi, . = 0 for {i,j} ¢ E’, the fourth equality
uses the fact that ||Rest[i,j][|% = 2, and the last inequality uses (10). Combining (14), (15),

and (16), we bound the first term of the RHS of (13):

2n €
| HD’ (Siue — Ses H < -2 E
( 7) true true t) P dmax’Y

We control the second term in the RHS of (13) below in (21). In order to pursue this, we
need to bound several terms. We start with the following bound and then justify it:

HD;rue/dmax - Dest/dmaxH = max |dtrue( )/dmax — dest (i)/dmax‘

1<i<n
1 n
= W/ Wes '7 .
(18) 121%)% Amax JZ:; ( true( ) t(Z j))
1 n
S pax Z (Wérue('ivj) - West(i,j))Q <e.

1<i<n \| dmax 4

7=1
The first inequality is a direct application of Cauchy—Schwarz and the fact that for each
1 <i < n at most dmax of Wio(i,7) — West(i,7) are nonzero. In order to realize the last
fact, we recall that £’ C FEg so we only need to check this fact when {i,j} € Ees \ E'.
In this case, Wi,,0(7,7) = 0 and W (4, ) satisfies the required property due to (11). The
last inequality follows from (10). Note that (18) implies that des(i)/n > di,,(i)/n — € for

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1729

1 <4 < n. Applying this inequality and then (11), we obtain that

1
19 H Des dmax _IH = des ) dmax _1: N .
(19) || (Dest/dmax) || fg@%( +(2)/ dmax) min1<ren Aot (7)o
1 1
< — — < .
mini <i<p (dyye(i)/dmax —€) = 7 — €

Using the facts that for all 1 <4, j < n, 0 < Weg(i,5) < 1, and ||Resi[i, j]||7 = 2, we
conclude that
(20)

2n
HSest/dmaXHF < lglf;)én dm o | Sest[? J]HF = rax lgl’?)é |W et (1 ])‘ (| Restli, J]HF o

The above first inequality is due to the fact that each column and row of Ses contains at
most dpax nonzero elements, so the LHS is bounded by ndpa.x times the maximal squared
Frobenius norm of a block. The latter fact follows from the argument described below (18).
Combining (15), (18), (19), and (20), we bound the second term in the RHS of (13) as follows:

| (P = D) S, < 1St sl | ( (Dot nas) ™! = (D))

S ||Sest/dmax||p H (D,true/dmax) - (D/true/dmax - Dest/dmax) (ljest/dmax)i1 H2

21 _
( ) S Hsest/dmaxHF H (D/true/dmax) 1H2 H (D/true/dmax - Dest/dmax) H2 H(Dest/dmax)_1H2
2n €
Amax V(Y —€)’

Clearly, (13), (17), and (21) imply (12).
Step I1. This step uses the Davis—Kahan sin © theorem [9] to prove the following inequal-
ity, where \o(C%,,.) and A3(C%,,.) denote the second and third largest eigenvalues of Cf

true rue’
respectively:
2 /d2n € (1 + 1 5)
(22) | sin®(V mex 7 1

Ve < )
true St) HF A2 (C/true) )‘3(Cérue)

We use a specific variant of Davis—Kahan according to [44]. This variant implies that

(23) [Isin©(Vie, Vst )l F

< 2 min (\/i”cérue - CeSt||2’ Hcérue - CeStHF) < 2HCtrue - estHF
N )‘2(Cérue) )‘3(C£rue) N AQ(Ctrue) )‘3(C;rue)

The combination of (12) and (23) implies (22).
Step I11. This step shows that V.., = R, and A2(C;me) A3(Ctyye) = ¢pr and thus in
view of (22) it concludes the proof of (9). We denote by Dt]rue € R™ " the reduction of the

matrix D'ye € R?"*2" obtained by replacing each of its 2 x 2 scalar blocks, {d}e()I2}% 1,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1730 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU
with diagonal elements, {d{,..(¢)}",. The correspondlng normalized weight matrix is Wi =
Dtrue true- Clearly, the largest eigenvalue of the is 1, it has multiplicity 1 (since E’ is
connected), and its eigenspace is spanned by a column vector of ones in R", which we denote
by 1nx1.

We next relate the eigendecomposition of VVtm3 to that of C|

true

Let A1, ..., A, denote the
eigenvalues of the in decreasing order, and let Iy, ...,1, € R" denote the corresponding or-
thogonal eigenvectors, each with norm y/n. Thus, for all 1 < i, k < n, Z?Zl W/;rue(i,j)lk(j) =
Akli(i). This equation is equivalent to the following one: »7%_, ﬁ;/true(i, j)RiR?lek(j) =

—~
Ml (1) R;. Since CY, .0, 5] = Wtrue(i,j)RiR;fF for all 1 < 4,7 < n, the last equation can be
written as

true*

n

Z true Z .] lk )R] = )\klk(Z)Rz

This equation can be further written as C},,.[i, /]Ur = AUy, where for 1 < k < n, Uy € R?>"*2
satisfies Uy[i] = lx(i)R; for 1 < i < n. Note that the 2n columns of Uy,...,U,, form an
orthogonal system and that we obtained a one-to-one correspondence between the eigenvalues

and eigenvectors of VVtrue and Cf, -
A first implication of the above property is that 1 is also the largest eigenvalue of Cf,,,, with
multiplicity 2. Furthermore, since l; = 1,,x1, U1 = R{St.. By definition, V7, = U; and thus,

true
as clalmed Ve = R . Another implication of this property is that A2(C%,0) —A3(Clrne) =

Al(Wtrue) )\Q(W;rue) =1- )\g(f/‘v/;rue) Recall that ¢p is the Second smallest elgenvalue
of the normalized graph Laplaman which can be written as I — Dtrue tre = I — Wtrue
Therefore, ¢ppr =1 — )\Q(Wtrue) = X2(Cliue) — 23(Clrye), as claimed. [ ]

For square jigsaw puzzles, Theorem 3.1 implies that if one can construct a connection
graph and find a connected subgraph of it that satisfies (6)—(8) with e/¢pp = O(1/y/n),
then Algorithm 1 can nearly recover the correct orientations. More precisely, the estimated
rotations of Algorithm 1 are obtained by projection onto Z4 of a block matrix whose column
space is sufficiently close to the column space of the block matrix of the underlying rotations.

There are several conditions that need to hold in order to imply the conclusion of the
theorem. We review them and discuss whether they are reasonable for our proposed method.
The first condition is the most restrictive one for our proposed method. It requires (V, E’) to
be connected. In the case of puzzles with uniform regions (such as the ones demonstrated at
the bottom of Figure 2), the edges in Fqs obtained by our proposed method, and possibly most
methods, may arbitrarily connect patches in these regions while maintaining a small degree for
each patch. These edges can be very different from the ones of Ei,e, and thus the intersection
of (V, Eest) with (V, Egyye) may result in a disconnected graph. Since E' C Eipye N Eest, (V, E')
will also be disconnected in this case of uniform regions. Nevertheless, under this setting of
uniform regions, the mathematical problem does not have a unique solution and is generally ill-
conditioned. None of the tested algorithms performed well in this setting when using standard
reconstruction metrics; however, most solved puzzles with uniform regions that looked similar
to their ground truth solutions. For nonuniform regions of natural images, this condition is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1731

more reasonable to request from our proposed method. The other requirement is that the
connection function is correctly estimated on (V) E’) (see (6)) and we also find it reasonable
for nonuniform regions of natural images. We note that we can obtain the requirement in
(8) with v = ©(1) if we assume that dpay is sufficiently small and that (V, E’) is connected.
Indeed, the latter assumption implies that the LHS of (8) is positive, so that v > 1/dpax. Our
construction trims many unnecessary edges (see section 4) so that dpyax is either at most 8 or
slightly larger than 8, where the typical 8 neighboring edges include the 4 nearest ones and
4 diagonal ones. Therefore, (8) with v = ©(1) is a reasonable requirement for our proposed
method. At last, we clarify the condition in (7), where we further discuss the typical size of
€ below. First, note that the constants cy,..., ¢, used in this condition are needed because
W e (i, j) obtains values in {0, 1}, whereas W (7, j) can obtain various nonnegative values.
The underlying assumption of (7) is that the needed proportion ¢; for patch i is similar for
“all neighbors.” That is, when {¢,j} € E’, the scaled value of Wg(7,7) by ¢; is close to the
binary weight Wie(7,7). Moreover, if {i,j} ¢ E’, this scaled value is close to zero. One
may expect such an assumption in some practical instances. For example, if the image is
continuous at a patch, then the affinities with the nearby patches are all expected to be large
and comparable. Similarly, if the image is discontinuous with respect to all neighbors of a
patch, then all neighboring affinities are expected to be very small. Therefore, such a constant
¢; may be chosen for each patch. We remark that our proposed algorithm for solving type
2 puzzles (Algorithm 4) aims to assign very small affinities whenever there is any possible
inconsistency in the construction of the graph connection Laplacian. Such an assignment
aims to guarantee that the second sum in (7) is sufficiently small. Nevertheless, we cannot
really guarantee that our heuristic choices work in practice. We also comment that given
the order of e established below, condition (7) is rather sensitive. Indeed, if for {i,j} ¢ E’,
Wirue(7,j) = ©(1), then this condition is violated.

As we mentioned above, in our construction dpax = (1), where often dp.x < 8 or slightly
larger than 8, and thus we can choose v = O(1). Therefore, as long as ¢/¢p = O(1/+/n) the
bound in (9) is sufficiently small. That is, the perturbation bound in (7) is more restrictive as
the size of the puzzle increases and ¢ decreases. To get a better idea of ¢/, we can assume
a puzzle grid with lengths and widths of order y/n. If the graph (V, E’) is a lattice, then by
direct application of Cheeger’s inequality, ¢ = ©(1/4/n). Similarly, in the worst case of a
path, ¢pr = O(1/n).

A few additional remarks are in order. First, the conditions of the theorem are sufficient
but not necessary. Second, one may use in the proof above another variant of the Davis—
Kahan sin © theorem according to [13] and consequently obtain a bound similar to (9), but
controlling the infinity norm, and not the Frobenius norm. Third, while we think of (V| Eiyye)
as having a grid-type structure, one can assume in theory a general graph (V, Egye). At
last, the theorem can be easily generalized to any group synchronization and not just to Z4
synchronization. This generalization can be possibly applied to other puzzles, such as 3D
puzzles or nonsquared jigsaw puzzles.

4. Connection graph construction for type 2 and type 3 puzzles. As we have discussed

in section 3.1, if we are given a perfect metric, we can easily construct the connection graph.
However, there is no perfect metric that would work for all images. For example, if part of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1732 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

the image contains a region with a uniform color, such as sky or ocean (see the images in the
second row of Figure 2), the metric between the sides of the image patches from this region
will be close to zero. Thus, all these patches should be wrongly identified by a perfect metric
as neighbors. Therefore, the idea of finding a perfect metric and using a threshold to identify
neighbors may not lead to a correct affinity graph. Instead, we suggest iteratively updating
the graph construction while identifying possibly incorrect edges and reassigning zero or small
affinities to them. Nevertheless, our initial estimate of the graph affinities is based on the
Mahalanobis Gradient Compatibility (MGC) of [16], since empirically it seems to be nearly
perfect in well-posed cases. We review its construction in section 4.1. The constructions of
the graph affinities and GCW for type 3 and type 2 puzzles are described in section 4.2 and
section 4.3, respectively.

4.1. Gallagher’s MGC metric. We review the construction of the MGC metric [16]. This
metric between sides of patches quantifies the proximity of the gradients computed at each
side. It outputs a symmetrized version of the Mahalanobis distance between the vector of
gradients of one side and the estimated distribution of gradients at the other side, where the
distribution is represented by its estimated covariance.

We assume two neighboring image patches P; and P; of size s x s. There are four different
relative positions of P; and P;. We assume without loss of generality the left-right relative
position (P; on the left and P; on the right) and compute the corresponding MGC, which we
denote by MGCy,(F;, Pj), as follows. For each color channel ¢ (red, green, and blue) and each
row r, 1 <r < s, of the s x s patch P;, we find the derivatives near the right side of the image
patch P; in the direction left-right as follows:

Gip(r,c) = Pi(r,s,c) — Pi(r,s — 1, ¢).

The subscript L in the above equation indicates that patch P; is on the left side of the patch P;.

To avoid some numerical problems, Gallagher [16] suggests adding the 9 “dummy gradients”

(0,0,0), (1,1,1), (-1,-1,-1), (0,0,1), (0,1,0), (1,0,0), (-1,0,0), (0,—1,0), and (0,0,—1)

as additional rows of the matrix G;;,. The extended matrix in RGET9%3 g denoted by éiL.
Next, for each color channel ¢ we define

1 S
pip(c) = 5 Z Gir(r,c).
r=1

The regularized covariance matrix 3, € R3*3 between color channels is

1 - - - -
= p—” S(GiL — mean(GiL))T(GiL —mean(G;r)),
where
} 1 9 1<
mean(GiL) = PR ;GiL(T7 C) = s+ 9 ;GiL(T, C)'

We also define G;jir(r), the derivative from the left s x s image patch P; to the right s x s

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1733

image patch P; at row r and color ¢, by

GijLR(T’ C) = Pj(?", 17 C) - -P’i(ra 370>'

The left-to-right compatibility measure from P; to P; is defined by

Dir(P;, Pj) = Y (Giir(r) — pip)Zi (Gijir(r) — pi)"

r=1

Similarly, one can define the right-to-left compatibility measure from P; to P; in the same
left-right setting, where P; is to the left of P;. The left-right MGC metric then has the
symmetrized form

(24) MGCy(P;, Pj) = Dir(F;, Pj) + Dru(P;, B).

The right-left, top-bottom, and bottom-top MGCs, denoted by MGCy (P, P;), MGCyy,(P;, Pj),
and MGCyy (P, Pj), respectively, are computed similarly.

4.2. Connection graph construction for type 3 puzzles. For type 3 puzzles, the locations
of patches are given. Furthermore, edges are drawn between neighboring patches. The affinity
function is set by W (i,7) = 1 for all {i,j} € E. One need only find the unknown orientations,
that is, the unknown connection matrix R.

To construct the connection function we propose using the MGC metric described in
section 4.1. For all neighboring patches P; and P;, we calculate the possible 16 values of the
MGC metric (corresponding to the 16 relative positions of P; and P;) and select the smallest
of these numbers and its corresponding rotation RJi, j]. If there is no unique minimum among
these 16 values, we suggest assigning W (i,7) = 1/2 (or another value smaller than 1) and
letting RJi, j] be the mean of the candidate rotations that obtain the minimal value.

4.3. Connection graph construction for type 2 puzzles. We propose the following step-
by-step procedure for constructing the affinity graph, the affinity function, and the connection
function for type 2 puzzles and then summarize this procedure in Algorithm 2. The rest of
this section is organized as follows: section 4.3.1 discusses the initial step of constructing the
connection graph; section 4.3.2 discusses the Jaccard index and explains how to use it to update
the affinity function; section 4.3.3 describes how to deal with the cases when the connection
graph is disconnected; section 4.3.4 describes how to find and use diagonal neighbors in order
to construct a more reliable connection graph.

4.3.1. Initial step. We start with an initial construction of the directed graph G =
(V, Eest). The vertex set V' contains the patches in Q. The edge set Feg is updated by
the following procedure. In order to describe it, we denote by R - P the action of the rota-
tion R € Z4 on the patch P. For a patch P;, we find the patches P; , P, P;,, P;, and the

b?

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1734 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

corresponding rotations RJi, it], R[i, 1], R[i, ], R[i, ] € Z4 such that

{P,,, R[i,it]} € argmin MGCy(P;, R- P),
PeQ,REZy

{P,, R[i,i1)} € argmin MGCyu(P;, R P),
PEQ,R€Z4

RJ[i,i,]} € argmin MGCy,(P;, R - P),
PeQ,ReZy

{P,,, R[i,i;]} € argmin MGC (P, R-P).
PcQ,REZy

(P

ih

The set Fest of directed edges contains the edges that connect each vertex with index ¢,
1 <4 < n, to the vertices with indices i, 7, ip, and 4,. Note that these indices solving (25)
may not be unique, and we consider all solutions of (25) when forming Fegt.

We next modify the directed graph G' = (V, Eeg) into an undirected graph. We use the
default parameter 0.01 and form an initial affinity matrix Wiy € R™ ™ whose elements for
1<4,5 <nare

1 if both (7,7) and (j,7) € Fest,
(26) Winit(4,7) = Winie(J,4) = < 0.01  if only one of (4, 7) or (j,i) is in Fegt,

0 otherwise.

Figure 3 demonstrates the above construction for a particular patch.

Next, we enforce the constraint that, for square jigsaw puzzles, each patch can have at
most one neighbor for each direction by trimming some edges that are likely not neighbors.
This is done as follows. Assume without loss of generality that patch P; has more than one
neighbor in the top direction and denote these neighbors by F;,,..., F;, , where k > 1. Then
we solve the minimization problem

(27) J € argmin MGCy (FP;, R[i,i;] - P;,).
1<5<k

We remark that since (26) makes the graph undirected, P;,...,P;, might contain more
patches than the ones obtained from (25). Therefore, the optimization problems (25) and
(27) can be different. In particular, a unique solution of (25) might become nonunique for
(27). If (27) has a unique solution, we keep the edge {i,%;} and remove the rest of the edges.
Otherwise, we remove all edges {1, ; };‘?:1 from E. The procedure is analogous if P; has more
than one neighbor from left, bottom, or right. If edges were eliminated from Feg, then the
matrix W, is updated so it is zero on the corresponding indices. This process results in the
following initial connection graph: G = (V, Eest, Winit, R).

The construction of this graph uses a nearest-neighbor construction. For a high-noise
regime, El Karoui and Wu [12] recommend avoiding a nearest-neighbor construction. However,
due to the special lattice structure of the true graph, the nearest-neighbor initial construction
is natural for the square jigsaw puzzle problem.

4.3.2. Use of Jaccard index to refine the graph. Next, we refine the connection graph
by trying to assess the validity of the edges and decrease the weights of edges that do not

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1735

W, (i, )=0.01

init

Figure 3. Demonstration of the initial step for the construction of the connection graph. The left figure
demonstrates the best matches for a given patch from the four directions: top, left, bottom, and right. For each
matching patch it records the rotation whose application to this patch results in correct matching with the central
patch. The right figure shows the application of these rotations to the matching patches and demonstrates how
to assign the weights to the undirected graph. In this example, the matching patches from top and left were
originally connected by a single direction; their weights in the undirected graph are thus 0.01. On the other hand,
the patches from right and bottom are connected in both directions, and thus their weights in the undirected
graph are 1.

seem valid; that is, they may not appear in the true connection graph. The idea is to check
after removing an edge whether its neighbors are still connected in some weak sense to each
other. If so, then the edge seems to be valid, and otherwise, it may not be valid. For this
purpose, we use the Jaccard index [17].

The description of this index uses the following notation in a graph G = (V, E). Given a
vertex i, 1 <i < |V, let Nclz,i denote the set of vertices in V' which are connected to vertex 1,
that is, Nclu ={j € V|{i,j} € E}. Using our terminology, Nai contains the neighbors of 1.
The set Né,i contains all vertices that are at most 2 steps away from vertex 7, except vertex
i. That is, Néi = UjeNé’i NCI;J. \ {i}. Finally, let G\() = (V, E\ {(i,)}) denote the graph

with the edge (7, ) removed. The sets Né}i and Néﬂ- are demonstrated in Figure 4.
By using this notation, we define the Jaccard index between vertices ¢ and j as

(28) MJaccard(i7j) = |Né\(i,j)ﬂ' n Né\(i,j)7]‘| )

where | - | denotes the cardinality of a set. This definition is similar to the one in [17], but
there are two differences. The first one is that we consider the graph G\(*9) instead of G to
emphasize the common neighbors, while excluding the obvious pair (7, j). The second one is
that we do not divide by |Né\(m iUNé\(m') j|. The latter division does not matter to us as we
only care about the positivity of this index. Figure 5 demonstrates calculation of the Jaccard
index for a special example.

Note that the chance of two vertices i and j being neighbors in the graph (V) Fegt ) is higher
if yaccard(?,J) > 0 than if pyaccarda(?,7) = 0. Thus, we propose using the Jaccard indices to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1736 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

Figure 4. Demonstration of the sets Ncl;yi and Ng;Z A given vertex i is colored in red, the elements of the
set NCI;J are colored in blue, and the elements of the set Néﬂ- are colored in blue and orange.

Figure 5. Demonstration of Jaccard index. Vertex i is denoted by a red circle, and vertex j is denoted by
a red cross. The edge between these vertices was removed from the grid. The elements of Né\(,;wj) ;, are denoted

by blue circles and the elements of Né\(i’j)‘j by orange crosses. The Jaccard index is four since there are four

elements in N2, ;) . N N2

o i NG (denoted by blue circles filled with orange crosses).

refine the connection graph. We use another weight matrix W jaccara € R™*", defined as

0, {Z,j} € Fet and HJaccard(iuj) =0,

(29) Wiaceara(i: ) = W accara (1) = { Winit(i,7) otherwise.

Since this procedure might also remove many correct edges by zeroing out the correspond-
ing values of the affinity function, we propose a linear combination of Wiy and W jaccard
with larger coefficient given to W jaccard- In our experiments we use the default parameter
0.2 (and 0.8 =1 —0.2) to set

(30) Wnb =0.2 x Winit + 0.8 x WJaccard

and form the affinity graph G = (V, E, W, R).

4.3.3. Making the affinity graph connected. The procedures described in section 4.3.1
and section 4.3.2 might result in a disconnected affinity graph G as demonstrated in the left

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1737

Figure 6. Demonstration of a disconnected affinity graph and the way it got connected. The left figure
shows an example where the resulting affinity graph using our method is disconnected. Indeed, the two top right
patches are not connected to any of the other patches. The black edges connect between true neighbors, and the
only red edge is a wrongly determined edge. The right figure demonstrates the result of the simple procedure
described in section 4.3.3. The connected graph has two new blue edges. While these blue edges connect between
nonneighboring patches, the originally disconnected patches are uniformly white, and thus their rotations do
not matter for the reconstruction of the image.

image of Figure 6. To complete G so it is connected, we first find all connected components
of G. Assume that there are k connected components with corresponding vertices V1, ..., Vi
that partition the set of vertices V. Assume further that they are labeled by descending size
order, i.e., [Vi| > V|- > |Vi|. Next, we find vertices i € V; and j € V' \ V; that minimize
the MGC metric between the patches P; and P;. Mathematically, we find

{i,7,0} € argmin min{MGCy,(P;, O - P;), MGCy,(P;,O - P)),
(31) i€V\V1,jEV1,0€Zy

MGCu(F;, O - P}),MGCiy (F;, O - P))}.

If the solution of (31) is not unique, we randomly choose one solution. We then add the edge
{i,j} of the chosen solution to Eey and update the weight as follows:

(32) Wi, j) = Wi (j,4) = 0.005, RJi,j]=0, and RJ[j,i]=O".

We remark that 0.005 is a free parameter chosen to be half the size of the parameter 0.01
in (26). We iterate the procedure described above for Vs, ..., Vi until the graph becomes
connected. The number of iterations needed is k — 1 since there are k connected components
and at each iteration we connect the largest component with a remaining component.

4.3.4. Taking advantage of 4-loops. We refine the constructed connection graph by using
the following property of the square jigsaw puzzle: If two patches P; and P; are diagonal
neighbors, then there exist exactly two other patches P, and P,, and a cycle containing the
vertices i, n1, j, and no. This idea is demonstrated in Figure 7. Such a cycle of 4 vertices
is referred to as a 4-loop in [38]. In this latter work, 4-loops were used to solve the puzzle
problem. We use them to define a better connection graph. As we have already discussed, for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1738 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

a uniform grid, each patch can have at most 4 direct neighbors (right, top, left, and bottom).
Furthermore, each patch has at most 4 diagonal neighbors. Exactly four diagonal neighbors
are obtained for a patch in the interior of the puzzle, a single diagonal neighbor occurs for a
corner patch, and there are 2 diagonal neighbors for a patch that lies on the boundary of the
uniform grid but not on a corner.

For patches P; and P; we define

(33) Sdiag(i,7) = NG OV NG -

We observe that patches P; and P; are diagonal neighbors in the uniform grid if and only if
ddiag(i,7) = 2. To find the diagonal neighbors for graph G = (V, E) we propose a two step
procedure. First, we find the set of all pairs of vertices {i,j} € V' x V for which 0giag(i,7) = 2.
For each such pair {i,j} there exists another pair {ni,ns} such that

(34) Ncl;'ﬂ N Né,] - {nl, nQ},
or, equivalently, ¢, n1, 7, and no are contained in a 4-loop. We set

1 when 64iag (i, j) = 2 and Rli, n1]R[n1, j] = R[i, no] R[na, j],

(35) W diag (i, j) = { 0 otherwise.

If Waiag(i,7) = 1, we add a diagonal edge between vertices ¢ and j and assign the following
value to the connection function:

We remark that the condition RJ[i,n1|R[nq,j| = R[i,no]R[ne, j] in (35) is naturally satisfied
in the ground-truth graph as demonstrated in Figure 8. Therefore, when it is satisfied and also
ddiag(i,7) = 2, the maximal weight of 1 is assigned to the corresponding diagonal edge. We
note that dqiag (4, j) = 2 if and only if dgiag(n1, n2) = 2, R[i, n1]R[n1, j| = R[i,n2]R[ns, j] if and
only if R[n1,4|R[i,na2] = R[ny, j]R[j, no] and thus W giag (4, j) = 1 if only if Wgiag(n1,n2) = 1.

We further update blocks of the matrix W, so that their weights align better with the
diagonal weights. We denote by Wy ([4, j], [n1,n2]) the 2 x 2 submatrix of Wy, indexed by
(i,n1), (i,n2), (j,n1), and (j, na). We fix the default parameters 1/3 and 2/3 and describe the
assignment of W, ([¢, j], [n1,n2]) in the following formula (though algorithmically one does
not need to implement it per each block):

Won((illnal) i 650 (i,7) = 2 and
R[Za nl]R[nlaj] ?é R[Z7 n2]R[n27j]7

(37) Wnb([iaj], [nl, NQD = 12><2 if (deag(i,j) =2 and
R[i,n1]R[n1, j] = R[i,ns] R[no, jl,

2Wnb([i7§}7[n17n2]) OtherWise.
\

We note that if {4, j} and {ni,n2} are diagonal edges satisfying the rotation condition, then
we enforce weight 1 for the nearest neighboring edges in the corresponding 4-loop: {i,n1},

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1739

Figure 7. Demonstration of finding diagonally neighboring vertices in a uniform grid. Two vertices i and
j are denoted by a red circle and a red cross, respectively. The elements of the sets Ncl;yl- and Né’j are colored
by blue and orange, respectively. The intersection of these sets yields the two diagonally neighboring vertices to
i and j. Together with i and j they form a 4-loop.

{i,ma}, {j,n1}, and {j,n2}. If they are not diagonal and do not satisfy the rotation condition,
then we decrease the existing weights of these neighboring edges by a factor of 2/3. If the di-
agonal condition, dgiag (%, j) = 2, holds but the rotation condition does not, which is somewhat
contradicting, we reduce the weights of the former neighboring edges by a factor of 1/3.

We note that the support sets of Wy, and W g, are disjoint. We set

(38) W = Wnb + Wdiag,

and this is the final step of constructing the connection graph G = (V, Eeg, W, R) for square
jigsaw puzzles. The full algorithm of this construction is summarized in Algorithm 2.

5. Solution for type 2 puzzles via GCL and location solver. This section completes the
solution of type 2 jigsaw puzzles. It assumes the formation of the connection graph according
to Algorithm 2, solution of the correct orientations by Algorithm 1, and then application of an
existing location solver. The new component is a procedure for updating the affinity function
and the connection function based on the estimated rotations and locations. One can then
estimate again the orientations and locations and repeat this procedure several times. This
procedure and the complete solution of type 2 puzzles that uses this procedure are summarized
below in section 5.1. At last, section 5.2 summarizes its time complexity.

5.1. Updating the affinity and connection functions and the resulting solution. By now
there are many successful solutions to type 1 puzzles. According to our numerical tests, the
stand-alone algorithms for solving type 1 puzzles of both Gallagher [16] and Yu, Russell, and
Agapito [43] are highly competitive. We have often noticed a slight advantage of the latter
algorithm, which applies a linear programming procedure. Therefore, we use the algorithm of
Yu, Russell, and Agapito [43] (under the “fixed-rotation mode”) as a default solver for type 1
puzzles in our algorithm. One could use instead any algorithm that solves type 1 puzzles.

The basic idea for updating the values of the affinity and connection functions is that
a given estimated solution for the orientations and locations can be used to infer possible
mismatches. These identified mismatches could be used to reassign values for the affinity and
connection functions that may lead to a more accurate solution.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

1740 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

Figure 8. Intuition for the requirement in (35) and (37). The two vertices i and j are diagonal neigh-
bors, and the vertices n1 and n2 satisfy (34). Thus, i, j, n1, and na form a cycle of size 4, that is, a
4-loop. The relative rotations between vertices are indicated on the corresponding edges. We note that both
RJ[i,n1)R[n1, j] and R[i,n2]R[n2, j] are equal to the relative rotation RJ[i,j] shown on edge (i,7). In particular,
R[i,n1)R[n1,j] = Ri,n2]R[n2,j]. The assigned weights thus try to encourage this constraint and penalize
cases where it is not satisfied.

First, we figure out which patches are wrongly placed in the assembled puzzle and remove
them from the grid. For this purpose we use the following kinds of metrics, which we refer to
as NAM (Neighbor-Averaged Metric). For each patch i, 1 < i < n, with neighbors i, i, ip,
and i, from top, left, bottom, and right, respectively, we utilize the MGC metric (see (24)
and text below it) to define

(39) NAMau(i) = (MGCbt (i, it) + MGCrl(i, ’il) + MGCyy (’i, ib) + MGCy, (i, ir))/4.

If a patch ¢ is at the edge or corner of the puzzle grid, then it has 3 or 2 neighbors, respectively.
In this case, we only sum up the respective MGC values and divide the sum by the number
of neighbors. Similarly we define the following four metrics:

NAM, (i) = (MGCr(4,41) + MGChy (4, i) + MGCy, (4, 4r)) /3,
NAMip (1) = (MGOCuy (i, i) + MGCy (7, 4r) + MGCiy (i, b)) /3,
NAMy(7) = (MGCyy (4, i) + MGCr(4,41) + MGChy (4, 1)) /3,
NAMy, (i) = (MGCy(i,41) + MGCyp (i, 4) + MGCy, (7, 4;)) /3.

(40)

Again, if the patch is at the edge or corner of the puzzle grid, then we sum the appropriate
MGC values and divide by the corresponding number of neighbors.

If the puzzle is correctly assembled, the NAM values of all patches are relatively small
as demonstrated for NAM,y values in last figure of the first row of Figure 9. Otherwise, if
there are some wrongly placed patches, their corresponding NAM values should be relatively
higher. This is demonstrated in the first row of Figure 9, where the spikes of NAM,; values

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1741

Algorithm 2 Connection graph construction for type 2 puzzles.

Input: Puzzle Patches: {P;} | C R$*sx3
e For all 1 < i < j < n calculate the 16 MGC metric values between patches P, and
P; as explained in section 4.1
e Construct G = (V, Eest, Winit, R) according to the procedure described in section
4.3.1 with the following three stages: nearest-neighbors construction based on (25),
symmetrization of Wiy, and pruning extra neighbors with the use of (27)
e For all {i,j} € Eegt, calculate paceard (i, j) according to (28)
e For all {i,j} € FEest, if pyaccard(i,J) = 0, set Wiaccarda(i,j) = 0; otherwise,
WJaccard(ivj) =1
e Set Wi, = 0.8 X Wgaccard + 0.2 X Wit
e If the graph G is disconnected, iteratively connect the largest connected component
to smaller connected components as explained in section 4.3.3
e For all i, j € V, calculate dgiag (%, j) according to (33), and if dqiag(?,j) = 2, calculate
ny and ng according to (34)
e Form W g, according to (35) and update R and Wy, according to (36) and (37)
o Set W =W, + Wi
Return: G = (V, Eest, W, R), MGC values for all pairs of patches

correspond to wrongly orientated or placed patches. Based on this observation, we suggest
finding all patches for which the corresponding NAM,;; value and at least one of the NAMj,,
NAMp, NAMyy, and NAMy,, values exceeds 1.5 times the median of all corresponding NAM
values. We remove the corresponding edges from the grid. For example, for NAMj;, we remove
the edges connecting vertex ¢ with its left, top, and right neighbors. We refer to a location
as empty if all edges connecting the patch in this location to its top, bottom, left, and right
neighbors were removed. Patches at empty locations at each iteration of this procedure are
demonstrated in the second row of Figure 9. Their removal, which literally creates empty
locations, is demonstrated in the last row of this figure.

Next, we select all patches at empty locations for which at least 2 of 4 neighboring locations
in the puzzle grid (including edges removed in the current process) are not empty. For each
selected patch, we denote the set of neighboring patches by Sy,. Note that by our selection
criterion, Sy, contains 2, 3, or 4 indices. For each selected patch, we find an oriented patch in
Spb that minimizes the averaged MGC metric. We denote this minimal value by NAMg_ , and
also denote by med(NAM,j) the median of all NAM,); values. For a selected patch i and a
patch j € Sup, we fix the default parameters 0.3 and 0.6 and update the affinity function as
follows:

LN LN 0.6 if NAMSnb < med(NAMan),
(1) Wes(6,5) = Wea (i, 1) = { 0.3 if med(NAM,;) < NAMg,, < 2med(NAM,y).

We also update the connection function as follows, where we denote by R;; the current
solution of the pairwise orientation of patch ¢ with respect to patch j:

(42) Regli,j] = Rij and Regj,i] = R} ; if NAMg,, < 2med(NAM,p).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

1742 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

2000 2000
1500 1 1500
() (9]
p=} =}
T K
> >
= 1000 1 T 1000
s s
<< 2
P4 =z
500 1 500 1

0 100 200 300 400 500 0 100 200 300 400 500
Patch label number Patch label number

Figure 9. Demonstration of the update step for 2 iterations, described in section 5.1, of a type 2 puzzle
with 540 pieces each with sizes of 28 x 28. The first row shows the histograms of the NAM . metric values for
all patches, defined in (39). The second row shows the solution of the puzzle after each iteration of assembling
the puzzle, and the third row shows the remaining patches of an assembled puzzle after removing the patches
that are wrongly placed or oriented.

Algorithm 3 summarizes this update procedure.

Finally, our proposed algorithm for reassembling square jigsaw puzzles is summarized in
Algorithm 4. It iteratively solves the puzzle by repeating the following 3 steps: finding the
orientations of all patches, finding the locations of all patches, and updating the connection
function and the affinity function. To measure how good the solution is at each iteration, we

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1743

Algorithm 3 Updating the affinity and connection functions at a given iteration.

Input: MGC metric values between all patches, current solution to the puzzle problem
e Calculate the NAM values for all patches according to (39) and (40)
e Remove all edges from the solution grid for which the corresponding NAM,;; value
and at least one of the NAMj;,, NAM;,,, NAM;, and NAMy,, values exceeds 1.5
times the median of all corresponding NAM values
e For any patch at an empty location (that is, location whose edges were all removed)
which has at least two nonempty neighboring locations (according to the natural
grid of locations), find the patch with the correct rotation which best fits in that
position and update the affinity function and the connection function according to
(41) and (42)
Return: G = {V, Eest, Wst, Rest }

recommend using the following metric:

n

(43) Err({RZ}?:17 O’) = Z(MGClr(RZ : ‘Pi? Ria,r : BU,T) + MGCtb(R'L ’ ‘Pi7 Rid,b ’ 'Pio,b)
i=1
+MGCr1(Ri - P, Ria,l : Pia,z) + MGCbt(Ri ot Ria,b : Pia,b))?

where i5,95, 15, and i,, are the indices of the neighbors of patch ¢ from top, left, bottom,
and right, respectively, according to the solution ¢. If patch ¢ is at the edge or corner of the
puzzle grid, we only sum the respective MGC values.

Algorithm 4 Solution of type 2 puzzles.

Input: Puzzle patches: {P;}; C R¥*5%3
Apply Algorithm 2 with {P;}? ; to construct the affinity graph G = (V,E, W, R)
and obtain MGC values between all patches
Run Algorithm 1 with G = (V, E, W, R) to find the orientations {R;}!" ;
Apply the type 1 jigsaw puzzle solver of [43] to solve the type 1 puzzle with patches
{R; - P;}', and obtain their estimated permutation vector o
Compute and record Err({R;}?_,,0) by (43)
for iterations 1:5 do
e Apply Algorithm 3 with o, {R;}7; and the MGC values to obtain the updated
connection graph G = (V, E,W R)
e Apply Algorithm 1 with G = (V, E, W, R) to recover the orientations {R;}}" ,
e Apply the type 1 jigsaw puzzle solver of [43] to solve the type 1 puzzle with
patches {R; - P;}!' | and obtain their estimated permutation vector o
e Compute and record Err({R;}7_;,0) by (43)
e end for
Return: {R;}" ; and o, which minimize Err({R;}}_;,0) among all the above choices

We remark that most state-of-the-art methods use a greedy step to make final corrections
to the solved puzzle. On the other hand, the step discussed here only updates the connection

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1744 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

graph and is thus nongreedy. It is possible to incorporate greedy procedures that may improve
the performance of our algorithm; however, we would like to show that a more principled
method can be competitive.

The above description of our algorithm mentions various parameters, and we further
review them in section SM5 of the supplemental material. All parameters, except the number
of iterations (which can be rather small), are used in forming the graph affinities. That is,
throughout the algorithm, various tests are performed, and based on these, the affinities of
the estimated graph are changed. While the relative order of these parameters was often clear
to us, we performed some experiments to get the actual effective range of these parameters
and noticed some stability to changes of the chosen parameters. We remark that the use of
unknown parameters is common in other puzzle solvers and other graph-based algorithms.

5.2. Time complexity of Algorithm 4. Empirically, the most time-consuming step is
finding the MGC metric between all puzzle pieces. This step is vital for all jigsaw puzzle
solvers. Its order of operations is O(n?d), where n is the number of image patches and d is the
number of pixels in the side of each square image patch. One may parallelize this procedure
and achieve faster computation.

After finding the MGC metric between all puzzle pieces, our proposed procedure constructs
the connection graph by following Algorithm 2. The main computation of this step is in finding
the nearest neighbors of each point in the lattice, which is of order O(n?). Next, our procedure
finds the orientations of all patches. Here, the main computation is in finding the top two
eigenvectors of a sparse symmetric matrix with 4 nonzero elements in each column and row.
Using the Lanczos algorithm, the time complexity of this step is of order O(n). Once the
orientations are computed, the type 2 puzzle problem becomes type 1. The complexity of
solving the type 1 puzzle depends on which algorithm is used.

The last step of the proposed procedure is the update step, which is summarized in
Algorithm 3. It first requires finding a median of an array of size n, whose computation is
of order O(nlog(n)). It then requires filling up the empty locations, whose computation is
of order O(#(of empty locations) x n), where the # of empty locations is at most n/2. This
step recurs at most 5 times.

In summary, the complexity of the whole procedure, excluding the chosen type 1 solver,
is of order O(n?). A main computation is that of the MGC metric, where the constant
multiplying n? seems to be large in practice. As we mention below, in theory, the worst-case
complexity of the type 1 solver of Yu, Russell, and Agapito [43] can be higher than O(n?),
but we did not see any evidence for this in our numerical experiments in section 6.

At last, we discuss the complexity of the type 2 solvers of Gallagher [16] and Yu, Russell,
and Agapito [43]. We first mention that they both implement greedy procedures, so it is hard
to bound their complexity. Moreover, Yu, Russell, and Agapito [43] use multiple iterations
(until convergence) with no guarantees of convergence. Nevertheless, we discuss two of their
main algorithms. Gallagher [16] uses Kruskal’s algorithm to find the minimum spanning tree,
whose complexity is of order O (n?log(n)) [8], though another implementation for the mini-
mum spanning tree has complexity of order O (n2 log™ (n)) [14]. Yu, Russell, and Agapito [43]
solve a linear program at each iteration, where the worst-case complexity of linear programs
is O (n2‘5) [41]. We remark that the same bound on the order of complexity holds for the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1745

type 1 solver, which we use in our algorithm. However, our numerical experiments in section
6 may indicate different orders of complexity for the type 1 and type 2 puzzle solvers of Yu,
Russell, and Agapito [43]. One component which makes their type 2 puzzle solver slower is
the artificial enlargement of the number of puzzle patches by 4 in the former one, but this
only increases the complexity in a constant factor.

6. Numerical experiments. We apply our proposed algorithm to solve square jigsaw puz-
zles of the following standard image datasets: the MIT dataset from Cho, Avidan, and Free-
man [7], which contains 20 images, each with 432 patches, and three datasets from Pomeranz,
Shemesh, and Ben-Shahar [31], where the first two, which are referred to as McGill and Pomer-
anz, include 20 images with 540 and 805 patches, respectively, and the third one has 3 images
with 3300 patches, which is also referred to as large Pomeranz. For all datasets, the patches
are of size 28 x 28. Figure 10 demonstrates the application of our proposed algorithm to four
images that represent the four datasets. We remark that our algorithm perfectly solves the
last 3 puzzles, and we later discuss the solution of the first puzzle.

To test the accuracy of our proposed algorithm we use the following four metrics, defined
in Gallagher [16] and Cho, Avidan, and Freeman [7]: the direct comparison, the neighbors
comparison, the largest component, and the perfect reconstruction. The direct comparison
measures the percentage of image patches whose location and orientation are correct. The
neighbors comparison calculates the percentage of pairs of image patches that are matched
correctly. The largest component calculates the percentage of patches in the largest correctly
assembled component of the solved puzzle. Finally, the perfect reconstruction of a puzzle is 1
if it is solved correctly and O otherwise.

We compared our algorithm with those of Gallagher [16] and Yu, Russell, and Agapito [43]
for type 2 puzzles since they were the only algorithms with available codes (we requested codes
from all authors of relevant published algorithms). Note that we use the type 1 and type 2
solvers of Yu, Russell, and Agapito [43] in two different ways: We apply the former one as a
component of Algorithm 4 and the latter one for comparing performance with Algorithm 4.
One of the many procedures in our algorithm is random and is described in section 4.3.3. We
have also noticed some randomness in the results of the other two algorithms. Therefore, for
each puzzle we run each algorithm 20 times and report the averaged result. To get an idea of
the randomness of the three algorithms, we summarize here the averaged standard deviations
of the neighbors comparison metric when applying each algorithm 20 times to each of the
20 puzzles in the MIT dataset and averaging over the 20 puzzles. These averaged standard
deviations for Gallagher [16], Yu, Russell, and Agapito [43], and our algorithm are 6.5, 1.5,
and 0.17, respectively. In this and other experiments, we notice that the randomness of our
algorithm is not significant.

Table 1 compares the four metrics of the three algorithms. For the first three metrics of
percentages, we report the means and standard deviations among the images in each dataset
and among the 20 instances per image. We remark that in the above paragraph, the standard
deviations were different as they were computed among 20 instances per image and then
averaged among all images in a dataset. We only report the value of the fourth metric, that
is, the number of perfectly solved images. One can use this reported metric and the total
number of images to compute the mean and standard deviation of perfect reconstruction

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

1746 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

Figure 10. Solutions by Algorithm 4 of type 2 puzzles representing the four datasets. The images in the
left column are the inputs for the algorithm, and the ones in the right column are the outputs generated by our
proposed algorithm. The puzzle in first row is from the MIT dataset with 432 patches, the puzzle in the second
row is from the McGill dataset with 540 patches, the puzzle in the third row is from the Pomeranz dataset with
805 patches, and the puzzle in the fourth row is from the large Pomeranz dataset with 3300 patches.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1747

Table 1
Comparison of results for type 2 puzzles. For the first three metrics (direct, neighbor, and largest), we
report the mean values and standard deviations over all the images in a dataset and over 20 instances of solving
each puzzle. For the fourth metric, we report the total number of perfectly solved images (which was identical
to all 20 instances per puzzle).

Dataset Method Direct Neighbor Largest Perfect
mean | std mean | std mean | std

MIT Gallagher [16] | 84.2 19.7 | 89.1 12.4 | 87.2 143 | 9
(20 images, Yu et al. [43] 95.5 13.0 | 95.4 87 | 954 13.2 | 13
432 patches) Our method 94.8 11.3 | 95.2 9.2 95.4 9.1 13
McGill Gallagher [16] | 77.2 35.3 | 85.8 19.8 | 84.6 213 | 7
(20 images, Yu et al. [43] 92.9 24.6 | 93.5 14.8 | 93.1 15.4 | 13
540 patches) Our method 88.3 25.6 | 92.2 15.2 | 914 17.2 | 13
Pomeranz Gallagher [16] | 77.5 27.8 | 85.3 15.5 | 79.3 226 | 5
(20 images Yu et al. [43] 91.8 14.2 | 92.7 13.0 | 91.7 142 19
805 patches) Our method 86.8 21.4 | 90.0 14.2 | 89.3 154 | 9
Large Pomeranz | Gallagher [16] | 82.9 15.6 | 84.2 14.2 | 82.8 15.7 | 1
(3 images Yu et al. [43] 89.7 12.3 | 90.2 11.0 | 89.7 123 | 1
3300 patches) Our method 86.4 14.0 | 88.1 11.7 | 86.4 140 | 1

among the images in a dataset, and we thus do not find it necessary to include it. We also
remark that the standard deviations of this metric among the 20 instances were always zero.
Figure 11 presents histograms of the neighbors comparison metric for the first three datasets
and the three different algorithms. The fourth dataset is excluded from this figure since it
only has three images. Histograms for the other metrics, which are not provided here, indicate
similar comparisons of the three algorithms.

The results presented in Table 1 and Figure 11 indicate that the accuracy of our algorithm
is comparable to the state-of-the-art methods when tested on previously suggested datasets.
In general, we noted that when most of the patches have nonzero gradients around their
boundaries, our algorithm obtained perfect recovery. On the other hand, we noted that
puzzles with low percentages of recovery by all algorithms have large portions of patches with
the same uniform color. For example, we demonstrate such a puzzle from the MIT dataset,
together with its solution by our algorithm, in the first row of Figure 10. For this image and
all three methods, the neighbors comparison metric was 65%, where the errors occurred in the
top part of the image of uniform white background. Furthermore, this was the minimal value
of this metric among all puzzles in the MIT dataset for all methods. The solutions obtained
by the three algorithms are visually identical to the original one. On the other hand, the
solutions of any of the three methods to the two images with minimal neighbors comparison
metric of either the McGill or the Pomeranz datasets (the corresponding two images are the
same for all three methods) do not look visually identical to the original images.

We further test the robustness of the three algorithms to corruption. We fix a corruption
rate of value 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, or 0.14. We arbitrarily fix a 28 x 28 patch and then
a side of this patch and change the values of this side (we uniformly sample 28 x 3 values from
all pixel values of the given image and assign them to this side) with probability that equals
the corruption rate. Note that if, for example, the corruption rate is 0.14, then a given edge
(which may arise from two different patches) is corrupted with probability 1 — 0.862 =~ 0.26.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1748 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

MIT dataset McGill Dataset Pomeranz dataset
E [ (2] ]
=
£ N10 N 10 §°
(e} N N N
S 3 a a
< o o u
®» O © )
2 3 gs 3s
2 E S S
5 2 2 I z
© 0 [I[h[l[[l[l[l” 0 0. 0 N H 0 0 0. M AN MM
40 60 80 100 40 60 80 100 40 60 80 100
Percentage of pairs of patches that Percentage of pairs of patches that Percentage of pairs of patches that
were correctly assembled were correctly assembled were correctly assembled
1S 7} [ 0
£ 10 = 10 210
= N N N
[] 3 = =)
> a o a
< = u —
o 2 ° 5
s 8° 85 85
$ E £ £
s 2 2 2
>
0 I [ﬂ il H 0 [n 0[O 0 0 H [0 MmAn
40 60 80 100 40 60 80 100 40 60 80 100
Percentage of pairs of patches that Percentage of pairs of patches that Percentage of pairs of patches that
were correctly assembled were correctly assembled were correctly assembled
€
£ 8 8 g
6 w~10 ~ 10 ~ 10
2 N N N
< 2 a a
T . o o
& 5] s}
2 = o
8 8 5 8 5 8 5
S E S S
o = = =
- Z z z
3
[e] ] in H Tl 0 m H m 0 ] ” MAOn [
40 60 80 100 40 60 80 100 40 60 80 100
Percentage of pairs of patches that Percentage of pairs of patches that Percentage of pairs of patches that
were correctly assembled were correctly assembled were correctly assembled

Figure 11. Histograms of the neighbors comparison metric (percentage of the recovered pairs of patches).
The three rows correspond to results by the algorithm of [16], the algorithm of [43], and our proposed algorithm,
respectively. The three columns correspond to the MIT, McGill, and Pomeranz datasets, respectively.

There are several reasons for this model. First, since gradients are sensitive to noise, the
MGC metric is sensitive to noise, and thus application of standard noise models to the whole
image will result in similar degradation of performance by all tested methods. Second, this
model of corrupting sides of patches is somewhat similar to adversarially corrupting edges
in group synchronization [21, 26], where despite really bad corruption, one has some clean
information that can help in solving the synchronization problem. At last, we hope that
for images without uniform regions, the conditions of Theorem 3.1 may hold under small
corruption in this model, but of course we cannot verify this as there is a gap between the
clean theory and the applied problem.

Figure 12 demonstrates some examples of puzzles with corrupted patches. Figure 13
shows graphs of the averaged neighbors comparison metric as a function of the corruption
rates computed for puzzles of the MIT dataset and the McGill dataset. For each dataset,
there are three graphs for the three algorithms: Algorithm 4, Gallagher [16], and Yu, Russell,
and Agapito [43]. We note that our algorithm obtains the highest averaged accuracy for all
nonzero corruption rates. Nevertheless, the algorithm of Yu, Russell, and Agapito [43] is still

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1749

somewhat comparable to our algorithm; however, Gallagher [16] is clearly less accurate than
both methods.

Corruption rate of 0.02 Corruption rate of 0.08 Corruption rate of 0.14
| ! .

!
-
[

Image from the MIT dataset

Image from the McGill dataset

Figure 12. Ezamples of puzzles with corrupted patch sides. The puzzle in the first row is from the MIT
dataset, and the puzzle in the second row is from the McGill dataset. The three columns correspond to the
following corruption rates: 0.02, 0.08, and 0.14.

Next, we compare the running times of Gallagher [16], Yu, Russell, and Agapito [43], and
our algorithm, where we use a MacBook Pro with a 2.3 GHz Intel Core i5 processor and an
8 GB 2133 MHz LPDDRS3 memory. Table 2 reports results for the four different datasets. It
includes results for both the faster implementation of our algorithm with a single iteration
(and no update) and our default implementation with 5 iterations described in Algorithm 4.
It also includes the time of calculating the MGC metric, which is shared by all algorithms
and is rather slow. We can see from Table 2 that Gallagher [16] is the fastest algorithm for
the smaller puzzles, and our algorithm is the fastest for the largest puzzles. Yu, Russell, and
Agapito [43] is the slowest algorithm.

Comparing the ratio of the time of each algorithm over the time of computing the MGC
metric, one can notice the following: For our single iteration implementation, these ratios are
very similar across different puzzle sizes. Thus, the complexity of this implementation seems
to match order O(n?) on these datasets (as the complexity of computing the MGC metric is
of order O(n?)). For our full implementation according to Algorithm 4, these ratios slightly
decrease. That is, relatively, fewer updates are needed for larger puzzles. These ratios slightly
increase for Gallagher [16], and they significantly increase for Yu, Russell, and Agapito [43].
In view of this observation and the discussion in subsection 5.2, it is possible that for typical
puzzles the order of complexity of Yu, Russell, and Agapito [43] is higher than O(n?).

We remark that for most images, our algorithm obtains competitive accuracy with either
one or two iterations. However, there are a couple of images for which more iterations are
needed to achieve competitive accuracy.

Finally, we would like to mention that most state-of-the-art algorithms, in particular

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1750 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

| Robustness using the MIT dataset | Robustness using the McGill dataset
=%=Qur Algorithm =w=Our Algorithm
=€=Yuetal =€=Yuetal

o

©

o
AC‘OA

Gallagher Gallagher

Q L
© ©
IS €
c c
(o] (o]
20g 208
© 3]
£ £
507 507+
o [$]
@ 1
S 0.6 S 0.6
Ny <
=) =)
© 0.5 © 051
c c
[0 (0] v
S04 o4l 4
[ [0
> >
<3 | | | | | | <3 ‘ ‘ ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Corruption rate Corruption rate

Figure 13. Demonstration of the robustness of Algorithm 4 in case of corrupted puzzle sides. We compare
our proposed algorithm with the algorithms of Gallagher [16] and Yu, Russell, and Agapito [43] when the patches
are corrupted. The x axis is the corruption rate, and the y axis is the average neighbors comparison metric for
the puzzles under different noise levels. We report the mean values of the neighbors comparison metric for 5
instances and 20 puzzles of the MIT dataset in the first row and the McGill dataset in the second row.

Table 2
Comparison of running times for type 2 puzzles for the four datasets.
Dataset Method Time (seconds)
MIT MGC metric calculation 32.5
(20 images, Gallagher [16] 36.4

Yu et al. [43] 60.2
Our method with 1 iteration 38.1
Our method with 5 iterations | 57.6

432 patches, 28 x 28)

MeGill MGC metric calculation 51.3
(20 images Gallagher [16] 58.5
85, Yu et al. [43] 100.1

540 patches, 28 x 28) =5 o T With T Tteration | 58.5

Our method with 5 iterations | 87.5

Pomeranz MGC metric calculation 112.3
(20 images Gallagher [16] 1355
8%, Yu et al. [43] 234

805 patches, 28 x 28) Our method with 1 iteration 128

Our method with 5 iterations | 178

Large Pomeranz MGC metric calculation 1908.5
(3 ifﬂa - Gallagher [16] 3988
8o Yu et al. [43] 6120

3300 patches, 28 x 28) Our method with 1 iteration 2214

Our method with 5 iterations | 2857

[16, 38, 43], use a greedy step to make final corrections. We believe that by using that final
step of corrections we could further improve our results; however, we would like to avoid
greedy procedures.

We refer the reader to https://github.com/vahanhuroyan/PuzzleDemoGCL for all the
codes necessary to duplicate these results.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://github.com/vahanhuroyan/PuzzleDemoGCL

Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1751

7. Conclusion. This paper introduces a novel and constructive mathematical approach
for solving square jigsaw puzzles. It first suggests a procedure for recovering the unknown
orientations of type 2 puzzle patches and guarantees its robustness to measurement errors
assuming a special clean setting. Furthermore, it also suggests a principled strategy for
updating the full puzzle solution based on the latter strategy for solving orientations. Some
components of the proposed algorithm, in particular the strategy for recovering orientations,
are relatively fast. Nevertheless, the main bottleneck in the computational complexity of our
algorithm, that is, calculating the MGC metric, is shared by all existing algorithms. Numerical
experiments on datasets of square jigsaw puzzles indicate that the accuracy of our algorithm
is comparable to that of state-of-the-art methods. Furthermore, on average, our algorithm
seems to outperform the existing methods in the presence of corruption. It is also more
computationally efficient for large puzzles.

We expect some possible extensions of the proposed algorithm. First, we believe that the
ideas pursued in this work could be extended to puzzles that come from more complicated
manifolds, such as the two-dimensional sphere or a three-dimensional cube jigsaw puzzle, or
puzzles with more complicated shapes of patches, such as tangrams. The GCL algorithm
should be the same; however, instead of considering the group Z,4, one needs to consider the
corresponding rotation group. Two challenges though are defining a good metric between
puzzle pieces and constructing the connection graph. By doing this, one will extend the
applicability of this work to various real-world applications, such as three-dimensional image
reconstruction from two-dimensional images.

In terms of theory, it is interesting to analyze our proposed GCL algorithm with more
complicated perturbations. Additional theoretical questions arise from different ideas dis-
cussed in the accompanying supplemental material (M129076_01.pdf [local/web 965KB]) that
we cannot make practical. For example, we are interested to find out if one can effectively
utilize the vector diffusion distances or a modification of them. Moreover, we would like to
know if one can better estimate the locations of the patches by using a quadratic assignment
problem formulation.

Acknowledgments. We would like to thank Rui Yu for kindly sending us his code of the
algorithm presented in [43] and Andrew Gallagher for posting the code used in [16]. We are
very grateful to the anonymous reviewers for their very careful reading of the manuscript and
their valuable comments. We are also thankful to Dr. Brendt Wohlberg for his professional
handling of the manuscript.

REFERENCES

[1] T. ALTMAN, Solving the JIGSAW puzzle problem in linear time, Appl. Artificial Intell., 3 (1989), pp. 453—
462, https://doi.org/10.1080,/08839518908949937.

[2] F. A. ANDALO, G. TAUBIN, AND S. GOLDENSTEIN, Solving image puzzles with a simple quadratic pro-
gramming formulation, in Proceedings of the 25th SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI), IEEE, Washington, DC, 2012, pp. 63-70.

[3] A.S. BANDEIRA, A. SINGER, AND D. A. SPIELMAN, A Cheeger inequality for the graph connection Lapla-
cian, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1611-1630, https://doi.org/10.1137/120875338.

[4] C. BORDENAVE, U. FEIGE, AND E. MOSSEL, Shotgun Assembly of Random Jigsaw Puzzles, preprint,
https://arxiv.org/abs/1605.03086, 2016.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://epubs.siam.org/doi/suppl/10.1137/19M1290760/suppl_file/M129076_01.pdf
https://doi.org/10.1080/08839518908949937
https://doi.org/10.1137/120875338
https://arxiv.org/abs/1605.03086

Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1752 VAHAN HUROYAN, GILAD LERMAN, AND HAU-TIENG WU

[5]

[6]

[7]

[9]

(10]

(11]
(12]
(13]
(14]
(15]

(16]

(17]

(18]

(19]
20]
(21]
(22]
23]

(24]

(25]
[26]

27]

B. J. BRowN, C. TOLER-FRANKLIN, D. NEHAB, M. BuUrNS, D. P. DOBKIN, A. VLACHOPOULOS,
C. DouMAs, S. RUSINKIEWICZ, AND T. WEYRICH, A system for high-volume acquisition and matching
of fresco fragments: Reassembling Theran wall paintings, ACM Trans. Graph., 27 (2008), pp. 84:1—-
84:9.

L. CHEN, D. CA0, AND Y. Liu, A new intelligent jigsaw puzzle algorithm base on mized similarity and
symbol matriz, Int. J. Pattern Recognit. Artif. Intell., 32 (2018), 1859001.

T. S. CHO, S. AviDAN, AND W. T. FREEMAN, A probabilistic image jigsaw puzzle solver, in Proceedings of
the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Washinton,
DC, 2010, pp. 183-190.

T. H. CorMEN, C. E. LEISERSON, R. L. RIvEST, AND C. STEIN, Introduction to Algorithms, 3rd ed.,
MIT Press, Cambridge, MA, 2009, https://mitpress.mit.edu/books/introduction-algorithms.

C. Davis AND W. M. KAHAN, The rotation of eigenvectors by a perturbation. II1, STAM J. Numer. Anal.,
7 (1970), pp. 1-46, https://doi.org/10.1137/0707001.

A. DEEVER AND A. GALLAGHER, Semi-automatic assembly of real cross-cut shredded documents, in Pro-
ceedings of the 19th IEEE International Conference on Image Processing (ICIP), IEEE, Washington,
DC, 2012, pp. 233-236.

E. D. DEMAINE AND M. L. DEMAINE, Jigsaw puzzles, edge matching, and polyomino packing: Connections
and complezity, Graphs Combin., 23 (2007), pp. 195-208.

N. EL Karout AND H.-T. Wu, Graph connection Laplacian methods can be made robust to noise, Ann.
Statist., 44 (2016), pp. 346-372.

J. FAN, W. WANG, AND Y. ZHONG, An lo eigenvector perturbation bound and its application, J. Mach.
Learn. Res., 18 (2017), 207, https://jmlr.org/papers/v18/16-140.html.

M. L. FREDMAN AND R. E. TARJAN, Fibonacci heaps and their uses in improved network optimization
algorithms, J. ACM, 34 (1987), pp. 596-615, https://doi.org/10.1145/28869.28874.

H. FREEMAN AND L. GARDER, Apictorial jigsaw puzzles: The computer solution of a problem in pattern
recognition, IEEE Trans. Electron. Comput., 13 (1964), pp. 118-127.

A. C. GALLAGHER, Jigsaw puzzles with pieces of unknown orientation, in Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (Providence, RI), IEEE, Washington, DC,
2012, pp. 382-389, https://doi.org/10.1109/CVPR.2012.6247699.

P. JACCARD, Etude comparative de la distribution florale dans une portion des alpes et des jura, Bulletin
del la Société Vaudoise des Sciences Naturelles, 37 (1901), pp. 547-579.

S.-Y. JiN, S. LEg, N. A. Azis, AND H.-J. CHoOI, Jigsaw puzzle image retrieval via pairwise compatibility
measurement, in Proceedings of the 2014 International Conference on Big Data and Smart Computing
(BIGCOMP), IEEE, Washington, DC, 2014, pp. 123-127.

E. JusTiNO, L. S. OLIVEIRA, AND C. FREITAS, Reconstructing shredded documents through feature match-
ing, Forensic Sci. Internat., 160 (2006), pp. 140-147.

D. KOLLER AND M. LEvOY, Computer-aided reconstruction and new matches in the Forma Urbis Romae,
Bullettino Della Commissione Archeologica Comunale di Roma, 15 (2006), pp. 103—-125.

G. LERMAN AND Y. SHI, Robust Group Synchronization via Cycle-Edge Message Passing, preprint, https:
//arxiv.org/abs/1912.11347, 2019.

H. Liu, S. CAa0, AND S. YAN, Automated assembly of shredded pieces from multiple photos, IEEE Trans.
Multimedia, 13 (2011), pp. 1154-1162.

W. MARANDE AND G. BURGER, Mitochondrial DNA as a genomic jigsaw puzzle, Science, 318 (2007),
pp. 415-415.

M. A. MARQUES AND C. O. FREITAS, Reconstructing strip-shredded documents using color as feature
matching, in Proceedings of the 2009 ACM symposium on Applied Computing, ACM, New York,
2009, pp. 893-894.

A. MARTINSSON, Shotgun Edge Assembly of Random Jigsaw Puzzles, preprint, https://arxiv.org/abs/
1605.07151, 2016.

T. MAUNU AND G. LERMAN, A Provably Robust Multiple Rotation Averaging Scheme for SO(2), preprint,
https://arxiv.org/abs/2002.05299, 2020.

D. MoNDAL, Y. WANG, AND S. DUROCHER, Robust solvers for square jigsaw puzzles, in Proceedings of
the 2013 International Conference on Computer and Robot Vision, IEEE, Washington, DC, 2013,
pp. 249-256.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1137/0707001
https://jmlr.org/papers/v18/16-140.html
https://doi.org/10.1145/28869.28874
https://doi.org/10.1109/CVPR.2012.6247699
https://arxiv.org/abs/1912.11347
https://arxiv.org/abs/1912.11347
https://arxiv.org/abs/1605.07151
https://arxiv.org/abs/1605.07151
https://arxiv.org/abs/2002.05299

Downloaded 11/07/20 to 150.135.165.137. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SOLVING JIGSAW PUZZLES BY THE GCL 1753

[28] E. MOSSEL AND N. Ross, Shotgun assembly of labeled graphs, IEEE Trans. Network Sci. Engrg., 6 (2019),

29]

30]

(31]

(32]

(33]

(34]

(35]

(36]
(37]
(38]

39]

(40]

(41]

42]

(43]
(44]

(45]

G.

N

pp. 145-157, https://doi.org/10.1109/TNSE.2017.2776913.

PAIKIN AND A. TAL, Solving multiple square jigsaw puzzles with missing pieces, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Washington, DC, 2015,
pp. 4832-4839.

. PinTus, K. PAL, Y. YAaNG, T. WEYRICH, E. GOBBETTI, AND H. RUSHMEIER, A survey of geometric

analysis in cultural heritage, Comput. Graphics Forum, 35 (2015), pp. 4-31.

. POMERANZ, M. SHEMESH, AND O. BEN-SHAHAR, A fully automated greedy square jigsaw puzzle

solver, in Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2011 (Colorado Springs, CO), IEEE, Washington, DC, 2011, pp. 9-16, https://doi.org/10.
1109/CVPR.2011.5995331.

. SHOLOMON, O. E. DAvID, AND N. S. NETANYAHU, A generalized genetic algorithm-based solver for

very large jigsaw puzzles of complex types, in Proceedings of the 28th AAAI Conference on Artificial
Intelligence, Québec City, Québec, Canada, 2014, pp. 2839-2845, http://www.aaai.org/ocs/index.
php/AAAI/AAAIL4/paper/view/8650.

. SHOLOMON, O. E. DaviD, AND N. S. NETANYAHU, Genetic algorithm-based solver for wvery large

multiple jigsaw puzzles of unknown dimensions and piece orientation, in Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, GECCO ’14 (New York, NY), 2014,
ACM, New York, pp. 1191-1198.

. SHOLOMON, O. E. DAvVID, AND N. S. NETANYAHU, An automatic solver for very large jigsaw puzzles

using genetic algorithms, Genetic Program. Evolv. Mach., 17 (2016), pp. 291-313, https://doi.org/
10.1007/s10710-015-9258-0.

. SHOLOMON, O. E. DaviD, AND N. S. NETANYAHU, DNN-buddies: A deep neural network-based

estimation metric for the jigsaw puzzle problem, in Artificial Neural Networks and Machine Learning—
ICANN 2016, A. E. Villa, P. Masulli, and A. J. Pons Rivero, eds., Springer, New York, 2016, pp. 170
178.

. SINGER AND H.-T. Wu, Vector diffusion maps and the connection Laplacian, Comm. Pure Appl.

Math., 65 (2012), pp. 1067-1144.

. S1ZIKOVA AND T. FUNKHOUSER, Wall painting reconstruction using a genetic algorithm, J. Comput.

Cultural Heritage (JOCCH), 11 (2017), p. 3.

. SoN, J. HAvs, AND D. B. COOPER, Solving square jigsaw puzzles with loop constraints, in European

Conference on Computer Vision, Springer, New York, 2014, pp. 32—46.

. SoN, D. MoORENO, J. HAYs, AND D. B. COOPER, Solving small-piece jigsaw puzzles by growing

consensus, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
IEEE, Washington, DC, 2016, pp. 1193—-1201.

. TOLER-FRANKLIN, B. BROWN, T. WEYRICH, T. FUNKHOUSER, AND S. RUSINKIEWICZ, Multi-feature

matching of fresco fragments, ACM Trans. Graphics (Proc. SIGGRAPH Asia), 29 (2010), 185.

. M. VAIDYA, Speeding-up linear programming using fast matriz multiplication (extended abstract), in

Proceedings of the 30th Annual Symposium on Foundations of Computer Science (Research Triangle
Park, NC), IEEE, Washington, DC, 1989, pp. 332-337, https://doi.org/10.1109/SFCS.1989.63499.

. YANG, N. ADLURU, AND L. J. LATECKI, Particle filter with state permutations for solving image

jigsaw puzzles, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, Washington, DC, 2011, pp. 2873-2880.

. Yu, C. RUSSELL, AND L. AGAPITO, Solving jigsaw puzzles with linear programming, in Proceedings

of the 2016 British Machine Vision Conference, BMVC 2016, York, UK, 2016, 139.

. Yu, T. WANG, AND R. J. SAMWORTH, A useful variant of the Davis—Kahan theorem for statisticians,

Biometrika, 102 (2015), pp. 315-323.

. YU-XIANG, S. Mu-CHUN, C. ZHONG-LIE, AND L. JONATHAN, A puzzle solver and its application

in speech descrambling, in Proceedings of the 2007 WSEAS International Conference on Computer
Engineering and Applications, Gold Coast, Australia, 2007, pp. 171-176.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1109/TNSE.2017.2776913
https://doi.org/10.1109/CVPR.2011.5995331
https://doi.org/10.1109/CVPR.2011.5995331
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8650
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8650
https://doi.org/10.1007/s10710-015-9258-0
https://doi.org/10.1007/s10710-015-9258-0
https://doi.org/10.1109/SFCS.1989.63499

	Introduction
	Previous work
	Our contribution
	Structure of this paper

	Mathematical formulation and notation
	Setting and notation
	A challenge of square jigsaw puzzles

	A framework for recovering rotations of puzzle pieces
	Estimation of orientations using the connection graph
	Theoretical justification of the GCL algorithm

	Connection graph construction for type 2 and type 3 puzzles
	Gallagher's MGC metric
	Connection graph construction for type 3 puzzles
	Connection graph construction for type 2 puzzles
	Initial step
	Use of Jaccard index to refine the graph
	Making the affinity graph connected
	Taking advantage of 4-loops


	Solution for type 2 puzzles via GCL and location solver
	Updating the affinity and connection functions and the resulting solution
	Time complexity of algo:type2sol

	Numerical experiments
	Conclusion

